1
|
Giuffrida E, Platania CBM, Lazzara F, Conti F, Marcantonio N, Drago F, Bucolo C. The Identification of New Pharmacological Targets for the Treatment of Glaucoma: A Network Pharmacology Approach. Pharmaceuticals (Basel) 2024; 17:1333. [PMID: 39458974 PMCID: PMC11509888 DOI: 10.3390/ph17101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration and death of retinal ganglion cells (RGCs), leading to blindness. Current glaucoma interventions reduce intraocular pressure but do not address retinal neurodegeneration. In this effort, to identify new pharmacological targets for glaucoma management, we employed a network pharmacology approach. Methods: We first retrieved transcriptomic data from GEO, an NCBI database, and carried out GEO2R (an interactive web tool aimed at comparing two or more groups of samples in a GEO dataset). The GEO2R statistical analysis aimed at identifying the top differentially expressed genes (DEGs) and used these as input of STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) app within Cytoscape software, which builds networks of proteins starting from input DEGs. Analyses of centrality metrics using Cytoscape were carried out to identify nodes (genes or proteins) involved in network stability. We also employed the web-server software MIRNET 2.0 to build miRNA-target interaction networks for a re-analysis of the GSE105269 dataset, which reports analyses of microRNA expressions. Results: The pharmacological targets, identified in silico through analyses of the centrality metrics carried out with Cytoscape, were rescored based on correlations with entries in the PubMed and clinicaltrials.gov databases. When there was no match (82 out of 135 identified central nodes, in 8 analyzed networks), targets were considered "potential innovative" targets for the treatment of glaucoma, after further validation studies. Conclusions: Several druggable targets, such as GPCRs (e.g., 5-hydroxytryptamine 5A (5-HT5A) and adenosine A2B receptors) and enzymes (e.g., lactate dehydrogenase A or monoamine oxidase B), were found to be rescored as "potential innovative" pharmacological targets for glaucoma treatment.
Collapse
Affiliation(s)
- Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Nicoletta Marcantonio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (E.G.); (C.B.M.P.); (F.L.); (F.C.); (N.M.); (F.D.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
2
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Soundappan K, Cai J, Yu H, Dhamodaran K, Baidouri H, Vranka JA, Xu H, Raghunathan V, Liu Y. Influence of dexamethasone-induced matrices on the TM transcriptome. Exp Eye Res 2024; 248:110069. [PMID: 39233306 DOI: 10.1016/j.exer.2024.110069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Pathologic bidirectional interactions between the extracellular matrix (ECM) and cells within the human trabecular meshwork (hTM) contribute to ocular hypertension. An in vitro model is needed to study these cell-matrix interactions and their effect on outflow homeostasis. This study aimed to determine whether pathogenic ECM derived from dexamethasone (DEX)-treated hTM cultures induces clinically relevant glaucoma-like changes in healthy hTM cells at the transcriptional level. Corneoscleral rims from non-glaucoma donors were used to isolate primary hTM cells after validation according to the consensus recommendations for TM culture. Normal hTM cells (n = 5) were plated on a coverslip and treated with 100 nM DEX or ethanol for four weeks. These cultures were then decellularized, plated with primary hTM cells, and allowed to grow for another 72 h. RNA was extracted from these hTM cells for stranded total RNA-Seq. Sequencing libraries prepared using the Zymo-Seq RiboFree Total RNA library kit were pooled and sequenced using Illumina NovaSeq 6000. After quality control, sequence reads were aligned to the human genome build hg19. Differential expression (DE) analyses were performed using paired multi-factorial ANOVA. The expression of several DE genes associated with glaucoma (ANGPTL2, PDE7B, C22orf23, COL4A1, ADAM12, IFT122, SEMA6C) was validated using EvaGreen-based Droplet Digital PCR (ddPCR) assays. Gene ontology analyses of the DE genes were performed using the PANTHER and NDEx IQA databases, and functional analyses were performed with the DAVID Bioinformatics software. Using a cutoff of p-value <0.05 and fold change ≥2.0, our differential analysis identified 267 up- and 135 down-regulated genes in DEX-induced ECM-treated cells compared to the control. These differentially expressed genes were found to play a significant role in pathways such as cytokine and oxidative stress-induced inflammation, integrin signaling, matrix remodeling, and angiogenesis. These findings were further supported by previously performed proteomics studies using the same model. Using ddPCR, we validated the expression of seven genes associated with the risk of primary open-angle glaucoma. These results not only provide support for the pathogenic ECM model of steroid-induced glaucoma, but also demonstrate that the pathologic changes induced by this model are indeed found at the transcriptional level. These findings further demonstrate that matrix changes significantly influence cell expression profiles, which enable further understanding of the molecular mechanisms underlying glaucomatous changes in the TM. However, future studies with a larger and more diverse set of samples and longer time points are needed to confirm the utility of this model for mechanistic studies.
Collapse
Affiliation(s)
- Keerti Soundappan
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Jingwen Cai
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Hongfang Yu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Kamesh Dhamodaran
- College of Optometry, University of Houston, Houston, TX, United States
| | - Hasna Baidouri
- College of Optometry, University of Houston, Houston, TX, United States
| | - Janice A Vranka
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, Augusta University, Augusta, GA, United States
| | | | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
4
|
Leshno A, Garg Shukla A, Liebmann JM. Is it Time to Revisit Glaucoma Suspect Nomenclature? Ophthalmol Glaucoma 2024; 7:219-221. [PMID: 38493388 DOI: 10.1016/j.ogla.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/18/2024]
|
5
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Pan Y, Iwata T. Molecular genetics of inherited normal tension glaucoma. Indian J Ophthalmol 2024; 72:S335-S344. [PMID: 38389252 PMCID: PMC467016 DOI: 10.4103/ijo.ijo_3204_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Normal tension glaucoma (NTG) is a complex optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, despite normal intraocular pressure (IOP). This condition poses a unique clinical challenge due to the absence of elevated IOP, a major risk factor in typical glaucoma. Recent research indicates that up to 21% of NTG patients have a family history of glaucoma, suggesting a genetic predisposition. In this comprehensive review using PubMed studies from January 1990 to December 2023, our focus delves into the genetic basis of autosomal dominant NTG, the only known form of inheritance for glaucoma. Specifically exploring optineurin ( OPTN ), TANK binding kinase 1 ( TBK1 ), methyltransferase-like 23 ( METTL23 ), and myocilin ( MYOC ) mutations, we summarize their clinical manifestations, mutant protein behaviors, relevant animal models, and potential therapeutic pathways. This exploration aims to illuminate the intricate pathogenesis of NTG, unraveling the contribution of these genetic components to its complex development.
Collapse
Affiliation(s)
- Yang Pan
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| |
Collapse
|
7
|
Ung DC, Pietrancosta N, Badillo EB, Raux B, Tapken D, Zlatanovic A, Doridant A, Pode-Shakked B, Raas-Rothschild A, Elpeleg O, Abu-Libdeh B, Hamed N, Papon MA, Marouillat S, Thépault RA, Stevanin G, Elegheert J, Letellier M, Hollmann M, Lambolez B, Tricoire L, Toutain A, Hepp R, Laumonnier F. GRID1/GluD1 homozygous variants linked to intellectual disability and spastic paraplegia impair mGlu1/5 receptor signaling and excitatory synapses. Mol Psychiatry 2024; 29:1205-1215. [PMID: 38418578 PMCID: PMC11176079 DOI: 10.1038/s41380-024-02469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.
Collapse
Affiliation(s)
- Dévina C Ung
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France
| | - Nicolas Pietrancosta
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
- Laboratoire des biomolécules, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | | | - Brigitt Raux
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Daniel Tapken
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Andjela Zlatanovic
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Adrien Doridant
- Univ. Bordeaux, CNRS, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Ben Pode-Shakked
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, 5262000, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Annick Raas-Rothschild
- The Institute for Rare Diseases, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bassam Abu-Libdeh
- Department of Pediatrics, Makassed Hospital and Faculty of Medicine, Al-Quds University, East Jerusalem, Jerusalem, Palestine
| | - Nasrin Hamed
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hahsomer, 5262000, Israel
| | | | | | | | - Giovanni Stevanin
- Univ. Bordeaux, INCIA, UMR 5287 CNRS EPHE, F-33000, Bordeaux, France
| | | | | | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780, Bochum, Germany
| | - Bertrand Lambolez
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Ludovic Tricoire
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Annick Toutain
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France.
- Unité fonctionnelle de Génétique Médicale, Centre Hospitalier Universitaire, 37044, Tours, France.
| | - Régine Hepp
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| | - Frédéric Laumonnier
- UMR 1253, iBrain, Université de Tours, Inserm, 37032, Tours, France.
- Service de Génétique, Centre Hospitalier Universitaire, 37044, Tours, France.
| |
Collapse
|
8
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. Sci Rep 2024; 14:6958. [PMID: 38521856 PMCID: PMC10960846 DOI: 10.1038/s41598-024-57286-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Balasankara Reddy Kaipa
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - Sujata Ranshing
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Yogapriya Sundaresan
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Bhavani Nagarajan
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Charles Kiehlbauch
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Ankur Jain
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Charles C Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Todd E Scheetz
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Abbot F Clark
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, 76107, USA
| | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, 52242, USA
| | - Gulab S Zode
- Department of Ophthalmology and Center for Translational Vision Research, University of California, 829 Health Sciences Rd, Irvine, CA, 92617, USA.
| |
Collapse
|
10
|
Sazhnyev Y, Venkat A, Zheng JJ. Somatic Mutations within Myocilin due to Aging May Be a Potential Risk Factor for Glaucoma. Genes (Basel) 2024; 15:203. [PMID: 38397193 PMCID: PMC10887703 DOI: 10.3390/genes15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a chronic optic neuropathy that leads to irreversible vision loss. Aging and family history are the two most important risk factors of glaucoma. One of the most studied genes involved in the onset of open-angle glaucoma is myocilin (MYOC). About 105 germline mutations within MYOC are known to be associated with glaucoma and result in endoplasmic reticulum (ER) stress, which leads to trabecular meshwork (TM) cell death and subsequent intraocular pressure (IOP) elevation. However, only about 4% of the population carry these mutations. An analysis of MYOC somatic cancer-associated mutations revealed a notable overlap with pathogenic glaucoma variants. Because TM cells have the potential to accumulate somatic mutations at a rapid rate due to ultraviolet (UV) light exposure, we propose that an accumulation of somatic mutations within MYOC is an important contributor to the onset of glaucoma.
Collapse
Affiliation(s)
- Yevgeniy Sazhnyev
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Ophthalmology, California Northstate University College of Medicine, 9700 West Taron Dr., Elk Grove, CA 95757, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Akaash Venkat
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Department of Computer Science, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Jie J. Zheng
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (Y.S.); (A.V.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Fernández-Albarral JA, Ramírez AI, de Hoz R, Matamoros JA, Salobrar-García E, Elvira-Hurtado L, López-Cuenca I, Sánchez-Puebla L, Salazar JJ, Ramírez JM. Glaucoma: from pathogenic mechanisms to retinal glial cell response to damage. Front Cell Neurosci 2024; 18:1354569. [PMID: 38333055 PMCID: PMC10850296 DOI: 10.3389/fncel.2024.1354569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Glaucoma is a neurodegenerative disease of the retina characterized by the irreversible loss of retinal ganglion cells (RGCs) leading to visual loss. Degeneration of RGCs and loss of their axons, as well as damage and remodeling of the lamina cribrosa are the main events in the pathogenesis of glaucoma. Different molecular pathways are involved in RGC death, which are triggered and exacerbated as a consequence of a number of risk factors such as elevated intraocular pressure (IOP), age, ocular biomechanics, or low ocular perfusion pressure. Increased IOP is one of the most important risk factors associated with this pathology and the only one for which treatment is currently available, nevertheless, on many cases the progression of the disease continues, despite IOP control. Thus, the IOP elevation is not the only trigger of glaucomatous damage, showing the evidence that other factors can induce RGCs death in this pathology, would be involved in the advance of glaucomatous neurodegeneration. The underlying mechanisms driving the neurodegenerative process in glaucoma include ischemia/hypoxia, mitochondrial dysfunction, oxidative stress and neuroinflammation. In glaucoma, like as other neurodegenerative disorders, the immune system is involved and immunoregulation is conducted mainly by glial cells, microglia, astrocytes, and Müller cells. The increase in IOP produces the activation of glial cells in the retinal tissue. Chronic activation of glial cells in glaucoma may provoke a proinflammatory state at the retinal level inducing blood retinal barrier disruption and RGCs death. The modulation of the immune response in glaucoma as well as the activation of glial cells constitute an interesting new approach in the treatment of glaucoma.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José A. Matamoros
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Ophthalmological Research Institute, Complutense University of Madrid (UCM), Grupo UCM 920105, IdISSC, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
12
|
Verma SS, Gudiseva HV, Chavali VRM, Salowe RJ, Bradford Y, Guare L, Lucas A, Collins DW, Vrathasha V, Nair RM, Rathi S, Zhao B, He J, Lee R, Zenebe-Gete S, Bowman AS, McHugh CP, Zody MC, Pistilli M, Khachatryan N, Daniel E, Murphy W, Henderer J, Kinzy TG, Iyengar SK, Peachey NS, Taylor KD, Guo X, Chen YDI, Zangwill L, Girkin C, Ayyagari R, Liebmann J, Chuka-Okosa CM, Williams SE, Akafo S, Budenz DL, Olawoye OO, Ramsay M, Ashaye A, Akpa OM, Aung T, Wiggs JL, Ross AG, Cui QN, Addis V, Lehman A, Miller-Ellis E, Sankar PS, Williams SM, Ying GS, Cooke Bailey J, Rotter JI, Weinreb R, Khor CC, Hauser MA, Ritchie MD, O'Brien JM. A multi-cohort genome-wide association study in African ancestry individuals reveals risk loci for primary open-angle glaucoma. Cell 2024; 187:464-480.e10. [PMID: 38242088 DOI: 10.1016/j.cell.2023.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024]
Abstract
Primary open-angle glaucoma (POAG), the leading cause of irreversible blindness worldwide, disproportionately affects individuals of African ancestry. We conducted a genome-wide association study (GWAS) for POAG in 11,275 individuals of African ancestry (6,003 cases; 5,272 controls). We detected 46 risk loci associated with POAG at genome-wide significance. Replication and post-GWAS analyses, including functionally informed fine-mapping, multiple trait co-localization, and in silico validation, implicated two previously undescribed variants (rs1666698 mapping to DBF4P2; rs34957764 mapping to ROCK1P1) and one previously associated variant (rs11824032 mapping to ARHGEF12) as likely causal. For individuals of African ancestry, a polygenic risk score (PRS) for POAG from our mega-analysis (African ancestry individuals) outperformed a PRS from summary statistics of a much larger GWAS derived from European ancestry individuals. This study quantifies the genetic architecture similarities and differences between African and non-African ancestry populations for this blinding disease.
Collapse
Affiliation(s)
- Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harini V Gudiseva
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkata R M Chavali
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca J Salowe
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lindsay Guare
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Collins
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vrathasha Vrathasha
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rohini M Nair
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonika Rathi
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Jie He
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roy Lee
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Selam Zenebe-Gete
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita S Bowman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Maxwell Pistilli
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Naira Khachatryan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebenezer Daniel
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jeffrey Henderer
- Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Linda Zangwill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Girkin
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Radha Ayyagari
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | - Jeffrey Liebmann
- Department of Ophthalmology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | - Susan E Williams
- Division of Ophthalmology, Department of Neurosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen Akafo
- Unit of Ophthalmology, Department of Surgery, University of Ghana Medical School, Accra, Ghana
| | - Donald L Budenz
- Department of Ophthalmology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adeyinka Ashaye
- Department of Ophthalmology, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tin Aung
- Singapore Eye Research Institute, Singapore, Singapore
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahmara G Ross
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria Addis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Lehman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eydie Miller-Ellis
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Prithvi S Sankar
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gui-Shuang Ying
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA; Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Pharmacology and Toxicology, Center for Health Disparities, Brody School of Medicine. East Carolina University, Greenville, NC, 27834, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Robert Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joan M O'Brien
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. joan.o'
| |
Collapse
|
13
|
Patil SV, Kaipa BR, Ranshing S, Sundaresan Y, Millar JC, Nagarajan B, Kiehlbauch C, Zhang Q, Jain A, Searby CC, Scheetz TE, Clark AF, Sheffield VC, Zode GS. Lentiviral mediated delivery of CRISPR/Cas9 reduces intraocular pressure in a mouse model of myocilin glaucoma. RESEARCH SQUARE 2023:rs.3.rs-3740880. [PMID: 38196579 PMCID: PMC10775399 DOI: 10.21203/rs.3.rs-3740880/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.
Collapse
Affiliation(s)
- Shruti V Patil
- University of North Texas Health Science Center at Fort Worth
| | | | - Sujata Ranshing
- University of North Texas Health Science Center at Fort Worth
| | | | | | | | | | | | | | | | | | - Abbot F Clark
- University of North Texas Health Science Center at Fort Worth
| | | | | |
Collapse
|
14
|
Tirendi S, Domenicotti C, Bassi AM, Vernazza S. Genetics and Glaucoma: the state of the art. Front Med (Lausanne) 2023; 10:1289952. [PMID: 38152303 PMCID: PMC10751926 DOI: 10.3389/fmed.2023.1289952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Although genetic background contributes differently to rare early-onset glaucoma (before age 40) or common adult-onset glaucoma, it is now considered an important factor in all major forms of the disease. Genetic and genomic studies, including GWAS, are contributing to identifying novel loci associated with glaucoma or to endophenotypes across ancestries to enrich the knowledge about glaucoma genetic susceptibility. Moreover, new high-throughput functional genomics contributes to defining the relevance of genetic results in the biological pathways and processes involved in glaucoma pathogenesis. Such studies are expected to advance significantly our understanding of glaucoma's genetic basis and provide new druggable targets to treat glaucoma. This review gives an overview of the role of genetics in the pathogenesis or risk of glaucoma.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
15
|
Sharif NA. Gene therapies and gene product-based drug candidates for normalizing and preserving tissue functions in animal models of ocular hypertension and glaucoma. Mol Aspects Med 2023; 94:101218. [PMID: 37976898 DOI: 10.1016/j.mam.2023.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
More than 76 million people worldwide are afflicted with the neurodegenerative eye diseases described and grouped together as glaucoma. A common feature amongst the many forms of glaucoma is chronically elevated intraocular pressure (IOP) within the anterior chamber of the eye that physically damages the retina, optic nerve and parts of the brain connected with visual perception. The mediators of the contusing raised IOP responsible for such damage and loss of vision include locally released inflammatory agents, tissue remodeling enzymes and infiltrating immune cells which damage the retinal ganglion cell (RGC) axons and eventually kill a significant number of the RGCs. Additional culprits include genetic defects of the patient that involve aberrations in receptors, enzymes and/or endogenous ligands and possible over- or under-production of the latter. Other genetic abnormalities may include issues with signal transduction machinery within key cells of critical tissues in the front (e.g. trabecular meshwork [TM] and Schlemm's canal [SC]) and back of the eye (e.g. retinal ganglion cells and their axons). Genome-wide associated studies (GWAS) coupled with next generation sequencing have provided powerful linkage of certain gene defects and polymorphic variants to the onset and progression of diseases of the tissues involved in fluid dynamics in the TM and SC, and many retinal elements (lamina cribosa, optic nerve head) at the back of the eye which cause ocular hypertension (OHT) and glaucomatous optic neuropathy (GON), respectively. Despite the availability of some drugs, fluid drainage microshunts and full surgical techniques to lower and control intraocular pressure, the major modifiable biomarker of open-angle and other forms of glaucoma, their side-effect profiles, less than optimum effectiveness and short duration of action present opportunities to clinically manage the glaucomas with next generation of treatments with high therapeutic indices, including gene therapies. Thus, identification, characterization and deployment of genetic data coupled with traditional drug discovery and novel gene replacement, gene editing and genetic engineering technologies may provide some solutions to the aforementioned problems. These aspects will be discussed in this article.
Collapse
Affiliation(s)
- Najam A Sharif
- Eye-APC Duke-NUS Medical School, Singapore, 169856, Singapore; Institute of Ophthalmology, University College London, London, W2 1PG, UK; Imperial College of Science and Technology, St. Mary's Campus, London, WC1E 6BT, UK; Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, 76107, USA; Singapore Eye Research Institute, Singapore, 169856, Singapore; Global Research & Development, Nanoscope Therapeutics Inc., Dallas, TX 75207, USA.
| |
Collapse
|
16
|
Youngblood H, Schoenlein PV, Pasquale LR, Stamer WD, Liu Y. Estrogen dysregulation, intraocular pressure, and glaucoma risk. Exp Eye Res 2023; 237:109725. [PMID: 37956940 PMCID: PMC10842791 DOI: 10.1016/j.exer.2023.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Characterized by optic nerve atrophy due to retinal ganglion cell (RGC) death, glaucoma is the leading cause of irreversible blindness worldwide. Of the major risk factors for glaucoma (age, ocular hypertension, and genetics), only elevated intraocular pressure (IOP) is modifiable, which is largely regulated by aqueous humor outflow through the trabecular meshwork. Glucocorticoids such as dexamethasone have long been known to elevate IOP and lead to glaucoma. However, several recent studies have reported that steroid hormone estrogen levels inversely correlate with glaucoma risk, and that variants in estrogen signaling genes have been associated with glaucoma. As a result, estrogen dysregulation may contribute to glaucoma pathogenesis, and estrogen signaling may protect against glaucoma. The mechanism for estrogen-related protection against glaucoma is not completely understood but likely involves both regulation of IOP homeostasis and neuroprotection of RGCs. Based upon its known activities, estrogen signaling may promote IOP homeostasis by affecting extracellular matrix turnover, focal adhesion assembly, actin stress fiber formation, mechanosensation, and nitric oxide production. In addition, estrogen receptors in the RGCs may mediate neuroprotective functions. As a result, the estrogen signaling pathway may offer a therapeutic target for both IOP control and neuroprotection. This review examines the evidence for a relationship between estrogen and IOP and explores the possible mechanisms by which estrogen maintains IOP homeostasis.
Collapse
Affiliation(s)
- Hannah Youngblood
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Patricia V Schoenlein
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; Department of Radiology and Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Surgery, Augusta University, Augusta, GA, USA
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - W Daniel Stamer
- Department of Ophthalmology and Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, USA; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Uche NJ, Okoye O, Kizor-Akaraiwe N, Chuka-Okosa C, Uche EO. Determinants of participation in glaucoma genomic research in South East Nigeria: A cross-sectional analytical study. PLoS One 2023; 18:e0289643. [PMID: 37976286 PMCID: PMC10655997 DOI: 10.1371/journal.pone.0289643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/21/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Genomic research advances the understanding of human health and disease. It also drives both the discovery of salient genetic association(s) as well as targeted screening, diagnostic and therapeutic strategies. Human subject participation is crucial for the success of genomic research. METHODS This is a cross sectional analytical study conducted at two tertiary centers in Enugu Southeast Nigeria. Semi structured questionnaires were administered to eligible consenting participants. Data on their demographics, willingness to participate in genomic research and motivation for participation were obtained. Data was analyzed using Stata version 17 and summarized using median, frequencies and interquartile range(IQR). Associations between covariates were evaluated with Chi square test and multivariable logistic regression. RESULTS Among 228 glaucoma subjects who participated in our study,119(52.2%) were female and 109(47.8%) were male. The median age was 64 years(IQR = 50-76). Although 219 (96.0%) participants expressed willingness to participate in a glaucoma genetic study, only 27(11.9%) of them will be willing to participate if there will not be feedback of results to participants (χ2 = 18.59, P<0.001). No participant expressed willingness to submit ocular tissue samples. Majority (96.2%) of subjects will not participate if the intended research required submission of body samples after death. Desire to know more about glaucoma (63%) was the most common reason for participation. In a multivariable logistic model, subjects between 61-90 years (p = 0.004, OR = 7.2) were 7 times more likely to express willingness to participate in glaucoma genetic research after adjusting for other covariates when compared to subjects aged 41-60 years. Other covariates did not influence participants' willingness. CONCLUSION Glaucoma subjects are more likely to be willing to participate in genetic research, if they would receive feedback of results. Willingness to participate in genetic research is significantly associated with age. LIMITATIONS We did not evaluate the salient options for feedback of results to participants in our study.
Collapse
Affiliation(s)
- Nkechinyere J. Uche
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - Onochie Okoye
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | | | - Chimdi Chuka-Okosa
- Department of Ophthalmology, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| | - Enoch O. Uche
- Department of Surgery, University of Nigeria Teaching Hospital, Ituku Ozalla, Enugu, Nigeria
| |
Collapse
|
18
|
Li J, Wang J, Ibarra IL, Cheng X, Luecken MD, Lu J, Monavarfeshani A, Yan W, Zheng Y, Zuo Z, Colborn SLZ, Cortez BS, Owen LA, Tran NM, Shekhar K, Sanes JR, Stout JT, Chen S, Li Y, DeAngelis MM, Theis FJ, Chen R. Integrated multi-omics single cell atlas of the human retina. RESEARCH SQUARE 2023:rs.3.rs-3471275. [PMID: 38014002 PMCID: PMC10680922 DOI: 10.21203/rs.3.rs-3471275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.
Collapse
Affiliation(s)
- Jin Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Jun Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Ignacio L Ibarra
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Xuesen Cheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Lung Health & Immunity, Helmholtz Munich; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jiaxiong Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Wenjun Yan
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Yiqiao Zheng
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Zhen Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | | | | | - Leah A Owen
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Nicholas M Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute; Center for Computational Biology; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, California, United States
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - J Timothy Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, United States
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Margaret M DeAngelis
- Department of Ophthalmology, Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
19
|
Sato N, Kasahara M, Kono Y, Hirasawa K, Shoji N. Early postoperative visual acuity changes after trabeculectomy and factors affecting visual acuity. Graefes Arch Clin Exp Ophthalmol 2023; 261:2611-2623. [PMID: 37103621 DOI: 10.1007/s00417-023-06076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
PURPOSE To investigate the early visual acuity (VA) changes that occur after trabeculectomy and their reversal with recovery. METHOD Two hundred ninety-two eyes of 292 patients after initial trabeculectomy as a standalone procedure fulfilling the following conditions were included: 1) patients with a postoperative follow-up of at least 3 months; 2) patients with preoperative corrected VA less than 0.5 logMAR equivalent; 3) patients with reliable results of visual field; and 4) patients who had open angle glaucoma. VA and intraocular pressure (IOP) changes during the first 3 months after surgery and factors affecting VA postoperatively at 3 months were investigated. RESULTS The mean IOPs (mmHg) after trabeculectomy were significantly lower than preoperatively during the entire period (P < 0.0001). The mean corrected VA for all patients was 0.06 ± 0.17, 0.24 ± 0.38, 0.19 ± 0.26, and 0.14 ± 0.27 preoperatively and at 1 week, 1 month, and 3 months postoperatively, respectively, showing a significant decrease from the preoperative period at all time points (P < 0.0001). VA loss of two or more levels was observed in 13 eyes (4.45%) at 3 months postoperatively. Foveal threshold (FT), shallow anterior chamber (SAC), and choroidal detachment (CD) affected the change in VA before and at 3 months after surgery (P < 0.0001, P = 0.0002, P = 0.0004, respectively). The factors that had significant effects on VA change were FT, SAC, and CD in POAG, FT and hypotonic maculopathy in NTG, and FT in XFG (p < 0.05). CONCLUSION The frequency of serious vision loss was 4.45% for two or more levels of vision loss, and early postoperative VA changes after trabeculectomy may not be reversed even 3 months later. VA loss is influenced by preoperative FT, postoperative SAC and CD, but the impact of postoperative complications vary with disease type.
Collapse
Affiliation(s)
- Nobuyuki Sato
- Department of Ophthalmology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Masayuki Kasahara
- Department of Ophthalmology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Kono
- Department of Ophthalmology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazunori Hirasawa
- Department of Ophthalmology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Nobuyuki Shoji
- Department of Ophthalmology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
20
|
Saccuzzo EG, Youngblood HA, Lieberman RL. Myocilin misfolding and glaucoma: A 20-year update. Prog Retin Eye Res 2023; 95:101188. [PMID: 37217093 PMCID: PMC10330797 DOI: 10.1016/j.preteyeres.2023.101188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Hannah A Youngblood
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr. NW, Atlanta, GA, 30332-0400, USA.
| |
Collapse
|
21
|
Yadav M, Bhardwaj A, Yadav A, Dada R, Tanwar M. Molecular genetics of primary open-angle glaucoma. Indian J Ophthalmol 2023; 71:1739-1756. [PMID: 37203025 PMCID: PMC10391438 DOI: 10.4103/ijo.ijo_2570_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Glaucoma is a series of linked optic diseases resulting in progressive vision loss and total blindness due to the acquired loss of retinal ganglion cells. This harm to the optic nerve results in visual impairment and, ultimately, total blindness if left untreated. Primary open-angle glaucoma (POAG) is the most frequent variety within the large family of glaucoma. It is a multifaceted and heterogeneous condition with several environmental and genetic variables aiding in its etiology. By 2040, there will be 111.8 million glaucoma patients globally, with Asia and Africa accounting for the vast majority. The goal of this review is to elaborate on the role of genes (nuclear and mitochondrial) as well as their variants in the pathogenesis of POAG. PubMed and Google Scholar databases were searched online for papers until September 2022. Prevalence and inheritance patterns vary significantly across different ethnic and geographic populations. Numerous causative genetic loci may exist; however, only a few have been recognized and characterized. Further investigation into the genetic etiology of POAG is expected to uncover novel and intriguing causal genes, allowing for a more precise pathogenesis pattern of the disease.
Collapse
Affiliation(s)
- Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Rima Dada
- Department of Anatomy, AIIMS, New Delhi, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| |
Collapse
|
22
|
Isaiev O, Serdiuk V, Ziablitsev D. PREDICTING THE OCCURRENCE OF PRIMARY OPEN-ANGLE GLAUCOMA DEPENDING ON THE GENETIC POLYMORPHISM ENDOTHELIAL NO SYNTHASE (NOS3) GENE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3087-3093. [PMID: 36723332 DOI: 10.36740/wlek202212133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: To develop the model for predicting primary open - angle glaucoma (POAG) depending on the presence of the genetic polymorphism in the endothelial NO-synthase (NOS3) gene. PATIENTS AND METHODS Materials and methods: The results of genotyping 153 patients (153 eyes) with POAG are included in this investigation. 47 patients were in the control group. Their age was 65,0±13,1 years, duration of disease - 4,9±5,3 years. The polymerase chain reaction was carried out in the patients' blood in the real time mode (Gene Amp® PCR System 7500 amplifier; USA) with the help of the TaqMan Mutation Detection Assays Life-Technology test system (USA). The program Statistica 10 (StatSoft, Inc., USA) was used for mathematical testing of the obtained results. RESULTS Results: The regression analysis confirmed the effect of rs1799983 and rs2070744 polymorphisms of the NOS3 gene on the development of POAG. Calculating their specific gravity based on the degree of the impact on the probability of developing the disease showed that rs2070744 - 72.2% had the greater impact than rs1799983 - 38.5%. The regression model of POAG risk depending on the genotypes of the NOS3 gene rs1799983 and rs2070744 polymorphisms was constructed with the satisfactory quality of mathematical prediction (-2log=202.59; χ2=28.91; P<0.001). The value of probability of developing POAG exceeded the limit value (Cut-off=0.8), respectively, OR 4.39 (95% CI 1.00-19.30; P=0.048) and OR 14.15 (95% CI 1.88-106.28; P<0.001) in carriers of the rs1799983 and rs2070744 GT-CC and TT-CC haplotypes. CONCLUSION Conclusions: The results of the study proved the importance of risk genotypes (TT rs1799983 and CC rs 2070744) for the development of POAG in patients from the Ukrainian population. It has been shown that the significant increase in the risk of POAG exists for carriers of the GT-CC and TT-CC haplotypes.
Collapse
|
23
|
Fea AM, Ricardi F, Novarese C, Cimorosi F, Vallino V, Boscia G. Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. Int J Mol Sci 2023; 24:2814. [PMID: 36769127 PMCID: PMC9917798 DOI: 10.3390/ijms24032814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease's development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers.
Collapse
|
24
|
Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional. iScience 2022; 25:105308. [DOI: 10.1016/j.isci.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
|
25
|
Gomes FE, Casanova MI, Mouttham L, Bannasch DL, Park S, Kim S, Young LJ, Daley NL, Thomasy SM, Castelhano MG, Ledbetter EC, Holmberg B, Boyd R, Van Der Woerdt A, McDonald J, Hayward JJ. A genome-wide association study to investigate genetic loci associated with primary glaucoma in American Cocker Spaniels. Am J Vet Res 2022; 83:1-8. [PMID: 36170212 DOI: 10.2460/ajvr.22.07.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To identify genetic associations with primary glaucoma (PG) in American Cocker Spaniels using a genome-wide association study (GWAS). ANIMALS A nationwide ambidirectional case-control cohort study was performed in American Cocker Spaniels that had an ophthalmic examination performed by a veterinarian. Ninety-four dogs with PG (cases) and 111 dogs without glaucoma (controls) met phenotypic criteria and had a blood sample collected after receiving informed owner consent. PROCEDURES Genomic DNA was extracted from whole blood samples and genotyped (CanineHD BeadChip, Illumina Inc). A case-control GWAS using a linear mixed model was performed, and 3 significance thresholds were calculated (1) using a Bonferroni correction on all single nucleotide polymorphisms (SNPs) included in the GWAS, (2) using a Bonferroni correction on only the unlinked SNPs from a pruned data set, and (3) using 10,000 random phenotype permutations. RESULTS Following genotype data quality control, 89 cases and 93 controls were included in the GWAS. We identified an association on canine chromosome (CFA10); however, it did not reach statistical significance. Potential candidate genes within the surrounding linkage disequilibrium interval include coiled-coil domain containing 85A (CCDC85A) and extracellular growth factor containing fibulin extracellular matrix protein 1 (EFEMP1). CLINICAL RELEVANCE Primary glaucoma in the American Cocker Spaniel is a complex heterogeneous disease that may be influenced by a locus on CFA10. The candidate genes CCDC85A and EFEMP1 within the identified linkage disequilibrium interval have been shown to be involved in human open-angle glaucoma.
Collapse
Affiliation(s)
- Filipe Espinheira Gomes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY.,Small Animal Specialist Hospital, North Ryde, Australia
| | - Maria Isabel Casanova
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Lara Mouttham
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Danika L Bannasch
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Sangwan Park
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Soohyun Kim
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Laura J Young
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Nicole L Daley
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Sara M Thomasy
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA
| | - Marta G Castelhano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY.,Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Eric C Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | | | - Ryan Boyd
- South Texas Veterinary Ophthalmology, San Antonio, TX
| | | | | | - Jessica J Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
26
|
Zhao L, Li J, Feng L, Zhang C, Zhang W, Wang C, He Y, Wen D, Song W. Depicting Developing Trend and Core Knowledge of Primary Open-Angle Glaucoma: A Bibliometric and Visualized Analysis. Front Med (Lausanne) 2022; 9:922527. [PMID: 35865166 PMCID: PMC9294470 DOI: 10.3389/fmed.2022.922527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Objective The prevalence of glaucoma is rising due to an increasing aging population. Because of its insidious and irreversible nature, glaucoma has gradually become the focus of attention. We assessed primary open angle glaucoma, the most common type of glaucoma, to study its present status, global trend, and state of clinical research. Methods Publications from 2000 to 2021 in Web of Science database were retrieved and analyzed by bibliometrics. VOSviewer and Citespace were used for analysis. Results A total of 6,401 publications were included in this review, and we found that the number of publications increased from 139 in 2000 to 563 in 2021. American researchers have published the most papers and had the highest h-index and the most citations, while the Journal of Glaucoma has published the most papers on this topic. Some key researchers, contributing institutions, their partnerships, and scientific masterpieces were identified. The publications we reviewed fall into seven categories: publications on intraocular pressure, normal tension glaucoma, risk factors, the trabecular meshwork, optical coherence tomography, surgery, and mutation. Clear study hotspots were described, which began with epidemiology and transitioned to pathogenesis and diagnosis and then to treatment. Conclusion Studies on primary open angle glaucoma extend well beyond ophthalmology to biochemistry molecular biology, general internal medicine, pharmacology, pharmacy, science technology, and other areas. Interest, research and publications on primary open angle glaucoma are on the rise.
Collapse
Affiliation(s)
- Liting Zhao
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jinfei Li
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lemeng Feng
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Cheng Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Wulong Zhang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Chao Wang
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Ye He
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Dan Wen
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Weitao Song
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital of Central South University, Changsha, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
- *Correspondence: Weitao Song
| |
Collapse
|
27
|
Patil SV, Kasetti RB, Millar JC, Zode GS. A Novel Mouse Model of TGFβ2-Induced Ocular Hypertension Using Lentiviral Gene Delivery. Int J Mol Sci 2022; 23:6883. [PMID: 35805889 PMCID: PMC9266301 DOI: 10.3390/ijms23136883] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) β2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFβ2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFβ2 in the TM. We developed an LV vector-encoding active hTGFβ2C226,228S under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFβ2C226,228S. We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFβ2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFβ2C226,228S exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFβ2C226,228S that induces TM dysfunction and outflow resistance.
Collapse
Affiliation(s)
| | | | | | - Gulab S. Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.V.P.); (R.B.K.); (J.C.M.)
| |
Collapse
|
28
|
Association of Polymorphisms at the SIX1/SIX6 Locus with Normal Tension Glaucoma in a Population from the Republic of Korea. J Glaucoma 2022; 31:763-766. [PMID: 35658088 DOI: 10.1097/ijg.0000000000002060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Several previous studies have reported that the relevance of the SIX1/SIX6 locus to open angle glaucoma (OAG) in various ethnic populations. However, definitions of OAG patients were different among those studies. The relevance of the SIX1/SIX6 locus to normal tension glaucoma (NTG) in a Korean population remains uncertain. Therefore, the purpose of this study was to investigate the relationship of the SIX1/SIX6 locus with NTG in a Korean cohort. METHOD Patients with NTG and ethnically-matched healthy controls were recruited from eye clinics in Korea (210 cases and 117 controls). Four polymorphisms (rs33912345, rs12436579, rs2179970, and rs10483727) of the SIX1/SIX6 locus were genotyped for 327 subjects using a TaqMan SNP genotyping assay. RESULTS The rs33912345 polymorphism was significantly correlated with NTG in the recessive model (OR: 0.265; 95%CI: 0.078-0.898, P=0.033), but not in the allelic and dominant models (both P>0.05). The SNP rs10483727 was significantly associated with NTG in the allelic model (OR: 0.674; 95% CI: 0.464-0.979, P=0.038) and the recessive model (OR: 0.187; 95%vCI: 0.058-0.602, P=0.005). Genetic association analysis of SNP rs12436579 and rs2179970 revealed no significant difference in genotype distribution between NTG cases and controls in allelic, dominant, or recessive model (all P>0.05). CONCLUSION The current study found that SIX1-SIX6 locus rs10483727 and rs33912345 polymorphisms were significantly associated with NTG risk in Korean population.
Collapse
|
29
|
Wang Z, Wiggs JL, Aung T, Khawaja AP, Khor CC. The genetic basis for adult onset glaucoma: Recent advances and future directions. Prog Retin Eye Res 2022; 90:101066. [PMID: 35589495 DOI: 10.1016/j.preteyeres.2022.101066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/26/2022]
Abstract
Glaucoma, a diverse group of eye disorders that results in the degeneration of retinal ganglion cells, is the world's leading cause of irreversible blindness. Apart from age and ancestry, the major risk factor for glaucoma is increased intraocular pressure (IOP). In primary open-angle glaucoma (POAG), the anterior chamber angle is open but there is resistance to aqueous outflow. In primary angle-closure glaucoma (PACG), crowding of the anterior chamber angle due to anatomical alterations impede aqueous drainage through the angle. In exfoliation syndrome and exfoliation glaucoma, deposition of white flaky material throughout the anterior chamber directly interfere with aqueous outflow. Observational studies have established that there is a strong hereditable component for glaucoma onset and progression. Indeed, a succession of genome wide association studies (GWAS) that were centered upon single nucleotide polymorphisms (SNP) have yielded more than a hundred genetic markers associated with glaucoma risk. However, a shortcoming of GWAS studies is the difficulty in identifying the actual effector genes responsible for disease pathogenesis. Building on the foundation laid by GWAS studies, research groups have recently begun to perform whole exome-sequencing to evaluate the contribution of protein-changing, coding sequence genetic variants to glaucoma risk. The adoption of this technology in both large population-based studies as well as family studies are revealing the presence of novel, protein-changing genetic variants that could enrich our understanding of the pathogenesis of glaucoma. This review will cover recent advances in the genetics of primary open-angle glaucoma, primary angle-closure glaucoma and exfoliation glaucoma, which collectively make up the vast majority of all glaucoma cases in the world today. We will discuss how recent advances in research methodology have uncovered new risk genes, and how follow up biological investigations could be undertaken in order to define how the risk encoded by a genetic sequence variant comes into play in patients. We will also hypothesise how data arising from characterising these genetic variants could be utilized to predict glaucoma risk and the manner in which new therapeutic strategies might be informed.
Collapse
Affiliation(s)
- Zhenxun Wang
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore.
| | - Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tin Aung
- Duke-NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Chiea Chuen Khor
- Duke-NUS Medical School, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| |
Collapse
|
30
|
Li H, Ye Z, Li Z. Identification of the potential biological target molecules related to primary open-angle glaucoma. BMC Ophthalmol 2022; 22:188. [PMID: 35461232 PMCID: PMC9034601 DOI: 10.1186/s12886-022-02368-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/21/2022] [Indexed: 12/31/2022] Open
Abstract
Background To identify the potential biological target molecules and the corresponding interaction networks in primary open-angle glaucoma (POAG) development. Methods The microarray datasets of GSE138125 and GSE27276 concerning lncRNA and mRNA expression profiles in trabecular meshwork of POAG were downloaded from the Gene Expression Omnibus database. The R software was applied to identify differentially expressed (DE) lncRNAs and mRNAs in POAG, and to perform GO and KEGG functional enrichment analysis. Protein–protein interaction (PPI) network and module analysis, and lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network were performed by Cytoscape software. Results A total of 567 DE-mRNAs were identified from GSE138125 and GSE27276, including 298 up-regulated and 269 down-regulated mRNAs, which were found enriching in biological processes of extracellular matrix organization and epidermis development, respectively. KEGG pathway enrichment analysis further revealed that module genes in PPI network were primarily involved in the AGE-PAGE, PI3K-Akt and TGF-β signaling pathways. Moreover, 897 up-regulated and 1036 down-regulated DE-lncRNAs were identified from GSE138125. Through literature review and databases searching, we obtained 712 lncRNA-miRNA and 337 miRNA-mRNA pairs based on the selected eight POAG-related miRNAs. After excluding 702 lncRNAs and 284 mRNAs that were not comprised in the DE-lncRNA and DE-mRNAs, a total of 53 lncRNA nodes, eight miRNA nodes, 10 mRNA nodes, and 78 edges were included in the final ceRNA network. Conclusions This study demonstrated the lncRNA and mRNA expression profiles of trabecular meshwork in POAG patients and the normal controls, and identified potentially ceRNAs and pathways which might improve the pathogenic understanding of this ocular disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02368-0.
Collapse
Affiliation(s)
- Hongyu Li
- Medical School of Chinese PLA, Beijing, China.,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China
| | - Zi Ye
- Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| | - Zhaohui Li
- Medical School of Chinese PLA, Beijing, China. .,Senior Department of Ophthalmology, the Third Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
31
|
Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Functionally significant polymorphisms of the MMP9 gene are associated with primary open-angle glaucoma in the population of Russia. Eur J Ophthalmol 2022; 32:3208-3219. [PMID: 35254145 DOI: 10.1177/11206721221083722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the role of functionally significant loci of the matrix metalloproteinases genes 1, 3, 9 (MMP1, MMP3, and MMP9) in the development of primary open-angle glaucoma (POAG) in Caucasians of the Central region of Russia. METHODS In total 604 participants were recruited for the study, including 208 patients with POAG and 396 healthy controls. They were genotyped at eight single nucleotide polymorphisms (SNPs) of the three MMP genes. The association was analyzed using logistic and log-linear regression. POAG-associated loci and their proxies were in silico assessed for their functional prediction. RESULTS Variant allele G*rs2250889 of MMP9 was significantly associated with higher risk of POAG (ORcov = 1.57-1.71). Haplotype CCA [rs3918242-rs3918249-rs17576] of the MMP9 gene was associated with lower risk of POAG (ORcov = 0.33). Allele А*rs3787268 of MMP9 was associated with the low intraocular pressure in the POAG patients (βcov = -0.176 - -0.272), and so were haplotypes AA [rs17576-rs3787268] (βcov = -0.577) and AAC [rs17576-rs3787268- rs2250889] (βcov = -0.742) of the same gene, whereas allele 2G*rs1799750 of MMP1 was associated with the earlier onset of the disease (βcov = -0.112 - -0.218). In silico analysis of the polymorphisms suggested the functionality of POAG-associated SNPs and their proxies (epigenetic potential, expression and alternative splicing effects for several genes). CONCLUSIONS The MMP9 gene polymorphisms are associated with POAG and intraocular pressure in POAG patients; rs1799750 of MMP1 was associated with the earlier age of manifestation of the disease symptoms.
Collapse
Affiliation(s)
- Irina Ponomarenko
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| | - Evgeny Reshetnikov
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| | - Volodymyr Dvornyk
- Department of Life Sciences, College of Science and General Studies, 101686Alfaisal University, Riyadh, Saudi Arabia
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, 64903Belgorod State University, Belgorod, Russia
| |
Collapse
|
32
|
Cáceres-Vélez PR, Hui F, Hercus J, Bui B, Jusuf PR. Restoring the oxidative balance in age-related diseases - An approach in glaucoma. Ageing Res Rev 2022; 75:101572. [PMID: 35065274 DOI: 10.1016/j.arr.2022.101572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
As human life expectancy increases, age-related health issues including neurodegenerative diseases continue to rise. Regardless of genetic or environmental factors, many neurodegenerative conditions share common pathological mechanisms, such as oxidative stress, a hallmark of many age-related health burdens. In this review, we describe oxidative damage and mitochondrial dysfunction in glaucoma, an age-related neurodegenerative eye disease affecting 80 million people worldwide. We consider therapeutic approaches used to counteract oxidative stress in glaucoma, including untapped treatment options such as novel plant-derived antioxidant compounds that can reduce oxidative stress and prevent neuronal loss. We summarize the current pre-clinical models and clinical work exploring the therapeutic potential of a range of candidate plant-derived antioxidant compounds. Finally, we explore advances in drug delivery systems, particular those employing nanotechnology-based carriers which hold significant promise as a carrier for antioxidants to treat age-related disease, thus reviewing the key current state of all of the aspects required towards translation.
Collapse
|
33
|
Greene KM, Stamer WD, Liu Y. The role of microRNAs in glaucoma. Exp Eye Res 2022; 215:108909. [PMID: 34968473 PMCID: PMC8923961 DOI: 10.1016/j.exer.2021.108909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/28/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
In this review, we aim to provide a comprehensive summary of the various microRNAs (miRNAs) shown to be involved in glaucoma and intraocular pressure regulation. miRNAs are short, single-stranded, and noncoding RNAs that regulate gene expression in a number of physiological conditions and human diseases, including glaucoma. Numerous miRNAs display differential expression in glaucoma-affected tissues, such as aqueous humor, tears, trabecular meshwork, and retina analyzed from patients and animal models, suggesting their potential involvement in glaucoma pathogenesis. Several studies summarized here have also investigated the challenge of delivering intact miRNAs to target tissues in order to develop miRNA-based glaucoma therapies. We extend these reports by conducting an additional layer of analysis that integrates the interaction between glaucoma-related miRNAs and glaucoma-associated genes. We conclude with a comprehensive discussion of the therapeutic potential of miRNAs, the cellular pathways that link these miRNAs together, and the most promising miRNAs for future glaucoma research.
Collapse
Affiliation(s)
- Karah M. Greene
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States
| | - W. Daniel Stamer
- Departments of Ophthalmology and Biomedical Engineering, Duke University, 2351 Erwin Rd, Durham, NC 27710, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States.,Center for Biotechnology and Genomic Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, United States,James and Jean Culver Vision Discovery Institute, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA 30912, United States
| |
Collapse
|
34
|
Identification of Estrogen Signaling in a Prioritization Study of Intraocular Pressure-Associated Genes. Int J Mol Sci 2021; 22:ijms221910288. [PMID: 34638643 PMCID: PMC8508848 DOI: 10.3390/ijms221910288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated intraocular pressure (IOP) is the only modifiable risk factor for primary open-angle glaucoma (POAG). Herein we sought to prioritize a set of previously identified IOP-associated genes using novel and previously published datasets. We identified several genes for future study, including several involved in cytoskeletal/extracellular matrix reorganization, cell adhesion, angiogenesis, and TGF-β signaling. Our differential correlation analysis of IOP-associated genes identified 295 pairs of 201 genes with differential correlation. Pathway analysis identified β-estradiol as the top upstream regulator of these genes with ESR1 mediating 25 interactions. Several genes (i.e., EFEMP1, FOXC1, and SPTBN1) regulated by β-estradiol/ESR1 were highly expressed in non-glaucomatous human trabecular meshwork (TM) or Schlemm’s canal (SC) cells and specifically expressed in TM/SC cell clusters defined by single-cell RNA-sequencing. We confirmed ESR1 gene and protein expression in human TM cells and TM/SC tissue with quantitative real-time PCR and immunofluorescence, respectively. 17β-estradiol was identified in bovine, porcine, and human aqueous humor (AH) using ELISA. In conclusion, we have identified estrogen receptor signaling as a key modulator of several IOP-associated genes. The expression of ESR1 and these IOP-associated genes in TM/SC tissue and the presence of 17β-estradiol in AH supports a role for estrogen signaling in IOP regulation.
Collapse
|
35
|
Association of the SNP rs112369934 near TRIM66 Gene with POAG Endophenotypes in African Americans. Genes (Basel) 2021; 12:genes12091420. [PMID: 34573402 PMCID: PMC8471280 DOI: 10.3390/genes12091420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
We investigated the association of the single nucleotide polymorphism (SNP) rs112369934 near the TRIM66 gene with qualitative and quantitative phenotypes of primary open-angle glaucoma (POAG) in African Americans (AA). AA subjects over 35 years old were recruited for the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study in Philadelphia, PA. Glaucoma cases were evaluated for phenotypes associated with POAG pathogenesis, and the associations between rs112369934 and phenotypes were investigated by logistic regression analysis and in gender-stratified case cohorts: The SNP rs112369934 was found to have a suggestive association with retinal nerve fiber layer (RNFL) thickness and cup-to-disc ratio (CDR) in 1087 male AA POAG cases, individuals with the TC genotype having thinner RNFL (95% CI 0.85 to 6.61, p = 0.01) and larger CDR (95% CI -0.07 to -0.01, p = 0.02) than those with wildtype TT. No other significant associations were found. In conclusion SNP rs112369934 may play a role in POAG pathogenesis in male AA individuals. However, this SNP has been implicated in higher POAG risk in both male and female AA POAG cases.
Collapse
|
36
|
Ayala M, Zetterberg M, Skoog I, Zettergren A. Association of Single Nucleotide Polymorphisms Located in LOXL1 with Exfoliation Glaucoma in Southwestern Sweden. Genes (Basel) 2021; 12:genes12091384. [PMID: 34573365 PMCID: PMC8468303 DOI: 10.3390/genes12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction: Glaucoma is an optic neuropathy that leads to visual field defects. Genetic mechanisms seem to be involved in glaucoma development. Lysyl Oxidase Like 1 (LOXL1) has been described in previous studies as a predictor factor for exfoliation glaucoma. The present article studied the association between three single nucleotide polymorphisms (SNPs) in the LOXL1 gene and the presence of exfoliation glaucoma in Southwestern Sweden. Methods: Case-control study for genetic association. In total, 136 patients and 1011 controls were included in the study. Patients with exfoliation glaucoma were recruited at the Eye Department of Sahlgrenska University Hospital and Skaraborgs Hospital, Sweden. Controls were recruited from the Gothenburg H70 Birth Cohort Study. Three different SNPs were genotyped: LOXL1_rs3825942, LOXL1_rs2165241 and LOXL1_rs1048661. Results: The distribution of allele frequencies was significantly different between controls and glaucoma patients; for rs3825942 (p = 2 × 10−12), for rs2165241 (p = 3 × 10−16) and for rs1048661 (p = 2 × 10−6). Logistic regression analyses using an additive genetic model, adjusted for sex and age, also showed associations between the studied SNPs and glaucoma (p = 9 × 10−6; p = 2 × 10−14; p = 1 × 10−4). Conclusion: A strong association was found between allele frequencies of three different SNPs (LOXL1_rs3825942, LOXL1_rs2165241, and LOXL1_rs1048661) and the presence of exfoliation glaucoma in a Southwestern Swedish population.
Collapse
Affiliation(s)
- Marcelo Ayala
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
- Eye Department, Region Västra Götaland, Skaraborg Hospital/Skövde, 54142 Skövde, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, 17165 Stockholm, Sweden
- Correspondence: ; Tel.: +46-500-431-000
| | - Madeleine Zetterberg
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
- Department of Ophthalmology, Region Västra Götaland, Sahlgrenska University Hospital, 43130 Mölndal, Sweden
| | - Ingmar Skoog
- Region Västra Götaland, Sahlgrenska University Hospital, Psychiatry, Cognition and Old Age Psychiatry Clinic, 40530 Gothenburg, Sweden;
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) University of Gothenburg, 40530 Gothenburg, Sweden;
| |
Collapse
|
37
|
Nair KS, Srivastava C, Brown RV, Koli S, Choquet H, Kang HS, Kuo YM, Grimm SA, Sutherland C, Badea A, Johnson GA, Zhao Y, Yin J, Okamoto K, Clark G, Borrás T, Zode G, Kizhatil K, Chakrabarti S, John SWM, Jorgenson E, Jetten AM. GLIS1 regulates trabecular meshwork function and intraocular pressure and is associated with glaucoma in humans. Nat Commun 2021; 12:4877. [PMID: 34385434 PMCID: PMC8361148 DOI: 10.1038/s41467-021-25181-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/21/2021] [Indexed: 01/01/2023] Open
Abstract
Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.
Collapse
Affiliation(s)
- K Saidas Nair
- Department of Ophthalmology and Department of Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chitrangda Srivastava
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Robert V Brown
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Swanand Koli
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Hélène Choquet
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - Hong Soon Kang
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Caleb Sutherland
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University, Durham, NC, USA
| | - Yin Zhao
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jie Yin
- Kaiser Permanente Northern California, Division of Research, Oakland, CA, USA
| | - Kyoko Okamoto
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Terete Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gulab Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, USA
- Howard Hughes Medical Institute, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | - Anton M Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
38
|
Filla MS, Meyer KK, Faralli JA, Peters DM. Overexpression and Activation of αvβ3 Integrin Differentially Affects TGFβ2 Signaling in Human Trabecular Meshwork Cells. Cells 2021; 10:1923. [PMID: 34440692 PMCID: PMC8394542 DOI: 10.3390/cells10081923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Studies from our laboratory have suggested that activation of αvβ3 integrin-mediated signaling could contribute to the fibrotic-like changes observed in primary open angle glaucoma (POAG) and glucocorticoid-induced glaucoma. To determine how αvβ3 integrin signaling could be involved in this process, RNA-Seq analysis was used to analyze the transcriptomes of immortalized trabecular meshwork (TM) cell lines overexpressing either a control vector or a wild type (WT) or a constitutively active (CA) αvβ3 integrin. Compared to control cells, hierarchical clustering, PANTHER pathway and protein-protein interaction (PPI) analysis of cells overexpressing WT-αvβ3 integrin or CA-αvβ3 integrin resulted in a significant differential expression of genes encoding for transcription factors, adhesion and cytoskeleton proteins, extracellular matrix (ECM) proteins, cytokines and GTPases. Cells overexpressing a CA-αvβ3 integrin also demonstrated an enrichment for genes encoding proteins found in TGFβ2, Wnt and cadherin signaling pathways all of which have been implicated in POAG pathogenesis. These changes were not observed in cells overexpressing WT-αvβ3 integrin. Our results suggest that activation of αvβ3 integrin signaling in TM cells could have significant impacts on TM function and POAG pathogenesis.
Collapse
Affiliation(s)
- Mark S. Filla
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Kristy K. Meyer
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Jennifer A. Faralli
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
| | - Donna M. Peters
- Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA; (M.S.F.); (K.K.M.); (J.A.F.)
- Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
39
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
40
|
Scelsi HF, Barlow BM, Saccuzzo EG, Lieberman RL. Common and rare myocilin variants: Predicting glaucoma pathogenicity based on genetics, clinical, and laboratory misfolding data. Hum Mutat 2021; 42:903-946. [PMID: 34082484 DOI: 10.1002/humu.24238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022]
Abstract
Rare variants of the olfactomedin domain of myocilin are considered causative for inherited, early-onset open-angle glaucoma, with a misfolding toxic gain-of-function pathogenic mechanism detailed by 20 years of laboratory research. Myocilin variants are documented in the scientific literature and identified through large-scale genetic sequencing projects such as those curated in the Genome Aggregation Database (gnomAD). In the absence of key clinical and laboratory information, however, the pathogenicity of any given variant is not clear, because glaucoma is a heterogeneous and prevalent age-onset disease, and common variants are likely benign. In this review, we reevaluate the likelihood of pathogenicity for the ~100 nonsynonymous missense, insertion-deletion, and premature termination of myocilin olfactomedin variants documented in the literature. We integrate available clinical, laboratory cellular, biochemical and biophysical data, the olfactomedin domain structure, and population genetics data from gnomAD. Of the variants inspected, ~50% can be binned based on a preponderance of data, leaving many of uncertain pathogenicity that motivate additional studies. Ultimately, the approach of combining metrics from different disciplines will likely resolve outstanding complexities regarding the role of this misfolding-prone protein within the context of a multifactorial and prevalent ocular disease, and pave the way for new precision medicine therapeutics.
Collapse
Affiliation(s)
- Hailee F Scelsi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Brett M Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily G Saccuzzo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
41
|
Nuzzi R, Vitale A. Cerebral Modifications in Glaucoma and Macular Degeneration: Analysis of Current Evidence in Literature and Their Implications on Therapeutic Perspectives. Eye Brain 2021; 13:159-173. [PMID: 34168513 PMCID: PMC8216745 DOI: 10.2147/eb.s307551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Glaucoma and macular degeneration are leading causes of irreversible blindness, significantly compromising the quality of life and having a high economic and social impact. Promising therapeutic approaches aimed at regenerating or bypassing the damaged anatomical-functional components are currently under development: these approaches have generated great expectations, but to be effective require a visual network that, despite the pathology, maintains its integrity up to the higher brain areas. In the light of this, the existing findings concerning how the central nervous system modifies its connections following the pathological damage caused by glaucoma and macular degeneration acquire great interest. This review aims to examine the scientific literature concerning the morphological and functional changes affecting the central nervous system in these pathological conditions, summarizing the evidence in an analytical way, discussing their possible causes and highlighting the potential repercussions on the current therapeutic perspectives.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| | - Alessio Vitale
- Eye Clinic, Department of Surgical Sciences, University of Turin, Turin, 10126, Italy
| |
Collapse
|
42
|
Hubens WHG, Kievit MT, Berendschot TTJM, de Coo IFM, Smeets HJM, Webers CAB, Gorgels TGMF. Plasma GDF-15 concentration is not elevated in open-angle glaucoma. PLoS One 2021; 16:e0252630. [PMID: 34048486 PMCID: PMC8162581 DOI: 10.1371/journal.pone.0252630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Aim Recently, the level of growth differentiation factor 15 (GDF-15) in blood, was proposed as biomarker to detect mitochondrial dysfunction. In the current study, we evaluate this biomarker in open-angle glaucoma (OAG), as there is increasing evidence that mitochondrial dysfunction plays a role in the pathophysiology of this disease. Methods Plasma GDF-15 concentrations were measured with ELISA in 200 OAG patients and 61 age-matched controls (cataract without glaucoma). The OAG patient group consisted of high tension glaucoma (HTG; n = 162) and normal tension glaucoma (NTG; n = 38). Groups were compared using the Kruskal-Wallis nonparametric test with Dunn’s multiple comparison post-hoc correction. GDF-15 concentration was corrected for confounders identified with forward linear regression models. Results Before correcting for confounders, median plasma GDF-15 levels was significantly lower in the combined OAG group (p = 0.04), but not when analysing HTG and NTG patients separately. Forward linear regression analysis showed that age, gender, smoking and systemic hypertension were significant confounders affecting GDF-15 levels. After correction for these confounders, GDF-15 levels in OAG patients were no longer significantly different from controls. Subgroup analysis of the glaucoma patients did not show a correlation between disease severity and plasma GDF-15, but did reveal that for NTG patients, intake of dietary supplements, which potentially improve mitochondrial function, correlated with lower plasma GDF-15. Conclusion The present study suggests that plasma GDF-15 is not suited as biomarker of mitochondrial dysfunction in OAG patients.
Collapse
Affiliation(s)
- Wouter H G Hubens
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Mariëlle T Kievit
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
43
|
Currant H, Hysi P, Fitzgerald TW, Gharahkhani P, Bonnemaijer PWM, Senabouth A, Hewitt AW, Atan D, Aung T, Charng J, Choquet H, Craig J, Khaw PT, Klaver CCW, Kubo M, Ong JS, Pasquale LR, Reisman CA, Daniszewski M, Powell JE, Pébay A, Simcoe MJ, Thiadens AAHJ, van Duijn CM, Yazar S, Jorgenson E, MacGregor S, Hammond CJ, Mackey DA, Wiggs JL, Foster PJ, Patel PJ, Birney E, Khawaja AP. Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genet 2021; 17:e1009497. [PMID: 33979322 PMCID: PMC8143408 DOI: 10.1371/journal.pgen.1009497] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 05/24/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Optical Coherence Tomography (OCT) enables non-invasive imaging of the retina and is used to diagnose and manage ophthalmic diseases including glaucoma. We present the first large-scale genome-wide association study of inner retinal morphology using phenotypes derived from OCT images of 31,434 UK Biobank participants. We identify 46 loci associated with thickness of the retinal nerve fibre layer or ganglion cell inner plexiform layer. Only one of these loci has been associated with glaucoma, and despite its clear role as a biomarker for the disease, Mendelian randomisation does not support inner retinal thickness being on the same genetic causal pathway as glaucoma. We extracted overall retinal thickness at the fovea, representative of foveal hypoplasia, with which three of the 46 SNPs were associated. We additionally associate these three loci with visual acuity. In contrast to the Mendelian causes of severe foveal hypoplasia, our results suggest a spectrum of foveal hypoplasia, in part genetically determined, with consequences on visual function.
Collapse
Affiliation(s)
- Hannah Currant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Pirro Hysi
- School of Life Course Sciences, Section of Ophthalmology, King’s College London, London, United Kingdom
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Tomas W. Fitzgerald
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Puya Gharahkhani
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pieter W. M. Bonnemaijer
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Anne Senabouth
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | | | - Denize Atan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, University Hospitals Bristol & Weston NHS Foundation Trust, Bristol, United Kingdom
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason Charng
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Hélène Choquet
- Kaiser Permanente Northern California Division of Research, Oakland, California, United States of America
| | - Jamie Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Bedford Park, Australia
| | - Peng T. Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Ophthalmology Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jue-Sheng Ong
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Louis R. Pasquale
- Eye and Vision Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Charles A. Reisman
- Topcon Healthcare Solutions R&D, Oakland, New Jersey, United States of America
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
| | - Joseph E. Powell
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, Australia
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
- Department of Surgery, The University of Melbourne, Parkville, Australia
| | - Mark J. Simcoe
- Department of Ophthalmology, Kings College London, London, United Kingdom
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Cornelia M. van Duijn
- Nuffield Department Of Population Health, University of Oxford, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Oxford, United Kingdom
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Single Cell Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | - Eric Jorgenson
- Kaiser Permanente Northern California Division of Research, Oakland, California, United States of America
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Chris J. Hammond
- School of Life Course Sciences, Section of Ophthalmology, King’s College London, London, United Kingdom
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, The University of Western Australia, Perth, Australia
| | - Janey L. Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear, Boston, Massachusetts, United States of America
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Praveen J. Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
44
|
Han X, Hewitt AW, MacGregor S. Predicting the Future of Genetic Risk Profiling of Glaucoma: A Narrative Review. JAMA Ophthalmol 2021; 139:224-231. [PMID: 33331888 DOI: 10.1001/jamaophthalmol.2020.5404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Importance Glaucoma is the world's leading cause of irreversible blindness. Primary open-angle glaucoma (POAG) is typically asymptomatic early in the disease process, and unfortunately, many are diagnosed too late to prevent vision loss. Observations Genome-wide association studies, which evaluate the association between genetic variants and phenotype across the genome, have mapped many genes for POAG. As well as uncovering new biology, genetic information can be combined into a polygenic risk score (PRS), which aggregates an individual's disease risk over many genetic variants. In this nonsystematic review, performed from June 21, 2019, to October 1, 2020, we address a series of questions to explain the challenges and opportunities in translating genetic discoveries in POAG. We summarize what is known about POAG genetics and how its endophenotypes, such as intraocular pressure or cup-disc ratio, can help with prediction. We discuss the sample sizes available and how increases in the future may have an effect on the utility of prediction approaches. We explore particular scenarios, such as the use of PRS in risk stratification, and applications for individuals who are particularly high risk for POAG as a result of them carrying both a high penetrance mutation and an unfavorable PRS. Finally, we discuss the issue of equity in applying these tests and the prospects for prediction for people from various ancestry groups. The cost-effectiveness evaluation of glaucoma PRS in direct-to-consumer genetic testing and across different ancestry groups is warranted in future research. Conclusions and Relevance Advances in glaucoma genetics have opened the door for risk stratification based on genetic risk predictions. The PRS approach has shown good promise in predicting who will be at highest risk of POAG, which could improve outcomes if these predictions can be acted on to result in improved clinical outcomes.
Collapse
Affiliation(s)
- Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, St Lucia, Brisbane, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, University of Melbourne, Australia
| | | |
Collapse
|
45
|
Gao Y, Saccuzzo EG, Hill SE, Huard DJE, Robang AS, Lieberman RL, Paravastu AK. Structural Arrangement within a Peptide Fibril Derived from the Glaucoma-Associated Myocilin Olfactomedin Domain. J Phys Chem B 2021; 125:2886-2897. [PMID: 33683890 DOI: 10.1021/acs.jpcb.0c11460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myocilin-associated glaucoma is a new addition to the list of diseases linked to protein misfolding and amyloid formation. Single point variants of the ∼257-residue myocilin olfactomedin domain (mOLF) lead to mutant myocilin aggregation. Here, we analyze the 12-residue peptide P1 (GAVVYSGSLYFQ), corresponding to residues 326-337 of mOLF, previously shown to form amyloid fibrils in vitro and in silico. We applied solid-state NMR structural measurements to test the hypothesis that P1 fibrils adopt one of three predicted structures. Our data are consistent with a U-shaped fibril arrangement for P1, one that is related to the U-shape predicted previously in silico. Our data are also consistent with an antiparallel fibril arrangement, likely driven by terminal electrostatics. Our proposed structural model is reminiscent of fibrils formed by the Aβ(1-40) Iowa mutant peptide, but with a different arrangement of molecular turn regions. Taken together, our results strengthen the connection between mOLF fibrils and the broader amylome and contribute to our understanding of the fundamental molecular interactions governing fibril architecture and stability.
Collapse
|
46
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
47
|
Tabak S, Schreiber-Avissar S, Beit-Yannai E. Crosstalk between MicroRNA and Oxidative Stress in Primary Open-Angle Glaucoma. Int J Mol Sci 2021; 22:2421. [PMID: 33670885 PMCID: PMC7957693 DOI: 10.3390/ijms22052421] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) plays a key role in the pathogenesis of primary open-angle glaucoma (POAG), a chronic neurodegenerative disease that damages the trabecular meshwork (TM) cells, inducing apoptosis of the retinal ganglion cells (RGC), deteriorating the optic nerve head, and leading to blindness. Aqueous humor (AH) outflow resistance and intraocular pressure (IOP) elevation contribute to disease progression. Nevertheless, despite the existence of pharmacological and surgical treatments, there is room for the development of additional treatment approaches. The following review is aimed at investigating the role of different microRNAs (miRNAs) in the expression of genes and proteins involved in the regulation of inflammatory and degenerative processes, focusing on the delicate balance of synthesis and deposition of extracellular matrix (ECM) regulated by chronic oxidative stress in POAG related tissues. The neutralizing activity of a couple of miRNAs was described, suggesting effective downregulation of pro-inflammatory and pro-fibrotic signaling pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), transforming growth factor-beta 2 (TGF-β2), Wnt/β-Catenin, and PI3K/AKT. In addition, with regards to the elevated IOP in many POAG patients due to increased outflow resistance, Collagen type I degradation was stimulated by some miRNAs and prevented ECM deposition in TM cells. Mitochondrial dysfunction as a consequence of oxidative stress was suppressed following exposure to different miRNAs. In contrast, increased oxidative damage by inhibiting the mTOR signaling pathway was described as part of the action of selected miRNAs. Summarizing, specific miRNAs may be promising therapeutic targets for lowering or preventing oxidative stress injury in POAG patients.
Collapse
Affiliation(s)
| | | | - Elie Beit-Yannai
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (S.T.); (S.S.-A.)
| |
Collapse
|
48
|
Cole BS, Gudiseva HV, Pistilli M, Salowe R, McHugh CP, Zody MC, Chavali VRM, Ying GS, Moore JH, O'Brien JM. The Role of Genetic Ancestry as a Risk Factor for Primary Open-angle Glaucoma in African Americans. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 33605984 PMCID: PMC7900887 DOI: 10.1167/iovs.62.2.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose POAG is the leading cause of irreversible blindness in African Americans. In this study, we quantitatively assess the association of autosomal ancestry with POAG risk in a large cohort of self-identified African Americans. Methods Subjects recruited to the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study were classified as glaucoma cases or controls by fellowship-trained glaucoma specialists. POAAGG subjects were genotyped using the MEGA Ex array (discovery cohort, n = 3830; replication cohort, n = 2135). Population structure was interrogated using principal component analysis in the context of the 1000 Genomes Project superpopulations. Results The majority of POAAGG samples lie on an axis between African and European superpopulations, with great variation in admixture. Cases had a significantly lower mean value of the ancestral component q0 than controls for both cohorts (P = 6.14-4; P = 3-6), consistent with higher degree of African ancestry. Among POAG cases, higher African ancestry was also associated with thinner central corneal thickness (P = 2-4). Admixture mapping showed that local genetic ancestry was not a significant risk factor for POAG. A polygenic risk score, comprised of 23 glaucoma-associated single nucleotide polymorphisms from the NHGRI-EBI genome-wide association study catalog, was significant in both cohorts (P < 0.001), suggesting that both known POAG single nucleotide polymorphisms and an omnigenic ancestry effect influence POAG risk. Conclusions In sum, the POAAGG study population is very admixed, with a higher degree of African ancestry associated with an increased POAG risk. Further analyses should consider social and environmental factors as possible confounding factors for disease predisposition.
Collapse
Affiliation(s)
- Brian S. Cole
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Harini V. Gudiseva
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Maxwell Pistilli
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Salowe
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | | | - Michael C. Zody
- New York Genome Center, New York City, New York, United States
| | - Venkata R. M. Chavali
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gui Shuang Ying
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Jason H. Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joan M. O'Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
49
|
Occhiutto ML, de Melo MB, Cabral de Vasconcellos JP, Rodrigues TAR, Bajano FF, Costa FF, Costa VP. "Association of APOE gene polymorphisms with primary open angle glaucoma in Brazilian patients". Ophthalmic Genet 2020; 42:53-61. [PMID: 33287609 DOI: 10.1080/13816810.2020.1849314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Primary open-angle glaucoma (POAG) is a multifactorial disease that affects 65.5 million people worldwide. In addition to the genetic variants already established as indicators of greater risk for POAG, the apolipoprotein (APOE) gene has been studied in some populations, with controversial results. The aim of this study is to investigate the frequency of the genetic variants of APOE in the Brazilian population, and to evaluate the association between these polymorphisms and the risk of POAG. Methods: APOE variants (rs429358; rs7412) were genotyped in 402 POAG patients and 401 controls. We evaluated the association between APOE genetic variants and the risk for POAG, as well as the correlation between the requirement of glaucoma surgery and the APOE polymorphisms. Results: Among the three APOE gene isoforms, we found a low frequency of APOE alleles ε2 (7.34%) and ε4 (11.76%), but a high frequency of ε3 (80.88%) in our population. When compared to ε3ε3 reference genotype, ε2 allele-carriers (OR = 1.516; p-value = 0.04) and ε2ε3 genotype (OR = 1.655; p-value = 0.02) were associated with a greater risk for POAG. An additive genetic model confirmed the influence of the ε2 allele in the risk of POAG in this sample of the Brazilian population (OR = 1.502; p-value = 0.04). There was no significant association between the analyzed genotypes and the requirement or number of glaucoma surgeries (p > .05). Conclusion: Brazilian individuals carrying the APOEε2 allele may be at an increased risk for the development of POAG.
Collapse
Affiliation(s)
- Marcelo Luís Occhiutto
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas - UNICAMP , Campinas, Brazil
| | - Mônica Barbosa de Melo
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , Campinas, Brazil
| | | | | | - Flávia Fialho Bajano
- Laboratory of Human Genetics, Center for Molecular Biology and Genetic Engineering - CBMEG , Campinas, Brazil
| | | | - Vital Paulino Costa
- Department of Ophthalmology, Faculty of Medical Sciences, University of Campinas - UNICAMP , Campinas, Brazil
| |
Collapse
|
50
|
Zhang DW, Zhang S, Wu J. Expression profile analysis to predict potential biomarkers for glaucoma: BMP1, DMD and GEM. PeerJ 2020; 8:e9462. [PMID: 32953253 PMCID: PMC7474882 DOI: 10.7717/peerj.9462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose Glaucoma is the second commonest cause of blindness. We assessed the gene expression profile of astrocytes in the optic nerve head to identify possible prognostic biomarkers for glaucoma. Method A total of 20 patient and nine normal control subject samples were derived from the GSE9944 (six normal samples and 13 patient samples) and GSE2378 (three normal samples and seven patient samples) datasets, screened by microarray-tested optic nerve head tissues, were obtained from the Gene Expression Omnibus (GEO) database. We used a weighted gene coexpression network analysis (WGCNA) to identify coexpressed gene modules. We also performed a functional enrichment analysis and least absolute shrinkage and selection operator (LASSO) regression analysis. Genes expression was represented by boxplots, functional geneset enrichment analyses (GSEA) were used to profile the expression patterns of all the key genes. Then the key genes were validated by the external dataset. Results A total 8,606 genes and 19 human optic nerve head samples taken from glaucoma patients in the GSE9944 were compared with normal control samples to construct the co-expression gene modules. After selecting the most common clinical traits of glaucoma, their association with gene expression was established, which sorted two modules showing greatest correlations. One with the correlation coefficient is 0.56 (P = 0.01) and the other with the correlation coefficient is −0.56 (P = 0.01). Hub genes of these modules were identified using scatterplots of gene significance versus module membership. A functional enrichment analysis showed that the former module was mainly enriched in genes involved in cellular inflammation and injury, whereas the latter was mainly enriched in genes involved in tissue homeostasis and physiological processes. This suggests that genes in the green–yellow module may play critical roles in the onset and development of glaucoma. A LASSO regression analysis identified three hub genes: Recombinant Bone Morphogenetic Protein 1 gene (BMP1), Duchenne muscular dystrophy gene (DMD) and mitogens induced GTP-binding protein gene (GEM). The expression levels of the three genes in the glaucoma group were significantly lower than those in the normal group. GSEA further illuminated that BMP1, DMD and GEM participated in the occurrence and development of some important metabolic progresses. Using the GSE2378 dataset, we confirmed the high validity of the model, with an area under the receiver operator characteristic curve of 85%. Conclusion We identified several key genes, including BMP1, DMD and GEM, that may be involved in the pathogenesis of glaucoma. Our results may help to determine the prognosis of glaucoma and/or to design gene- or molecule-targeted drugs.
Collapse
Affiliation(s)
- Dao Wei Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
| | - Shenghai Zhang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|