1
|
Li X, Sheng S, Li G, Hu Y, Zhou F, Geng Z, Su J. Research Progress in Hydrogels for Cartilage Organoids. Adv Healthc Mater 2024; 13:e2400431. [PMID: 38768997 DOI: 10.1002/adhm.202400431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The repair and regeneration of cartilage has always been a hot topic in medical research. Cartilage organoids (CORGs) are special cartilage tissue created using tissue engineering techniques outside the body. These engineered organoids tissues provide models that simulate the complex biological functions of cartilage, opening new possibilities for cartilage regenerative medicine and treatment strategies. However, it is crucial to establish suitable matrix scaffolds for the cultivation of CORGs. In recent years, utilizing hydrogel to culture stem cells and induce their differentiation into chondrocytes has emerged as a promising method for the in vitro construction of CORGs. In this review, the methods for establishing CORGs are summarized and an overview of the advantages and limitations of using matrigel in the cultivation of such organoids is provided. Furthermore, the importance of cartilage tissue ECM and alternative hydrogel substitutes for Matrigel, such as alginate, peptides, silk fibroin, and DNA derivatives is discussed, and the pros and cons of using these hydrogels for the cultivation of CORGs are outlined. Finally, the challenges and future directions in hydrogel research for CORGs are discussed. It is hoped that this article provides valuable references for the design and development of hydrogels for CORGs.
Collapse
Affiliation(s)
- Xiaolong Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics and Traumatology, Nanning Hospital of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530000, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shihao Sheng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
2
|
Patel VN, Aure MH, Choi SH, Ball JR, Lane ED, Wang Z, Xu Y, Zheng C, Liu X, Martin D, Pailin JY, Prochazkova M, Kulkarni AB, van Kuppevelt TH, Ambudkar IS, Liu J, Hoffman MP. Specific 3-O-sulfated heparan sulfate domains regulate salivary gland basement membrane metabolism and epithelial differentiation. Nat Commun 2024; 15:7584. [PMID: 39217171 PMCID: PMC11365954 DOI: 10.1038/s41467-024-51862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Glycan Therapeutics Corp, Raleigh, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Xibao Liu
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jillian Y Pailin
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| |
Collapse
|
3
|
Wang H, Xie L, Guo H, Li L, Chen S, Fan Y, Tian J, Xu L, Kong X, Xuan A. m 1A demethylase Alkbh3 regulates neurogenesis through m 1A demethylation of Mmp15 mRNA. Cell Biosci 2024; 14:92. [PMID: 39004750 PMCID: PMC11246583 DOI: 10.1186/s13578-024-01275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND N1-Methyladenosine (m1A) is an abundant modification of transcripts regulating mRNA structure and translation efficiency. However, the characteristics and biological functions of mRNA m1A modification in adult hippocampal neurogenesis remain enigmatic. RESULTS We found that m1A demethylase Alkbh3 was dramatically enriched in neurons and neuronal genesis. Functionally, depletion of Alkbh3 in neural stem cells (NSCs) significantly decreased m1A modification, neuronal differentiation and proliferation coupling with increasing gliogenesis, whereas overexpressing Alkbh3 facilitated neuronal differentiation and proliferation. Mechanistically, the m1A demethylation of Mmp15 mRNA by Alkbh3 improved its RNA stability and translational efficacy, which promoted neurogenesis. Therapeutically, the silencing of Alkbh3 reduced hippocampal neurogenesis and impaired spatial memory in the adult mice. CONCLUSIONS We reveal a novel function of m1A demethylation on Mmp15 mRNA in Alkbh3-mediated neurogenesis, which shed light on advancing Alkbh3 regulation of neurogenesis as a novel neurotherapeutic strategy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Linjie Xie
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Haomin Guo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Lishi Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuwei Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ye Fan
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jingyuan Tian
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Xu
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China.
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, 510645, China.
| | - Xuejian Kong
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China.
| | - Aiguo Xuan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- Scientific Research Center of Guangzhou Medical University, Guangzhou, 511436, China.
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China.
| |
Collapse
|
4
|
Morales EA, Wang S. Salivary gland developmental mechanics. Curr Top Dev Biol 2024; 160:1-30. [PMID: 38937029 DOI: 10.1016/bs.ctdb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The salivary gland undergoes branching morphogenesis to elaborate into a tree-like structure with numerous saliva-secreting acinar units, all joined by a hierarchical ductal system. The expansive epithelial surface generated by branching morphogenesis serves as the structural basis for the efficient production and delivery of saliva. Here, we elucidate the process of salivary gland morphogenesis, emphasizing the role of mechanics. Structurally, the developing salivary gland is characterized by a stratified epithelium tightly encased by the basement membrane, which is in turn surrounded by a mesenchyme consisting of a dense network of interstitial matrix and mesenchymal cells. Diverse cell types and extracellular matrices bestow this developing organ with organized, yet spatially varied mechanical properties. For instance, the surface epithelial sheet of the bud is highly fluidic due to its high cell motility and weak cell-cell adhesion, rendering it highly pliable. In contrast, the inner core of the bud is more rigid, characterized by reduced cell motility and strong cell-cell adhesion, which likely provide structural support for the tissue. The interactions between the surface epithelial sheet and the inner core give rise to budding morphogenesis. Furthermore, the basement membrane and the mesenchyme offer mechanical constraints that could play a pivotal role in determining the higher-order architecture of a fully mature salivary gland.
Collapse
Affiliation(s)
- E Angelo Morales
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
| |
Collapse
|
5
|
Wanjari UR, Gopalakrishnan AV. Blood-testis barrier: a review on regulators in maintaining cell junction integrity between Sertoli cells. Cell Tissue Res 2024; 396:157-175. [PMID: 38564020 DOI: 10.1007/s00441-024-03894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The blood-testis barrier (BTB) is formed adjacent to the seminiferous basement membrane. It is a distinct ultrastructure, partitioning testicular seminiferous epithelium into apical (adluminal) and basal compartments. It plays a vital role in developing and maturing spermatocytes into spermatozoa via reorganizing its structure. This enables the transportation of preleptotene spermatocytes across the BTB, from basal to adluminal compartments in the seminiferous tubules. Several bioactive peptides and biomolecules secreted by testicular cells regulate the BTB function and support spermatogenesis. These peptides activate various downstream signaling proteins and can also be the target themself, which could improve the diffusion of drugs across the BTB. The gap junction (GJ) and its coexisting junctions at the BTB maintain the immunological barrier integrity and can be the "gateway" during spermatocyte transition. These junctions are the possible route for toxicant entry, causing male reproductive dysfunction. Herein, we summarize the detailed mechanism of all the regulators playing an essential role in the maintenance of the BTB, which will help researchers to understand and find targets for drug delivery inside the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, PIN 632014, India.
| |
Collapse
|
6
|
Eckersley A, Yamamura T, Lennon R. Matrikines in kidney ageing and age-related disease. Curr Opin Nephrol Hypertens 2023; 32:551-558. [PMID: 37584348 PMCID: PMC10552846 DOI: 10.1097/mnh.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
PURPOSE OF REVIEW Matrikines are cell-signalling extracellular matrix fragments and they have attracted recent attention from basic and translational scientists, due to their diverse roles in age-related disease and their potential as therapeutic agents. In kidney, the matrix undergoes remodelling by proteolytic fragmentation, so matrikines are likely to play a substantial, yet understudied, role in ageing and pathogenesis of age-related diseases. RECENT FINDINGS This review presents an up-to-date description of known matrikines with either a confirmed or highly anticipated role in kidney ageing and disease, including their point of origin, mechanism of cleavage, a summary of known biological actions and the current knowledge which links them to kidney health. We also highlight areas of interest, such as the prospect of matrikine cross-tissue communication, and gaps in knowledge, such as the unexplored signalling potential of many kidney disease-specific matrix fragments. SUMMARY We anticipate that knowledge of specific matrikines, and their roles in controlling processes of kidney pathology, could be leveraged for the development of exciting new future therapies through inhibition or even with their supplementation.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Science
| | - Tomohiko Yamamura
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Eckersley A, Morais MR, Ozols M, Lennon R. Peptide location fingerprinting identifies structural alterations within basement membrane components in ageing kidney. Matrix Biol 2023; 121:167-178. [PMID: 37437747 DOI: 10.1016/j.matbio.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
During ageing, the glomerular and tubular basement membranes (BM) of the kidney undergo a progressive decline in function that is underpinned by histological changes, including glomerulosclerosis and tubular interstitial fibrosis and atrophy. This BM-specific ageing is thought to result from damage accumulation to long-lived extracellular matrix (ECM) protein structures. Determining which BM proteins are susceptible to these structure-associated changes, and the possible mechanisms and downstream consequences, is critical to understand age-related kidney degeneration and to identify markers for therapeutic intervention. Peptide location fingerprinting (PLF) is an emerging proteomic mass spectrometry analysis technique capable of identifying ECM proteins with structure-associated differences that may occur by damage modifications in ageing. Here, we apply PLF as a bioinformatic screening tool to identify BM proteins with structure-associated differences between young and aged human glomerular and tubulointerstitial compartments. Several functional regions within key BM components displayed alterations in tryptic peptide yield, reflecting potential age-dependent shifts in molecular (e.g. laminin-binding regions in agrin) and cellular (e.g. integrin-binding regions in laminins 521 and 511) interactions, oxidation (e.g. collagen IV) and the fragmentation and release of matrikines (e.g. canstatin and endostatin from collagens IV and XVIII). Furthermore, we found that periostin and the collagen IV α2 chain exhibited structure-associated differences in ageing that were conserved between human kidney and previously analysed mouse lung, revealing BM components that harbour shared susceptibilities across species and organs.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| | - Mychel Rpt Morais
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, UK; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Rachel Lennon
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
8
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Itoh Y. Proteolytic modulation of tumor microenvironment signals during cancer progression. Front Oncol 2022; 12:935231. [PMID: 36132127 PMCID: PMC9483212 DOI: 10.3389/fonc.2022.935231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Under normal conditions, the cellular microenvironment is optimized for the proper functioning of the tissues and organs. Cells recognize and communicate with the surrounding cells and extracellular matrix to maintain homeostasis. When cancer arises, the cellular microenvironment is modified to optimize its malignant growth, evading the host immune system and finding ways to invade and metastasize to other organs. One means is a proteolytic modification of the microenvironment and the signaling molecules. It is now well accepted that cancer progression relies on not only the performance of cancer cells but also the surrounding microenvironment. This mini-review discusses the current understanding of the proteolytic modification of the microenvironment signals during cancer progression.
Collapse
|
10
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
12
|
Li M, Zheng J, Luo D, Xu K, Zhang X. Tiki proteins are substrates of membrane-type matrix metalloproteinases. FEBS Lett 2022; 596:1851-1859. [PMID: 35689492 DOI: 10.1002/1873-3468.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/11/2022]
Abstract
Tiki proteins represent a new family of Wnt-specific proteases that inhibit Wnt signalling by cleaving and inactivating Wnt proteins. Tiki proteins are glycosylphosphatidylinositol (GPI)-anchored proteases and function in both Wnt-producing and Wnt-responsive cells. However, how Tiki proteins are regulated remains elusive. In this study, we demonstrate that matrix metalloproteinase 15 (MMP15) interacts with TIKI2 and degrades TIKI2 on the cell surface. Functionally, MMP15 relieves the inhibitory effect of TIKI2 on Wnt signalling in Wnt-responsive cells. We further show that Tiki proteins are substrates of MMP14, MMP15 and MMP16 but not MMP3 or MMP13. Our study provides insights into the potential regulation of Tiki family proteins by other proteases.
Collapse
Affiliation(s)
- Mingyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjun Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
14
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
15
|
Abstract
Cancer is an uncontrolled growth of normal cells due to unchecked regulatory mechanisms working inside the rapidly dividing cells. In this complex cancer disease treatment, various strategies are utilized to get rid of cancer cells effectively. The different methods combine approaches used to treat cancer, such as radiotherapy, surgery, and chemotherapy. Chemotherapy is among the most effective ways, along with radiotherapy and surgical removal of cancer tissue. Effective chemotherapy based on modification of conventional drugs along with various molecular therapeutic targets, which involve different inhibitors that work in a specific manner in inhibiting particular events activated in cancer cells-the understanding of molecular signaling pathways holds key in the development of targeted therapeutics. After the fundamental signaling pathway studies, a single signaling pathway targeting approach or multiple targeting could display remarkable results in cancer therapeutics. The signal approach includes the signal pathway target. However, a double targeted pathway could effectively aid in inhibiting cell growth or metastasis either due to triggering natural suicidal mechanism (apoptosis) activation. The particular environment of cells regulates cell growth and differentiation. Various proteins in the extracellular matrix (ECM) regulate the process of cancer initiation or progression. The ECM collagens, elastins proteins, fibronectins, and laminins might reduce the effectiveness of treatment therapy, reflecting them as an essential target. Any dysregulation in the composition of ECM reflects the regulatory ineffectiveness in a particular area. These have an association with poor prognosis, cell propagation, and metastasis, along drug resistance.Regulation in physiological processes associated with developmental process and maintaining the homeostasis. The pathogenesis of cancer might be connected to dysregulation in cell death programs, including autophagy, necrosis, and the most desirable cell death mechanism called apoptosis: programmed cell death, the highly regulatory mechanism of natural cell death involved in tissue development. The apoptosis involves characteristic feather of cell death which includes specific morphological change along with biochemical alteration. It includes tightly regulated irreversible events, i.e., phosphatidylserine externalization and DNA fragmentation, mainly via the intrinsic and extrinsic pathways. Targeting apoptosis in the development of therapeutics could be the ultimate process in treating cancer via chemotherapy. During apoptosis, cell death occurs without causing much damage or inflammation in neighboring cells. Various pro-apoptosis and anti-apoptosis proteins involved in the regulation of apoptosis could act as a remarkable target. The apoptosis inactivation is the critical dysregulatory process in the majority of cancer types. There is an increase in research development regarding apoptosis-targeted therapeutics. A understanding of apoptotic signaling pathways, a fundamental knowledge, aids in developing particular inhibitors for anti-apoptotic and activator of pro-apoptotic proteins.In both apoptosis pathways (extrinsic and intrinsic), pro-apoptotic and anti-apoptotic proteins act as potential regulators in cell division and growth. The pro-apoptotic proteins Bax trigger the activation of the intrinsic pathway, an excellent target for developing therapeutics, and are currently in clinical trials. Similarly, the inhibitor of the anti-apoptotic proteins is also on track in the drug development process. The considerable importance of apoptosis-based anticancer drugs is also due to improving the drug sensitivity via reversing the resistive mechanisms in cancer cells. The dysregulatory or inactivated apoptosis mechanism involve Bcl-2 family proteins which include both pro-apoptotic members downregulation and anti-apoptotic upregulation, various inhibitors of apoptosis as inhibitory proteins (IAPs), cell cycle dysregulation, dysregulatory repair system, cell progression pathway activation of NF-κB, tumor suppressor (p53) regulation, and death receptors (DRs) of the extrinsic pathway.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia.
| | - Abdah Md Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
16
|
Wroński P, Wroński S, Kurant M, Malinowski B, Wiciński M. Curcumin May Prevent Basement Membrane Disassembly by Matrix Metalloproteinases and Progression of the Bladder Cancer. Nutrients 2021; 14:32. [PMID: 35010907 PMCID: PMC8746354 DOI: 10.3390/nu14010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
Authors present a review of crucial mechanisms contributing to the invasion of the basement membrane (BM) of the urothelium by cancer cells and to the progression of bladder cancer (BC). The breeching of the urothelial BM, facilitated by an aberrant activation of matrix metalloproteinases (MMP) is particularly perilous. Inhibition of activation of these proteinases constitutes a logic opportunity to restrain progression. Because of limited efficacy of current therapeutic methods, the search for the development of alternative approaches constitutes "the hot spot" of modern oncology. Recent studies revealed significant anticancer potential of natural phytochemicals. Especially, curcumin has emerged as a one of the most promising phytochemicals and showed its efficacy in several human malignancies. Therefore, this article addresses experimental and clinical data indicating multi-directional inhibitory effect of curcumin on the growth of bladder cancer. We particularly concentrate on the mechanisms, by which curcumin inhibits the MMP's activities, thereby securing BM integrity and alleviating the eventual cancer invasion into the bladder muscles. Authors review the recently accumulating data, that curcumin constitutes a potent factor contributing to the more effective treatment of the bladder cancer.
Collapse
Affiliation(s)
- Paweł Wroński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
- Department of Oncological Urology, The Franciszek Lukaszczyk Oncology Center, Romanowskiej 2, 85-796 Bydgoszcz, Poland
| | - Stanisław Wroński
- Department of Urology, Jan Biziel Memorial University Hospital, Ujejskiego 75, 85-168 Bydgoszcz, Poland;
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| |
Collapse
|
17
|
Chaudhry GES, Akim A, Naveed Zafar M, Safdar N, Sung YY, Muhammad TST. Understanding Hyaluronan Receptor (CD44) Interaction, HA-CD44 Activated Potential Targets in Cancer Therapeutics. Adv Pharm Bull 2021; 11:426-438. [PMID: 34513617 PMCID: PMC8421618 DOI: 10.34172/apb.2021.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a complex mechanism involving a series of cellular events. The glycoproteins such as hyaluronan (HA) are a significant element of extracellular matrix (ECM), involve in the onset of cancer developmental process. The pivotal roles of HA in cancer progression depend on dysregulated expression in various cancer. HA, also gain attention due to consideration as a primary ligand of CD44 receptor. The CD44, complex transmembrane receptor protein, due to alternative splicing in the transcription process, various CD44 isoforms predominantly exist. The overexpression of distinct CD44 isoforms (CD44v) standard (CD44s) depends on the tumour type and stage. The receptor proteins, CD44 engage in a variety of biological processes, including cell growth, apoptosis, migration, and angiogenesis. HA-CD44 interaction trigger survival pathways that result in cell proliferation, invasion ultimately complex metastasis. The interaction and binding of ligand-receptor HA-CD44 regulate the downstream cytoskeleton pathways involve in cell survival or cell death. Thus, targeting HA, CD44 (variant and standard) isoform, and HA-CD44 binding consider as an attractive and useful approach towards cancer therapeutics. The use of various inhibitors of HA, hyaluronidases (HYALs), and utilizing targeted Nano-delivery of anticancer agents and antibodies against CD44, peptides gives promising results in vitro and in vivo. However, they are in clinical trials with favourable and unfavourable outcomes, which reflects the need for various modifications in targeting agents and a better understanding of potential targets in tumour progression pathways.
Collapse
Affiliation(s)
- Gul-E-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Abdah Akim
- Department of Biomedical Sciences, Universiti Putra Malaysia, Seri Kembangan, Selangor, Malaysia
| | | | - Naila Safdar
- Department of Environmental Sciences, Fatima Jinnah University, Rawalpindi, Pakistan
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | | |
Collapse
|
18
|
Moracho N, Learte AIR, Muñoz-Sáez E, Marchena MA, Cid MA, Arroyo AG, Sánchez-Camacho C. Emerging roles of MT-MMPs in embryonic development. Dev Dyn 2021; 251:240-275. [PMID: 34241926 DOI: 10.1002/dvdy.398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/19/2022] Open
Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) are cell membrane-tethered proteinases that belong to the family of the MMPs. Apart from their roles in degradation of the extracellular milieu, MT-MMPs are able to activate through proteolytic processing at the cell surface distinct molecules such as receptors, growth factors, cytokines, adhesion molecules, and other pericellular proteins. Although most of the information regarding these enzymes comes from cancer studies, our current knowledge about their contribution in distinct developmental processes occurring in the embryo is limited. In this review, we want to summarize the involvement of MT-MMPs in distinct processes during embryonic morphogenesis, including cell migration and proliferation, epithelial-mesenchymal transition, cell polarity and branching, axon growth and navigation, synapse formation, and angiogenesis. We also considered information about MT-MMP functions from studies assessed in pathological conditions and compared these data with those relevant for embryonic development.
Collapse
Affiliation(s)
- Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel A Marchena
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - María A Cid
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia G Arroyo
- Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain.,Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Cristina Sánchez-Camacho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain.,Vascular Pathophysiology Department, Centro Nacional de Investigaciones Cardiovasculares (CNIC-CSIC), Madrid, Spain
| |
Collapse
|
19
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
20
|
Sugiyama A, Okada M, Otani K, Yamawaki H. [Development of basic research toward clinical application of cleaved fragment of type IV collagen]. Nihon Yakurigaku Zasshi 2021; 156:282-287. [PMID: 34470932 DOI: 10.1254/fpj.21016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Basement membrane is a dense sheet-like extracellular matrix (ECM), which separates cells from surrounding interstitium. Type IV collagen is a major component of basement membrane and three of six α chains (namely α1-α6 chains) form a triple-helix structure. Recently, endogenous bioactive factors called "matricryptins" or "matrikines", which are produced by degrading and cleaving C-terminal domain of type IV collagen, attract attentions as a novel therapeutic target or a candidate for biomarkers. In all type IV collagens, matricryptins called arresten (α1 chain), canstatin (α2), tumstatin (α3), tetrastatin (α4), pentastatin (α5), and hexastatin (α6), have been identified. The type IV collagen-derived matricryptins have been previously studied as new therapeutic targets for neoplastic diseases since they exert anti-angiogenic and/or anti-tumor effects. On the other hand, we have recently demonstrated the cardioprotective effects of matricryptins in addition to the altered expression levels in cardiac diseases. In this review, we introduce the results of fundamental studies for the type IV collagen-derived matricryptins in various diseases, such as neoplastic diseases and cardiac diseases, and discuss the potential clinical application as novel therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
21
|
Liu SW, Li HT, Ge RS, Cheng CY. NC1-peptide derived from collagen α3 (IV) chain is a blood-tissue barrier regulator: lesson from the testis. Asian J Androl 2021; 23:123-128. [PMID: 32896837 PMCID: PMC7991810 DOI: 10.4103/aja.aja_44_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Collagen α3 (IV) chains are one of the major constituent components of the basement membrane in the mammalian testis. Studies have shown that biologically active fragments, such as noncollagenase domain (NC1)-peptide, can be released from the C-terminal region of collagen α3 (IV) chains, possibly through the proteolytic action of metalloproteinase 9 (MMP9). NC1-peptide was shown to promote blood–testis barrier (BTB) remodeling and fully developed spermatid (e.g., sperm) release from the seminiferous epithelium because this bioactive peptide was capable of perturbing the organization of both actin- and microtubule (MT)-based cytoskeletons at the Sertoli cell–cell and also Sertoli–spermatid interface, the ultrastructure known as the basal ectoplasmic specialization (ES) and apical ES, respectively. More importantly, recent studies have shown that this NC1-peptide-induced effects on cytoskeletal organization in the testis are mediated through an activation of mammalian target of rapamycin complex 1/ribosomal protein S6/transforming retrovirus Akt1/2 protein (mTORC1/rpS6/Akt1/2) signaling cascade, involving an activation of cell division control protein 42 homolog (Cdc42) GTPase, but not Ras homolog family member A GTPase (RhoA), and the participation of end-binding protein 1 (EB1), a microtubule plus (+) end tracking protein (+TIP), downstream. Herein, we critically evaluate these findings, providing a critical discussion by which the basement membrane modulates spermatogenesis through one of its locally generated regulatory peptides in the testis.
Collapse
Affiliation(s)
- Shi-Wen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Hui-Tao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| | - Ren-Shan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY 10065, USA
| |
Collapse
|
22
|
X-box binding protein 1-mediated COL4A1s secretion regulates communication between vascular smooth muscle and stem/progenitor cells. J Biol Chem 2021; 296:100541. [PMID: 33722606 PMCID: PMC8063738 DOI: 10.1016/j.jbc.2021.100541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) contribute to the deposition of extracellular matrix proteins (ECMs), including Type IV collagen, in the vessel wall. ECMs coordinate communication among different cell types, but mechanisms underlying this communication remain unclear. Our previous studies have demonstrated that X-box binding protein 1 (XBP1) is activated and contributes to VSMC phenotypic transition in response to vascular injury. In this study, we investigated the participation of XBP1 in the communication between VSMCs and vascular progenitor cells (VPCs). Immunofluorescence and immunohistology staining revealed that Xbp1 gene was essential for type IV collagen alpha 1 (COL4A1) expression during mouse embryonic development and vessel wall ECM deposition and stem cell antigen 1-positive (Sca1+)-VPC recruitment in response to vascular injury. The Western blot analysis elucidated an Xbp1 gene dose-dependent effect on COL4A1 expression and that the spliced XBP1 protein (XBP1s) increased protease-mediated COL4A1 degradation as revealed by Zymography. RT-PCR analysis revealed that XBP1s in VSMCs not only upregulated COL4A1/2 transcription but also induced the occurrence of a novel transcript variant, soluble type IV collagen alpha 1 (COL4A1s), in which the front part of exon 4 is joined with the rear part of exon 42. Chromatin-immunoprecipitation, DNA/protein pulldown and in vitro transcription demonstrated that XBP1s binds to exon 4 and exon 42, directing the transcription from exon 4 to exon 42. This leads to transcription complex bypassing the internal sequences, producing a shortened COL4A1s protein that increased Sca1+-VPC migration. Taken together, these results suggest that activated VSMCs may recruit Sca1+-VPCs via XBP1s-mediated COL4A1s secretion, leading to vascular injury repair or neointima formation.
Collapse
|
23
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
24
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
25
|
Peng Z, Sun H, Bunpetch V, Koh Y, Wen Y, Wu D, Ouyang H. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2020; 268:120555. [PMID: 33285440 DOI: 10.1016/j.biomaterials.2020.120555] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a major cause of disability and socioeconomic loss worldwide. However, the current pharmacological approaches used to treat OA are largely palliative. Being the hallmark of OA, the cartilage extracellular matrix (ECM) destruction and abnormal homeostasis is gaining more attention as a therapeutic target in cartilage regeneration. Moreover, during the progression of OA, the cartilage ECM shows significant pathological alternations, which can be promising biomarkers in identifying the pathological stages of OA. In this review, we summarize the role of abnormal ECM homeostasis in the joint cartilage during OA. Furthermore, we provide an update on the cartilage ECM derived biomarkers and regenerative medicine therapies targeting cartilage ECM which includes preclinical animal models study and clinical trials.
Collapse
Affiliation(s)
- Zhi Peng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Koh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongmei Wu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, And Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, And Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
26
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
27
|
Ma Z, Mao C, Jia Y, Fu Y, Kong W. Extracellular matrix dynamics in vascular remodeling. Am J Physiol Cell Physiol 2020; 319:C481-C499. [PMID: 32579472 DOI: 10.1152/ajpcell.00147.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vascular remodeling is the adaptive response to various physiological and pathophysiological alterations that are closely related to aging and vascular diseases. Understanding the mechanistic regulation of vascular remodeling may be favorable for discovering potential therapeutic targets and strategies. The extracellular matrix (ECM), including matrix proteins and their degradative metalloproteases, serves as the main component of the microenvironment and exhibits dynamic changes during vascular remodeling. This process involves mainly the altered composition of matrix proteins, metalloprotease-mediated degradation, posttranslational modification of ECM proteins, and altered topographical features of the ECM. To date, adequate studies have demonstrated that ECM dynamics also play a critical role in vascular remodeling in various diseases. Here, we review these related studies, summarize how ECM dynamics control vascular remodeling, and further indicate potential diagnostic biomarkers and therapeutic targets in the ECM for corresponding vascular diseases.
Collapse
Affiliation(s)
- Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Chenfeng Mao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
28
|
Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart JB, Monboisse JC. Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Front Oncol 2020; 10:397. [PMID: 32351878 PMCID: PMC7174611 DOI: 10.3389/fonc.2020.00397] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is composed of various cell types embedded in an altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but also regulates cell-cell or cell-matrix cross-talks. Alterations in ECM may be induced by hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome, is strongly altered, and different ECM protein signatures may be defined to serve as prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion. Proteoglycan expression and location are modified in the TME and affect cell invasion and metastatic dissemination. ECM macromolecule degradation by proteases may induce the release of angiogenic growth factors but also the release of proteoglycan-derived or ECM protein fragments, named matrikines or matricryptins. This review will focus on current knowledge and new insights in ECM alterations, degradation, and reticulation through cross-linking enzymes and on the role of ECM fragments in the control of cancer progression and their potential use as biomarkers in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sylvie Brassart-Pasco
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean-Baptiste Oudart
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Jean Claude Monboisse
- Université de Reims Champagne Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire - MEDyC, Reims, France
- CHU Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| |
Collapse
|
29
|
Stotesbury C, Alves-Peixoto P, Montoya B, Ferez M, Nair S, Snyder CM, Zhang S, Knudson CJ, Sigal LJ. α2β1 Integrin Is Required for Optimal NK Cell Proliferation during Viral Infection but Not for Acquisition of Effector Functions or NK Cell-Mediated Virus Control. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1582-1591. [PMID: 32015010 PMCID: PMC7065959 DOI: 10.4049/jimmunol.1900927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/05/2020] [Indexed: 01/13/2023]
Abstract
NK cells play an important role in antiviral resistance. The integrin α2, which dimerizes with integrin β1, distinguishes NK cells from innate lymphoid cells 1 and other leukocytes. Despite its use as an NK cell marker, little is known about the role of α2β1 in NK cell biology. In this study, we show that in mice α2β1 deficiency does not alter the balance of NK cell/ innate lymphoid cell 1 generation and slightly decreases the number of NK cells in the bone marrow and spleen without affecting NK cell maturation. NK cells deficient in α2β1 had no impairment at entering or distributing within the draining lymph node of ectromelia virus (ECTV)-infected mice or at becoming effectors but proliferated poorly in response to ECTV and did not increase in numbers following infection with mouse CMV (MCMV). Still, α2β1-deficient NK cells efficiently protected from lethal mousepox and controlled MCMV titers in the spleen. Thus, α2β1 is required for optimal NK cell proliferation but is dispensable for protection against ECTV and MCMV, two well-established models of viral infection in which NK cells are known to be important.
Collapse
Affiliation(s)
- Colby Stotesbury
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Pedro Alves-Peixoto
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian Montoya
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Maria Ferez
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Savita Nair
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Shunchuan Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Cory J Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
30
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
31
|
Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci 2019; 228:30-34. [DOI: 10.1016/j.lfs.2019.04.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
|
32
|
Amendola PG, Reuten R, Erler JT. Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers (Basel) 2019; 11:cancers11050729. [PMID: 31130685 PMCID: PMC6562985 DOI: 10.3390/cancers11050729] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022] Open
Abstract
Members of the lysyl oxidase (LOX) family are secreted copper-dependent amine oxidases that catalyze the covalent crosslinking of collagens and elastin in the extracellular matrix (ECM), an essential process for the structural integrity of all tissues. LOX enzymes can also remodel the tumor microenvironment and have been implicated in all stages of tumor initiation and progression of many cancer types. Changes in the ECM can influence several cancer cell phenotypes. Integrin adhesion complexes (IACs) physically connect cells with their microenvironment. This review article summarizes the main findings on the role of LOX proteins in modulating the tumor microenvironment, with a particular focus on how ECM changes are integrated by IACs to modulate cells behavior. Finally, we discuss how the development of selective LOX inhibitors may lead to novel and effective therapies in cancer treatment.
Collapse
Affiliation(s)
- Pier Giorgio Amendola
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Janine Terra Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
33
|
Sugiyama A, Mitsui A, Okada M, Yamawaki H. Cathepsin S degrades arresten and canstatin in infarcted area after myocardial infarction in rats. J Vet Med Sci 2019; 81:522-531. [PMID: 30726795 PMCID: PMC6483919 DOI: 10.1292/jvms.18-0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The basement membrane surrounding cardiomyocytes is mainly composed of α1 and α2 chain of
type IV collagen. Arresten and canstatin are fragments of non-collagenous C-terminal
domain of α1 and α2 chain, respectively. We previously reported that the expression of
canstatin was decreased in infarcted area 2 weeks after myocardial infarction in rats. In
the present study, we investigated the regulatory mechanism for expression of arresten and
canstatin. Myocardial infarction model rats were produced by ligating left anterior
descending artery. Western blotting and immunohistochemical staining were performed to
determine the protein expression and distribution. Arresten and canstatin were highly
expressed in the heart. One day and three days after myocardial infarction, the expression
of arresten and canstatin in infarcted area was lower than that in non-infarcted area. The
expression of cathepsin S, which is known to degrade arresten and canstatin, was increased
in the infarcted area. A knockdown of cathepsin S gene using small interference RNA
suppressed the decline of arresten and canstatin in the infarcted area 3 days after
myocardial infarction. This study for the first time revealed that arresten and canstatin
are immediately degraded by cathepsin S in the infarcted area after myocardial infarction.
These findings present a novel fundamental insight into the pathogenesis of myocardial
infarction through the turnover of basement membrane-derived endogenous factors.
Collapse
Affiliation(s)
- Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Ayaka Mitsui
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 bancho 35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
34
|
Ren L, Li Q, Ma Z, Wang Y, Li H, Shen L, Yu J, Fang X. Quantum dots tethered membrane type 3 matrix metalloproteinase-targeting peptide for tumor optical imaging. J Mater Chem B 2018; 6:7719-7727. [PMID: 32254894 DOI: 10.1039/c8tb02025f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane type matrix metalloproteinases (MT-MMPs) play important roles in malignant tumor progression through the degradation of the extracellular matrix and signal transduction. However, a member of the family, MT3-MMP, has attracted the least concern compared with other MT-MMPs. Here, a novel MT3-MMP-targeting peptide with high affinity and specificity has been developed by a phage-display peptide screening technology and multiple biophysics measurements, including single-molecule recognition force spectroscopy and isothermal titration calorimetry. The binding peptides are conjugated on the surface of CdSe/ZnS quantum dots (QDs) and consequently acted as a ligand that specifically targets MT3-MMP overexpressed tumor cells. The imaging nanoprobes used QDs as the photographic developer for optical imaging in vivo. The nanoprobes exhibited a desirable targeting effect and generated good biodistribution profiles for visualization and imaging of MT3-MMP overexpressed tumor. The peptide could be useful to evaluate the distribution and expression of MT3-MMP. Furthermore, the peptide-functionalized QDs show potential application for cancer diagnosis.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, 5333 Xi'an Street, Changchun, Jilin 130062, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
A current perspective of canstatin, a fragment of type IV collagen alpha 2 chain. J Pharmacol Sci 2018; 139:59-64. [PMID: 30580971 DOI: 10.1016/j.jphs.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/09/2023] Open
Abstract
Type IV collagen is a main component of basement membrane extracellular matrix. Canstatin, a non-collagenous C-terminal fragment of type IV collagen α2 chain, was firstly identified as an endogenous anti-angiogenic and anti-tumor factor, which also has an anti-lymphangiogenic effect. Then, canstatin has been widely investigated as a novel target molecule for cancer therapy. The anti-angiogenic effect of canstatin may be also useful for the treatment of ocular neovascularization. Recently, we have demonstrated that canstatin, which is abundantly expressed in the heart tissue, exerts various biological activities in cardiac cells. In rat H9c2 cardiomyoblasts, canstatin inhibits isoproterenol- or hypoxia-induced apoptosis. Canstatin plays an important role in modulating voltage-dependent calcium channel activity in rat cardiomyocytes. Canstatin also regulates various biological functions in rat cardiac fibroblasts and myofibroblasts. The expression of canstatin decreases in the infarcted area after myocardial infarction. This review focuses on a current perspective for the roles of canstatin in tumorigenesis, ocular neovascularization and cardiac pathology.
Collapse
|
36
|
Feinberg TY, Zheng H, Liu R, Wicha MS, Yu SM, Weiss SJ. Divergent Matrix-Remodeling Strategies Distinguish Developmental from Neoplastic Mammary Epithelial Cell Invasion Programs. Dev Cell 2018; 47:145-160.e6. [PMID: 30269950 PMCID: PMC6317358 DOI: 10.1016/j.devcel.2018.08.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/19/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Metastasizing breast carcinoma cells have been hypothesized to mobilize tissue-invasive activity by co-opting the proteolytic systems employed by normal mammary epithelial cells undergoing branching morphogenesis. However, the critical effectors underlying morphogenesis remain unidentified, and their relationship to breast cancer invasion programs is yet to be established. Here, we identify the membrane-anchored matrix metalloproteinase, Mmp14/MT1-MMP, but not the closely related proteinase Mmp15/MT2-MMP, as the dominant proteolytic effector of both branching morphogenesis and carcinoma cell invasion in vivo. Unexpectedly, however, epithelial cell-specific targeting of Mmp14/MT1-MMP in the normal mammary gland fails to impair branching, whereas deleting the proteinase in carcinoma cells abrogates invasion, preserves matrix architecture, and completely blocks metastasis. By contrast, in the normal mammary gland, extracellular matrix remodeling and morphogenesis are ablated only when Mmp14/MT1-MMP expression is specifically deleted from the periductal stroma. Together, these findings uncover the overlapping but divergent strategies that underlie developmental versus neoplastic matrix remodeling programs.
Collapse
Affiliation(s)
- Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huarui Zheng
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA
| | - Rui Liu
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Michael Yu
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Department of Internal Medicine, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Life Sciences Institute, University of Michigan, 5000 LSI, 210 Washtenaw, Ann Arbor, MI 48109-2216, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
37
|
Zhao W, Wang L, Yu Y. Gene module analysis of juvenile myelomonocytic leukemia and screening of anticancer drugs. Oncol Rep 2018; 40:3155-3170. [PMID: 30272300 PMCID: PMC6196601 DOI: 10.3892/or.2018.6709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 07/19/2018] [Indexed: 11/05/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is a rare but severe primary hemopoietic system tumor of childhood, most frequent in children 4 years and younger. There are currently no specific anticancer therapies targeting JMML, and the underlying gene expression changes have not been revealed. To define molecular targets and possible biomarkers for early diagnosis, optimal treatment, and prognosis, we conducted microarray data analysis using the Gene Expression Omnibus, and constructed protein‑protein interaction networks of all differentially expressed genes. Modular bioinformatics analysis revealed four core functional modules for JMML. We analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functions associated with these modules. Using the CMap database, nine potential anticancer drugs were identified that modulate expression levels of many JMML‑associated genes. In addition, we identified possible miRNAs and transcription factors regulating these differentially expressed genes. This study defines a new research strategy for developing JMML‑targeted chemotherapies.
Collapse
Affiliation(s)
- Wencheng Zhao
- Department of Paediatrics, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lin Wang
- Key Laborarory, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yongbin Yu
- Key Laborarory, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
38
|
Okada M, Imoto K, Sugiyama A, Yasuda J, Yamawaki H. New Insights into the Role of Basement Membrane-Derived Matricryptins in the Heart. Biol Pharm Bull 2018; 40:2050-2060. [PMID: 29199230 DOI: 10.1248/bpb.b17-00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), which contributes to structural homeostasis as well as to the regulation of cellular function, is enzymatically cleaved by proteases, such as matrix metalloproteinases and cathepsins, in the normal and diseased heart. During the past two decades, matricryptins have been defined as fragments of ECM with a biologically active cryptic site, namely the 'matricryptic site,' and their biological activities have been initially identified and clarified, including anti-angiogenic and anti-tumor effects. Thus, matricryptins are expected to be novel anti-tumor drugs, and thus widely investigated. Although there are a smaller number of studies on the expression and function of matricryptins in fields other than cancer research, some matricryptins have been recently clarified to have biological functions beyond an anti-angiogenic effect in heart. This review particularly focuses on the expression and function of basement membrane-derived matricryptins, including arresten, canstatin, tumstatin, endostatin and endorepellin, during cardiac diseases leading to heart failure such as cardiac hypertrophy and myocardial infarction.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
39
|
Abstract
The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.
Collapse
|
40
|
Ferreira JN, Zheng C, Lombaert IM, Goldsmith CM, Cotrim AP, Symonds JM, Patel VN, Hoffman MP. Neurturin Gene Therapy Protects Parasympathetic Function to Prevent Irradiation-Induced Murine Salivary Gland Hypofunction. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:172-180. [PMID: 29560384 PMCID: PMC5857485 DOI: 10.1016/j.omtm.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022]
Abstract
Head and neck cancer patients treated with irradiation often present irreversible salivary gland hypofunction for which no conventional treatment exists. We recently showed that recombinant neurturin, a neurotrophic factor, improves epithelial regeneration of mouse salivary glands in ex vivo culture after irradiation by reducing apoptosis of parasympathetic neurons. Parasympathetic innervation is essential to maintain progenitor cells during gland development and for regeneration of adult glands. Here, we investigated whether a neurturin-expressing adenovirus could be used for gene therapy in vivo to protect parasympathetic neurons and prevent gland hypofunction after irradiation. First, ex vivo fetal salivary gland culture was used to compare the neurturin adenovirus with recombinant neurturin, showing they both improve growth after irradiation by reducing neuronal apoptosis and increasing innervation. Then, the neurturin adenovirus was delivered to mouse salivary glands in vivo, 24 hr before irradiation, and compared with a control adenovirus. The control-treated glands have ∼50% reduction in salivary flow 60 days post-irradiation, whereas neurturin-treated glands have similar flow to nonirradiated glands. Further, markers of parasympathetic function, including vesicular acetylcholine transporter, decreased with irradiation, but not with neurturin treatment. Our findings suggest that in vivo neurturin gene therapy prior to irradiation protects parasympathetic function and prevents irradiation-induced hypofunction.
Collapse
Affiliation(s)
- Joao N.A. Ferreira
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Isabelle M.A. Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Corinne M. Goldsmith
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Ana P. Cotrim
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Jennifer M. Symonds
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
- Corresponding author: Matthew P. Hoffman, Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, 30 Convent Drive, Building 30/5A509, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Gómez-Escudero J, Moreno V, Martín-Alonso M, Hernández-Riquer MV, Feinberg T, Colmenar Á, Calvo E, Camafeita E, Martínez F, Oudhoff MJ, Weiss SJ, Arroyo AG. E-cadherin cleavage by MT2-MMP regulates apical junctional signaling and epithelial homeostasis in the intestine. J Cell Sci 2017; 130:4013-4027. [PMID: 29061881 PMCID: PMC5769589 DOI: 10.1242/jcs.203687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Cadherin-based intercellular adhesions are essential players in epithelial homeostasis, but their dynamic regulation during tissue morphogenesis and remodeling remain largely undefined. Here, we characterize an unexpected role for the membrane-anchored metalloproteinase MT2-MMP in regulating epithelial cell quiescence. Following co-immunoprecipitation and mass spectrometry, the MT2-MMP cytosolic tail was found to interact with the zonula occludens protein-1 (ZO-1) at the apical junctions of polarized epithelial cells. Functionally, MT2-MMP localizes in the apical domain of epithelial cells where it cleaves E-cadherin and promotes epithelial cell accumulation, a phenotype observed in 2D polarized cells as well as 3D cysts. MT2-MMP-mediated cleavage subsequently disrupts apical E-cadherin-mediated cell quiescence resulting in relaxed apical cortical tension favoring cell extrusion and re-sorting of Src kinase activity to junctional complexes, thereby promoting proliferation. Physiologically, MT2-MMP loss of function alters E-cadherin distribution, leading to impaired 3D organoid formation by mouse colonic epithelial cells ex vivo and reduction of cell proliferation within intestinal crypts in vivo Taken together, these studies identify an MT2-MMP-E-cadherin axis that functions as a novel regulator of epithelial cell homeostasis in vivo.
Collapse
Affiliation(s)
- Jesús Gómez-Escudero
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vanessa Moreno
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - M Victoria Hernández-Riquer
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Tamar Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ángel Colmenar
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Emilio Camafeita
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alicia G Arroyo
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
42
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
43
|
Chen FY, Lee A, Ge S, Nathan S, Knox SM, McNamara NA. Aire-deficient mice provide a model of corneal and lacrimal gland neuropathy in Sjögren's syndrome. PLoS One 2017; 12:e0184916. [PMID: 28926640 PMCID: PMC5605119 DOI: 10.1371/journal.pone.0184916] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/02/2017] [Indexed: 12/19/2022] Open
Abstract
Sjögren's syndrome (SS) is a chronic, autoimmune exocrinopathy that leads to severe dryness of the mouth and eyes. Exocrine function is highly regulated by neuronal mechanisms but little is known about the link between chronic inflammation, innervation and altered exocrine function in the diseased eyes and exocrine glands of SS patients. To gain a better understanding of neuronal regulation in the immunopathogenesis of autoimmune exocrinopathy, we profiled a mouse model of spontaneous, autoimmune exocrinopathy that possess key characteristics of peripheral neuropathy experienced by SS patients. Mice deficient in the autoimmune regulator (Aire) gene developed spontaneous, CD4+ T cell-mediated exocrinopathy and aqueous-deficient dry eye that were associated with loss of nerves innervating the cornea and lacrimal gland. Changes in innervation and tear secretion were accompanied by increased proliferation of corneal epithelial basal cells, limbal expansion of KRT19-positive progenitor cells, increased vascularization of the peripheral cornea and reduced nerve function in the lacrimal gland. In addition, we found extensive loss of MIST1+ secretory acinar cells in the Aire -/- lacrimal gland suggesting that acinar cells are a primary target of the disease, Finally, topical application of ophthalmic steroid effectively restored corneal innervation in Aire -/- mice thereby functionally linking nerve loss with local inflammation in the aqueous-deficient dry eye. These data provide important insight regarding the relationship between chronic inflammation and neuropathic changes in autoimmune-mediated dry eye. Peripheral neuropathies characteristic of SS appear to be tightly linked with the underlying immunopathological mechanism and Aire -/- mice provide an excellent tool to explore the interplay between SS-associated immunopathology and peripheral neuropathy.
Collapse
Affiliation(s)
- Feeling Y. Chen
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Albert Lee
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Shaokui Ge
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, California, United States of America
| | - Sara Nathan
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Sarah M. Knox
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Nancy A. McNamara
- School of Optometry and Vision Science Graduate Program, University of California, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
44
|
Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28636874 DOI: 10.1016/j.bbamcr.2017.06.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enzymatic proteolysis of cell surface proteins and extracellular matrix (ECM) is critical for tissue homeostasis and cell signaling. These proteolytic activities are mediated predominantly by a family of proteases termed matrix metalloproteinases (MMPs). The growing evidence in recent years that ECM and non-ECM bioactive molecules (e.g., growth factors, cytokines, chemokines, on top of matrikines and matricryptins) have versatile functions redefines our view on the roles matrix remodeling enzymes play in many physiological and pathological processes, and underscores the notion that ECM proteolytic reaction mechanisms represent master switches in the regulation of critical biological processes and govern cell behavior. Accordingly, MMPs are not only responsible for direct degradation of ECM molecules but are also key modulators of cardinal bioactive factors. Many attempts were made to manipulate ECM degradation by targeting MMPs using small peptidic and organic inhibitors. However, due to the high structural homology shared by these enzymes, the majority of the developed compounds are broad-spectrum inhibitors affecting the proteolytic activity of various MMPs and other zinc-related proteases. These inhibitors, in many cases, failed as therapeutic agents, mainly due to the bilateral role of MMPs in pathological conditions such as cancer, in which MMPs have both pro- and anti-tumorigenic effects. Despite the important role of MMPs in many human diseases, none of the broad-range synthetic MMP inhibitors that were designed have successfully passed clinical trials. It appears that, designing highly selective MMP inhibitors that are also effective in vivo, is not trivial. The challenges related to designing selective and effective metalloprotease inhibitors, are associated in part with the aforesaid high structural homology and the dynamic nature of their protein scaffolds. Great progress was achieved in the last decade in understanding the biochemistry and biology of MMPs activity. This knowledge, combined with lessons from the past has drawn new "boundaries" for the development of the next-generation MMP inhibitors. These novel agents are currently designed to be highly specific, capable to discriminate between the homologous MMPs and ideally administered as a short-term topical treatment. In this review we discuss the latest progress in the fields of MMP inhibitors in terms of structure, function and their specific activity. The development of novel highly specific inhibitors targeting MMPs paves the path to study complex biological processes associated with ECM proteolysis in health and disease. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman.
Collapse
Affiliation(s)
- Maxim Levin
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
45
|
Wang S, Sekiguchi R, Daley WP, Yamada KM. Patterned cell and matrix dynamics in branching morphogenesis. J Cell Biol 2017; 216:559-570. [PMID: 28174204 PMCID: PMC5350520 DOI: 10.1083/jcb.201610048] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/05/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022] Open
Abstract
Many embryonic organs undergo branching morphogenesis to maximize their functional epithelial surface area. Branching morphogenesis requires the coordinated interplay of multiple types of cells with the extracellular matrix (ECM). During branching morphogenesis, new branches form by "budding" or "clefting." Cell migration, proliferation, rearrangement, deformation, and ECM dynamics have varied roles in driving budding versus clefting in different organs. Elongation of the newly formed branch and final maturation of the tip involve cellular mechanisms that include cell elongation, intercalation, convergent extension, proliferation, and differentiation. New methodologies such as high-resolution live imaging, tension sensors, and force-mapping techniques are providing exciting new opportunities for future research into branching morphogenesis.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Rei Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - William P Daley
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Rebustini IT. A Functional MicroRNA Screening Method for Organ Morphogenesis. CURRENT PROTOCOLS IN CELL BIOLOGY 2017; 74:19.19.1-19.19.17. [PMID: 28256721 DOI: 10.1002/cpcb.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The increasing repertoire of microRNAs expressed during organ development and their role in regulating organ morphogenesis provide a compelling need to develop methods to assess microRNA function using various in vitro and in vivo experimental models. Methods to assess microRNA function during organ morphogenesis include transfection of microRNA inhibitors (antagomirs) and activators (mimics) into mouse embryonic explanted organs using liposomes, which can potentially result in low efficiency of transfection and off-target effects. We devised a method to assess microRNA function in explanted organs by transfecting antagomirs and mimics using peptide-based nanoparticles, increasing functional microRNA targeting efficiency, and decreasing off-target effects. Our method can be applied to a variety of embryonic organs that can be explanted and provides an alternative to efficiently and functionally prioritize microRNAs during organ morphogenesis for further in vivo genetic approaches. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ivan T Rebustini
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
47
|
Shubin AD, Felong TJ, Schutrum BE, Joe DSL, Ovitt CE, Benoit DSW. Encapsulation of primary salivary gland cells in enzymatically degradable poly(ethylene glycol) hydrogels promotes acinar cell characteristics. Acta Biomater 2017; 50:437-449. [PMID: 28039063 PMCID: PMC5455143 DOI: 10.1016/j.actbio.2016.12.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/06/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Radiation therapy for head and neck cancers leads to permanent xerostomia due to the loss of secretory acinar cells in the salivary glands. Regenerative treatments utilizing primary submandibular gland (SMG) cells show modest improvements in salivary secretory function, but there is limited evidence of salivary gland regeneration. We have recently shown that poly(ethylene glycol) (PEG) hydrogels can support the survival and proliferation of SMG cells as multicellular spheres in vitro. To further develop this approach for cell-based salivary gland regeneration, we have investigated how different modes of PEG hydrogel degradation affect the proliferation, cell-specific gene expression, and epithelial morphology within encapsulated salivary gland spheres. Comparison of non-degradable, hydrolytically-degradable, matrix metalloproteinase (MMP)-degradable, and mixed mode-degradable hydrogels showed that hydrogel degradation by any mechanism is required for significant proliferation of encapsulated cells. The expression of acinar phenotypic markers Aqp5 and Nkcc1 was increased in hydrogels that are MMP-degradable compared with other hydrogel compositions. However, expression of secretory acinar proteins Mist1 and Pip was not maintained to the same extent as phenotypic markers, suggesting changes in cell function upon encapsulation. Nevertheless, MMP- and mixed mode-degradability promoted organization of polarized cell types forming tight junctions and expression of the basement membrane proteins laminin and collagen IV within encapsulated SMG spheres. This work demonstrates that cellularly remodeled hydrogels can promote proliferation and gland-like organization by encapsulated salivary gland cells as well as maintenance of acinar cell characteristics required for regenerative approaches. Investigation is required to identify approaches to further enhance acinar secretory properties. STATEMENT OF SIGNIFICANCE Regenerative strategies to replace damaged salivary glands require the function and organization of acinar cells. Hydrogel-based approaches have shown promise to control cell function and phenotype. However, little is known about how specific parameters, such as the mechanism of hydrogel degradation (e.g., hydrolytic or enzymatic), influence the viability, proliferation, organization, and phenotype of salivary gland cells. In this work, it is shown that hydrogel-encapsulated primary salivary gland cell proliferation is dependent upon hydrogel degradation. Hydrogels crosslinked with enzymatically degradable peptides promoted the expression of critical acinar cell markers, which are typically downregulated in primary cultures. Furthermore, salivary gland cells encapsulated in enzymatically- but not hydrolytically-degradable hydrogels displayed highly organized and polarized salivary gland cell markers, which mimics characteristics found in native gland tissue. In sum, results indicate that salivary gland cells respond to cellularly remodeled hydrogels, resulting in self-assembly and organization akin to acini substructures of the salivary gland.
Collapse
Affiliation(s)
- Andrew D Shubin
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Timothy J Felong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Brittany E Schutrum
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Debria S L Joe
- Department of Biology, Xavier University of Louisiana, New Orleans, LA, United States
| | - Catherine E Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States; Department of Biomedical Genetics, University of Rochester, Rochester, NY, United States; Department of Chemical Engineering, University of Rochester, Rochester, NY, United States; Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
48
|
Hayashi T, Lombaert IMA, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis. Dev Cell 2016; 40:95-103. [PMID: 28041903 DOI: 10.1016/j.devcel.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/23/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal interactions involve fundamental communication between tissues during organogenesis and are primarily regulated by growth factors and extracellular matrix. It is unclear whether RNA-containing exosomes are mobile genetic signals regulating epithelial-mesenchymal interactions. Here we identify that exosomes loaded with mesenchyme-specific mature microRNA contribute mobile genetic signals from mesenchyme to epithelium. The mature mesenchymal miR-133b-3p, loaded into exosomes, was transported from mesenchyme to the salivary epithelium, which did not express primary miR-133b-3p. Knockdown of miR-133b-3p in culture decreased endbud morphogenesis, reduced proliferation of epithelial KIT+ progenitors, and increased expression of a target gene, Disco-interacting protein 2 homolog B (Dip2b). DIP2B, which is involved in DNA methylation, was localized with 5-methylcytosine in the prophase nucleus of a subset of KIT+ progenitors during mitosis. In summary, exosomal transport of miR-133b-3p from mesenchyme to epithelium decreases DIP2B, which may function as an epigenetic regulator of genes responsible for KIT+ progenitor expansion during organogenesis.
Collapse
Affiliation(s)
- Toru Hayashi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Feinberg TY, Rowe RG, Saunders TL, Weiss SJ. Functional roles of MMP14 and MMP15 in early postnatal mammary gland development. Development 2016; 143:3956-3968. [PMID: 27633994 DOI: 10.1242/dev.136259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022]
Abstract
During late embryogenesis, mammary epithelial cells initiate migration programs that drive ductal invasion into the surrounding adipose-rich mesenchyme. Currently, branching morphogenesis is thought to depend on the mobilization of the membrane-anchored matrix metalloproteinases MMP14 (MT1-MMP) and MMP15 (MT2-MMP), which drive epithelial cell invasion by remodeling the extracellular matrix and triggering associated signaling cascades. However, the roles that these proteinases play during mammary gland development in vivo remain undefined. Here, we characterize the impact of global Mmp14 and Mmp15 targeting on early postnatal mammary gland development in mice. Unexpectedly, both Mmp14-/- and Mmp15-/- mammary glands retain the ability to generate intact ductal networks. Although neither proteinase is required for branching morphogenesis, transcriptome profiling reveals a key role for MMP14 and MMP15 in regulating mammary gland adipocyte differentiation. Whereas MMP14 promotes the generation of white fat depots crucial for energy storage, MMP15 differentially controls the formation of thermogenic brown fat. Taken together, these data not only indicate that current paradigms relevant to proteinase-dependent morphogenesis need be revisited, but also identify new roles for the enzymes in regulating adipocyte fate determination in the developing mammary gland.
Collapse
Affiliation(s)
- Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - R Grant Rowe
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas L Saunders
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.,Transgenic Animal Model Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA .,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
An integrated miRNA functional screening and target validation method for organ morphogenesis. Sci Rep 2016; 6:23215. [PMID: 26980315 PMCID: PMC4793243 DOI: 10.1038/srep23215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/26/2016] [Indexed: 12/20/2022] Open
Abstract
The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.
Collapse
|