1
|
Alimoradi N, Ramezani A, Tahami M, Firouzabadi N. Metformin Exhibits Anti-Inflammatory Effects by Regulating microRNA-451/CXCL16 and B Cell Leukemia/Lymphoma 2 in Patients With Osteoarthritis. ACR Open Rheumatol 2024. [PMID: 39435687 DOI: 10.1002/acr2.11755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most common cause of chronic disability in joints among older individuals. The primary goal of OA treatment is pain relief to improve the quality of life. Inflammation and aging are involved in the pathogenesis of pain in OA. In this study, we evaluated the ability of metformin to regulate microRNAs, such as miR-451 and miR-15b, and their target proteins, CXCL16 and B cell leukemia/lymphoma 2 (BCL-2), involved in inflammation and apoptosis. METHODS In this double-blind placebo-controlled clinical trial, patients were randomly divided into two groups: one receiving metformin and the other receiving a placebo for four months (starting at 0.5 g/day for the first week, increasing to 1 g/day for the second week, and increasing to 1.5 g/day for the remaining period). In addition to evaluating the clinical response using the Knee Injury and Osteoarthritis Outcome Score questionnaire, miR-451 and miR-15b expression levels were detected using real-time polymerase chain reaction. The serum levels of CXCL16 and BCL-2 were evaluated using enzyme-linked immunosorbent assay kits before (time zero) and after treatment (month four). RESULTS Metformin increased miR-451 expression levels simultaneously with pain reduction, whereas miR-15b expression did not change significantly after four months of treatment. Also, metformin decreased the serum levels of BCL-2 and CXCL16 in patients with OA. CONCLUSION The effects of metformin in reducing pain can be attributed to many factors, including its anti-inflammatory and antiaging effects. Our findings suggest that metformin may reduce pain and inflammation in patients with OA through the regulation of miR-451/CXCL16 and BCL-2.
Collapse
|
2
|
Modabber N, Mahboub SS, Khoshravesh S, Karimpour F, Karimi A, Goodarzi V. Evaluation of Long Non-coding RNA (LncRNA) in the Pathogenesis of Chemotherapy Resistance in Cervical Cancer: Diagnostic and Prognostic Approach. Mol Biotechnol 2024; 66:2751-2768. [PMID: 37804407 DOI: 10.1007/s12033-023-00909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
Cervical cancer (CC), caused by human papillomavirus (HPV), is a leading cause of female malignancies worldwide. Therefore, understanding the underlying mechanisms of CC development and identifying novel therapeutic targets are significantly important. Cisplatin resistance is a significant challenge in the management of CC. Recent studies highlighted the critical role of long non-coding RNAs (lncRNAs) in modulation of cisplatin resistance. This comprehensive review aims to collect the current understanding roles of lncRNAs and their involvement in cisplatin resistance in CC by highlighting key processes of cancer progression, including apoptosis, proliferation, angiogenesis and epithelial-to-mesenchymal transition (EMT). We discussed the role of lncRNA in CC resistance to cisplatin through molecular pathways and examined gene expression changes. We also discussed treatment strategies and factors that reduce CC resistance to cisplatin by targeting them.
Collapse
Affiliation(s)
- Noushin Modabber
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarah Sadat Mahboub
- Shahid Akbar-Abadi Clinical Research Development Unit (SHACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Karimpour
- Cancer Reserch Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Anita Karimi
- Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
3
|
Dariya B, Girish BP, Merchant N, Srilatha M, Nagaraju GP. Resveratrol: biology, metabolism, and detrimental role on the tumor microenvironment of colorectal cancer. Nutr Rev 2024; 82:1420-1436. [PMID: 37862428 DOI: 10.1093/nutrit/nuad133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023] Open
Abstract
A substantial increase in colorectal cancer (CRC)-associated fatalities can be attributed to tumor recurrence and multidrug resistance. Traditional treatment options, including radio- and chemotherapy, also exhibit adverse side effects. Ancient treatment strategies that include phytochemicals like resveratrol are now widely encouraged as an alternative therapeutic option. Resveratrol is the natural polyphenolic stilbene in vegetables and fruits like grapes and apples. It inhibits CRC progression via targeting dysregulated cancer-promoting pathways, including PI3K/Akt/Kras, targeting transcription factors like NF-κB and STAT3, and an immunosuppressive tumor microenvironment. In addition, combination therapies for cancer include resveratrol as an adjuvant to decrease multidrug resistance that develops in CRC cells. The current review discusses the biology of resveratrol and explores different mechanisms of action of resveratrol in inhibiting CRC progression. Further, the detrimental role of resveratrol on the immunosuppressive tumor microenvironment of CRC has been discussed. This review illustrates clinical trials on resveratrol in different cancers, including resveratrol analogs, and their efficiency in promoting CRC inhibition.
Collapse
Affiliation(s)
- Begum Dariya
- Center for Drug Design, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bala Prabhakar Girish
- Nanotechnology Laboratory, Institute of Frontier Technology, Acharya N.G. Ranga Agricultural University, Tirupati, Andhra Pradesh, India
| | - Neha Merchant
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Putzu C, Serra R, Campus R, Fadda GM, Sini C, Marongiu A, Ginesu GC, Fois AG, Palmieri G, Zinellu A, Cossu A, Paliogiannis P. Complete Blood Count-Based Biomarkers as Predictors of Clinical Outcomes in Advanced Non-Small Cell Lung Cancer Patients with PD-L1 < 50% Treated with First-Line Chemoimmunotherapy. Curr Oncol 2024; 31:4955-4967. [PMID: 39329995 PMCID: PMC11431676 DOI: 10.3390/curroncol31090367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Background: The aim of the study was to investigate a series of complete blood cell count-based biomarkers of systemic inflammation as predictors of clinical outcomes in patients who underwent first-line chemoimmunotherapy for advanced NSCLC. Methods: Consecutive patients with pathologically diagnosed stage III/IV NSCLC and PD-L1 < 50% who underwent first-line chemoimmunotherapy were retrospectively enrolled. The clinical outcomes used for biomarker evaluation were Objective Response Rate (ORR) and Overall Survival (OS). Results: Non-responders had significantly higher values of neutrophil to lymphocyte ratio (NLR, median: 5.36; IQR: 2.78-10.82 vs. 3.31; IQR: 2.15-4.12, p = 0.019), neutrophil to monocyte ratio (NMR, median: 14.00; IQR: 8.82-21.20 vs. 9.20; IQR: 7.45-11.20, p = 0.013), and systemic inflammation index (SII, median: 1395; IQR: 929-3334 vs. 945; IQR: 552-1373, p = 0.025), but only NLR and NMR remained independently associated with clinical response in multivariate logistic regression. In the univariate analysis, white blood cells (OR:1.2202; 95% CI: 1.0339-1.4400, p = 0.019), neutrophils (OR:1.2916; 95% CI: 1.0692-1.5604, p = 0.008), NLR (OR:1.3601: 95% CI: 1.0949-1.6896, p = 0.005) and NMR (OR:1.2159; 95% CI: 1.00396-1.4221, p = 0.015) were significantly associated with survival; Cox regression models confirmed that neutrophils, NLR, and MLR were independently associated with survival; NLR, at a cut-off value of 4.0, showed the better AUC (0.749) in predicting OS. Conclusions: Baseline complete blood cell count biomarkers, especially the NLR, can predict clinical outcomes in patients with advanced NSCLC treated with first-line chemoimmunotherapy.
Collapse
Affiliation(s)
- Carlo Putzu
- Medical Oncology Unit, University Hospital of Sassari (AOU SS), Via Enrico De Nicola 39, 07100 Sassari, Italy
| | - Riccardo Serra
- Specialty School of Medical Oncology, University of Cagliari, S.S. 554, Km 4500 Bivio per Sestu, 09042 Cagliari, Italy
| | - Rachele Campus
- Specialty School in Pulmonology and Respiratory Diseases, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Giovanni Maria Fadda
- Medical Oncology Unit, University Hospital of Sassari (AOU SS), Via Enrico De Nicola 39, 07100 Sassari, Italy
| | - Claudio Sini
- Medical Oncology Unit, Giovanni Paolo II Hospital of Olbia, Via Bazzoni Sircana 1, 07026 Olbia, Italy
| | - Andrea Marongiu
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Giorgio Carlo Ginesu
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Alessandro Giuseppe Fois
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy
| |
Collapse
|
5
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
6
|
Zhao Y, Yu B, Wang Y, Tan S, Xu Q, Wang Z, Zhou K, Liu H, Ren Z, Jiang Z. Ang-1 and VEGF: central regulators of angiogenesis. Mol Cell Biochem 2024:10.1007/s11010-024-05010-3. [PMID: 38652215 DOI: 10.1007/s11010-024-05010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-β-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Bo Yu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yanxia Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Shiming Tan
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Qian Xu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhaoyue Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Huiting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
7
|
Wu X, Zhang T, Jia J, Chen Y, Zhang Y, Fang Z, Zhang C, Bai Y, Li Z, Li Y. Perspective insights into versatile hydrogels for stroke: From molecular mechanisms to functional applications. Biomed Pharmacother 2024; 173:116309. [PMID: 38479180 DOI: 10.1016/j.biopha.2024.116309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/27/2024] Open
Abstract
As the leading killer of life and health, stroke leads to limb paralysis, speech disorder, dysphagia, cognitive impairment, mental depression and other symptoms, which entail a significant financial burden to society and families. At present, physiology, clinical medicine, engineering, and materials science, advanced biomaterials standing on the foothold of these interdisciplinary disciplines provide new opportunities and possibilities for the cure of stroke. Among them, hydrogels have been endowed with more possibilities. It is well-known that hydrogels can be employed as potential biosensors, medication delivery vectors, and cell transporters or matrices in tissue engineering in tissue engineering, and outperform many traditional therapeutic drugs, surgery, and materials. Therefore, hydrogels become a popular scaffolding treatment option for stroke. Diverse synthetic hydrogels were designed according to different pathophysiological mechanisms from the recently reported literature will be thoroughly explored. The biological uses of several types of hydrogels will be highlighted, including pro-angiogenesis, pro-neurogenesis, anti-oxidation, anti-inflammation and anti-apoptosis. Finally, considerations and challenges of using hydrogels in the treatment of stroke are summarized.
Collapse
Affiliation(s)
- Xinghan Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yining Chen
- Key laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenwei Fang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Bai
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Sumagin R. Phenotypic and Functional Diversity of Neutrophils in Gut Inflammation and Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2-12. [PMID: 37918801 PMCID: PMC10768535 DOI: 10.1016/j.ajpath.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.
Collapse
Affiliation(s)
- Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
9
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Chen Y, Wang Y, Song S, Zhang X, Wu L, Wu J, Li X. Topical Application of Baicalin Combined with Echinacoside Ameliorates Psoriatic Skin Lesions by Suppressing the Inflammation-Related TNF Signaling Pathway and the Angiogenesis-Related VEGF Signaling Pathway. ACS OMEGA 2023; 8:40260-40276. [PMID: 37929119 PMCID: PMC10620902 DOI: 10.1021/acsomega.3c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BAI), the main active component of Scutellaria baicalensis, has significant anti-inflammatory and antibacterial effects. Echinacoside (ECH), an active component from Echinacea purpurea, has significant antiangiogenesis and antioxidant effects. In previous studies, BAI or ECH has been used for some skin inflammation problems by topical treatment. Psoriasis (PSO) is a common inflammatory skin disease with typical features such as excessive inflammatory response and vascular proliferation in skin lesions. Because of the anti-inflammatory effect of BAI and the antiangiogenic activity of ECH, it is proposed that the combination of BAI and ECH can ameliorate psoriatic skin lesions better than a single component. This study aims to explore the effects and potential mechanisms of BAI combined with ECH on imiquimod (IMQ)-induced psoriatic skin lesions by topical treatment. Transcriptome analysis first showed that the TNF signaling pathway and the VEGF signaling pathway were significantly enriched in IMQ-induced psoriatic skin lesions. Topical application of BAI combined with ECH could ameliorate IMQ-induced skin lesions in mice, especially the better effects of B2-E1 (BAI/ECH = 2:1). Network pharmacology analysis and molecular docking indicated that BAI-treated PSO on the skin by regulating the TNF signaling pathway, and ECH treated PSO on the skin by regulating the VEGF signaling pathway. Meanwhile, the ELISA test and the qPCR assay showed that BAI combined with ECH could inhibit the expression of key cytokines and genes related to the TNF signaling pathway and the VEGF signaling pathway. Zebrafish experiments demonstrated the anti-inflammatory and antiangiogenic effects of BAI combined with ECH and revealed the potential mechanisms associated with regulating the inflammation-related TNF signaling pathway and the angiogenesis-related VEGF signaling pathway. This suggested that BAI combined with ECH may be a promising topical agent to ameliorate psoriatic skin lesions in the future.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xiaoli Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union
Medical College, Nanjing 210042, China
| |
Collapse
|
11
|
Zhang P, You S, Ding X, Luan P, Xu J, Cui Q, Wang F, Li R, Zhu Y, Zhang J. Protective effect and underlying mechanism of muscone on acute cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116287. [PMID: 36841376 DOI: 10.1016/j.jep.2023.116287] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Musk is a widely used traditional Chinese medicine, which has resuscitation, activating blood, and disperse swelling effects. Musk is commonly used in the prevention of myocardial infarction and ischemic stroke, and muscone is its main active component. AIM OF THE STUDY The effect and mechanism of muscone to improve the condition of ischemic stroke is not clear, accordingly, we verified its efficacy in ischemia-reperfused rats, and investigated its mechanism by PC12 and THP-1 cells. METHODS A transient middle cerebral artery occlusion (tMCAO) rat model was established for in vivo experiments. 2,3,5-Triphenyl Tetrazolium Chloride (TTC) staining was used to calculate infarct rate. Neuroprotection and angiogenesis were assessed by Hematoxylin-eosin (HE) staining, nissl staining, immunofluorescence staining, and quantitative real-time PCR (qRT-PCR). Oxygen glucose deprivation-reperfusion (OGD/R) model of PC12 cells was established for neuroprotection analysis, where CCK-8 assay was used to measure cell viability, flow cytometry and Hoechst 33258 staining were used to demonstrate apoptosis, and protein levels were detected by Western blot. For angiogenesis analysis, enzyme-linked immunosorbent assay (ELISA) and qRT-PCR were used to detect angiogenic factors expressed by THP-1. Cell viability assay, scratch wound assay, and tube formation assay were used to evaluate angiogenic effect of HUVECs treated with medium of THP-1. And the angiogenic pathway in HUVECs was detected by Western blot. RESULTS According to the results, in cerebral ischemia-reperfusion rats, the infarct rate and tissue damage were significantly reduced by muscone, and the expression of neurotrophic factors and angiogenesis-related factors were all elevated. In OGD/R-PC12 cell models, muscone could increase cell viability and inhibit apoptosis via Bax/Bcl-2/Caspase-3 pathway. In THP-1-mediated angiogenesis of HUVECs, muscone promoted the secretion of angiogenesis-related factors in THP-1 and thus indirectly promoted the proliferation, migration and tube formation of HUVECs, and then regulated phosphorylation of VEGFR2 and Akt in HUVECs. CONCLUSIONS Our study indicated that muscone may be a potential neuroprotective and proangiogenic agent in cerebral ischemia.
Collapse
Affiliation(s)
- Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Suxin You
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Putuo District Central Hospital of Shanghai, Shanghai, 200062, China
| | - Pengwei Luan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qianfei Cui
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feiyun Wang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Palma AM, Bushnell GG, Wicha MS, Gogna R. Tumor microenvironment interactions with cancer stem cells in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:343-372. [PMID: 37268400 PMCID: PMC11218813 DOI: 10.1016/bs.acr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer in the United States. Additionally, the low survival rate makes PDAC the third-leading cause of cancer-related mortality in the United States, and it is projected that by 2030, it will become the second-leading cause of cancer mortality. Several biological factors contribute to PDAC aggressiveness, and their understanding will narrow the gap from biology to clinical care of PDAC, leading to earlier diagnoses and the development of better treatment options. In this review, we describe the origins of PDAC highlighting the role of cancer stem cells (CSC). CSC, also known as tumor initiating cells, which exhibit a unique metabolism that allows them to maintain a highly plastic, quiescent, immune- and therapy-evasive state. However, CSCs can exit quiescence during proliferation and differentiation, with the capacity to form tumors while constituting a small population in tumor tissues. Tumorigenesis depends on the interactions between CSCs and other cellular and non-cellular components in the microenvironment. These interactions are fundamental to support CSC stemness and are maintained throughout tumor development and metastasis. PDAC is characterized by a massive desmoplastic reaction, which result from the deposition of high amounts of extracellular matrix components by stromal cells. Here we review how this generates a favorable environment for tumor growth by protecting tumor cells from immune responses and chemotherapy and inducing tumor cell proliferation and migration, leading to metastasis formation ultimately leading to death. We emphasize the interactions between CSCs and the tumor microenvironment leading to metastasis formation and posit that better understanding and targeting of these interactions will improve patient outcomes.
Collapse
Affiliation(s)
| | - Grace G Bushnell
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Max S Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.
| | - Rajan Gogna
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
13
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
14
|
Hatipoglu OF, Nishinaka T, Nishibori M, Watanabe M, Toyomura T, Mori S, Yaykasli KO, Wake H, Takahashi H. Histamine promotes angiogenesis through a histamine H1 receptor-PKC-VEGF-mediated pathway in human endothelial cells. J Pharmacol Sci 2023; 151:177-186. [PMID: 36925216 DOI: 10.1016/j.jphs.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Histamine is a well-known inflammatory mediator, but how histamine induces angiogenesis remains poorly understood. In the present study, we demonstrated a dose-dependent dynamic tube formation in the human endothelial cell line EA.hy926 in the presence of histamine that was completely blocked by histamine H1 receptor (H1R) and protein kinase C (PKC) inhibitors. However, histamine H2, H3, and H4 receptor inhibitors did not inhibit tube formation, suggesting that H1R-PKC signaling is involved in histamine-induced tube formation. Moreover, we found an H1-specific induction of vascular endothelial growth factor (VEGF) expression. Inhibition of VEGF receptor 2 (VEGFR2) suppressed the histamine-induced tube formation, indicating that VEGF is downstream of histamine signaling. Additionally, we demonstrated that histamine stimulation induces the expression of critical regulators of angiogenesis such as matrix metalloproteinase (MMP)-9 and MMP-14 metalloproteases, as histamine-induced tube formation is blocked by MMP inhibitors. In summary, our study indicates that histamine can activate the H1R in human endothelial cells and thereby promote tube formation through the PKC, MMP, and VEGF signaling pathways.
Collapse
Affiliation(s)
- Omer Faruk Hatipoglu
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Dug Development, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Japan
| | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Japan
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hidenori Wake
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan.
| | - Hideo Takahashi
- Department of Pharmacology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
15
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
16
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
17
|
Li C, Wu J, Jiang L, Zhang L, Huang J, Tian Y, Zhao Y, Liu X, Xia L, E H, Gao P, Hou L, Yang M, Ma M, Su C, Zhang H, Chen H, She Y, Xie D, Luo Q, Chen C. The predictive value of inflammatory biomarkers for major pathological response in non-small cell lung cancer patients receiving neoadjuvant chemoimmunotherapy and its association with the immune-related tumor microenvironment: a multi-center study. Cancer Immunol Immunother 2023; 72:783-794. [PMID: 36056951 DOI: 10.1007/s00262-022-03262-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inflammatory biomarkers in the peripheral blood have been established as predictors for immunotherapeutic efficacy in advanced non-small cell lung cancer (NSCLC). Whether they can also predict major pathological response (MPR) in neoadjuvant setting remains unclear. METHODS In this multi-center retrospective study, 122 and 92 stage I-IIIB NSCLC patients from six hospitals who received neoadjuvant chemoimmunotherapy followed by surgery were included in the discovery and external validation cohort, respectively. Baseline and on-treatment neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR) and systemic immune-inflammation index (SII) were calculated and associated with MPR. Furthermore, resected tumor samples from 37 patients were collected for RNA-sequencing to investigate the immune-related tumor microenvironment. RESULTS In both the discovery and validation cohorts, the on-treatment NLR, dNLR, PLR, and SII levels were significantly lower in the patients with MPR versus non-MPR. On-treatment SII remained an independent predictor of MPR in multivariate logistic regression analysis. The area under the curve (AUC) of on-treatment SII for predicting MPR was 0.75 (95%CI, 0.67-0.84) in the discovery cohort. Moreover, the predictive value was further improved by combining the on-treatment SII and radiological tumor regression data, demonstrating an AUC of 0.82 (95%CI, 0.74-0.90). The predictive accuracy was validated in the external cohort. Compared with the SII-high group, patients with SII-Low were associated with the activated B cell receptor signaling pathway and a higher intratumoral immune cell infiltration level. CONCLUSIONS On-treatment SII was independently associated with MPR in NSCLC patients receiving neoadjuvant chemoimmunotherapy. Further prospective studies are warranted.
Collapse
Affiliation(s)
- Chongwu Li
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Junqi Wu
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lei Zhang
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Jia Huang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yu Tian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Xiucheng Liu
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Lang Xia
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoran E
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Peigen Gao
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Likun Hou
- Department of Pathology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Chinese Academy of Sciences, Zhejiang, People's Republic of China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Gansu, People's Republic of China
| | - Chunxia Su
- Department of Oncology, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Jiangsu, People's Republic of China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yunlang She
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Dong Xie
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Chang Chen
- Department of Thoracic Surgery, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Zippoli M, Ruocco A, Novelli R, Rocchio F, Miscione MS, Allegretti M, Cesta MC, Amendola PG. The role of extracellular vesicles and interleukin-8 in regulating and mediating neutrophil-dependent cancer drug resistance. Front Oncol 2022; 12:947183. [PMID: 36591453 PMCID: PMC9800989 DOI: 10.3389/fonc.2022.947183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor drug resistance is a multifactorial and heterogenous condition that poses a serious burden in clinical oncology. Given the increasing incidence of resistant tumors, further understanding of the mechanisms that make tumor cells able to escape anticancer drug effects is pivotal for developing new effective treatments. Neutrophils constitute a considerable proportion of tumor infiltrated immune cells, and studies have linked elevated neutrophil counts with poor prognosis. Tumor-associated neutrophils (TANs) can acquire in fact immunoregulatory capabilities, thus regulating tumor progression and resistance, or response to therapy. In this review, we will describe TANs' actions in the tumor microenvironment, with emphasis on the analysis of the role of interleukin-8 (IL-8) and extracellular vesicles (EVs) as crucial modulators and mediators of TANs biology and function in tumors. We will then discuss the main mechanisms through which TANs can induce drug resistance, finally reporting emerging therapeutic approaches that target these mechanisms and can thus be potentially used to reduce or overcome neutrophil-mediated tumor drug resistance.
Collapse
Affiliation(s)
- Mara Zippoli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Anna Ruocco
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Rubina Novelli
- Research and Development (R&D), Dompé farmaceutici S.p.A., Milan, Italy
| | - Francesca Rocchio
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy
| | - Martina Sara Miscione
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,Department of Biotechnological and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | | | | | - Pier Giorgio Amendola
- Research and Development (R&D), Dompé farmaceutici S.p.A., Naples, Italy,*Correspondence: Pier Giorgio Amendola,
| |
Collapse
|
19
|
Liu C, Wang M, Zhang H, Li C, Zhang T, Liu H, Zhu S, Chen J. Tumor microenvironment and immunotherapy of oral cancer. Eur J Med Res 2022; 27:198. [PMID: 36209263 PMCID: PMC9547678 DOI: 10.1186/s40001-022-00835-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
Oral cancer is one of the most common malignant tumors of the head and neck, not only affects the appearance, but also affects eating and even endangers life. The clinical treatments of oral cancer mainly include surgery, radiotherapy, and chemotherapy. However, unsatisfactory therapeutic effect and toxic side effects are still the main problems in clinical treatment. Tumor microenvironment (TME) is not only closely related to the occurrence, growth, and metastasis of tumor but also works in the diagnosis, prevention, and treatment of tumor and prognosis. Future studies should continue to investigate the relationship of TME and oral cancer therapy. This purpose of this review was to analyze the characteristics of oral cancer microenvironment, summarize the traditional oral cancer therapy and immunotherapy strategies, and finally prospect the development prospects of oral cancer immunotherapy. Immunotherapy targeting tumor microenvironment is expected to provide a new strategy for clinical treatment of oral cancer.
Collapse
Affiliation(s)
- Chang Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Min Wang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Haiyang Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Chunyan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Tianshou Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Hong Liu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China
| | - Song Zhu
- Hospital of Stomatology, Jilin University, Changchun, 130021, People's Republic of China.
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
20
|
Ying TH, Lin CL, Chen PN, Wu PJ, Liu CJ, Hsieh YH. Angelol-A exerts anti-metastatic and anti-angiogenic effects on human cervical carcinoma cells by modulating the phosphorylated-ERK/miR-29a-3p that targets the MMP2/VEGFA axis. Life Sci 2022; 296:120317. [PMID: 35026214 DOI: 10.1016/j.lfs.2022.120317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
AIMS Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
21
|
Azcona JA, Tang S, Berry E, Zhang FF, Garvey R, Falck JR, Schwartzman ML, Yi T, Jeitner TM, Guo AM. Neutrophil-derived Myeloperoxidase and Hypochlorous Acid Critically Contribute to 20-HETE Increases that Drive Post-Ischemic Angiogenesis. J Pharmacol Exp Ther 2022; 381:204-216. [DOI: 10.1124/jpet.121.001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
|
22
|
Shahzad MH, Feng L, Su X, Brassard A, Dhoparee-Doomah I, Ferri LE, Spicer JD, Cools-Lartigue JJ. Neutrophil Extracellular Traps in Cancer Therapy Resistance. Cancers (Basel) 2022; 14:1359. [PMID: 35267667 PMCID: PMC8909607 DOI: 10.3390/cancers14051359] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils and their products are increasingly recognized to have a key influence on cancer progression and response to therapy. Their involvement has been shown in nearly every aspect of cancer pathophysiology with growing evidence now supporting their role in resistance to a variety of cancer therapies. Recently, the role of neutrophils in cancer progression and therapy resistance has been further complicated with the discovery of neutrophil extracellular traps (NETs). NETs are web-like structures of chromatin decorated with a variety of microbicidal proteins. They are released by neutrophils in a process called NETosis. NET-dependent mechanisms of cancer pathology are beginning to be appreciated, particularly with respect to tumor response to chemo-, immuno-, and radiation therapy. Several studies support the functional role of NETs in cancer therapy resistance, involving T-cell exhaustion, drug detoxification, angiogenesis, the epithelial-to-mesenchymal transition, and extracellular matrix remodeling mechanisms, among others. Given this, new and promising data suggests NETs provide a microenvironment conducive to limited therapeutic response across a variety of neoplasms. As such, this paper aims to give a comprehensive overview of evidence on NETs in cancer therapy resistance with a focus on clinical applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan J. Cools-Lartigue
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada; (M.H.S.); (L.F.); (X.S.); (A.B.); (I.D.-D.); (L.E.F.); (J.D.S.)
| |
Collapse
|
23
|
Fakhari S, Jalili A, Nikkhoo B, Ghaderi B, Boshagh MA, Mirzaie S, Moradzad M. MT2-MMP is differentially expressed in multiple myeloma cells and mediates their growth and progression. Cell Signal 2022; 92:110248. [PMID: 35041985 DOI: 10.1016/j.cellsig.2022.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Membrane type-matrix metalloproteinases (MT-MMPs) are known as key regulators of cancer progression/metastasis. However, their roles in the growth and progression of multiple myeloma (MM) have not been yet elucidated. METHODS AND MATERIALS The expression of 6 MT-MMPs in MM, B cell lines, and normal peripheral blood (PB) cells were measured by RT-PCR, qRT-PCR, flow cytometry, western blotting, and immunocytochemistry. B lymphocytes, CD19-/CD138-, and CD19-/CD138+ cells, known as malignant plasma cells (MPC), were sorted from bone marrow (BM) aspirations of 10 MM patients, and MT2-MMP expression was examined in these cells using qRT-PCR, flow cytometry and immunohistochemistry, and western blotting. Moreover, the expression of MT2-MMP in BM biopsies from 13 normal individuals and 14 MM patients was analyzed by immunohistochemistry. MT2-MMP was also knocked down in U266 cells using siRNA technology and the adhesion, invasion, migration abilities, and cell proliferation were determined and compared with scrambled ones in both in vitro and in vivo studies. RESULTS Our results showed that MT2-MMP expression is significantly higher in MM cell lines and MPC cells than B cell lines and other PB- or BM-derived cells. MT2-MMP is expressed in BM biopsies from all 14 patients with MM, and 67.85% ± 32.38 of BM cells were positive for MT2-MMP. In contrast, only 0.38 ± 0.76 of BM biopsies from normal individuals were positive for MT2-MMP. Importantly, MT2-MMP was expressed in all the patients' BM biopsies at the diagnosis, but not in the remission phase. MT2-MMP siRNA significantly decreased adhesion, invasion, migration, and 3D cell proliferation of U266 cells. Moreover, in the xenographic model, MT2-MMP siRNA prevented the growth and development of plasmacytoma. Taken together, these data demonstrate that MT2-MMP is strongly expressed in MM cells and plays important role in the growth and progression of these cells, suggesting that MT2-MMP is an appropriate biomarker in diagnosis and therapeutic interventions of MM.
Collapse
Affiliation(s)
- Shohreh Fakhari
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ali Jalili
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Bahram Nikkhoo
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bayazid Ghaderi
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Amin Boshagh
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sako Mirzaie
- Department of Biochemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Mohammad Moradzad
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
24
|
Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021; 10:3041. [PMID: 34831262 PMCID: PMC8616186 DOI: 10.3390/cells10113041] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.
Collapse
Affiliation(s)
- Ren Jie Tuieng
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| | - Sarah H. Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering and The Henry Royce Institute, Royce Hub Building, University of Manchester, Manchester M13 9PL, UK;
| | - Cliona C. Kirwan
- Division of Cancer Sciences and Manchester Breast Centre, Oglesby Cancer Research Building, Manchester Cancer Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4BX, UK;
| | - Michael J. Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
25
|
Jiang Z, Johnson CP, Nykänen O, Nissi M, Lau YK, Wu M, Casal ML, Smith LJ. Epiphyseal cartilage canal architecture and extracellular matrix remodeling in mucopolysaccharidosis VII dogs at the onset of postnatal growth. Connect Tissue Res 2021; 62:698-708. [PMID: 33334202 PMCID: PMC8272733 DOI: 10.1080/03008207.2020.1865939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Mucopolysaccharidosis (MPS) VII is a genetic, lysosomal storage disease characterized by abnormal accumulation of glycosaminoglycans in cells and tissues. MPS VII patients exhibit multiple failures of endochondral ossification during postnatal growth, including markedly delayed cartilage-to-bone conversion in the vertebrae and long bones. Cartilage canals provide the template for vascularization at the onset of secondary ossification. The objective of this study was to investigate whether abnormal cartilage canal architecture and enzyme-mediated extracellular matrix (ECM) remodeling contribute to delayed cartilage-to-bone conversion in MPS VII.Materials and Methods: The epiphyseal cartilage canal networks of 9-day-old healthy control and MPS VII-affected dog vertebrae were characterized using high-resolution, contrast-free quantitative susceptibility mapping magnetic resonance imaging. Relative expression levels of matrix metalloproteinases (MMPs) 9, 13 and 14 were examined using immunohistochemistry, while tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP) were examined using in situ enzyme staining.Results: Interestingly, the density, number, connectivity and thickness of cartilage canals was not significantly different between MPS VII and control vertebrae. Immunohistochemistry revealed diminished MMP-9, but normal MMP-13 and 14 expression by epiphyseal cartilage chondrocytes, while ALP and TRAP enzyme expression by chondrocytes and chondroclasts, respectively, were both diminished in MPS VII.Conclusions: Our findings suggest that while the epiphyseal cartilage canal network in MPS VII is normal at the onset of secondary ossification, expression of enzymes required for cartilage resorption and replacement with mineralized ECM, and initiation of angiogenesis, is impaired.
Collapse
Affiliation(s)
- Zhirui Jiang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Deparment of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey P. Johnson
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN, USA,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Olli Nykänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko Nissi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland,Department of Diagnostic Radiology, University of Oulu, Oulu, Finland
| | - Yian Khai Lau
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Deparment of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meilun Wu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Deparment of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Margret L. Casal
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Deparment of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Correspondence: Lachlan J. Smith, Ph.D., Associate Professor, Department of Neurosurgery, University of Pennsylvania, 371 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104 USA, , Phone: +1 215 746 2169, Fax: +1 215 573 2133
| |
Collapse
|
26
|
Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms221910701. [PMID: 34639040 PMCID: PMC8509318 DOI: 10.3390/ijms221910701] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic (continuous, non-interrupted) hypoxia and cycling (intermittent, transient) hypoxia are two types of hypoxia occurring in malignant tumors. They are both associated with the activation of hypoxia-inducible factor-1 (HIF-1) and nuclear factor κB (NF-κB), which induce changes in gene expression. This paper discusses in detail the mechanisms of activation of these two transcription factors in chronic and cycling hypoxia and the crosstalk between both signaling pathways. In particular, it focuses on the importance of reactive oxygen species (ROS), reactive nitrogen species (RNS) together with nitric oxide synthase, acetylation of HIF-1, and the action of MAPK cascades. The paper also discusses the importance of hypoxia in the formation of chronic low-grade inflammation in cancerous tumors. Finally, we discuss the effects of cycling hypoxia on the tumor microenvironment, in particular on the expression of VEGF-A, CCL2/MCP-1, CXCL1/GRO-α, CXCL8/IL-8, and COX-2 together with PGE2. These factors induce angiogenesis and recruit various cells into the tumor niche, including neutrophils and monocytes which, in the tumor, are transformed into tumor-associated neutrophils (TAN) and tumor-associated macrophages (TAM) that participate in tumorigenesis.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland;
| | - Izabela Gutowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (D.S.); (I.G.); (D.C.)
- Correspondence: ; Tel.: +48-(91)-466-1515
| |
Collapse
|
27
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
28
|
Xia M, Duan LJ, Lu BN, Pang YZ, Pang ZR. LncRNA AFAP1-AS1/miR-27b-3p/VEGF-C axis modulates stemness characteristics in cervical cancer cells. Chin Med J (Engl) 2021; 134:2091-2101. [PMID: 34334630 PMCID: PMC8440026 DOI: 10.1097/cm9.0000000000001665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Long non-coding RNA (lncRNA) actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) functions as a competing endogenous RNA to regulate target genes expression by sponging microRNAs (miRs) to play cancer-promoting roles in cancer stem cells. However, the regulatory mechanism of AFAP1-AS1 in cervical cancer (CC) stem cells is unknown. The present study aimed to provide a new therapeutic target for the clinical treatment of CC. Methods: Hyaluronic acid receptor cluster of differentiation 44 variant exon 6 (CD44v6)(+) CC cells were isolated by flow cytometry (FCM). Small interfering RNAs of AFAP1-AS1 (siAFAP1-AS1) were transfected into the (CD44v6)(+) cells. The levels of AFAP1-AS1 were measured by quantitative real-time PCR (qRT-PCR). Sphere formation assay, cell cycle analysis, and Western blotting were used to detect the effect of siAFAP1-AS1. RNA pull-down and luciferase reporter assay were used to verify the relationship between miR-27b-3p and AFAP1-AS1 or vascular endothelial growth factor (VEGF)-C. Results: CD44v6(+) CC cells had remarkable stemness and a high level of AFAP1-AS1. However, AFAP1-AS1 knockdown with siAFAP1-AS1 suppressed the cell cycle transition of G(1)/S phase and inhibited self-renewal of CD44v6(+) CC cells, the levels of the stemness markers octamer-binding transcription factor 4 (OCT4), osteopontin (OPN), and cluster of differentiation 133 (CD133), and the epithelial-mesenchymal transition (EMT)-related proteins Twist1, matrix metalloprotease (MMP)-9, and VEGF-C. In the mechanism study, miR-27b-3p/VEGF-C signaling was demonstrated to be a key downstream of AFAP1-AS1 in the CD44v6(+) CC cells. Conclusions: LncRNA AFAP1-AS1 knockdown inhibits the CC cell stemness by upregulating miR-27b-3p to suppress VEGF-C.
Collapse
Affiliation(s)
- Meng Xia
- School of Pharmacy, Minzu University of China, Beijing 100081, China Department of Orthopedics, Bayannaoer City Hospital, Bayannaoer, Inner Mongolia 015000, China Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China Key Laboratory of Ethnomedicine of Ministry of Education, Minzu University of China, Beijing 100081, China
| | | | | | | | | |
Collapse
|
29
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
30
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
31
|
The Role of CXCL16 in the Pathogenesis of Cancer and Other Diseases. Int J Mol Sci 2021; 22:ijms22073490. [PMID: 33800554 PMCID: PMC8036711 DOI: 10.3390/ijms22073490] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
CXCL16 is a chemotactic cytokine belonging to the α-chemokine subfamily. It plays a significant role in the progression of cancer, as well as the course of atherosclerosis, renal fibrosis, and non-alcoholic fatty liver disease (NAFLD). Since there has been no review paper discussing the importance of this chemokine in various diseases, we have collected all available knowledge about CXCL16 in this review. In the first part of the paper, we discuss background information about CXCL16 and its receptor, CXCR6. Next, we focus on the importance of CXCL16 in a variety of diseases, with an emphasis on cancer. We discuss the role of CXCL16 in tumor cell proliferation, migration, invasion, and metastasis. Next, we describe the role of CXCL16 in the tumor microenvironment, including involvement in angiogenesis, and its significance in tumor-associated cells (cancer associated fibroblasts (CAF), microglia, tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), mesenchymal stem cells (MSC), myeloid suppressor cells (MDSC), and regulatory T cells (Treg)). Finally, we focus on the antitumor properties of CXCL16, which are mainly caused by natural killer T (NKT) cells. At the end of the article, we summarize the importance of CXCL16 in cancer therapy.
Collapse
|
32
|
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9:20. [PMID: 33731688 PMCID: PMC7969608 DOI: 10.1038/s41413-021-00147-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.
Collapse
|
33
|
Jiang S, Fu R, Shi J, Wu H, Mai J, Hua X, Chen H, Liu J, Lu M, Li N. CircRNA-Mediated Regulation of Angiogenesis: A New Chapter in Cancer Biology. Front Oncol 2021; 11:553706. [PMID: 33777729 PMCID: PMC7988083 DOI: 10.3389/fonc.2021.553706] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is necessary for carcinoma progression and is regulated by a variety of pro- and anti-angiogenesis factors. CircRNAs are RNA molecules that do not have a 5'-cap or a 3'-polyA tail and are involved in a variety of biological functions. While circRNA-mediated regulation of tumor angiogenesis has received much attention, the detailed biological regulatory mechanism remains unclear. In this review, we investigated circRNAs in tumor angiogenesis from multiple perspectives, including its upstream and downstream factors. We believe that circRNAs have natural advantages and great potential for the diagnosis and treatment of tumors, which deserves further exploration.
Collapse
Affiliation(s)
- Shaotao Jiang
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Rongdang Fu
- Department of Hepatic Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Jiewei Shi
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijie Wu
- Department of Obstetrics, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Jialuo Mai
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xuefeng Hua
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huan Chen
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Liu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minqiang Lu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Li
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Che K, Han W, Zhang M, Niu H. Role of neutrophil gelatinase-associated lipocalin in renal cell carcinoma. Oncol Lett 2021; 21:148. [PMID: 33552266 PMCID: PMC7798090 DOI: 10.3892/ol.2020.12409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/26/2020] [Indexed: 01/03/2023] Open
Abstract
Human neutrophil gelatinase-associated lipocalin (NGAL) is a glycoprotein present in a wide variety of tissues and cell types. It exists as a monomer of 25 kDa, a homodimer of 45 kDa or a heterodimer of 135 kDa (disulfide bound to latent matrix metalloproteinase-9). NGAL is considered the biochemical gold standard for the early diagnosis of acute kidney injury and has attracted much attention as a diagnostic biomarker. NGAL has controversial (i.e. both beneficial and detrimental) effects on cellular processes associated with tumor development, such as cell proliferation, survival, migration, invasion and drug resistance. Therefore, the present review aimed at clarifying the role of NGAL in renal cell carcinoma (RCC). Relevant studies of NGAL and RCC were searched in PubMed and relevant information about the structure, expression, function and mechanism of NGAL in RCC were summarized. Finally, the following conclusions could be drawn from the literature: i) NGAL can be detected in cancer tissues, serum and urine of patients with RCC; ii) NGAL is not a suitable diagnostic marker for early screening of RCC; iii) NGAL expression may be used to predict the prognosis of patients with RCC; and iv) Further research on NGAL may be helpful to decrease sunitinib resistance and find new treatment strategies for RCC.
Collapse
Affiliation(s)
- Kai Che
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenkai Han
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
- Department of Clinical Medicine, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Mingxin Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
35
|
Impacts of chitosan oligosaccharide (COS) on angiogenic activities. Microvasc Res 2020; 134:104114. [PMID: 33232706 DOI: 10.1016/j.mvr.2020.104114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/10/2023]
Abstract
It has been proved that chitosan oligosaccharide (COS) has a more favorable therapeutic applications such as wound healing and anti-tumor treatment, and can affect angiogenesis. For better understanding the effect of COS on angiogenic activities at cellular level, COS with different concentration and degree of polymerization (DP) were used to culture human umbilical vein endothelial cells (HUVECs) in this work. Cell proliferation activity, cell morphology, cell migration and angiogenesis associated factor expression of HUVECs were evaluated. The results indicated that COS at a high concentration of 400 μg/mL (COS(400)) and DP of 6 (Chitinhexaose Hydrochloride, COS6) had inhibitory effect on angiogenic activities of HUVECs. Specifically, COS(400) and COS6 inhibited cell proliferation activity, cell migration, and vascular endothelial cell growth factor (VEGF) expression of HUVECs. While COS at a low concentration (<400 μg/mL) and suitable polymerization degrees (DP < 6) had little significant effect on cell proliferation, migration, and VEGF expression of HUVECs, showing dose-dependent effect. These findings provided insight for the potential use of COS, for broadening its future applications in biomedical fields and functional materials area. It also helped guide the design and synthesis of chitosan-based materials as an angiogenesis inhibitor for anti-angiogenic therapy.
Collapse
|
36
|
Everts A, Bergeman M, McFadden G, Kemp V. Simultaneous Tumor and Stroma Targeting by Oncolytic Viruses. Biomedicines 2020; 8:E474. [PMID: 33167307 PMCID: PMC7694393 DOI: 10.3390/biomedicines8110474] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Current cancer therapeutics often insufficiently eradicate malignant cells due to the surrounding dense tumor stroma. This multi-componential tissue consists of mainly cancer-associated fibroblasts, the (compact) extracellular matrix, tumor vasculature, and tumor-associated macrophages, which all exert crucial roles in maintaining a pro-tumoral niche. Their continuous complex interactions with tumor cells promote tumor progression and metastasis, emphasizing the challenges in tumor therapy development. Over the last decade, advances in oncolytic virotherapy have shown that oncolytic viruses (OVs) are a promising multi-faceted therapeutic platform for simultaneous tumor and stroma targeting. In addition to promoting tumor cell oncolysis and systemic anti-tumor immunity, accumulating data suggest that OVs can also directly target stromal components, facilitating OV replication and spread, as well as promoting anti-tumor activity. This review provides a comprehensive overview of the interactions between native and genetically modified OVs and the different targetable tumor stromal components, and outlines strategies to improve stroma targeting by OVs.
Collapse
Affiliation(s)
- Anne Everts
- Research Program Infection and Immunity, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Melissa Bergeman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; (M.B.); (G.M.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands;
| |
Collapse
|
37
|
Evaluation of emergency departments visits in patients treated with immune checkpoint inhibitors. Support Care Cancer 2020; 29:2029-2035. [PMID: 32851486 DOI: 10.1007/s00520-020-05702-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The emergency department (ED) is a crucial encounter point in cancer care. Yet, data on the causes of ED visits are limited in patients treated with immune checkpoint inhibitors (ICI). Therefore, we evaluated ED visits in patients treated with ICIs in attempt to determine the predisposing factors. METHODS We performed a retrospective chart review on adult cancer patients treated with ICIs for any type of cancer in the Hacettepe University Cancer Center. The data on ED visits after the first dose of ICIs to 6 months after the last cycle of ICIs were collected. RESULTS A total of 221 patients were included in the study. The mean age was 58.46 ± 13.87 years, and 65.6% of patients were males. Melanoma was the most common diagnosis (27.6%), followed by kidney and lung cancers. Eighty-three of these patients (37.6%) had at least one emergency department (ED) visit. Most of the ED visits were related to symptoms attributable to the disease burden itself, while immune-related adverse events comprised less than 10% of these visits. While baseline Eastern Cooperative Oncology Group performance status, age, polypharmacy, concomitant chemotherapy, eosinophilia, and lactate dehydrogenase levels did not significantly increase the risk, patients with regular opioid use and baseline neutrophilia (> 8000/mm3) had a statistically significant increased risk of visiting the ED (p = 0.001 and 0.19, respectively). These two factors remained significant in the multivariate analyses. CONCLUSION In this study, almost 40% of ICI-treated patients had ED visits. Collaboration with other specialties like emergency medicine is vital for improving the care of patients receiving immunotherapy.
Collapse
|
38
|
Malik V, Garg S, Afzal S, Dhanjal JK, Yun CO, Kaul SC, Sundar D, Wadhwa R. Bioinformatics and Molecular Insights to Anti-Metastasis Activity of Triethylene Glycol Derivatives. Int J Mol Sci 2020; 21:ijms21155463. [PMID: 32751717 PMCID: PMC7432423 DOI: 10.3390/ijms21155463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-metastatic and anti-angiogenic activities of triethylene glycol derivatives have been reported. In this study, we investigated their molecular mechanism(s) using bioinformatics and experimental tools. By molecular dynamics analysis, we found that (i) triethylene glycol dimethacrylate (TD-10) and tetraethylene glycol dimethacrylate (TD-11) can act as inhibitors of the catalytic domain of matrix metalloproteinases (MMP-2, MMP-7 and MMP-9) by binding to the S1’ pocket of MMP-2 and MMP-9 and the catalytic Zn ion binding site of MMP-7, and that (ii) TD-11 can cause local disruption of the secondary structure of vascular endothelial growth factor A (VEGFA) dimer and exhibit stable interaction at the binding interface of VEGFA receptor R1 complex. Cell-culture-based in vitro experiments showed anti-metastatic phenotypes as seen in migration and invasion assays in cancer cells by both TD-10 and TD-11. Underlying biochemical evidence revealed downregulation of VEGF and MMPs at the protein level; MMP-9 was also downregulated at the transcriptional level. By molecular analyses, we demonstrate that TD-10 and TD-11 target stress chaperone mortalin at the transcription and translational level, yielding decreased expression of vimentin, fibronectin and hnRNP-K, and increase in extracellular matrix (ECM) proteins (collagen IV and E-cadherin) endorsing reversal of epithelial–mesenchymal transition (EMT) signaling.
Collapse
Affiliation(s)
- Vidhi Malik
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India;
| | - Sukant Garg
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Sajal Afzal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016, India;
- Correspondence: (D.S.); (R.W.); Tel.: +91-11-2659-1066 (D.S.); +81-29-861-9464 (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 305 8565, Japan; (S.G.); (S.A.); (J.K.D.); (S.C.K.)
- Correspondence: (D.S.); (R.W.); Tel.: +91-11-2659-1066 (D.S.); +81-29-861-9464 (R.W.)
| |
Collapse
|
39
|
Hernando-Calvo A, García-Alvarez A, Villacampa G, Ortiz C, Bodet D, García-Patos V, Recio JA, Dienstmann R, Muñoz-Couselo E. Dynamics of clinical biomarkers as predictors of immunotherapy benefit in metastatic melanoma patients. Clin Transl Oncol 2020; 23:311-317. [PMID: 32562197 DOI: 10.1007/s12094-020-02420-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Baseline LDH, derived neutrophil-lymphocyte ratio (dNLR) and immune-related adverse events (irAEs) are associated with outcomes of patients with metastatic melanoma (MM). We hypothesized whether dynamic shifts in LDH, dNLR and incidence of irAEs may impact the prognosis of MM patients treated with anti-CTLA4 or anti-PD1 as single agents. METHODS Retrospective analysis of medical charts from MM patients with prospective monitoring of dNLR, LDH values and irAE incidence. Primary endpoint was overall survival (OS). RESULTS Patients switching from either high dNLR (≥2.5) to low dNLR (HR: 0.14; 0.03-0.74; p = 0.02) or high LDH (≥1.5 × ULN) to low LDH levels (HR: 0.08; 0.01-0.68; p = 0.02) had significantly better OS than those with high dNLR or LDH scores at the end of cycle 2. Longer OS was also observed in patients developing irAEs ≥ grade 2 as compared to no irAEs (HR: 0.2; 0.05-0.89; p = 0.03). CONCLUSIONS We found that major shifts in dNLR and LDH measures from baseline to cycle 2 measures and shifts from baseline to cycle 2 are significantly associated with OS in MM patients receiving single agent anti-PD1 therapy. Laboratory changes and clinical variables may help optimize prognostic estimates.
Collapse
Affiliation(s)
| | | | - G Villacampa
- Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - C Ortiz
- Vall D'Hebron University Hospital, Barcelona, Spain
| | - D Bodet
- Vall D'Hebron University Hospital, Barcelona, Spain
| | | | - J A Recio
- Vall D'Hebron University Hospital, Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - R Dienstmann
- Vall D'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | |
Collapse
|
40
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
41
|
Lambert J, Makin K, Akbareian S, Johnson R, Alghamdi AAA, Robinson SD, Edwards DR. ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. J Cell Sci 2020; 133:jcs.235762. [PMID: 32269093 PMCID: PMC7157938 DOI: 10.1242/jcs.235762] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
ADAMTS-1 is an extracellular protease with critical roles in organogenesis and angiogenesis. Here we demonstrate a functional convergence of ADAMTS-1 and the transmembrane heparan sulfate proteoglycan syndecan-4 in influencing adhesion, migration and angiogenesis. Knockdown of ADAMTS-1 in endothelial cells resulted in a parallel reduction in cell surface syndecan-4, attributable to increased matrix metalloproteinase-9 (MMP9) activity. Knockdown of either ADAMTS-1 or syndecan-4 increased cellular responses to vascular endothelial growth factor A isoform VEGFA164, and increased ex vivo aortic ring microvessel sprouting. On fibronectin, knockdown of either protein enhanced migration and promoted formation of long α5 integrin-containing fibrillar adhesions. However, integrin α5 null cells still showed increased migration in response to ADAMTS-1 and syndecan-4 siRNA treatment. Plating of naïve endothelial cells on cell-conditioned matrix from ADAMTS-1 and syndecan-4 knockdown cells demonstrated that the altered adhesive behaviour was matrix dependent, and this correlated with a lack of expression of fibulin-1: an extracellular matrix co-factor for ADAMTS-1 that is known to inhibit migration. These findings support the notion that ADAMTS-1 and syndecan-4 are functionally interconnected in regulating cell migration and angiogenesis, via collaboration with MMP9 and fibulin-1. This article has an associated First Person interview with the first author of the paper. Summary: ADAMTS-1 and syndecan-4 collaborate to regulate cell adhesion, migration and integrin α5 trafficking, and to sequester VEGFA164, inhibiting angiogenesis.
Collapse
Affiliation(s)
- Jordi Lambert
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Kate Makin
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sophia Akbareian
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert Johnson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Abdullah A A Alghamdi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Dylan R Edwards
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
42
|
Nassar AH, Mouw KW, Jegede O, Shinagare AB, Kim J, Liu CJ, Pomerantz M, Harshman LC, Van Allen EM, Wei XX, McGregor B, Choudhury AD, Preston MA, Dong F, Signoretti S, Lindeman NI, Bellmunt J, Choueiri TK, Sonpavde G, Kwiatkowski DJ. A model combining clinical and genomic factors to predict response to PD-1/PD-L1 blockade in advanced urothelial carcinoma. Br J Cancer 2019; 122:555-563. [PMID: 31857723 PMCID: PMC7028947 DOI: 10.1038/s41416-019-0686-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Background In metastatic urothelial carcinoma (mUC), predictive biomarkers that correlate with response to immune checkpoint inhibitors (ICIs) are lacking. Here, we interrogated genomic and clinical features associated with response to ICIs in mUC. Methods Sixty two mUC patients treated with ICI who had targeted tumour sequencing were studied. We examined associations between candidate biomarkers and clinical benefit (CB, any objective reduction in tumour size) versus no clinical benefit (NCB, no change or objective increase in tumour size). Both univariable and multivariable analyses for associations were conducted. A comparator cohort of 39 mUC patients treated with taxanes was analysed by using the same methodology. Results Nine clinical and seven genomic factors correlated with clinical outcomes in univariable analysis in the ICI cohort. Among the 16 factors, neutrophil-to-lymphocyte ratio (NLR) ≥5 (OR = 0.12, 95% CI, 0.01–1.15), visceral metastasis (OR = 0.05, 95% CI, 0.01–0.43) and single-nucleotide variant (SNV) count < 10 (OR = 0.04, 95% CI, 0.006–0.27) were identified as independent predictors of NCB to ICI in multivariable analysis (c-statistic = 0.90). None of the 16 variables were associated with clinical benefit in the taxane cohort. Conclusions This three-factor model includes genomic (SNV count >9) and clinical (NLR <5, lack of visceral metastasis) variables predictive for benefit to ICI but not taxane therapy for mUC. External validation of these hypothesis-generating results is warranted to enable use in routine clinical care.
Collapse
Affiliation(s)
- Amin H Nassar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Opeyemi Jegede
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Atul B Shinagare
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jaegil Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chia-Jen Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lauren C Harshman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bradley McGregor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atish D Choudhury
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark A Preston
- Division of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Fei Dong
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Joaquim Bellmunt
- Department of Medical Oncology, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Guru Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - David J Kwiatkowski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Qi JH, Bell B, Singh R, Batoki J, Wolk A, Cutler A, Prayson N, Ali M, Stoehr H, Anand-Apte B. Sorsby Fundus Dystrophy Mutation in Tissue Inhibitor of Metalloproteinase 3 (TIMP3) promotes Choroidal Neovascularization via a Fibroblast Growth Factor-dependent Mechanism. Sci Rep 2019; 9:17429. [PMID: 31757977 PMCID: PMC6874529 DOI: 10.1038/s41598-019-53433-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022] Open
Abstract
Choroidal neovascularization (CNV) leads to loss of vision in patients with Sorsby Fundus Dystrophy (SFD), an inherited, macular degenerative disorder, caused by mutations in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. SFD closely resembles age-related macular degeneration (AMD), which is the leading cause of blindness in the elderly population of the Western hemisphere. Variants in TIMP3 gene have recently been identified in patients with AMD. A majority of patients with AMD also lose vision as a consequence of choroidal neovascularization (CNV). Thus, understanding the molecular mechanisms that contribute to CNV as a consequence of TIMP-3 mutations will provide insight into the pathophysiology in SFD and likely the neovascular component of the more commonly seen AMD. While the role of VEGF in CNV has been studied extensively, it is becoming increasingly clear that other factors likely play a significant role. The objective of this study was to test the hypothesis that basic Fibroblast Growth Factor (bFGF) regulates SFD-related CNV. In this study we demonstrate that mice expressing mutant TIMP3 (Timp3S179C/S179C) showed reduced MMP inhibitory activity with an increase in MMP2 activity and bFGF levels, as well as accentuated CNV leakage when subjected to laser injury. S179C mutant-TIMP3 in retinal pigment epithelial (RPE) cells showed increased secretion of bFGF and conditioned medium from these cells induced increased angiogenesis in endothelial cells. These studies suggest that S179C-TIMP3 may promote angiogenesis and CNV via a FGFR-1-dependent pathway by increasing bFGF release and activity.
Collapse
Affiliation(s)
- Jian Hua Qi
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Brent Bell
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Julia Batoki
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alyson Wolk
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alecia Cutler
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Nicholas Prayson
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Mariya Ali
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Heidi Stoehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
44
|
Metalloproteases: On the Watch in the Hematopoietic Niche. Trends Immunol 2019; 40:1053-1070. [DOI: 10.1016/j.it.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
|
45
|
Tjong WY, Lin HH. The role of the RGD motif in CD97/ADGRE5-and EMR2/ADGRE2-modulated tumor angiogenesis. Biochem Biophys Res Commun 2019; 520:243-249. [PMID: 31594642 DOI: 10.1016/j.bbrc.2019.09.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
CD97/ADGRE5, an adhesion G protein-coupled receptor (aGPCR), is highly expressed in several tumor cell types. CD97 has been shown to modulate tumorigenesis in part by promoting HUVEC migration, invasion and angiogenesis through the interaction with integrin α5β1 via its ectodomain RGD motif. In this study, we show that CD97 could induce angiogenesis via an alternative RGD-independent mechanism. Overexpression of CD97 with the wild-type or mutant RGD motif in HT1080 cells led to up-regulated MMP-9 and induced angiogenesis as revealed by the in vitro endothelial cell tube formation assay and in ovo chick chorioallantoic membrane assay. By contrast, expression of EMR2/ADGRE2, the CD97-homologous aGPCR that contains a corresponding SGD sequence, fails to induce angiogenesis due to lower MMP-9 expression. Interestingly, a single change of the SGD to RGD sequence allowed EMR2 to up-regulate MMP-9 expression, leading to enhanced angiogenesis. MMP-9 was shown to promote the proliferation, migration, and invasion of HUVEC partly by modulating the levels of VEGF, PIGF, and bFGF. Finally, we showed that the MMP-9 expression was in turn modulated by N-cadherin that was up-regulated by CD97 and EMR2/RGD. Our results indicate that two homologous aGPCRs, CD97 and EMR2, modulate angiogenesis and HUVEC proliferation, migration, and invasion through N-cadherin-regulated MMP-9 expression by RGD-independent and -dependent mechanisms, respectively.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chick Embryo
- Culture Media, Conditioned/chemistry
- Human Umbilical Vein Endothelial Cells
- Humans
- Matrix Metalloproteinase 9/metabolism
- Membrane Proteins/metabolism
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oligopeptides/chemistry
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Wen-Ye Tjong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.
| |
Collapse
|
46
|
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol 2019; 62:192-200. [PMID: 31518697 DOI: 10.1016/j.semcancer.2019.09.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/01/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) plays a central and dynamic role in the creation of tumor microenvironment. Herein we discuss the emerging biophysical and biochemical aspects of ECM buildup and proteolysis in cancer niche formation. Dysregulated ECM remodeling by cancer cells facilitate irreversible proteolysis and crosslinking, which in turn influence cell signaling, micro environmental cues, angiogenesis and tissue biomechanics. Further, we introduce the emerging roles of cancer microbiome in aberrant tumor ECM remodeling and membrane bound nano-sized vesicles called exosomes in creation of distant pre-metastatic niches. A detailed molecular and biophysical understanding of the ECM morphologies and its components such as key enzymes, structural and signaling molecules are critical in identifying the next generation of therapeutic and diagnostic targets in cancer.
Collapse
Affiliation(s)
- Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alakesh Das
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
Zhu J, Zhang X, Ai L, Yuan R, Ye J. Clinicohistopathological implications of MMP/VEGF expression in retinoblastoma: a combined meta-analysis and bioinformatics analysis. J Transl Med 2019; 17:226. [PMID: 31311559 PMCID: PMC6636009 DOI: 10.1186/s12967-019-1975-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND No in-depth systematic evidence is available for assessing retinoblastoma malignancy and eligibility for subsequent treatment. METHODS The Cochrane Library, EMBASE, PubMed, Web of Science, and China Biology Medicine databases were searched, and 16 studies comprising 718 retinoblastoma patients were included. Pooled odds ratios (ORs) and summary correlation coefficients (r) with 95% confidence intervals (CIs) in random-effects, fixed-effects or quality-effects models were calculated using Review Manager 5.3 and MetaXL. GO functional annotation and KEGG pathway analysis were performed using the GO and STRING databases. RESULTS We observed significant associations between high levels of MMP-1 (OR, 4.21; 95% CI 1.86-9.54), MMP-2 (OR, 11.18; 95% CI 4.26-29.30), MMP-9 (OR, 10.41, 95% CI 4.26-25.47), and VEGF (OR, 8.09; 95% CI 4.03-16.20) with tumor invasion; high levels of MMP-1 (OR, 3.58; 95% CI 1.48-8.71), MMP-2 (OR, 2.96; 95% CI 1.32-6.64), MMP-9 (OR, 5.49; 95% CI 3.55-8.48) and VEGF (OR, 5.30; 95% CI 2.93-9.60) with poor differentiation; and overexpression of MMP-9 (OR, 5.17; 95% CI 2.85-9.38) with advanced clinical stages. Moreover, MMP-9 and VEGF expression were positively correlated (r, 0.61; 95% CI 0.38-0.77). Multiple GO terms were enriched associated with MMP-1, MMP-2, MMP-9 and VEGF, and they are closely associated with pathways, proteoglycans and microRNAs related to cancer. CONCLUSIONS MMP-1, MMP-2, MMP-9 and VEGF play important roles in the development and progression of retinoblastoma. High levels of MMP-1, MMP-2, MMP-9 and VEGF are credible implications for increased malignancy, thus the need for more aggressive treatments.
Collapse
Affiliation(s)
- Jingyi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xi Zhang
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Liqianyu Ai
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongdi Yuan
- Department of Ophthalmology, Xinqiao Hospital, Army Medical University, Chongqing, 400042, China.
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
48
|
Li L, Fan P, Chou H, Li J, Wang K, Li H. Herbacetin suppressed MMP9 mediated angiogenesis of malignant melanoma through blocking EGFR-ERK/AKT signaling pathway. Biochimie 2019; 162:198-207. [PMID: 31075281 DOI: 10.1016/j.biochi.2019.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022]
Abstract
Malignant melanoma remains a challenge for clinical practice and novel therapeutic strategies are urgently needed. Herbacetin, a natural flavonoid compound that has multiple pharmacological activities, exerts anticancer effects on several human tumors. In this study, the anti-angiogenesis effect of Herbacetin in human malignant melanoma was investigated. The results indicated that Herbacetin treatment significantly suppressed tumor growth and angiogenesis of malignant melanoma both in vitro and in vivo. In melanoma A375 and Hs294T cells, Herbacetin treatment suppressed both EGF-induced and constitutive phosphorylation of EGFR, accelerated the internalization and degradation of EGFR, and subsequently suppressed the activation of the downstream kinases (AKT and ERK). Moreover, MMP9 was determined as a key angiogenic factor in Herbacetin treated melanoma cells. Knockdown of MMP9 suppressed the in vitro angiogenesis while overexpression of MMP9 in Herbacetin treated melanoma cells restored the angiogenesis ability. We concluded that Herbacetin suppressed melanoma angiogenesis through blocking EGFR-ERK/AKT-MMP9 signaling pathway and Herbacetin may be developed as a potential drug for melanoma treatment.
Collapse
Affiliation(s)
- Lei Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Pengfei Fan
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Haiyan Chou
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Juan Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Kai Wang
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hao Li
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
49
|
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 2019; 303:1557-1572. [PMID: 31168956 DOI: 10.1002/ar.24188] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It is now widely appreciated that members of the matrix metalloproteinase (MMP) family of enzymes play a key role in cancer development and progression along with many of the hallmarks associated with them. The activity of these enzymes has been directly implicated in extracellular matrix remodeling, the processing of growth factors and receptors, the modulation of cell migration, proliferation, and invasion, the epithelial to mesenchymal transition, the regulation of immune responses, and the control of angiogenesis. Certain MMP family members have been validated as biomarkers of a variety of human cancers including those of the breast, brain, pancreas, prostate, ovary, and others. The related metalloproteinases, the A disintegrin and metalloproteinases (ADAMs), share a number of these functions as well. Here, we explore these essential metalloproteinases and some of their disease-associated activities in detail as well as some of their complementary translational potential. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roopali Roy
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Golnaz Morad
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrej Jedinak
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Hossain M, Kubes P. Innate immune cells orchestrate the repair of sterile injury in the liver and beyond. Eur J Immunol 2019; 49:831-841. [DOI: 10.1002/eji.201847485] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Mokarram Hossain
- Department of Physiology and PharmacologyUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| | - Paul Kubes
- Department of Physiology and PharmacologyUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Calvin, Phoebe, and Joan Snyder Institute for Chronic DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
- Department of Microbiology and Infectious DiseasesUniversity of Calgary Calgary Alberta T2N 4N1 Canada
| |
Collapse
|