1
|
Kim WK, Lee Y, Jang SJ, Hyeon C. Kinetic Model for the Desensitization of G Protein-Coupled Receptor. J Phys Chem Lett 2024; 15:6137-6145. [PMID: 38832827 DOI: 10.1021/acs.jpclett.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Desensitization of G-protein-coupled receptors (GPCR) is a general regulatory mechanism adopted by biological organisms against overstimulation of G protein signaling. Although the details of the mechanism are extensively studied, it is not easy to gain an overarching understanding of the process constituted by a multitude of molecular events with vastly differing time scales. To offer a semiquantitative yet predictive understanding of the mechanism, we formulate a kinetic model for the G protein signaling and desensitization by considering essential biochemical steps from ligand binding to receptor internalization. The internalization, followed by receptor depletion from the plasma membrane, attenuates the downstream signal. Together with the kinetic model and its full numerics of the expression derived for the dose-response relation, an approximated form of the expression clarifies the role played by the individual biochemical processes and allows us to identify four distinct regimes for the downregulation that emerge from the balance between phosphorylation, dephosphorylation, and the cellular level of β-arrestin.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Seogjoo J Jang
- Korea Institute for Advanced Study, Seoul 02455, Korea
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- PhD programs in Chemistry and Physics Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | | |
Collapse
|
2
|
Yaduvanshi S, Kumar V. Fungal alkaloid malbrancheamide reorients the lipid binding domain of GRK5. J Biomol Struct Dyn 2024:1-12. [PMID: 38661007 DOI: 10.1080/07391102.2024.2333987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/16/2024] [Indexed: 04/26/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest group of receptors involved in various types of signaling. GPCR signaling is regulated via receptor phosphorylation by G protein-coupled receptor kinases 5 (GRK5). Calmodulin (CaM), a universal Ca2+ sensor, inhibits receptor phosphorylation by binding to GRK5. However, the inhibitor malbrancheamide (MBC), which binds at CaM C-lobe, allows for receptor phosphorylation. To understand the phosphorylation mechanism by GRK5, we carried out a MD simulation of the CaM/GRK5 complex in the presence and absence of the MBC inhibitor. The lipid binding domain (LBD) of GRK5 adopted different positions in the presence and absence of inhibitor. Furthermore, the inhibitor MBC restricted the movement of the N-lobe tether (NLT) loop, probably blocking the autophosphorylation of GRK5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani Yaduvanshi
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| | - Veerendra Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Ayub H, Murray RJ, Kuyler GC, Napier-Khwaja F, Gunner J, Dafforn TR, Klumperman B, Poyner DR, Wheatley M. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Arch Biochem Biophys 2024; 754:109946. [PMID: 38395122 DOI: 10.1016/j.abb.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.
Collapse
Affiliation(s)
- Hoor Ayub
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK.
| | - Rebecca J Murray
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gestél C Kuyler
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Joseph Gunner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bert Klumperman
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
4
|
Nikte SV, Joshi M, Sengupta D. State-dependent dynamics of extramembrane domains in the β 2 -adrenergic receptor. Proteins 2024; 92:317-328. [PMID: 37864328 DOI: 10.1002/prot.26613] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are membrane-bound signaling proteins that play an essential role in cellular signaling processes. Due to their intrinsic function of transmitting internal signals in response to external cues, these receptors are adapted to be highly dynamic in nature. The β2 -adrenergic receptor (β2 AR) is a representative member of the family that has been extensively analyzed in terms of its structure and activation. Although the structure of the transmembrane domain has been characterized in the different functional states of the receptor, the conformational dynamics of the extramembrane domains, especially the intrinsically disordered regions are still emerging. In this study, we analyze the state-dependent dynamics of extramembrane domains of β2 AR using atomistic molecular dynamics simulations. We introduce a parameter, the residue excess dynamics that allows us to better quantify receptor dynamics. Using this measure, we show that the dynamics of the extramembrane domains are sensitive to the receptor state. Interestingly, the ligand-bound intermediateR ' state shows the maximal dynamics compared to either the active R*G or inactive R states. Ligand binding appears to be correlated with high residue excess dynamics that are dampened upon G protein coupling. The intracellular loop-3 (ICL3) domain has a tendency to flip towards the membrane upon ligand binding, which could contribute to receptor "priming." We highlight an important ICL1-helix-8 interplay that is broken in the ligand-bound state but is retained in the active state. Overall, our study highlights the importance of characterizing the functional dynamics of the GPCR loop domains.
Collapse
Affiliation(s)
- Siddhanta V Nikte
- Physical and Materials Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manali Joshi
- Bioinformatics Center, Savitribai Phule Pune University, Pune, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Madhu MK, Shewani K, Murarka RK. Biased Signaling in Mutated Variants of β 2-Adrenergic Receptor: Insights from Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:449-469. [PMID: 38194225 DOI: 10.1021/acs.jcim.3c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The molecular basis of receptor bias in G protein-coupled receptors (GPCRs) caused by mutations that preferentially activate specific intracellular transducers over others remains poorly understood. Two experimentally identified biased variants of β2-adrenergic receptors (β2AR), a prototypical GPCR, are a triple mutant (T68F, Y132A, and Y219A) and a single mutant (Y219A); the former bias the receptor toward the β-arrestin pathway by disfavoring G protein engagement, while the latter induces G protein signaling explicitly due to selection against GPCR kinases (GRKs) that phosphorylate the receptor as a prerequisite of β-arrestin binding. Though rigorous characterizations have revealed functional implications of these mutations, the atomistic origin of the observed transducer selectivity is not clear. In this study, we investigated the allosteric mechanism of receptor bias in β2AR using microseconds of all-atom Gaussian accelerated molecular dynamics (GaMD) simulations. Our observations reveal distinct rearrangements in transmembrane helices, intracellular loop 3, and critical residues R1313.50 and Y3267.53 in the conserved motifs D(E)RY and NPxxY for the mutant receptors, leading to their specific transducer interactions. Moreover, partial dissociation of G protein from the receptor core is observed in the simulations of the triple mutant in contrast to the single mutant and wild-type receptor. The reorganization of allosteric communications from the extracellular agonist BI-167107 to the intracellular receptor-transducer interfaces drives the conformational rearrangements responsible for receptor bias in the single and triple mutants. The molecular insights into receptor bias of β2AR presented here could improve the understanding of biased signaling in GPCRs, potentially opening new avenues for designing novel therapeutics with fewer side-effects and superior efficacy.
Collapse
Affiliation(s)
- Midhun K Madhu
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Kunal Shewani
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| | - Rajesh K Murarka
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
7
|
Fan Y, Yan XY, Guan W. GPR56, an Adhesion GPCR with Multiple Roles in Human Diseases, Current Status and Future Perspective. Curr Drug Targets 2024; 25:558-573. [PMID: 38752635 DOI: 10.2174/0113894501298344240507080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Human G protein-coupled receptor 56 (GPR56) belongs to a member of the adhesion G-protein coupled receptor (aGPCR) family and widely exists in the central nervous system and various types of tumor tissues. Recent studies have shown that abnormal expression or dysfunction of GPR56 is closely associated with many physiological and pathological processes, including brain development, neuropsychiatric disorders, cardiovascular diseases and cancer progression. In addition, GPR56 has been proven to enhance the susceptibility of some antipsychotics and anticarcinogens in response to the treatment of neuropsychological diseases and cancer. Although there have been some reports about the functions of GPR56, the underlying mechanisms implicated in these diseases have not been clarified thoroughly, especially in depression and epilepsy. Therefore, in this review, we described the molecular structure and signal transduction pathway of GPR56 and carried out a comprehensive summary of GPR56's function in the development of psychiatric disorders and cancer. Our review showed that GPR56 deficiency led to depressive-like behaviors and an increase in resistance to antipsychotic treatment. In contrast, the upregulation of GPR56 contributed to tumor cell proliferation and metastasis in malignant diseases such as glioblastoma, colorectal cancer, and ovarian cancer. Moreover, we elucidated specific signaling pathways downstream of GPR56 related to the pathogenesis of these diseases. In summary, our review provides compelling arguments for an attractive therapeutic target of GPR56 in improving the therapeutic efficiency for patients suffering from psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Xiao-Yan Yan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
8
|
Duan J, Liu H, Zhao F, Yuan Q, Ji Y, Cai X, He X, Li X, Li J, Wu K, Gao T, Zhu S, Lin S, Wang MW, Cheng X, Yin W, Jiang Y, Yang D, Xu HE. GPCR activation and GRK2 assembly by a biased intracellular agonist. Nature 2023; 620:676-681. [PMID: 37532940 DOI: 10.1038/s41586-023-06395-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/03/2023] [Indexed: 08/04/2023]
Abstract
Phosphorylation of G-protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) desensitizes G-protein signalling and promotes arrestin signalling, which is also modulated by biased ligands1-6. The molecular assembly of GRKs on GPCRs and the basis of GRK-mediated biased signalling remain largely unknown owing to the weak GPCR-GRK interactions. Here we report the complex structure of neurotensin receptor 1 (NTSR1) bound to GRK2, Gαq and the arrestin-biased ligand SBI-5537. The density map reveals the arrangement of the intact GRK2 with the receptor, with the N-terminal helix of GRK2 docking into the open cytoplasmic pocket formed by the outward movement of the receptor transmembrane helix 6, analogous to the binding of the G protein to the receptor. SBI-553 binds at the interface between GRK2 and NTSR1 to enhance GRK2 binding. The binding mode of SBI-553 is compatible with arrestin binding but clashes with the binding of Gαq protein, thus providing a mechanism for its arrestin-biased signalling capability. In sum, our structure provides a rational model for understanding the details of GPCR-GRK interactions and GRK2-mediated biased signalling.
Collapse
Affiliation(s)
- Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fenghui Zhao
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yujie Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Cai
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinzhu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kai Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianyu Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengnan Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shi Lin
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Research Center for Deepsea Bioresources, Sanya, Hainan, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
9
|
Kirsch ZJ, Blake JM, Huynh U, Agrohia DK, Tremblay CY, Graban EM, Vaughan RC, Vachet RW. Membrane Protein Binding Interactions Studied in Live Cells via Diethylpyrocarbonate Covalent Labeling Mass Spectrometry. Anal Chem 2023; 95:7178-7185. [PMID: 37102678 PMCID: PMC10350911 DOI: 10.1021/acs.analchem.2c05616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Membrane proteins are vital in the human proteome for their cellular functions and make up a majority of drug targets in the U.S. However, characterizing their higher-order structures and interactions remains challenging. Most often membrane proteins are studied in artificial membranes, but such artificial systems do not fully account for the diversity of components present in cell membranes. In this study, we demonstrate that diethylpyrocarbonate (DEPC) covalent labeling mass spectrometry can provide binding site information for membrane proteins in living cells using membrane-bound tumor necrosis factor α (mTNFα) as a model system. Using three therapeutic monoclonal antibodies that bind TNFα, our results show that residues that are buried in the epitope upon antibody binding generally decrease in DEPC labeling extent. Additionally, serine, threonine, and tyrosine residues on the periphery of the epitope increase in labeling upon antibody binding because of a more hydrophobic microenvironment that is created. We also observe changes in labeling away from the epitope, indicating changes to the packing of the mTNFα homotrimer, compaction of the mTNFα trimer against the cell membrane, and/or previously uncharacterized allosteric changes upon antibody binding. Overall, DEPC-based covalent labeling mass spectrometry offers an effective means of characterizing structure and interactions of membrane proteins in living cells.
Collapse
Affiliation(s)
- Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jeanna M. Blake
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Uyen Huynh
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Dheeraj K. Agrohia
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Catherine Y. Tremblay
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Eric M. Graban
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Robert C. Vaughan
- QuarryBio, Collins Building, 2051 East Paul Dirac Dr., Tallahassee, FL 32310
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, Ma X, Sun X, Kawakami K, Ikuta T, Ding J, Yang Y, Zhang L, Peng S, Niu X, Li H, Guixà-González R, Jin C, Hildebrand PW, Chen C, Kobilka BK. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nat Commun 2023; 14:2005. [PMID: 37037825 PMCID: PMC10085991 DOI: 10.1038/s41467-023-37233-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023] Open
Abstract
Advances in structural biology have provided important mechanistic insights into signaling by the transmembrane core of G-protein coupled receptors (GPCRs); however, much less is known about intrinsically disordered regions such as the carboxyl terminus (CT), which is highly flexible and not visible in GPCR structures. The β2 adrenergic receptor's (β2AR) 71 amino acid CT is a substrate for GPCR kinases and binds β-arrestins to regulate signaling. Here we show that the β2AR CT directly inhibits basal and agonist-stimulated signaling in cell lines lacking β-arrestins. Combining single-molecule fluorescence resonance energy transfer (FRET), NMR spectroscopy, and molecular dynamics simulations, we reveal that the negatively charged β2AR-CT serves as an autoinhibitory factor via interacting with the positively charged cytoplasmic surface of the receptor to limit access to G-proteins. The stability of this interaction is influenced by agonists and allosteric modulators, emphasizing that the CT plays important role in allosterically regulating GPCR activation.
Collapse
Affiliation(s)
- Jie Heng
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, 430071, China
| | - Guillermo Pérez-Hernández
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jiawei Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiuyan Ma
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaoou Sun
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Tatsuya Ikuta
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jienv Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yujie Yang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lujia Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sijia Peng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaogang Niu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232, Villigen, PSI, Switzerland
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peter W Hildebrand
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Medical Physics and Biophysics, University Leipzig, 04107, Leipzig, Germany
- Berlin Institute of Health, 10178, Berlin, Germany
| | - Chunlai Chen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Gerhards J, Maerz LD, Matthees ESF, Donow C, Moepps B, Premont RT, Burkhalter MD, Hoffmann C, Philipp M. Kinase Activity Is Not Required for G Protein-Coupled Receptor Kinase 4 Restraining mTOR Signaling during Cilia and Kidney Development. J Am Soc Nephrol 2023; 34:590-606. [PMID: 36810260 PMCID: PMC10103308 DOI: 10.1681/asn.0000000000000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/27/2022] [Indexed: 01/28/2023] Open
Abstract
SIGNIFICANCE STATEMENT G protein-coupled receptor kinase 4 (GRK4) regulates renal sodium and water reabsorption. Although GRK4 variants with elevated kinase activity have been associated with salt-sensitive or essential hypertension, this association has been inconsistent among different study populations. In addition, studies elucidating how GRK4 may modulate cellular signaling are sparse. In an analysis of how GRK4 affects the developing kidney, the authors found that GRK4 modulates mammalian target of rapamycin (mTOR) signaling. Loss of GRK4 in embryonic zebrafish causes kidney dysfunction and glomerular cysts. Moreover, GRK4 depletion in zebrafish and cellular mammalian models results in elongated cilia. Rescue experiments suggest that hypertension in carriers of GRK4 variants may not be explained solely by kinase hyperactivity; instead, elevated mTOR signaling may be the underlying cause. BACKGROUND G protein-coupled receptor kinase 4 (GRK4) is considered a central regulator of blood pressure through phosphorylation of renal dopaminergic receptors and subsequent modulation of sodium excretion. Several nonsynonymous genetic variants of GRK4 have been only partially linked to hypertension, although these variants demonstrate elevated kinase activity. However, some evidence suggests that function of GRK4 variants may involve more than regulation of dopaminergic receptors alone. Little is known about the effects of GRK4 on cellular signaling, and it is also unclear whether or how altered GRK4 function might affect kidney development. METHODS To better understand the effect of GRK4 variants on the functionality of GRK4 and GRK4's actions in cellular signaling during kidney development, we studied zebrafish, human cells, and a murine kidney spheroid model. RESULTS Zebrafish depleted of Grk4 develop impaired glomerular filtration, generalized edema, glomerular cysts, pronephric dilatation, and expansion of kidney cilia. In human fibroblasts and in a kidney spheroid model, GRK4 knockdown produced elongated primary cilia. Reconstitution with human wild-type GRK4 partially rescues these phenotypes. We found that kinase activity is dispensable because kinase-dead GRK4 (altered GRK4 that cannot result in phosphorylation of the targeted protein) prevented cyst formation and restored normal ciliogenesis in all tested models. Hypertension-associated genetic variants of GRK4 fail to rescue any of the observed phenotypes, suggesting a receptor-independent mechanism. Instead, we discovered unrestrained mammalian target of rapamycin signaling as an underlying cause. CONCLUSIONS These findings identify GRK4 as novel regulator of cilia and of kidney development independent of GRK4's kinase function and provide evidence that the GRK4 variants believed to act as hyperactive kinases are dysfunctional for normal ciliogenesis.
Collapse
Affiliation(s)
- Julian Gerhards
- Section of Pharmacogenomics, Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Lars D. Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Edda S. F. Matthees
- Institute for Molecular Cell Biology, University Hospital Jena, Friedrich-Schiller University of Jena, Jena, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Barbara Moepps
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
| | - Richard T. Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Martin D. Burkhalter
- Section of Pharmacogenomics, Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, University Hospital Jena, Friedrich-Schiller University of Jena, Jena, Germany
| | - Melanie Philipp
- Section of Pharmacogenomics, Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Russell Lewis B, Lawrence R, Hammerschmid D, Reading E. Structural mass spectrometry approaches to understand multidrug efflux systems. Essays Biochem 2023; 67:255-267. [PMID: 36504255 PMCID: PMC10070475 DOI: 10.1042/ebc20220190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Multidrug efflux pumps are ubiquitous across both eukaryotes and prokaryotes, and have major implications in antimicrobial and multidrug resistance. They reside within cellular membranes and have proven difficult to study owing to their hydrophobic character and relationship with their compositionally complex lipid environment. Advances in structural mass spectrometry (MS) techniques have made it possible to study these systems to elucidate critical information on their structure-function relationships. For example, MS techniques can report on protein structural dynamics, stoichiometry, connectivity, solvent accessibility, and binding interactions with ligands, lipids, and other proteins. This information proving powerful when used in conjunction with complementary structural biology methods and molecular dynamics (MD) simulations. In the present review, aimed at those not experts in MS techniques, we report on the current uses of MS in studying multidrug efflux systems, practical considerations to consider, and the future direction of the field. In the first section, we highlight the importance of studying multidrug efflux proteins, and introduce a range of different MS techniques and explain what information they yield. In the second section, we review recent studies that have utilised MS techniques to study and characterise a range of different multidrug efflux systems.
Collapse
Affiliation(s)
- Benjamin Russell Lewis
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Ryan Lawrence
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Dietmar Hammerschmid
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| | - Eamonn Reading
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K
| |
Collapse
|
13
|
Han Y, Dawson JRD, DeMarco KR, Rouen KC, Bekker S, Yarov-Yarovoy V, Clancy CE, Xiang YK, Vorobyov I. Elucidation of a dynamic interplay between a beta-2 adrenergic receptor, its agonist, and stimulatory G protein. Proc Natl Acad Sci U S A 2023; 120:e2215916120. [PMID: 36853938 PMCID: PMC10013855 DOI: 10.1073/pnas.2215916120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the largest group of membrane receptors for transmembrane signal transduction. Ligand-induced activation of GPCRs triggers G protein activation followed by various signaling cascades. Understanding the structural and energetic determinants of ligand binding to GPCRs and GPCRs to G proteins is crucial to the design of pharmacological treatments targeting specific conformations of these proteins to precisely control their signaling properties. In this study, we focused on interactions of a prototypical GPCR, beta-2 adrenergic receptor (β2AR), with its endogenous agonist, norepinephrine (NE), and the stimulatory G protein (Gs). Using molecular dynamics (MD) simulations, we demonstrated the stabilization of cationic NE, NE(+), binding to β2AR by Gs protein recruitment, in line with experimental observations. We also captured the partial dissociation of the ligand from β2AR and the conformational interconversions of Gs between closed and open conformations in the NE(+)-β2AR-Gs ternary complex while it is still bound to the receptor. The variation of NE(+) binding poses was found to alter Gs α subunit (Gsα) conformational transitions. Our simulations showed that the interdomain movement and the stacking of Gsα α1 and α5 helices are significant for increasing the distance between the Gsα and β2AR, which may indicate a partial dissociation of Gsα The distance increase commences when Gsα is predominantly in an open state and can be triggered by the intracellular loop 3 (ICL3) of β2AR interacting with Gsα, causing conformational changes of the α5 helix. Our results help explain molecular mechanisms of ligand and GPCR-mediated modulation of G protein activation.
Collapse
Affiliation(s)
- Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - John R. D. Dawson
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Biophysics Graduate Group, University of California, Davis, CA95616
| | - Kevin R. DeMarco
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
| | - Kyle C. Rouen
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Biophysics Graduate Group, University of California, Davis, CA95616
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Science and Engineering, American River College, Sacramento, CA95841
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Anesthesiology and Pain Medicine, University of California, Davis, CA95616
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, CA95616
- VA Northern California Health Care System, Mather, CA95655
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, CA95616
- Department of Pharmacology, University of California, Davis, CA95616
| |
Collapse
|
14
|
Sahil M, Sarkar S, Mondal J. Long-time-step molecular dynamics can retard simulation of protein-ligand recognition process. Biophys J 2023; 122:802-816. [PMID: 36726313 PMCID: PMC10027446 DOI: 10.1016/j.bpj.2023.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Molecular dynamics (MD) simulation of biologically relevant processes at realistic time scale and atomistic precision is generally limited by prohibitively large computational cost, due to its restriction of using an ultrashort integration time step (1-2 fs). A popular numerical recipe to reduce the associated computational burden is adopting schemes that would allow relatively longer-time-step for MD propagation. Here, we explore the perceived potential of one of the most frequently used long-time-step protocols, namely the hydrogen mass repartitioning (HMR) approach, in alleviating the computational overhead associated with simulation of the kinetic process of protein-ligand recognition events. By repartitioning the mass of heavier atoms to their linked hydrogen atoms, HMR leverages around twofold longer time step than regular simulation, holding promise of significant performance boost. However, our probe into direct simulation of the protein-ligand recognition event, one of the computationally most challenging processes, shows that long-time-step HMR MD simulations do not necessarily translate to a computationally affordable solution. Our investigations spanning cumulative 176 μs in three independent proteins (T4 lysozyme, sensor domain of MopR, and galectin-3) show that long-time-step HMR-based MD simulations can catch the ligand in its act of recognizing the native cavity. But, as a major caveat, the ligand is found to require significantly longer time to identify buried native protein cavity in an HMR MD simulation than regular simulation, thereby defeating the purpose of its usage for performance upgrade. A molecular analysis shows that the longer time required by a ligand to recognize the protein in HMR is rooted in faster diffusion of the ligand, which reduces the survival probability of decisive on-pathway metastable intermediates, thereby slowing down the eventual recognition process at the native cavity. Together, the investigation stresses careful assessment of pitfalls of long-time-step algorithms before attempting to utilize them for higher performance for biomolecular recognition simulations.
Collapse
Affiliation(s)
- Mohammad Sahil
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Susmita Sarkar
- Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad 500046, India.
| |
Collapse
|
15
|
Hydrogen/deuterium exchange-mass spectrometry of integral membrane proteins in native-like environments: current scenario and the way forward. Essays Biochem 2023; 67:187-200. [PMID: 36876893 PMCID: PMC10070480 DOI: 10.1042/ebc20220173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/07/2023]
Abstract
Integral membrane proteins (IMPs) perform a range of diverse functions and their dysfunction underlies numerous pathological conditions. Consequently, IMPs constitute most drug targets, and the elucidation of their mechanism of action has become an intense field of research. Historically, IMP studies have relied on their extraction from membranes using detergents, which have the potential to perturbate their structure and dynamics. To circumnavigate this issue, an array of membrane mimetics has been developed that aim to reconstitute IMPs into native-like lipid environments that more accurately represent the biological membrane. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a versatile tool for probing protein dynamics in solution. The continued development of HDX-MS methodology has allowed practitioners to investigate IMPs using increasingly native-like membrane mimetics, and even pushing the study of IMPs into the in vivo cellular environment. Consequently, HDX-MS has come of age and is playing an ever-increasingly important role in the IMP structural biologist toolkit. In the present mini-review, we discuss the evolution of membrane mimetics in the HDX-MS context, focusing on seminal publications and recent innovations that have led to this point. We also discuss state-of-the-art methodological and instrumental advancements that are likely to play a significant role in the generation of high-quality HDX-MS data of IMPs in the future.
Collapse
|
16
|
Expression Mapping and Functional Analysis of Orphan G-Protein-Coupled Receptor GPR158 in the Adult Mouse Brain Using a GPR158 Transgenic Mouse. Biomolecules 2023; 13:biom13030479. [PMID: 36979415 PMCID: PMC10046084 DOI: 10.3390/biom13030479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Aberrant expression of G-protein-coupled receptor 158 (GPR158) has been reported to be inextricably linked to a variety of diseases affecting the central nervous system, including Alzheimer’s disease (AD), depression, intraocular pressure, and glioma, but the underlying mechanism remains elusive due to a lack of biological and pharmacological tools to elaborate its preferential cellular distribution and molecular interaction network. To assess the cellular localization, expression, and function of GPR158, we generated an epitope-tagged GPR158 mouse model (GPR158Tag) that exhibited normal motor, cognitive, and social behavior, no deficiencies in social memory, and no anxiety-like behavior compared to C57BL/6J control mice at P60. Using immunofluorescence, we found that GPR158+ cells were distributed in several brain regions including the cerebral cortex, hippocampus, cerebellum, and caudate putamen. Next, using the cerebral cortex of the adult GPR158Tag mice as a representative region, we found that GPR158 was only expressed in neurons, and not in microglia, oligodendrocytes, or astrocytes. Remarkably, the majority of GPR158 was enriched in Camk2a+ neurons whilst limited expression was found in PV+ interneurons. Concomitant 3D co-localization analysis revealed that GPR158 was mainly distributed in the postsynaptic membrane, but with a small portion in the presynaptic membrane. Lastly, via mass spectrometry analysis, we identified proteins that may interact with GPR158, and the relevant enrichment pathways were consistent with the immunofluorescence findings. RNA-seq analysis of the cerebral cortex of the GPR158−/− mice showed that GPR158 and its putative interacting proteins are involved in the chloride channel complex and synaptic vesicle membrane composition. Using these GPR158Tag mice, we were able to accurately label GPR158 and uncover its fundamental function in synaptic vesicle function and memory. Thus, this model will be a useful tool for subsequent biological, pharmacological, and electrophysiological studies related to GPR158.
Collapse
|
17
|
Pan X, Tran T, Kirsch ZJ, Thompson LK, Vachet RW. Diethylpyrocarbonate-Based Covalent Labeling Mass Spectrometry of Protein Interactions in a Membrane Complex System. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:82-91. [PMID: 36475668 PMCID: PMC9812933 DOI: 10.1021/jasms.2c00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Membrane-associated proteins are important because they mediate interactions between a cell's external and internal environment and they are often targets of therapeutics. Characterizing their structures and binding interactions, however, is challenging because they typically must be solubilized using artificial membrane systems that can make measurements difficult. Mass spectrometry (MS) is emerging as a valuable tool for studying membrane-associated proteins, and covalent labeling MS has unique potential to provide higher order structure and binding information for these proteins in complicated membrane systems. Here, we demonstrate that diethylpyrocarbonate (DEPC) can be effectively used as a labeling reagent to characterize the binding interactions between a membrane-associated protein and its binding partners in an artificial membrane system. Using chemotaxis histidine kinase (CheA) as a model system, we demonstrate that DEPC-based covalent labeling MS can provide structural and binding information about the ternary complex of CheA with two other proteins that is consistent with structural models of this membrane-associated chemoreceptor system. Despite the moderate hydrophobicity of DEPC, we find that its reactivity with proteins is not substantially influenced by the presence of the artificial membranes. However, correct structural information for this multiprotein chemoreceptor system requires measurements of DEPC labeling at multiple reagent concentrations to enable an accurate comparison between CheA and its ternary complex in the chemoreceptor system. In addition to providing structural information that is consistent with the model of this complex system, the labeling data supplements structural information that is not sufficiently refined in the chemoreceptor model.
Collapse
Affiliation(s)
- Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Thomas Tran
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Zachary J. Kirsch
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
| | - Lynmarie K. Thompson
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
18
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
19
|
G-Protein Coupled Receptors in Human Sperm: An In Silico Approach to Identify Potential Modulatory Targets. Molecules 2022; 27:molecules27196503. [PMID: 36235040 PMCID: PMC9571544 DOI: 10.3390/molecules27196503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in several physiological processes, and they represent the largest family of drug targets to date. However, the presence and function of these receptors are poorly described in human spermatozoa. Here, we aimed to identify and characterize the GPCRs present in human spermatozoa and perform an in silico analysis to understand their potential role in sperm functions. The human sperm proteome, including proteomic studies in which the criteria used for protein identification was set as <5% FDR and a minimum of 2 peptides match per protein, was crossed with the list of GPCRs retrieved from GLASS and GPCRdb databases. A total of 71 GPCRs were identified in human spermatozoa, of which 7 had selective expression in male tissues (epididymis, seminal vesicles, and testis), and 9 were associated with male infertility defects in mice. Additionally, ADRA2A, AGTR1, AGTR2, FZD3, and GLP1R were already associated with sperm-specific functions such as sperm capacitation, acrosome reaction, and motility, representing potential targets to modulate and improve sperm function. Finally, the protein-protein interaction network for the human sperm GPCRs revealed that 24 GPCRs interact with 49 proteins involved in crucial processes for sperm formation, maturation, and fertilization. This approach allowed the identification of 8 relevant GPCRs (ADGRE5, ADGRL2, GLP1R, AGTR2, CELSR2, FZD3, CELSR3, and GABBR1) present in human spermatozoa that can be the subject of further investigation to be used even as potential modulatory targets to treat male infertility or to develop new non-hormonal male contraceptives.
Collapse
|
20
|
De Pascali F, Ippolito M, Wolfe E, Komolov KE, Hopfinger N, Lemenze D, Kim N, Armen RS, An SS, Scott CP, Benovic JL. β 2 -Adrenoceptor agonist profiling reveals biased signalling phenotypes for the β 2 -adrenoceptor with possible implications for the treatment of asthma. Br J Pharmacol 2022; 179:4692-4708. [PMID: 35732075 PMCID: PMC9474705 DOI: 10.1111/bph.15900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE β-Adrenoceptor agonists relieve airflow obstruction by activating β2 -adrenoceptors, which are G protein-coupled receptors (GPCRs) expressed on human airway smooth muscle (HASM) cells. The currently available β-adrenoceptor agonists are balanced agonists, however, and signal through both the stimulatory G protein (Gs )- and β-arrestin-mediated pathways. While Gs signalling is beneficial and promotes HASM relaxation, β-arrestin activation is associated with reduced Gs efficacy. In this context, biased ligands that selectively promote β2 -adrenoceptor coupling to Gs signalling represent a promising strategy to treat asthma. Here, we examined several β-adrenoceptor agonists to identify Gs -biased ligands devoid of β-arrestin-mediated effects. EXPERIMENTAL APPROACH Gs -biased ligands for the β2 -adrenoceptor were identified by high-throughput screening and then evaluated for Gs interaction, Gi interaction, cAMP production, β-arrestin interaction, GPCR kinase (GRK) phosphorylation of the receptor, receptor trafficking, ERK activation, and functional desensitization of the β2 -adrenoceptor. KEY RESULTS We identified ractopamine, dobutamine, and higenamine as Gs -biased agonists that activate the Gs /cAMP pathway upon β2 -adrenoceptor stimulation while showing minimal Gi or β-arrestin interaction. Furthermore, these compounds did not induce any receptor trafficking and had reduced GRK5-mediated phosphorylation of the β2 -adrenoceptor. Finally, we observed minimal physiological desensitization of the β2 -adrenoceptor in primary HASM cells upon treatment with biased agonists. CONCLUSION AND IMPLICATIONS Our work demonstrates that Gs -biased signalling through the β2 -adrenoceptor may prove to be an effective strategy to promote HASM relaxation in the treatment of asthma. Such biased compounds may also be useful in identifying the molecular mechanisms that determine biased signalling and in design of safer drugs.
Collapse
Affiliation(s)
- Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Michael Ippolito
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- These authors contributed equally
| | - Emily Wolfe
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin E. Komolov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nathan Hopfinger
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Douglas Lemenze
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Roger S. Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, New Brunswick, New Jersey and Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Charles P. Scott
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jeffrey L. Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Jiang H, Galtes D, Wang J, Rockman HA. G protein-coupled receptor signaling: transducers and effectors. Am J Physiol Cell Physiol 2022; 323:C731-C748. [PMID: 35816644 PMCID: PMC9448338 DOI: 10.1152/ajpcell.00210.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are of considerable interest due to their importance in a wide range of physiological functions and in a large number of Food and Drug Administration (FDA)-approved drugs as therapeutic entities. With continued study of their function and mechanism of action, there is a greater understanding of how effector molecules interact with a receptor to initiate downstream effector signaling. This review aims to explore the signaling pathways, dynamic structures, and physiological relevance in the cardiovascular system of the three most important GPCR signaling effectors: heterotrimeric G proteins, GPCR kinases (GRKs), and β-arrestins. We will first summarize their prominent roles in GPCR pharmacology before transitioning into less well-explored areas. As new technologies are developed and applied to studying GPCR structure and their downstream effectors, there is increasing appreciation for the elegance of the regulatory mechanisms that mediate intracellular signaling and function.
Collapse
Affiliation(s)
- Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Daniella Galtes
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
22
|
Chen Q, Tesmer JJG. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. J Biol Chem 2022; 298:102279. [PMID: 35863432 PMCID: PMC9418498 DOI: 10.1016/j.jbc.2022.102279] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.
Collapse
Affiliation(s)
- Qiuyan Chen
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - John J G Tesmer
- Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
23
|
Varney MJ, Steyaert W, Coucke PJ, Delanghe JR, Uehling DE, Joseph B, Marcellus R, Al-Awar R, Benovic JL. G protein-coupled receptor kinase 6 (GRK6) regulates insulin processing and secretion via effects on proinsulin conversion to insulin. J Biol Chem 2022; 298:102421. [PMID: 36030052 PMCID: PMC9526158 DOI: 10.1016/j.jbc.2022.102421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022] Open
Abstract
Recent studies identified a missense mutation in the gene coding for G protein–coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse β-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Wouter Steyaert
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Paul J Coucke
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - David E Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Babu Joseph
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Dafun AS, Marcoux J. Structural mass spectrometry of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140813. [PMID: 35750312 DOI: 10.1016/j.bbapap.2022.140813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The analysis of proteins and protein complexes by mass spectrometry (MS) has come a long way since the invention of electrospray ionization (ESI) in the mid 80s. Originally used to characterize small soluble polypeptide chains, MS has progressively evolved over the past 3 decades towards the analysis of samples of ever increasing heterogeneity and complexity, while the instruments have become more and more sensitive and resolutive. The proofs of concepts and first examples of most structural MS methods appeared in the early 90s. However, their application to membrane proteins, key targets in the biopharma industry, is more recent. Nowadays, a wealth of information can be gathered from such MS-based methods, on all aspects of membrane protein structure: sequencing (and more precisely proteoform characterization), but also stoichiometry, non-covalent ligand binding (metals, drug, lipids, carbohydrates), conformations, dynamics and distance restraints for modelling. In this review, we present the concept and some historical and more recent applications on membrane proteins, for the major structural MS methods.
Collapse
Affiliation(s)
- Angelique Sanchez Dafun
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
25
|
Tran MH, Schoeder CT, Schey KL, Meiler J. Computational Structure Prediction for Antibody-Antigen Complexes From Hydrogen-Deuterium Exchange Mass Spectrometry: Challenges and Outlook. Front Immunol 2022; 13:859964. [PMID: 35720345 PMCID: PMC9204306 DOI: 10.3389/fimmu.2022.859964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Although computational structure prediction has had great successes in recent years, it regularly fails to predict the interactions of large protein complexes with residue-level accuracy, or even the correct orientation of the protein partners. The performance of computational docking can be notably enhanced by incorporating experimental data from structural biology techniques. A rapid method to probe protein-protein interactions is hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens (Ags) in the past few years. In this paper, we review the current state of HDX-MS in studying protein interactions, specifically Ab-Ag interactions, and how it has been used to inform computational structure prediction calculations. Particularly, we address the limitations of HDX-MS in epitope mapping and techniques and protocols applied to overcome these barriers. Furthermore, we explore computational methods that leverage HDX-MS to aid structure prediction, including the computational simulation of HDX-MS data and the combination of HDX-MS and protein docking. We point out challenges in interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight the opportunities they provide to build towards a more optimized hybrid method, allowing for more reliable, high throughput epitope identification.
Collapse
Affiliation(s)
- Minh H. Tran
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, United States
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Clara T. Schoeder
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, University Leipzig Medical School, Leipzig, Germany
| |
Collapse
|
26
|
Downes K, Zhao X, Gleadall NS, McKinney H, Kempster C, Batista J, Thomas PL, Cooper M, Michael JV, Kreuzhuber R, Wedderburn K, Waller K, Varney B, Verdier H, Kriek N, Ashford SE, Stirrups KE, Dunster JL, McKenzie SE, Ouwehand WH, Gibbins JM, Yang J, Astle WJ, Ma P. G protein-coupled receptor kinase 5 regulates thrombin signaling in platelets via PAR-1. Blood Adv 2022; 6:2319-2330. [PMID: 34581777 PMCID: PMC9006276 DOI: 10.1182/bloodadvances.2021005453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWASs) of quantitative measures of platelet function have identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWASs of pathway-specific functional responses to agonism by adenosine 5'-diphosphate, a glycoprotein VI-specific collagen mimetic, and thrombin receptor-agonist peptides, each specific to 1 of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1562 individuals. We identified an association (P = 2.75 × 10-40) between a common intronic variant, rs10886430, in the G protein-coupled receptor kinase 5 gene (GRK5) and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer that is bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and the greater sensitivity of platelets to activate through PAR-1. We show that thrombin-mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homolog Grk5 enhances thrombin-induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G allele of rs10886430 is associated with a greater risk for cardiovascular disease. In summary, by combining the results of pathway-specific GWASs and expression quantitative trait locus studies in humans with the results from platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.
Collapse
Affiliation(s)
- Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- East Genomic Laboratory Hub, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Nicholas S. Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrick L. Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Katherine Wedderburn
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathryn Waller
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bianca Varney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Hippolyte Verdier
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Sofie E. Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen E. Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanne L. Dunster
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan M. Gibbins
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Jing Yang
- Bristol Myers Squibb, Princeton, NJ; and
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
27
|
Ueda T, Imai S, Shimada I. Function-related dynamics of GPCRs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107164. [PMID: 35168190 DOI: 10.1016/j.jmr.2022.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
G protein-coupled receptors (GPCRs) include various neurotransmitters and hormones, and over 30% of modern drugs target GPCRs. The number of GPCR crystal structures has rapidly increased, and many structures of GPCRs in complexes with their binding partners are being solved by cryo-electron microscopy. However, crystallographic or cryo-electron microscopy data alone cannot fully explain the important features of GPCR signaling determined experimentally. Recent studies have suggested that GPCRs are structurally dynamic, and exchange between multiple conformations. In this respect, NMR methods provide information about the dynamics of proteins over a wide range of frequencies, in aqueous solutions at nearphysiological temperatures. Although NMR studies of GPCRs are challenging due to their innate instability and relatively large molecular weights, recent methodological advances have enabled us to observe the NMR signals of various GPCRs. These NMR studies revealed that GPCRs exist in function-related equilibria between locally different conformations that are simultaneously populated. Here we will describe solution NMR studies that have clarified the function-related conformational dynamics of two GPCRs, β2 adrenergic receptor and adenosine A2A receptor.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Imai
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
| |
Collapse
|
28
|
Liu L, Lv J, Lin Z, Ning Y, Li J, Liu P, Chen C. Co-Overexpression of GRK5/ACTC1 Correlates With the Clinical Parameters and Poor Prognosis of Epithelial Ovarian Cancer. Front Mol Biosci 2022; 8:785922. [PMID: 35223984 PMCID: PMC8864135 DOI: 10.3389/fmolb.2021.785922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The prognosis of epithelial ovarian cancer (EOC) is poor, and the present prognostic predictors of EOC are neither sensitive nor specific. Objective: The aim of this study was to search the prognostic biomarkers of EOC and to investigate the expression of G protein-coupled receptor kinase 5 (GRK5) and actin alpha cardiac muscle 1 (ACTC1) in EOC tissues (both paraffin-embedded and fresh-frozen tissues) and to explore their association with clinicopathological parameters and prognostic value in patients with EOC. Methods: A total of 172 paraffin-embedded cancer tissues of EOC patients diagnosed and operated at the memorial hospital of Sun Yat-sen University between December 2009 and March 2017 and 41 paratumor tissues were collected and the expression of GRK5 and ACTC1 was examined using immunohistochemistry. Furthermore, 16 fresh-frozen EOC tissues and their matched paratumor tissues were collected from the Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, between August 2013 and November 2019 and subjected to reverse-transcription quantitative PCR analysis to detect the mRNA expression of GRK5 and ACTC1. Results: The expression of GRK5 and ACTC1 was both higher in cancer tissues than in paratumor tissues. GRK5 expression was positively correlated with ACTC1 expression. In addition, GRK5, ACTC1, and GRK5/ACTC1 expression was associated with the recurrence-free survival and overall survival of EOC patients. Furthermore, multivariate logistic regression analysis indicated that GRK5+/ACTC1+ co-expression, intestinal metastasis, postoperative chemotherapy, platinum resistance, and hyperthermic intraperitoneal chemotherapy were independent prognostic factors of EOC. Conclusion: GRK5 and ACTC1 are both upregulated in EOC compared with those in paratumor tissues. The co-expression of GRK5+/ACTC1+ rather than GRK5 or ACTC1 is an independent prognostic biomarker of EOC.
Collapse
Affiliation(s)
- Longyang Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jin Lv
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Longgang Central Hospital of Shenzhen City, Shenzhen, China
| | - Zhongqiu Lin
- Department of Gynecology Oncology, The Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingxia Ning
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Ping Liu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| | - Chunlin Chen
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jing Li, ; Ping Liu, ; Chunlin Chen,
| |
Collapse
|
29
|
Kawakami K, Yanagawa M, Hiratsuka S, Yoshida M, Ono Y, Hiroshima M, Ueda M, Aoki J, Sako Y, Inoue A. Heterotrimeric Gq proteins act as a switch for GRK5/6 selectivity underlying β-arrestin transducer bias. Nat Commun 2022; 13:487. [PMID: 35078997 PMCID: PMC8789823 DOI: 10.1038/s41467-022-28056-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 12/23/2022] Open
Abstract
Signaling-biased ligands acting on G-protein-coupled receptors (GPCRs) differentially activate heterotrimeric G proteins and β-arrestins. Although a wealth of structural knowledge about signaling bias at the GPCR level exists (preferential engagement of a specific transducer), little is known about the bias at the transducer level (different functions mediated by a single transducer), partly due to a poor understanding of GPCR kinase (GRK)-mediated GPCR phosphorylation. Here, we reveal a unique role of the Gq heterotrimer as a determinant for GRK-subtype selectivity that regulates subsequent β-arrestin conformation and function. Using the angiotensin II (Ang II) type-1 receptor (AT1R), we show that β-arrestin recruitment depends on both GRK2/3 and GRK5/6 upon binding of Ang II, but solely on GRK5/6 upon binding of the β-arrestin-biased ligand TRV027. With pharmacological inhibition or genetic loss of Gq, GRK-subtype selectivity and β-arrestin functionality by Ang II is shifted to those of TRV027. Single-molecule imaging identifies relocation of AT1R and GRK5, but not GRK2, to an immobile phase under the Gq-inactive, AT1R-stimulated conditions. These findings uncover a previously unappreciated Gq-regulated mechanism that encodes GRK-subtype selectivity and imparts distinct phosphorylation-barcodes directing downstream β-arrestin functions. GPCR kinases (GRKs) phosphorylate active-form G-protein-coupled receptors (GPCRs). Here, the authors reveal that Gq heterotrimer coupled with the angiotensin II type-1 receptor (AT1R) determines the GRK subtypes recruited to the complex in a microdomain, thus defining subsequent AT1R phosphorylation patterns, β-arrestin conformation and functionality.
Collapse
|
30
|
Pluhackova K, Wilhelm FM, Müller DJ. Lipids and Phosphorylation Conjointly Modulate Complex Formation of β 2-Adrenergic Receptor and β-arrestin2. Front Cell Dev Biol 2022; 9:807913. [PMID: 35004696 PMCID: PMC8733679 DOI: 10.3389/fcell.2021.807913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of human membrane proteins that bind extracellular ligands at their orthosteric binding pocket to transmit signals to the cell interior. Ligand binding evokes conformational changes in GPCRs that trigger the binding of intracellular interaction partners (G proteins, G protein kinases, and arrestins), which initiate diverse cellular responses. It has become increasingly evident that the preference of a GPCR for a certain intracellular interaction partner is modulated by a diverse range of factors, e.g., ligands or lipids embedding the transmembrane receptor. Here, by means of molecular dynamics simulations of the β2-adrenergic receptor and β-arrestin2, we study how membrane lipids and receptor phosphorylation regulate GPCR-arrestin complex conformation and dynamics. We find that phosphorylation drives the receptor’s intracellular loop 3 (ICL3) away from a native negatively charged membrane surface to interact with arrestin. If the receptor is embedded in a neutral membrane, the phosphorylated ICL3 attaches to the membrane surface, which widely opens the receptor core. This opening, which is similar to the opening in the G protein-bound state, weakens the binding of arrestin. The loss of binding specificity is manifested by shallower arrestin insertion into the receptor core and higher dynamics of the receptor-arrestin complex. Our results show that receptor phosphorylation and the local membrane composition cooperatively fine-tune GPCR-mediated signal transduction. Moreover, the results suggest that deeper understanding of complex GPCR regulation mechanisms is necessary to discover novel pathways of pharmacological intervention.
Collapse
Affiliation(s)
- Kristyna Pluhackova
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Florian M Wilhelm
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| |
Collapse
|
31
|
Nanoluciferase-based complementation assay for systematic profiling of GPCR–GRK interactions. Methods Cell Biol 2022; 169:309-321. [DOI: 10.1016/bs.mcb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Pan X, Vachet RW. MEMBRANE PROTEIN STRUCTURES AND INTERACTIONS FROM COVALENT LABELING COUPLED WITH MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2022; 41:51-69. [PMID: 33145813 PMCID: PMC8093322 DOI: 10.1002/mas.21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Membrane proteins are incredibly important biomolecules because they mediate interactions between a cell's external and internal environment. Obtaining information about membrane protein structure and interactions is thus important for understanding these essential biomolecules. Compared with the analyses of water-soluble proteins, the structural analysis of membrane proteins is more challenging owing to their unique chemical properties and the presence of lipid components that are necessary to solubilize them. The combination of covalent labeling (CL) and mass spectrometry (MS) has recently been applied with great success to study membrane protein structure and interactions. These studies have demonstrated the many advantages that CL-MS methods have over other traditional biophysical techniques. In this review, we discuss both amino acid-specific and non-specific labeling approaches and the special considerations needed to address the unique challenges associated with interrogating membrane proteins. This review highlights the aspects of this approach that require special care to be applied correctly and provides a comprehensive review of the membrane protein systems that have been studied by CL-MS. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
|
33
|
Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR. Nat Commun 2021; 12:7158. [PMID: 34887409 PMCID: PMC8660791 DOI: 10.1038/s41467-021-27482-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
β-arrestins (βarrs) play multifaceted roles in the function of G protein-coupled receptors (GPCRs). βarrs typically interact with phosphorylated C-terminal tail (C tail) and transmembrane core (TM core) of GPCRs. However, the effects of the C tail- and TM core-mediated interactions on the conformational activation of βarrs have remained elusive. Here, we show the conformational changes for βarr activation upon the C tail- and TM core-mediated interactions with a prototypical GPCR by nuclear magnetic resonance (NMR) spectroscopy. Our NMR analyses demonstrated that while the C tail-mediated interaction alone induces partial activation, in which βarr exists in equilibrium between basal and activated conformations, the TM core- and the C tail-mediated interactions together completely shift the equilibrium toward the activated conformation. The conformation-selective antibody, Fab30, promotes partially activated βarr into the activated-like conformation. This plasticity of βarr conformation in complex with GPCRs engaged in different binding modes may explain the multifunctionality of βarrs. β-arrestins commonly bind to two distinct elements in GPCRs: the phosphorylated carboxyl terminal tail (C tail) and the cytoplasmic face of the transmembrane region (TM core). Here, the authors use methyl-TROSY NMR measurements to characterise the interactions between β-arrestin 1 (βarr1) and a GPCR and observe that C tail-mediated interaction with a GPCR alone induces the partial activation of βarr1, whereas the TM core- and C tail-mediated interactions together stabilize the activated conformation of βarr1.
Collapse
|
34
|
van Dorp S, Qiu R, Choi UB, Wu MM, Yen M, Kirmiz M, Brunger AT, Lewis RS. Conformational dynamics of auto-inhibition in the ER calcium sensor STIM1. eLife 2021; 10:66194. [PMID: 34730514 PMCID: PMC8651296 DOI: 10.7554/elife.66194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
The dimeric ER Ca2+ sensor STIM1 controls store-operated Ca2+ entry (SOCE) through the regulated binding of its CRAC activation domain (CAD) to Orai channels in the plasma membrane. In resting cells, the STIM1 CC1 domain interacts with CAD to suppress SOCE, but the structural basis of this interaction is unclear. Using single-molecule Förster resonance energy transfer (smFRET) and protein crosslinking approaches, we show that CC1 interacts dynamically with CAD in a domain-swapped configuration with an orientation predicted to sequester its Orai-binding region adjacent to the ER membrane. Following ER Ca2+ depletion and release from CAD, cysteine crosslinking indicates that the two CC1 domains become closely paired along their entire length in the active Orai-bound state. These findings provide a structural basis for the dual roles of CC1: sequestering CAD to suppress SOCE in resting cells and propelling it toward the plasma membrane to activate Orai and SOCE after store depletion.
Collapse
Affiliation(s)
- Stijn van Dorp
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ruoyi Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ucheor B Choi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Minnie M Wu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Michelle Yen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Michael Kirmiz
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
35
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
36
|
Knerr JM, Kledal TN, Rosenkilde MM. Molecular Properties and Therapeutic Targeting of the EBV-Encoded Receptor BILF1. Cancers (Basel) 2021; 13:4079. [PMID: 34439235 PMCID: PMC8392491 DOI: 10.3390/cancers13164079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
The γ-herpesvirus Epstein-Barr Virus (EBV) establishes lifelong infections in approximately 90% of adults worldwide. Up to 1,000,000 people yearly are estimated to suffer from health conditions attributed to the infection with this virus, such as nasopharyngeal and gastric carcinomas as well as several forms of B, T and NK cell lymphoma. To date, no EBV-specific therapeutic option has reached the market, greatly reducing the survival prognoses of affected patients. Similar to other herpesviruses, EBV encodes for a G protein-coupled receptor (GPCR), BILF1, affecting a multitude of cellular signaling pathways. BILF1 has been identified to promote immune evasion and tumorigenesis, effectively ensuring a life-long persistence of EBV in, and driving detrimental health conditions to its host. This review summarizes the epidemiology of EBV-associated malignancies, their current standard-of-care, EBV-specific therapeutics in development, GPCRs and their druggability, and most importantly consolidates the findings of over 15 years of research on BILF1 in the context of EBV-specific drug development. Taken together, BILF1 constitutes a promising target for the development of novel EBV-specific therapeutics.
Collapse
Affiliation(s)
- Julius Maximilian Knerr
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| | | | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, University of Copenhagen, 2200 København, Denmark;
| |
Collapse
|
37
|
|
38
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|
39
|
Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 2021; 595:600-605. [PMID: 34262173 PMCID: PMC8607881 DOI: 10.1038/s41586-021-03721-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.
Collapse
|
40
|
Chen ST, Liao JH, Huang KF, Lee IM, Wong WT, Wu SH, Hua KF. A GalNAc/Gal-specific lectin modulates immune responses via toll-like receptor 4 independently of carbohydrate-binding ability. Chem Commun (Camb) 2021; 57:6209-6212. [PMID: 34059855 DOI: 10.1039/d1cc01834e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toll-like receptor 4 (TLR4) recognizes various protein ligands; however, the protein-TLR4 binding model is unclear. Here we demonstrate a Crenomytilus grayanus lectin (CGL)-TLR4/MD2 model to show that CGL interacts with a TLR4/myeloid differentiation factor 2 (MD2) complex independently of sugar-binding properties. CGL could suppress lipopolysaccharide-induced immune responses significantly, suggesting that TLR4 itself has potential as a therapeutic target.
Collapse
Affiliation(s)
- Shin-Tai Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan.
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan.
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
41
|
Abreu N, Acosta-Ruiz A, Xiang G, Levitz J. Mechanisms of differential desensitization of metabotropic glutamate receptors. Cell Rep 2021; 35:109050. [PMID: 33910009 PMCID: PMC9750234 DOI: 10.1016/j.celrep.2021.109050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with intracellular transducers to control both signal initiation and desensitization, but the distinct mechanisms that control the regulation of different GPCR subtypes are unclear. Here we use fluorescence imaging and electrophysiology to examine the metabotropic glutamate receptor (mGluR) family. We find distinct properties across subtypes in both rapid desensitization and internalization, with striking differences between the group II mGluRs. mGluR3, but not mGluR2, undergoes glutamate-dependent rapid desensitization, internalization, trafficking, and recycling. We map differences between mGluRs to variable Ser/Thr-rich sequences in the C-terminal domain (CTD) that control interaction with both GPCR kinases and β-arrestins. Finally, we identify a cancer-associated mutation, G848E, within the mGluR3 CTD that enhances β-arrestin coupling and internalization, enabling an analysis of mGluR3 β-arrestin-coupling properties and revealing biased variants. Together, this work provides a framework for understanding the distinct regulation and functional roles of mGluR subtypes.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Arveseth CD, Happ JT, Hedeen DS, Zhu JF, Capener JL, Klatt Shaw D, Deshpande I, Liang J, Xu J, Stubben SL, Nelson IB, Walker MF, Kawakami K, Inoue A, Krogan NJ, Grunwald DJ, Hüttenhain R, Manglik A, Myers BR. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol 2021; 19:e3001191. [PMID: 33886552 PMCID: PMC8096101 DOI: 10.1371/journal.pbio.3001191] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/04/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.
Collapse
Affiliation(s)
- Corvin D. Arveseth
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John T. Happ
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Danielle S. Hedeen
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jacob L. Capener
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ishan Deshpande
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiahao Liang
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Sara L. Stubben
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Madison F. Walker
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kouki Kawakami
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - David J. Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, Department of Anaesthesia and Perioperative Care, University of California, San Francisco, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Department of Biochemistry, Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
43
|
Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Arch Pharm Res 2021; 44:342-353. [PMID: 33761113 DOI: 10.1007/s12272-021-01320-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/14/2021] [Indexed: 01/14/2023]
Abstract
The desensitization of G protein-coupled receptors (GPCRs), which involves rapid loss of responsiveness due to repeated or chronic exposure to agonists, can occur through various mechanisms at different levels of signaling pathways. In this review, the mechanisms of GPCR desensitization are classified according to their occurrence at the receptor level and downstream to the receptor. The desensitization at the receptor level occurs in a phosphorylation-dependent manner, wherein the activated receptors are phosphorylated by GPCR kinases (GRKs), thereby increasing their affinities for arrestins. Arrestins bind to receptors through the cavity on the cytoplasmic region of heptahelical domains and interfere with the binding and activation of G-protein. Diverse mechanisms are involved in the desensitization that occurs downstream of the receptor. Some of these include the sequestration of G proteins, such as Gq and Gi/o by GRK2/3 and deubiquitinated arrestins, respectively. Mechanistically, GRK2/3 attenuates GPCR signaling by sequestering the Gα subunits of the Gq family and Gβγ via regulators of G protein signaling and pleckstrin homology domains, respectively. Moreover, studies on Gi/o-coupled D2-like receptors have reported that arrestins are deubiquitinated under desensitization condition and form a stable complex with Gβγ, thereby preventing them from coupling with Gα and the receptor, eventually leading to receptor signaling inhibition. Notably, the desensitization mechanism that involves arrestin deubiquitination is interesting; however, this is a new mechanism and needs to be explored further.
Collapse
|
44
|
The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Biomolecules 2021; 11:biom11030447. [PMID: 33802765 PMCID: PMC8002388 DOI: 10.3390/biom11030447] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which regulate a vast number of eukaryotic processes, are desensitized by various mechanisms but, most importantly, by the GPCR kinases (GRKs). Ever since GRKs were first identified, investigators have sought to determine which structural features of GRKs are used to select for the agonist-bound states of GPCRs and how this binding event in turn enhances GRK catalytic activity. Despite a wealth of molecular information from high-resolution crystal structures of GRKs, the mechanisms driving activation have remained elusive, in part because the GRK N-terminus and active site tether region, previously proposed to serve as a receptor docking site and to be key to kinase domain closure, are often disordered or adopt inconsistent conformations. However, two recent studies have implicated other regions of GRKs as being involved in direct interactions with active GPCRs. Atomic resolution structures of GPCR–GRK complexes would help refine these models but are, so far, lacking. Here, we assess three distinct models for how GRKs recognize activated GPCRs, discuss limitations in the approaches used to generate them, and then experimentally test a hypothetical GPCR interaction site in GRK2 suggested by the two newest models.
Collapse
|
45
|
Sulon SM, Benovic JL. Targeting G protein-coupled receptor kinases (GRKs) to G protein-coupled receptors. ACTA ACUST UNITED AC 2021; 16:56-65. [PMID: 33718657 DOI: 10.1016/j.coemr.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) interact with three protein families following agonist binding: heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs) and arrestins. GRK-mediated phosphorylation of GPCRs promotes arrestin binding to uncouple the receptor from G protein, a process called desensitization, and for many GPCRs, arrestin binding also promotes receptor endocytosis and intracellular signaling. Thus, GRKs play a central role in modulating GPCR signaling and localization. Here we review recent advances in this field which include additional insight into how GRKs target GPCRs and bias signaling, and the development of specific inhibitors to dissect GRK function in model systems.
Collapse
Affiliation(s)
- Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
46
|
Benovic JL. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Cells 2021; 10:555. [PMID: 33806476 PMCID: PMC7999923 DOI: 10.3390/cells10030555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/14/2023] Open
Abstract
Agonist activation of G protein-coupled receptors promotes sequential interaction of the receptor with heterotrimeric G proteins, G protein-coupled receptor kinases (GRKs), and arrestins. GRKs play a central role in mediating the switch from G protein to arrestin interaction and thereby control processes such as receptor desensitization and trafficking and arrestin-mediated signaling. In this review, I provide a historical perspective on some of the early studies that identified the family of GRKs with a primary focus on the non-visual GRKs. These studies included identification, purification, and cloning of the β-adrenergic receptor kinase in the mid- to late-1980s and subsequent cloning and characterization of additional members of the GRK family. This helped to lay the groundwork for ensuing work focused on understanding the structure and function of these important enzymes.
Collapse
Affiliation(s)
- Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
47
|
Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021; 11:biom11020218. [PMID: 33557162 PMCID: PMC7913897 DOI: 10.3390/biom11020218] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Arrestins are a small family of four proteins in most vertebrates that bind hundreds of different G protein-coupled receptors (GPCRs). Arrestin binding to a GPCR has at least three functions: precluding further receptor coupling to G proteins, facilitating receptor internalization, and initiating distinct arrestin-mediated signaling. The molecular mechanism of arrestin–GPCR interactions has been extensively studied and discussed from the “arrestin perspective”, focusing on the roles of arrestin elements in receptor binding. Here, we discuss this phenomenon from the “receptor perspective”, focusing on the receptor elements involved in arrestin binding and emphasizing existing gaps in our knowledge that need to be filled. It is vitally important to understand the role of receptor elements in arrestin activation and how the interaction of each of these elements with arrestin contributes to the latter’s transition to the high-affinity binding state. A more precise knowledge of the molecular mechanisms of arrestin activation is needed to enable the construction of arrestin mutants with desired functional characteristics.
Collapse
|
48
|
Shin G, Lim SI. Site-specific proximity ligation provides molecular insights into biologically relevant interfaces of protein-protein interaction. Biochem Biophys Res Commun 2020; 533:932-937. [PMID: 33008597 DOI: 10.1016/j.bbrc.2020.09.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Dynamic protein-protein interactions (PPIs) are fundamental to spatiotemporal control of protein functions in biological systems. Dissecting binding interfaces in aqueous solution (i.e., biological interfaces) is of great importance for identifying molecular determinants that contribute to the affinity and specificity of PPIs. Herein, we describe a biochemical method, termed site-specific proximity ligation (SPL), that enables the identification and reconstruction of native binding interfaces distinct from those present in crystal structures and models from computational prediction. SPL involves the strategic incorporation of an aryl azide-containing unnatural amino acid (AZF) into residues of interest in a particular protein that forms a multiprotein complex. Depending on the interfacial role of a targeted residue, a photo-inducible highly reactive incorporated AZF moiety may react with neighboring functional groups to covalently capture an otherwise non-covalent or weak interaction with a specific partner protein, thereby revealing the landscape of biological interfaces. Using a heterotrimeric nuclear pore protein as a model, we show that the biological interfaces of the complex mapped by SPL provide new insight into dynamic molecular recognition that is missed by, or even in conflict with, static models.
Collapse
Affiliation(s)
- Goeun Shin
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
49
|
Komolov KE, Sulon SM, Bhardwaj A, van Keulen SC, Duc NM, Laurinavichyute DK, Lou HJ, Turk BE, Chung KY, Dror RO, Benovic JL. Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting. Mol Cell 2020; 81:323-339.e11. [PMID: 33321095 DOI: 10.1016/j.molcel.2020.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/15/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) facilitates arrestin binding and receptor desensitization. Although this process can be regulated by Ca2+-binding proteins such as calmodulin (CaM) and recoverin, the molecular mechanisms are poorly understood. Here, we report structural, computational, and biochemical analysis of a CaM complex with GRK5, revealing how CaM shapes GRK5 response to calcium. The CaM N and C domains bind independently to two helical regions at the GRK5 N and C termini to inhibit GPCR phosphorylation, though only the C domain interaction disrupts GRK5 membrane association, thereby facilitating cytoplasmic translocation. The CaM N domain strongly activates GRK5 via ordering of the amphipathic αN-helix of GRK5 and allosteric disruption of kinase-RH domain interaction for phosphorylation of cytoplasmic GRK5 substrates. These results provide a framework for understanding how two functional effects, GRK5 activation and localization, can cooperate under control of CaM for selective substrate targeting by GRK5.
Collapse
Affiliation(s)
- Konstantin E Komolov
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sarah M Sulon
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Siri C van Keulen
- Department of Computer Science, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Nguyen Minh Duc
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Division of Precision Medicine, Research Institute, National Cancer Center, Goyang, South Korea
| | - Daniela K Laurinavichyute
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ron O Dror
- Department of Computer Science, Department of Molecular and Cellular Physiology, Department of Structural Biology, and Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Kaur S, Chen Y, Shenoy SK. Agonist-activated glucagon receptors are deubiquitinated at early endosomes by two distinct deubiquitinases to facilitate Rab4a-dependent recycling. J Biol Chem 2020; 295:16630-16642. [PMID: 32967969 PMCID: PMC7864061 DOI: 10.1074/jbc.ra120.014532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
The glucagon receptor (GCGR) activated by the peptide hormone glucagon is a seven-transmembrane G protein-coupled receptor (GPCR) that regulates blood glucose levels. Ubiquitination influences trafficking and signaling of many GPCRs, but its characterization for the GCGR is lacking. Using endocytic colocalization and ubiquitination assays, we have identified a correlation between the ubiquitination profile and recycling of the GCGR. Our experiments revealed that GCGRs are constitutively ubiquitinated at the cell surface. Glucagon stimulation not only promoted GCGR endocytic trafficking through Rab5a early endosomes and Rab4a recycling endosomes, but also induced rapid deubiquitination of GCGRs. Inhibiting GCGR internalization or disrupting endocytic trafficking prevented agonist-induced deubiquitination of the GCGR. Furthermore, a Rab4a dominant negative (DN) that blocks trafficking at recycling endosomes enabled GCGR deubiquitination, whereas a Rab5a DN that blocks trafficking at early endosomes eliminated agonist-induced GCGR deubiquitination. By down-regulating candidate deubiquitinases that are either linked with GPCR trafficking or localized on endosomes, we identified signal-transducing adaptor molecule-binding protein (STAMBP) and ubiquitin-specific protease 33 (USP33) as cognate deubiquitinases for the GCGR. Our data suggest that USP33 constitutively deubiquitinates the GCGR, whereas both STAMBP and USP33 deubiquitinate agonist-activated GCGRs at early endosomes. A mutant GCGR with all five intracellular lysines altered to arginines remains deubiquitinated and shows augmented trafficking to Rab4a recycling endosomes compared with the WT, thus affirming the role of deubiquitination in GCGR recycling. We conclude that the GCGRs are rapidly deubiquitinated after agonist-activation to facilitate Rab4a-dependent recycling and that USP33 and STAMBP activities are critical for the endocytic recycling of the GCGR.
Collapse
Affiliation(s)
- Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yuqing Chen
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|