1
|
Han SJ, Kim DK. Synergistic effect of naringenin and mild heat for inactivation of E. coli O157:H7, S. Typhimurium, L. monocytogenes, and S. aureus in peptone water and cold brew coffee. Int J Food Microbiol 2025; 430:111051. [PMID: 39787753 DOI: 10.1016/j.ijfoodmicro.2024.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
This study aimed to investigate the bactericidal effect of naringenin (NG), a plant-derived flavonoid, and its synergistic effect with mild heat (MH) treatment at 50 °C in peptone water (PW) and ready-to-drink cold brew coffee (RDC). Among various NG concentrations (1-20 mM), 10 mM NG resulted in the greatest inactivation for Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. In RDC, NG + MH treatment resulted in a 5-8-log reduction in all pathogens after 10 min, except for S. aureus. In contrast, NG or MH treatment alone exhibited only marginal bactericidal effects. From inactivating mechanism analysis, lipid membrane destruction and intracellular enzyme inactivation were the key factors for pathogen inactivation. Cell membrane and enzyme dysfunctions were identified in propidium iodide (PI) uptake test, membrane potential assay, and membrane protein analysis. Furthermore, NG + MH exerted minimal influence on the quality attributes of RDC in pH, color, and total phenolic content. These results indicated that the NG + MH treatment system effectively ensured microbial safety in cold brew coffee while enhancing its nutritional value and preserving quality attributes.
Collapse
Affiliation(s)
- Sang-Jun Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Do-Kyun Kim
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Sharma A, Singh A, Pendyala B, Balamurugan S, Patras A. Inactivation of deposited bioaerosols on food contact surfaces with UV-C light emitting diode devices. Appl Environ Microbiol 2025; 91:e0109324. [PMID: 39570036 DOI: 10.1128/aem.01093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The airborne transmission of infectious diseases and bioaerosol-induced cross-contamination pose significant challenges in the food, dairy, and pharma industries. This study evaluated the effectiveness of 279 nm UV-C LED irradiation for decontaminating bioaerosols, specifically containing microorganisms such as Escherichia coli (C3040- Kanamycin resistant), Salmonella Enteritidis (ATCC 4931), and Pseudomonas fragi (ATCC 4973), on food contact surfaces. Borosilicate glass, silicon rubber, and stainless steel (316L) surfaces were selected for experimentation for their usage in the food industry. A 50 µL cell suspension was aerosolized at 25 psi pressure using a 4-jet BLAM Nebulizer within a customized glass chamber and then deposited onto the surface of the coupons. The serial dilution approach was used for the microbial enumeration, followed by duplicate plating. With a low Root Mean Square Error (RMSE) and high R2 values, the biphasic kinetic model for UV-C inactivation curves of all three pathogens demonstrated the excellent goodness of fit parameters. At a UV-C dose of 6 mJ cm-2, glass surfaces showed the maximum microbial inactivation (i.e., 2.80, 3.81, and 3.56 log CFU/mL for E. coli, Salmonella, and P. fragi, respectively). Stainless steel and silicon rubber surfaces showed significant microbial inactivation, but log10 reductions observed were consistently lower than glass surface. Our research indicates that UV-C LEDs (279 nm) can effectively disinfect bioaerosols on food contact surfaces.IMPORTANCEFood safety is a major public health concern, with contaminated food causing serious illnesses. UV-C light, used for germicidal action, is effective in disinfecting surfaces and is not subject to the same strict legal restrictions as chemical disinfectants, simplifying compliance with food safety regulations. In this study, we evaluated the efficacy of UV-C (279 nm) LED systems for inactivation of surface-deposited bioaerosols of kanamycin-resistant Escherichia coli (C3040), Salmonella Enteritidis (ATCC 4931), and Pseudomonas fragi (ATCC 4973). The research outcomes can be used to develop UV-based surface disinfection systems to minimize the risk of foodborne illnesses and enhance safety in high-traffic food preparation areas.
Collapse
Affiliation(s)
- Aakash Sharma
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Amritpal Singh
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brahmaiah Pendyala
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| | | | - Ankit Patras
- Department of Food and Animal Sciences, Tennessee State University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Arcos-Limiñana V, Maestre-Pérez S, Prats-Moya MS. A comprehensive review on ultraviolet disinfection of spices and culinary seeds and its effect on quality. Compr Rev Food Sci Food Saf 2025; 24:e70076. [PMID: 39674832 DOI: 10.1111/1541-4337.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Spices and culinary seeds, valued for their flavor and aroma, pose unique challenges for disinfection, as heat treatments are often unsuitable. Their raw consumption increases the risk of contamination, particularly with Salmonella spp. Thermal treatments are widely used for food disinfection due to their effectiveness in inactivating bacteria. However, these methods often degrade the nutritional and sensory qualities of food. Ultraviolet (UV) light, however, is a promising nonthermal technique that balances microbial inactivation and food quality preservation. This review employed a systematic approach to evaluate the effects of UV treatments, both alone and in combination with other techniques, on the microbiological safety and chemical composition of spices and culinary seeds. UV treatments have been shown to effectively inactivate bacteria, molds, and mycotoxins without triggering the same chemical reactions that reduce the quality of plant-based foods. Some studies have even suggested improvements in nutritional parameters following UV exposure, such as the increase of antioxidant activity or total phenolic content. However, inconsistencies in study quality limit the strength of current conclusions, and further research is needed. Critical areas for future investigation include scaling UV reactors, combining treatments, exploring UV-LED technology, conducting sensory analyses, and studying the inactivation of bacterial spores and mycotoxins.
Collapse
Affiliation(s)
- Víctor Arcos-Limiñana
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| | - Salvador Maestre-Pérez
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| | - María Soledad Prats-Moya
- Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, Alicante, Spain
| |
Collapse
|
4
|
Sicks B, Gurow O, Sommerfeld F, Hessling M. Decontamination of Fused-Silica Surfaces by UVC Irradiation as Potential Application on Touchscreens. Microorganisms 2024; 12:2099. [PMID: 39458408 PMCID: PMC11510117 DOI: 10.3390/microorganisms12102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The contamination of surfaces by antibiotic-resistant pathogens presents an escalating challenge, especially on touchscreens in public settings such as hospitals, airports, and means of transport. Traditional chemical cleaning agents are often ineffective and leave behind harmful residues. Thus, the application of optical radiation is gaining relevance as a rapid, effective, and environmentally friendly disinfection method. This study examines the contamination of publicly accessible touchscreens and the efficacy of an irradiation approach for the radiation disinfection of microorganisms on quartz surfaces with UVC LEDs. In this setup, the LED radiation is laterally coupled into a quartz plate that serves as cover glass of a simplified touchscreen model. The process allows for the irradiation of microorganisms on the surface, without the user being exposed to hazardous radiation. To assess the efficacy of the disinfection process, a range of bacteria, mostly ESKAPE surrogates, such as Staphylococcus carnosus, Acinetobacter kookii, Escherichia coli, Enterococcus mundtii, and additionally Micrococcus luteus, were spread over a quartz plate with a homebuilt nebulization system. After operating the side-mounted LEDs for 30 s, a reduction in all bacteria except M. luteus by more than three orders of magnitude was observed. In the case of M. luteus, a significant reduction was achieved after 60 s (p < 0.05). This result demonstrates the potential of side-mounted UVC LEDs for rapid disinfection of touchscreens between two users and thus for reducing the spread of pathogens without irradiating humans.
Collapse
Affiliation(s)
| | | | | | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89075 Ulm, Germany; (B.S.); (O.G.); (F.S.)
| |
Collapse
|
5
|
Siwe H, Aerssens A, Flour MV, Ternest S, Van Simaey L, Verstraeten D, Kalmar AF, Leroux-Roels I, Meuleman P, Cools P. Microbiological evaluation of ultraviolet C light-emitting diodes for disinfection of medical instruments. Heliyon 2024; 10:e37281. [PMID: 39296042 PMCID: PMC11407951 DOI: 10.1016/j.heliyon.2024.e37281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Background Despite the many guidelines for reprocessing of medical instruments, challenges persist such as microbial resistance to biocides, corrosive effects on materials, and time-consuming reprocessing procedures. Ultraviolet (UV) C light-emitting diode (LED) chambers might provide a solution but the integration in healthcare is still in its infancy. Here, we evaluated the efficacy of a novel ZAPARAY™ UVC LED chamber as a time and energy-efficient alternative for reprocessing of medical instruments for which current disinfection protocols exhibit limitations. Methods We verified the disinfection efficacy of the UVC LED chamber on a Petri dish and contaminated several medical devices with Staphylococcus aureus ATCC 25923. The bacterial reduction was assessed after 5 min of UVC LED exposure. Additionally, we investigated the impact of rinsing before UVC exposure. Results We demonstrated a bacterial reduction of 9 log10 on a Petri dish. Non-rinsed dental tools exhibited varied reduction levels ranging from a 3.23 log10 to a 6.25 log10 reduction. Rinsing alone yielded an average reduction of 2.7 log10 and additional UVC exposure further reduced the bacterial load by an average of 3.65 log10. We showed an average 4.90 log10 reduction on thermistors, 2 log10 or less on orthodontic pliers, and no reduction on handpieces. Conclusions This study demonstrates that UVC LED chambers may be used as a standardized substitute for specific (manual) disinfection procedures of certain medical devices, offering a time-efficient and more sustainable alternative. However, its use should be preceded by efficacy testing for each specific type of instrument.
Collapse
Affiliation(s)
- Hannah Siwe
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
| | - Mieke V Flour
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Silke Ternest
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
| | - Leen Van Simaey
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Duncan Verstraeten
- Research and Development, eLEDricity, Hundelgemsesteenweg 446A, 9820, Merelbeke, Belgium
| | - Alain F Kalmar
- Department of Electronics and Information Systems, IBiTech, Ghent University, Technologiepark-Zwijnaarde 126, 9052, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Infection Control, Ghent University Hospital, Corneel Heymanslaan 10, entrance 12, Clinical Building 12E, 9000, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, entrance 38, Medical Research Building 2, 9000, Ghent, Belgium
| |
Collapse
|
6
|
McCoy Sanders J, Alarcon V, Marquis G, Tabb A, Van Kessel JA, Sonnier J, Haley BJ, Baek I, Qin J, Kim M, Vasefi F, Sokolov S, Hellberg RS. Inactivation of Escherichia coli, Salmonella enterica, and Listeria monocytogenes using the Contamination Sanitization Inspection and Disinfection (CSI-D) device. Heliyon 2024; 10:e30490. [PMID: 38726110 PMCID: PMC11079081 DOI: 10.1016/j.heliyon.2024.e30490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
The Contamination Sanitization Inspection and Disinfection (CSI-D) device is a handheld fluorescence-based imaging system designed to disinfect food contact surfaces using ultraviolet-C (UVC) illumination. This study aimed to determine the optimal CSI-D parameters (i.e., UVC exposure time and intensity) for the inactivation of the following foodborne bacteria plated on non-selective media: generic Escherichia coli (indicator organism) and the pathogens enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, and Listeria monocytogenes. Each bacterial strain was spread-plated on non-selective agar and exposed to high-intensity (10 mW/cm2) or low-intensity (5 mW/cm2) UVC for 1-5 s. Control plates were not exposed to UVC. The plates were incubated overnight at 37 °C and then enumerated. Three trials for each bacterial strain were conducted. Statistical analysis was carried out to determine if there were significant differences in bacterial growth between UVC intensities and exposure times. Overall, exposure to low or high intensity for 3-5 s resulted in consistent inhibition of bacterial growth, with reductions of 99.9-100 % for E. coli, 96.8-100 % for S. enterica, and 99.2-100 % for L. monocytogenes. The 1 s exposure time showed inconsistent results, with a 66.0-100 % reduction in growth depending on the intensity and bacterial strain. When the results for all strains within each species were combined, the 3-5 s exposure times showed significantly greater (p < 0.05) growth inhibition than the 1 s exposure time. However, there were no significant differences (p > 0.05) in growth inhibition between the high and low UVC intensities. The results of this study show that, in pure culture conditions, exposure to UVC with the CSI-D device for ≥3 s is required to achieve consistent reduction of E. coli, S. enterica, and L. monocytogenes.
Collapse
Affiliation(s)
| | - Vanessa Alarcon
- Food Science Program, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Grace Marquis
- Food Science Program, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Amanda Tabb
- Food Science Program, Chapman University, One University Drive, Orange, CA, 92866, USA
| | - Jo Ann Van Kessel
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Jakeitha Sonnier
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Bradd J. Haley
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Insuck Baek
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Jianwei Qin
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Moon Kim
- Environmental Microbial and Food Safety Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
| | | | | | - Rosalee S. Hellberg
- Food Science Program, Chapman University, One University Drive, Orange, CA, 92866, USA
| |
Collapse
|
7
|
Sicher C, Opitz N, Becker PE, Lobo Ploch N, Schleusener J, Kneissl M, Kramer A, Zwicker P. Efficacy of 233 nm LED far UV-C-radiation against clinically relevant bacterial strains in the phase 2/ step 2 in vitro test on basis of EN 14561 and on an epidermis cell model. Microbes Infect 2024; 26:105320. [PMID: 38461969 DOI: 10.1016/j.micinf.2024.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Healthcare-acquired infections and overuse of antibiotics are a common problem. Rising emergence of antibiotic and antiseptic resistances requires new methods of microbial decontamination or decolonization as the use of far-UV-C radiation. METHODS The microbicidal efficacy of UV-C radiation (222 nm, 233 nm, 254 nm) was determined in a quantitative carrier test and on 3D-epidermis models against Staphylococcus (S.) aureus, S.epidermidis, S.haemolyticus, S.lugdunensis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. To mimic realistic conditions, sodium chloride solution, mucin, albumin, artificial saliva, artificial wound exudate and artificial sweat were used. RESULTS In sodium chloride solution, irradiation with a dose of 40 mJ/cm2 (233 nm) was sufficient to achieve 5 lg reduction independent of bacteria genus or species. In artificial sweat, albumin and artificial wound exudate, a reduction >3 lg was reached for most of the bacteria. Mucin and artificial saliva decreased the reduction to <2 lg. On 3D epidermis models, reduction was lower than in the carrier test. CONCLUSION UV-C radiation at 233 nm was proven to be efficient in bacteria inactivation independent of genus or species thus being a promising candidate for clinical use in the presence of humans and on skin/mucosa.
Collapse
Affiliation(s)
- Claudia Sicher
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nevin Opitz
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine Greifswald, 17475 Greifswald, Germany
| | - Pia Elen Becker
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine Greifswald, 17475 Greifswald, Germany
| | - Neysha Lobo Ploch
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut Für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Kneissl
- Ferdinand-Braun-Institut gGmbH, Leibniz-Institut Für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany; Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine Greifswald, 17475 Greifswald, Germany
| | - Paula Zwicker
- Institute of Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Str., University Medicine Greifswald, 17475 Greifswald, Germany.
| |
Collapse
|
8
|
Arkusz K, Pasik K, Jędrzejewska A, Klekiel T, Woźniak W, Nycz M, Stryjski R. Shedding light on the problem: Influence of the radiator power, source-sample distance, and exposure time on the performance of UV-C lamps in laboratory and real-world conditions. PLoS One 2024; 19:e0302258. [PMID: 38626152 PMCID: PMC11020484 DOI: 10.1371/journal.pone.0302258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 04/18/2024] Open
Abstract
Effective surface disinfection is crucial for preventing the spread of pathogens in hospitals. Standard UltraViolet-C (UV-C) lamps have been widely used for this purpose, but their disinfection efficiency under real-world conditions is not well understood. To fill this gap, the influence of the power of the ultraviolet radiator, source-sample distance, and exposure time on the performance of UV-C lamps against Escherichia coli and Staphylococcus epidermidis were experimentally determined in the laboratory and hospital. The obtained results showed that the UV irradiance and, thus, the UV-C disinfection efficiency decreased significantly at distances greater than 100 cm from the UV-C lamp. Moreover, increasing the total power of the radiators does not improve the performance of UV-C lamps under real conditions. The UV-C disinfection efficiency greater than 90% was achieved only under laboratory conditions at a close distance from the UV-C lamp, i.e., 10 cm. These findings provide novel insights into the limitations of UV-C lamps in real-world conditions and highlight the need for more effective disinfection strategies in hospitals.
Collapse
Affiliation(s)
- Katarzyna Arkusz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Kamila Pasik
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Aleksandra Jędrzejewska
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Tomasz Klekiel
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Waldemar Woźniak
- Department of Production and Transport Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Marta Nycz
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| | - Roman Stryjski
- Department of Production and Transport Engineering, Faculty of Mechanical Engineering, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
9
|
Wai HH, Shiekh KA, Jafari S, Kijpatanasilp I, Assatarakul K. Ultraviolet irradiation as alternative non-thermal cold pasteurization to improve quality and microbiological parameters of mango juice during cold storage. Int J Food Microbiol 2024; 415:110632. [PMID: 38428167 DOI: 10.1016/j.ijfoodmicro.2024.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
The objectives of this research were to study the effect of UV irradiation on quality characteristics of mango juice during cold storage. Mango juice exposed to UV radiation was also used to determine zero-order and first-order kinetic models of microbial (total plate count, yeast and mold count, and Escherichia coli) reduction. According to the microbiological results, UV light at 120 J/cm2 caused a 5.19 log reduction. It was found that microbial inactivation of all tested microorganisms followed first-order kinetic model. The treatments did not differ significantly in terms of the quality metrics. L*, b*, pH, total soluble solid, total phenolic compound, total flavonoid content, and antioxidant activity as measured by the DPPH and FRAP assay all tended to decline during storage at 4 °C, whereas a*, ∆E, titratable acidity, total plate count, yeast and mold count, as well as the total plate count, had an increasing trend. During storage at 4 °C, UV irradiation increased the shelf life of mango juice by about 14 days compared to the control sample. In conclusion, this study demonstrated the potential of UV treatment as an alternative to thermal pasteurization for preserving mango juice quality and safety while also prolonging shelf life.
Collapse
Affiliation(s)
- Htay Htay Wai
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Small Scale Industries Department, Ministry of Cooperatives and Rural Development, Nay Pyi Taw 15011, Myanmar
| | - Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Labadie M, Marchal F, Merbahi N, Girbal-Neuhauser E, Fontagné-Faucher C, Marcato-Romain CE. Cell density and extracellular matrix composition mitigate bacterial biofilm sensitivity to UV-C LED irradiation. Appl Microbiol Biotechnol 2024; 108:286. [PMID: 38578301 PMCID: PMC10997551 DOI: 10.1007/s00253-024-13123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Ultraviolet-C light-emitting diodes (UV-C LEDs) are an emerging technology for decontamination applications in different sectors. In this study, the inactivation of bacterial biofilms was investigated by applying an UV-C LED emitting at 280 nm and by measuring both the influence of the initial cell density (load) and presence of an extracellular matrix (biofilm). Two bacterial strains exposing diverging matrix structures and biochemical compositions were used: Pseudomonas aeruginosa and Leuconostoc citreum. UV-C LED irradiation was applied at three UV doses (171 to 684 mJ/cm2) on both surface-spread cells and on 24-h biofilms and under controlled cell loads, and bacterial survival was determined. All surface-spread bacteria, between 105 and 109 CFU/cm2, and biofilms at 108 CFU/cm2 showed that bacterial response to irradiation was dose-dependent. The treatment efficacy decreased significantly for L. citreum surface-spread cells when the initial cell load was high, while no load effect was observed for P. aeruginosa. Inactivation was also reduced when bacteria were grown under a biofilm form, especially for P. aeruginosa: a protective effect could be attributed to abundant extracellular DNA and proteins in the matrix of P. aeruginosa biofilms, as revealed by Confocal Laser Scanning Microscopy observations. This study showed that initial cell load and exopolymeric substances are major factors influencing UV-C LED antibiofilm treatment efficacy. KEY POINTS: • Bacterial cell load (CFU/cm2) could impact UV-C LED irradiation efficiency • Characteristics of the biofilm matrix have a paramount importance on inactivation • The dose to be applied can be predicted based on biofilm properties.
Collapse
Affiliation(s)
- Maritxu Labadie
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Frédéric Marchal
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Nofel Merbahi
- Université de Toulouse, UPS, INPT, LAPLACE UMR 5223 (Laboratoire Plasma Et Conversion d'Energie), 118 Route de Narbonne, Toulouse, F-31062, France
| | - Elisabeth Girbal-Neuhauser
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Catherine Fontagné-Faucher
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France
| | - Claire-Emmanuelle Marcato-Romain
- Université de Toulouse, UPS, IUT Paul Sabatier, LBAE EA 4565 (Laboratoire de Biotechnologies Agroalimentaire Et Environnementale), 24 Rue d'Embaquès, Auch, F-32000, France.
| |
Collapse
|
11
|
Shen Y, Luo J, Di Cesare A, Guo N, Zou S, Yang Y. Performance evaluation for the inactivation of multidrug-resistant bacteria in wastewater effluent by different disinfection technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123427. [PMID: 38286262 DOI: 10.1016/j.envpol.2024.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
The escalating presence of antibiotic-resistant bacteria (ARB) in aquatic ecosystems underscores the critical role of wastewater treatment plants (WWTPs) in mitigating antibiotic resistance. Disinfection is the final, pivotal step in WWTPs, and it is essential to control the dissemination of ARB before water discharge. This study utilized both phenotypic analysis and transcriptome (RNA-seq) approach to investigate the efficiency and mechanisms of disinfection using chlorination, ultraviolet (UV), and peracetic acid (PAA) on multidrug-resistant bacteria (MRB). Our results demonstrated that the use of 100 mg min L-1 of chlorine, 8.19 mJ cm-2 of UV irradiation or 50 min mg L-1 of PAA significantly reduced the abundance of MRB. Intriguingly, RNA-seq clarified distinct mechanisms of chlorination and UV disinfection. UV radiation triggered the SOS response to cope with DNA damage, induced the expression of multi-drug resistance genes by increasing the expression of efflux pump transporters. UV radiation also promoted the absorption of iron through chelation and transportation to participate in various cell life processes. Chlorination, on the other hand, significantly up-regulated osmotic response elements, including the synthesis of glycine betaine, iron-sulfur clusters, and related transporters. Both chlorination and UV significantly down-regulated key metabolic pathways (P < 0.05), inhibiting the process of amino acid synthesis and energy metabolism. Imbalance in energy homeostasis was the most important factor leading to cytotoxicity. These results provide useful insights into optimizing the wastewater disinfection process in order to prevent the dissemination of ARB in aquatic environment.
Collapse
Affiliation(s)
- Yijing Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Jieling Luo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, 28922, Italy
| | - Nairong Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Shichun Zou
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai, 519082, China.
| |
Collapse
|
12
|
Makararpong D, Tantayanon S, Gowanit C, Jareonsawat J, Samgnamnim S, Wataradee S, Hogeveen H, Inchaisri C. Enhancing Raw Bovine Milk Quality using Ultraviolet-C (UV-C) Irradiation: A Microbial and Lipid Peroxidation Study. Food Sci Anim Resour 2024; 44:372-389. [PMID: 38764508 PMCID: PMC11097024 DOI: 10.5851/kosfa.2024.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 05/21/2024] Open
Abstract
This study investigated the efficacy of ultraviolet-C (UV-C) irradiation in enhancing the quality of raw bovine milk by targeting microbial populations and lipid peroxidation, both of which are key factors in milk spoilage. We categorized the raw milk samples into three groups based on initial bacterial load: low (<3 Log 10 CFU/mL), medium (3-4 Log 10 CFU/mL), and high (>4 Log 10 CFU/mL). Using a 144 W thin-film UV-C reactor, we treated the milk with a flow rate of 3 L/min. We measured the bacterial count including standard plate count, coliform count, coagulase-negative staphylococci count, and lactic acid bacteria count and lipid peroxidation (via thiobarbituric acid reactive substances assay) pre- and post-treatment. Our results show that UV-C treatment significantly reduced bacterial counts, with the most notable reductions observed in high and medium initial load samples (>4 and 3-4 Log 10 CFU/mL, respectively). The treatment was particularly effective against coliforms, showing higher reduction efficiency compared to coagulase-negative staphylococci and lactic acid bacteria. Notably, lipid peroxidation in UV-C treated milk was significantly lower than in pasteurized or untreated milk, even after 72 hours. These findings demonstrate the potential of UV-C irradiation as a pre-treatment method for raw milk, offering substantial reduction in microbial content and prevention of lipid peroxidation, thereby enhancing milk quality.
Collapse
Affiliation(s)
- Davids Makararpong
- Research Unit of Data Innovation for
Livestock, Department of Veterinary Medicine, Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Supawan Tantayanon
- Department of Chemistry, Faculty of
Science, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Chupun Gowanit
- Technopreneurship and Innovation
Management Program, Graduate School, Chulalongkorn University,
Bangkok 10330, Thailand
| | - Jiranij Jareonsawat
- Research Unit of Data Innovation for
Livestock, Department of Veterinary Medicine, Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
- International Graduate Program of
Veterinary Science and Technology (VST), Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Sukuma Samgnamnim
- Research Unit of Data Innovation for
Livestock, Department of Veterinary Medicine, Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Wataradee
- Research Unit of Data Innovation for
Livestock, Department of Veterinary Medicine, Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
| | - Henk Hogeveen
- Business Economics Group, Wageningen
University, Wageningen 6700EW, The Netherlands
| | - Chaidate Inchaisri
- Research Unit of Data Innovation for
Livestock, Department of Veterinary Medicine, Faculty of Veterinary Science,
Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
13
|
Machado MAM, Castro VS, Monteiro MLG, Bernardo YADA, Figueiredo EEDS, Conte-Junior CA. Can Extraintestinal Pathogenic Escherichia coli with Heat Resistance Profile Overcome Nonthermal Technologies? Foodborne Pathog Dis 2024; 21:168-173. [PMID: 38090762 DOI: 10.1089/fpd.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Ultraviolet-C light-emitting diode (UVC-LED) and ultrasound (US) are two nonthermal technologies with the potential to destroy pathogens. However, little is known about their effectiveness in strains with a history of heat resistance. Thus, this study aimed to evaluate the phenotype and genotype of heat-resistant extraintestinal pathogenic Escherichia coli (ExPEC) with heat resistance genes after the application of US, UVC-LED, and UVC-LED+US. For this, two central composite rotatable designs were used to optimize the UVC-LED and US conditions in four ExPEC isolated from beef. From the genome of these isolates obtained in a previous study, possible genes for UVC resistance were analyzed. Results showed that US was ineffective in reducing >0.30 log colony-forming unit/mL, and that when used after UVC-LED, it showed a nonsynergic or antagonistic effect. Also, UVC-LED had the greatest effect at the maximum dose (4950 mJ/cm2 from 1.65 mW/cm2 for 50 min). However, the strains showed some recovery after that, which could be implicated in the expression of genes included in SOS system genes, some others present in the transmissible Locus of Stress Tolerance (trxBC and degP), and others (terC). Thus, ExPEC can overcome the conditions used in this study for US, UVC-LED, and UVC-LED+US, probably due to the history of resistance to other cellular damage. The result of this study will contribute to future studies that aim to find better treatment conditions for each food product.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| | - Vinicius Silva Castro
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Maria Lúcia Guerra Monteiro
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Yago Alves de Aguiar Bernardo
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| | - Eduardo Eustáquio de Souza Figueiredo
- Postgraduate Program in Animal Science (PPGCA). Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
- Postgraduate Program in Nutrition, Food and Metabolism (PPGNAM), Federal University of Mato Grosso (UFMT), Cuiabá, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science (PPGCAL), Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
- Postgraduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
14
|
Adam C, Colin M, Stock R, Weiss L, Gangloff SC. UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities' Wheelchairs. Life (Basel) 2024; 14:256. [PMID: 38398765 PMCID: PMC10890712 DOI: 10.3390/life14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Disinfection in the hospital environment remains challenging, especially for wide and structurally complex objects such as beds or wheelchairs. Indeed, the regular disinfection of these objects with chemicals is manually carried out by healthcare workers and is fastidious and time-consuming. Alternative antibacterial techniques were thus proposed in the past decades, including the use of naturally antimicrobial UVC. Here, the antibacterial efficiency of a large UVC box built to accommodate wheelchairs was investigated through testing bacterial burden reductions on various parts of a wheelchair, with various support types and with several treatment durations. The results demonstrate a time-dependent antibacterial effect, with a strong burden reduction at only five minutes of treatment (>3-log median reduction in Escherichia coli and Staphylococcus epidermidis). The UVC flux and residual bacterial burden both significantly varied depending on the spatial location on the wheelchair. However, the nature of the support impacted the antibacterial efficiency even more, with residual bacterial burdens being the lowest on rigid materials (steel, plastics) and being the highest on tissue. On metallic samples, the nature of the alloy and surface treatment had various impacts on the antibacterial efficiency of the UVC. This study highlights the efficiency of the tested UVC box to efficiently and quickly decontaminate complex objects such as wheelchairs, but also gives rise to the warning to focus on rigid materials and avoid porous materials in the conception of objects, so as to ensure the efficiency of UVC decontamination.
Collapse
Affiliation(s)
- Cloé Adam
- Université de Reims Champagne-Ardenne, UR 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR de Pharmacie, SFR CAP-Santé, 51 rue Cognacq Jay, 51100 Reims, France (S.C.G.)
| | - Marius Colin
- Université de Reims Champagne-Ardenne, UR 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR de Pharmacie, SFR CAP-Santé, 51 rue Cognacq Jay, 51100 Reims, France (S.C.G.)
| | - Romuald Stock
- Université de Lorraine, LCOMS, EA7306 Lorraine, France;
| | - Laurent Weiss
- Université de Lorraine LEM 3, UMR CNRS 7239, 7 Rue Félix Savart, 57073 Metz, France;
| | - Sophie C. Gangloff
- Université de Reims Champagne-Ardenne, UR 4691 Biomatériaux et Inflammation en Site Osseux (BIOS), UFR de Pharmacie, SFR CAP-Santé, 51 rue Cognacq Jay, 51100 Reims, France (S.C.G.)
| |
Collapse
|
15
|
Shin M, Na G, Kang JW, Kang DH. Application of combined treatment of peracetic acid and ultraviolet-C for inactivating pathogens in water and on surface of apples. Int J Food Microbiol 2024; 411:110519. [PMID: 38101190 DOI: 10.1016/j.ijfoodmicro.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In this study, a combined treatment of peracetic acid (PAA) and 280 nm Ultraviolet-C (UVC) - Light emitting diode (LED) was applied for inactivating foodborne pathogens in water and apples. The combined treatment of PAA (50 ppm) and UVC-LED showed synergistic inactivation effects against Escherichia coli O157:H7 and Listeria monocytogenes in water. In mechanism analysis, PAA/UVC-LED treatment induced more lipid peroxidation, intracellular ROS, membrane, and DNA damage than a single treatment. Among them, membrane damage was the main synergistic inactivation mechanism of combination treatment. Cell rupture and shrink of both pathogens after PAA/UVC-LED treatment were also identified through scanning electron microscope (SEM) analysis. To examine inactivation of pathogens on the surface of apples by PAA, UVC-LED, and their combined treatment, a washing system (WS) was developed and used. Through applying the WS, PAA/UVC-LED treatment effectively inactivated two pathogens in washing solution and on the surface of apples below the detection limit (3.30 log CFU/2000 mL and 2.0 log CFU/apple) within 5 min. In addition, there was no significant difference in color or firmness of apples after PAA/UVC-LED treatment (p > 0.05).
Collapse
Affiliation(s)
- Minjung Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Gyumi Na
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jun-Won Kang
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea.
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
16
|
Rufyikiri AS, Martinez R, Addo PW, Wu BS, Yousefi M, Malo D, Orsat V, Vidal SM, Fritz JH, MacPherson S, Lefsrud M. Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2. Photochem Photobiol Sci 2024; 23:339-354. [PMID: 38308169 DOI: 10.1007/s43630-023-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024]
Abstract
Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.
Collapse
Affiliation(s)
- Anne Sophie Rufyikiri
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Rebecca Martinez
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Philip W Addo
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mitra Yousefi
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Danielle Malo
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Medicine, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Valérie Orsat
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Silvia M Vidal
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Jörg H Fritz
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
17
|
Salazar F, Pizarro-Oteíza S, Molinett S, Labbé M. Effect of Optimized UV-LED Technology on Modeling, Inactivation Kinetics and Microbiological Safety in Tomato Juice. Foods 2024; 13:430. [PMID: 38338565 PMCID: PMC10855617 DOI: 10.3390/foods13030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
This research analyzed, optimized and modeled the inactivation kinetics of pathogenic bacteria (PB1: Escherichia coli O157:H7 and PB2: Listeria monocytogenes) and determined the microbiological safety of tomato juice processed by UV-LED irradiation and heat treatment. UV-LED processing conditions were optimized using response surface methodology (RSM) and were 90% power intensity, 21 min and 273-275 nm (251 mJ/cm2) with R2 > 0.96. Using the optimal conditions, levels of PB1 and PB2 resulted a log reduction of 2.89 and 2.74 CFU/mL, respectively. The Weibull model was efficient for estimating the log inactivation of PB1 and PB2 (CFU/mL). The kinetic parameter δ showed that 465.2 mJ/cm2 is needed to achieve a 90% log (CFU/mL) reduction in PB1 and 511.3 mJ/cm2 for PB2. With respect to the scale parameter p > 1, there is a descending concave curve. UV-LED-treated tomato juice had an 11.4% lower Listeria monocytogenes count than heat-treated juice on day 28 (4.0 ± 0.82 °C). Therefore, UV-LED technology could be used to inactivate Escherichia coli O157:H7 and Listeria monocytogenes, preserving tomato juice for microbiological safety, but studies are required to further improve the inactivation of these pathogens and analyze other fruit and vegetable juices.
Collapse
Affiliation(s)
- Fernando Salazar
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| | - Sebastián Pizarro-Oteíza
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| | - Sebastián Molinett
- Laboratorio de Bionanotecnología, Instituto de Investigaciones Agropecuarias, INIA CRI La Cruz, Chorrillos 86, La Cruz 2280454, Chile
| | - Mariela Labbé
- Laboratorio de Fermentaciones Industriales, Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Av. Waddington 716, Valparaíso 2340000, Chile
| |
Collapse
|
18
|
Li YQ, Sun R, Zhang CM, Liu ZX, Chen RT, Zhao J, Gu HD, Yin HC. Inactivation of pathogenic microorganisms in water by electron beam excitation multi-wavelength ultraviolet irradiation: Efficiency, influence factors and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119597. [PMID: 38029495 DOI: 10.1016/j.jenvman.2023.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Due to the limitations of traditional ultraviolet (UV) in microbial inactivation in water, it is necessary to explore a more suitable and efficient UV disinfection method. In this study, an electron beam excitation multi-wavelength ultraviolet (EBE-MW-UV) system was established and aims to analyze its differential microbial inactivation capabilities in comparison to single-wavelength UV-LEDs in waterborne applications. Furthermore, the inactivation mechanisms of this system on microorganisms were explored. The results showed that EBE-MW-UV had significantly higher inactivation effects on the Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Candida albicans in water compared to UV-LEDs (p<0.05), and the inactivation effect of EBE-MW-UV on Escherichia coli and Pseudomonas aeruginosa at the same UV dose was 3.8 and 1.9 log higher than that of UV-LEDs, respectively, EBE-MW-UV exhibited better inactivation effects on Gram-negative bacteria. Further research found that, under the majority of irradiation doses, neither EBE-MW-UV nor UV-LEDs were significantly affected by the concentration of suspended solids (5 and 20 mg/L) or humic acids (2 and 5 mg/L) in the water. Mechanism analysis revealed that during the disinfection process of EBE-MW-UV, microbial DNA and proteins were initially damaged, which prevented the occurrence of dark repair and led to bacterial inactivation. In addition, UV irradiation led to the production of additional reactive oxygen species (ROS) inside the cells, increasing cell membrane permeability and exacerbating membrane damage. This was accompanied by a decrease in energy metabolism and depletion of ATP, ultimately resulting in microbial inactivation. Therefore, EBE-MW-UV demonstrated more effective disinfection than single-wavelength UV-LEDs, showing great potential. Our research gives new insights into the characteristics of multiple wavelength ultraviolet, and provides scientific basis for the selection of new light sources in the field of ultraviolet disinfection.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui Sun
- School of Biomedical Engineering (Suzhou), Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zi-Xuan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Rui-Tao Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jian Zhao
- Shanghai NovelUv Optoelectronics Technology Co., Ltd, Shanghai 200000, China
| | - Hua-Dong Gu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Huan-Cai Yin
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
19
|
Monteiro MLG, Torres Neto L, Mutz YDS, Silva CRD, Conte-Junior CA. Optimizing UVC-LED application to improve the shelf life of vacuum-packed refrigerated stored Nile tilapia (Oreochromis niloticus) fillets. J Food Sci 2024; 89:552-565. [PMID: 38078775 DOI: 10.1111/1750-3841.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/15/2024]
Abstract
Although ultraviolet-C light-emitting diode (UVC-LED) has proven antimicrobial effectiveness doses needed to reach it cause adverse effects on the physicochemical quality of fish, and thus, optimization studies are crucial to boost its industrial application. This study aimed to identify optimal UVC-LED conditions for maximum shelf life extension with the least possible quality changes of refrigerated stored tilapia fillets from a central composite rotatable design (CCRD). UVC-LED powers (1, 1.38, and 1.58 mW/cm2 ) and times (500, 1800, and 2700 s) were set on the CCRD, which generated 11 treatments, including three replicate experiments. Treatments were analyzed for total aerobic psychrotrophic count, lipid oxidation, instrumental color, and texture parameters on days 0, 2, 4, 7, 11, and 14. The UVC-LED affected shelf life and physicochemical parameters in a nonlinear fashion. UVC-LED-treated fish had increased shelf life by 2.80-4.76 days and increase or decrease in lipid oxidation (0.025-0.276 mg of malondialdehyde [MDA]/kg), total color change (∆E = 3.47-9.06), and hardness (1.31-8.51 N) over the refrigerated storage depending on specific UVC-LED conditions applied. The optimal UVC-LED condition was 0.97 mW/cm2 with 2503.6 s (2428.50 mJ/cm2 ), which increased the fillet's shelf life by 2.5-fold (2 days) while maintaining quality closer to the original throughout refrigerated storage, resulting in ∆E < 5, an increase of only 0.05 mg of MDA/kg, and preservation of the decrease in hardness by 3.38 N compared to its control counterparts. Therefore, it represents an eco-friendly technology that can easily scaled industrially to enhance the sustainable fish production chain. PRACTICAL APPLICATION: The high fish perishability is a global concern due to food safety risks and waste generation impacting the environment adversely, especially nowadays, where fish production and consumption have increased, and there are more evident efforts to sustainable production. UVC-LED is an eco-friendly technology with proven antimicrobial effectiveness but doses needed to reach this effect enhance oxidative degradation. Despite that, optimization studies concerning the maximum shelf life extension while retaining the physicochemical quality of refrigerated stored fish are a gap in the literature and a barrier to its industrial application. Our findings are helpful in sustainably enhancing the fish production chain.
Collapse
Affiliation(s)
- Maria Lúcia Guerra Monteiro
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, Brazil
| | - Luiz Torres Neto
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Yhan da Silva Mutz
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Carolina Ramos da Silva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Moufti MA, Hamad M, Al Shawa A, Mardini A, Ghebeh S. Efficacy and design requirements of UV light cabinets for disinfection of exchangeable non-sterilizable "dental objects". Sci Rep 2023; 13:19755. [PMID: 37957167 PMCID: PMC10643671 DOI: 10.1038/s41598-023-45481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Non-sterilizable items such as prosthodontics items constitute a high risk of transmitting dangerous pathogens, including Coronavirus, between patients and healthcare personnel. Although UV rays are recognized for their germicidal efficacy, large and expensive UV devices previously hindered their adoption in dental offices. During the COVID-19 pandemic, small UV devices became available for domestic use, albeit with varying designs and effectiveness. Our study assesses the disinfection capacity of a UV light cabinet for four dental materials and discusses crucial design features for effective performance. Specimens of each material (silicone impressions, stone cast, acrylic denture base, and indelible pencils) were contaminated with Escherichia coli Bl21, and randomly divided into three study groups: UV device (UVG), impressions disinfection solution (SG), and control (CG). The experiment was repeated thrice, and disinfection efficacy assessed by colony forming units (CFU) count. A 2.5-min UV exposure achieved full disinfection for all materials. Significantly different results were found between groups (p < 0.05, one-way ANOVA, Tukey HSD), except for indelible pencils, where UVG and SG were both highly effective. UV cabinets surpass SG's disinfection efficacy. Compact UV devices can offer affordable, portable, and efficient disinfection for non-sterilizable dental objects, with careful consideration of wavelength, exposure, intensity, and safety.
Collapse
Affiliation(s)
- M A Moufti
- College of Dental Medicine, University of Sharjah, P.O.Box 27272, Sharjah, UAE.
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE.
| | - M Hamad
- College of Health Sciences, University of Sharjah, Sharjah, UAE
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - A Al Shawa
- College of Dental Medicine, University of Sharjah, P.O.Box 27272, Sharjah, UAE
| | - A Mardini
- College of Dental Medicine, University of Sharjah, P.O.Box 27272, Sharjah, UAE
| | - S Ghebeh
- College of Dental Medicine, University of Sharjah, P.O.Box 27272, Sharjah, UAE
| |
Collapse
|
21
|
Lorenzo-Leal AC, Tam W, Kheyrandish A, Mohseni M, Bach H. Antimicrobial Activity of Filtered Far-UVC Light (222 nm) against Different Pathogens. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2085140. [PMID: 37942030 PMCID: PMC10630020 DOI: 10.1155/2023/2085140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Ultraviolet (UV) light is an effective disinfection technology, able to inactivate a wide range of microorganisms, including bacteria and fungi. A safer UV wavelength of 222 nm, also known as far-UVC, has been proposed to minimize these harmful effects while retaining the light's disinfection capability. This study is aimed at exploring the antimicrobial activity of filtered far-UVC (222 nm) on a panel of pathogens commonly found in nosocomial installations. A panel of Gram-positive and Gram-negative bacteria and yeast pathogens was tested. Microorganisms were deposited on a plastic surface, allowing them to dry before exposure to the far-UVC light at a distance of 50 cm. Results showed that far-UVC light successfully inhibits the growth of the tested pathogens, although at different exposure times. In conclusion, the results of this study provide fundamental information to achieve reliable disinfection performance with far-UVC lamps with potential applications in healthcare facilities like hospitals and long-term care homes.
Collapse
Affiliation(s)
- Ana C. Lorenzo-Leal
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Wenxi Tam
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Ata Kheyrandish
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Faculty of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Chen H, Moraru C. Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens. Appl Environ Microbiol 2023; 89:e0065023. [PMID: 37800967 PMCID: PMC10617431 DOI: 10.1128/aem.00650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R2 ≥ 0.70). Synergistic effects were found for E. coli, L. monocytogenes, and S. Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus, and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found (P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Carmen Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Yoon Y, Kim B, Cho M. Tailored hybrid microbial water disinfection system using sequentially assembled microbial fuel cells and an ultraviolet C light-emitting diode. WATER RESEARCH 2023; 244:120482. [PMID: 37678038 DOI: 10.1016/j.watres.2023.120482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
An integrated ultraviolet C light-emitting diode (UV-C LED) water disinfection system activated by microbial fuel cells (MFCs) was developed, and optimized via electric circuit and device voltage profiling. The intensity of the renewable energy operated, self-powered UV-C LED for E. coli inactivation was calculated by bio-dosimetry to be 2.4 × 10-2 μW cm-2 using fluence-based rate constant (k) of ∼1.03 (±0.11) cm2/mJ to obtain the reduction equivalent fluence kinetics value. Finally, the first-order rate constant for E. coli inactivation during the tailored hybrid disinfection system was found to be 0.53 (±0.1) cm2/mJ by multiplying intensity with 1.09 (±0.1) × 10-5 s-1 derived from the linear regression of E. coli inactivation as a function of time. Furthermore, selected model microbial consisting of two bacteria (Salmonella sp. and Listeria sp.) and three viruses (MS2 bacteriophage, influenza A virus, and murine norovirus-1) were treated with UV-C LED irradiation under controlled experimental conditions to validate the disinfection efficiency of the system. Consequently, the required to achieve significant removal (i.e., >3-log; 99.9%) UV fluence and dose time were calculated to be 4-7 cm2/mJ and 54-76 h and 33-53 cm2/mJ and 400-622 h for model bacterial and viral, respectively. This study expands the applicability of microbial electrochemical system (MES) for microbial disinfection and could be utilized in future MFCs implementation studies for predicting and measuring the kinetics of microbial elimination using a tailored hybrid water treatment system.
Collapse
Affiliation(s)
- Younggun Yoon
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Bongkyu Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.
| | - Min Cho
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea.
| |
Collapse
|
24
|
Chen H, Cheng Y, Moraru CI. Blue 405 nm LED light effectively inactivates bacterial pathogens on substrates and packaging materials used in food processing. Sci Rep 2023; 13:15472. [PMID: 37726297 PMCID: PMC10509141 DOI: 10.1038/s41598-023-42347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
This study investigates the antimicrobial effectiveness of 405 nm light emitting diodes (LEDs) against pathogenic Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Typhimurium, and Staphylococcus aureus, in thin liquid films (TLF) and on solid surfaces. Stainless steel (SS), high density polyethylene (HDPE), low density polyethylene (LDPE), and borosilicate glass were used as materials typically encountered in food processing, food service, and clinical environments. Anodic aluminum oxide (AAO) coupons with nanoscale topography were used, to evaluate the effect of topography on inactivation. The impact of surface roughness, hydrophobicity, and reflectivity on inactivation was assessed. A 48 h exposure to 405 nm led to reductions ranging from 1.3 (E. coli) to 5.7 (S. aureus) log CFU in TLF and 3.1 to 6.3 log CFU on different solid contact surfaces and packaging materials. All inactivation curves were nonlinear and followed Weibull kinetics, with better inactivation predictions on surfaces (0.89 ≤ R2 ≤ 1.0) compared to TLF (0.76 ≤ R2 ≤ 0.99). The fastest inactivation rate was observed on small nanopore AAO coupons inoculated with L. monocytogenes and S. aureus, indicating inactivation enhancing potential of these surfaces. These results demonstrate significant promise of 405 nm LEDs for antimicrobial applications in food processing and handling and the healthcare industry.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yifan Cheng
- Department of Food Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Carmen I Moraru
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
25
|
Xu J, Zhao N, Meng X, Zhang T, Li J, Dong H, Wei X, Fan M. Contribution of amino acids to Alicyclobacillus acidoterrestris DSM 3922T resistance towards acid stress. Food Microbiol 2023; 113:104273. [PMID: 37098432 DOI: 10.1016/j.fm.2023.104273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
Spoilage of juice and beverages by a thermo-acidophilic bacterium, Alicyclobacillus acidoterrestris, has been considered to be a major and widespread concern for juice industry. Acid-resistant property of A. acidoterrestris supports its survival and multiplication in acidic juice and challenges the development of corresponding control measures. In this study, intracellular amino acid differences caused by acid stress (pH 3.0, 1 h) were determined by targeted metabolomics. The effect of exogenous amino acids on acid resistance of A. acidoterrestris and the related mechanisms were also investigated. The results showed that acid stress affected the amino acid metabolism of A. acidoterrestris, and the selected glutamate, arginine, and lysine contributed to its survival under acid stress. Exogenous glutamate, arginine, and lysine significantly increased the intracellular pH and ATP level, alleviated cell membrane damage, reduced surface roughness, and suppressed deformation caused by acid stress. Additionally, the up-regulated gadA and speA genes and the enhanced enzymatic activity confirmed that glutamate and arginine decarboxylase systems played a crucial role in maintaining pH homeostasis of A. acidoterrestris under acid stress. Our research reveals an important factor contributing to acid resistance of A. acidoterrestris, which provides an alternative target for effectively controlling this contaminant in fruit juices.
Collapse
Affiliation(s)
- Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huayu Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Duering H, Westerhoff T, Kipp F, Stein C. Short-Wave Ultraviolet-Light-Based Disinfection of Surface Environment Using Light-Emitting Diodes: A New Approach to Prevent Health-Care-Associated Infections. Microorganisms 2023; 11:386. [PMID: 36838351 PMCID: PMC9959382 DOI: 10.3390/microorganisms11020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ultraviolet (UV)-C irradiation is a promising method for microbial eradication on surfaces. Major developments have taken place in UV-C light-emitting diodes (LEDs) technology. In this study, we examined the suitability of UV-C LED-based surface disinfection in hospitals. We tested the efficacy of UV-C LED surface treatment on different microorganisms dried on a carrier surface or in a liquid solution. The influences of soiling, shading, surface material, radiation wavelength, microbial load and species on the disinfection performance were investigated. UV-C LED caused a reduction of >5 log10 levels of E. coli, S. aureus and C. albicans, whereas 3 log10 reduction was observed for G. stearothermophilus spores. The components of the medium led to a reduced UV-C LED efficiency compared to buffered solutions. We observed that the microbial load and the roughness of the carrier surface had a major influence on the UV-C LED disinfection efficiencies, whereas shading had no impact on inactivation. This study showed that UV-C is suitable for surface disinfection, but only under certain conditions. We showed that the main factors influencing microbial inactivation through UV-C light (e.g., intrinsic and extrinsic factors) had a similar impact when using a UV-C LED radiation source compared to a conventional UV-C lamp. However, the potential of LEDs is contributed by their adjustable wavelength and customizable geometry for the decontamination of medical devices and surfaces, and thereby their ability to overcome shading effects.
Collapse
Affiliation(s)
- Helena Duering
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Thomas Westerhoff
- Research Group “Smart UV Systems” at Fraunhofer Institute of Optronics, System Technologies and Image Exploitation, Am Vogelherd 90, 98693 Ilmenau, Germany
| | - Frank Kipp
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Claudia Stein
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
27
|
Wang J, Chen J, Sun Y, He J, Zhou C, Xia Q, Dang Y, Pan D, Du L. Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
28
|
Yuan X, Li Y, Mo Q, Zhang B, Shu D, Sun L, Zhao X, Zhang R, Zheng J, Jia Y, Zang Y. Antibacterial activity and mechanism of slightly acidic electrolyzed water combined with ultraviolet light against Salmonella enteritidis. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
29
|
Lu YH, Wu H, Zhang HH, Li WS, Lai ACK. Synergistic disinfection of aerosolized bacteria and bacteriophage by far-UVC (222-nm) and negative air ions. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129876. [PMID: 36087531 DOI: 10.1016/j.jhazmat.2022.129876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Air ionizers and 222-nm krypton-chlorine (KrCl) excilamp have proven to be effective disinfection apparatus for bacteria and viruses with limited health risks. We determined inactivation efficiencies by operating them individually and in combined modules. Gram-positive and gram-negative bacteria, non-enveloped dsDNA virus, and enveloped dsRNA virus were examined in a designed air disinfection system. Our results showed that the bioaerosols were inactivated efficiently by negative ionizers and far-UVC (222-nm), either used individually or in combination. Among which the combined modules of negative ionizers and KrCl excilamp had the best disinfection performance for the bacteria. The aerosolized virus P22 and Phi 6 were more susceptible to 222-nm emitted by KrCl excilamp than negative air ions. Significant greater inactivation of bacterial bioaerosols were identified after treated by combined treatment of negative air ion and far-UVC for 2 minutes (Escherichia coli, 6.25 natural log (ln) reduction; Staphylococcus epidermidis, 3.66 ln reduction), as compared to the mean sum value of inactivation results by respective individual treatment of negative ionizers and KrCl excilamp (Escherichia coli, 4.34 ln; Staphylococcus epidermidis, 1.75 ln), indicating a synergistic inactivation effect. The findings provide important baseline data to support the design and development of safe and high-efficient disinfection systems.
Collapse
Affiliation(s)
- Y H Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - H Wu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China; Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong China
| | - H H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China
| | - W S Li
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong China
| | - A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong China.
| |
Collapse
|
30
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
31
|
Cho ER, Kang DH. Combination system of pulsed ohmic heating and 365-nm UVA light-emitting diodes to enhance inactivation of foodborne pathogens in phosphate-buffered saline, milk, and orange juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Cho ER, Kim JY, Oh SW, Kang DH. Inactivation of Pectobacterium carotovorum subsp. Carotovorum and Dickeya chrysanthemi on the surface of fresh produce using a 222 nm krypton–chlorine excimer lamp and 280 nm UVC light-emitting diodes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Yemmireddy V, Adhikari A, Moreira J. Effect of ultraviolet light treatment on microbiological safety and quality of fresh produce: An overview. Front Nutr 2022; 9:871243. [PMID: 35942168 PMCID: PMC9356256 DOI: 10.3389/fnut.2022.871243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
Fresh and fresh-cut fruits and vegetables have been associated in several foodborne illness outbreaks. Although investigations from those outbreaks reported that the contamination with pathogenic microorganisms may occur at any point in the farm to fork continuum, effective control strategies are still being widely investigated. In that direction, the concept of hurdle technology involving a sequence of different interventions have been widely explored. Among those interventions, ultraviolet (UV) light alone or in combination with other treatments such as use of organic acids or sanitizer solutions, has found to be a promising approach to maintain the microbiological safety and quality of fresh and fresh-cut produce. Recent advances in using UV as a part of hurdle technology on the safety of fresh produce at different stages are presented here. Furthermore, this review discusses the mechanism of UV induced antimicrobial activity, factors that influence antimicrobial efficacy and its effect on produce. In addition, the challenges, and prospects of using UV irradiation as an intervention treatment were also discussed.
Collapse
Affiliation(s)
- Veerachandra Yemmireddy
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
- School of Earth, Environmental and Marine Sciences & Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Achyut Adhikari
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
- *Correspondence: Achyut Adhikari
| | - Juan Moreira
- School of Nutrition and Food Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
34
|
Meireles Mafaldo Í, Priscila Barros de Medeiros V, Karoline Almeida da Costa W, Francisca da Costa Sassi C, da Costa Lima M, Leite de Souza E, Eduardo Barão C, Colombo Pimentel T, Magnani M. Survival during long-term storage, membrane integrity, and ultrastructural aspects of Lactobacillus acidophilus 05 and Lacticaseibacillus casei 01 freeze-dried with freshwater microalgae biomasses. Food Res Int 2022; 159:111620. [DOI: 10.1016/j.foodres.2022.111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
|
35
|
Wang Q, Pal RK, Yen HW, Naik SP, Orzeszko MK, Mazzeo A, Salvi D. Cold plasma from flexible and conformable paper-based electrodes for fresh produce sanitation: Evaluation of microbial inactivation and quality changes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Retention and Inactivation of Quality Indicator Bacteria Using a Photocatalytic Membrane Reactor. Catalysts 2022. [DOI: 10.3390/catal12070680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The development of effective disinfection treatment processes is crucial to help the water industry cope with the inevitable challenges resulting from the increase in human population and climate change. Climate change leads to heavy rainfall, flooding and hot weather events that are associated with waterborne diseases. Developing effective treatment technologies will improve our resilience to cope with these events and our capacity to safeguard public health. A submerged hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis (using ultraviolet-C low-pressure mercury lamps, as well as ultraviolet-C and ultraviolet-A light-emitting diodes panels) and the combination of both treatment processes (membrane filtration and photolysis) to retain and inactivate water quality indicator bacteria. The developed photocatalytic membranes effectively retained the target microorganisms that were then successfully inactivated by photolysis and advanced oxidation processes. The new hybrid reactor could be a promising approach to treat drinking water, recreational water and wastewater produced by different industries in small-scale systems. Furthermore, the results obtained with membranes coated with titanium dioxide and copper combined with ultraviolet-A light sources show that the process may be a promising approach to guarantee water disinfection using natural sunlight.
Collapse
|
37
|
Neokleous I, Tarapata J, Papademas P. Nonthermal turbulent flow
ultraviolet‐C
(
UV‐C
) radiation processing for cheese whey‐brines purification. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ioanna Neokleous
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology Limassol Cyprus
| | - Justyna Tarapata
- Department of Dairy Science and Quality Management, Faculty of Food Sciences University of Warmia and Mazury Olsztyn Poland
| | - Photis Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science Cyprus University of Technology Limassol Cyprus
| |
Collapse
|
38
|
Kim DK, Shin M, Kim HS, Kang DH. Inactivation efficacy of combination treatment of blue light-emitting diodes (LEDs) and riboflavin to control E. coli O157:H7 and S. Typhimurium in apple juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
40
|
The combined effect of folic acid and 365–405 nm light emitting diode for inactivation of foodborne pathogens and its bactericidal mechanisms. Int J Food Microbiol 2022; 373:109704. [DOI: 10.1016/j.ijfoodmicro.2022.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/24/2022]
|
41
|
Nicolau T, Gomes Filho N, Padrão J, Zille A. A Comprehensive Analysis of the UVC LEDs' Applications and Decontamination Capability. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2854. [PMID: 35454546 PMCID: PMC9028096 DOI: 10.3390/ma15082854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023]
Abstract
The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs' application according to the field, (2) UVC LEDs' application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs' decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets' complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users' applications.
Collapse
Affiliation(s)
- Talita Nicolau
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Núbio Gomes Filho
- School of Economics and Management, University of Minho, 4710-057 Braga, Portugal
| | - Jorge Padrão
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| | - Andrea Zille
- 2C2T-Centre for Textile Science and Technology, University of Minho, 4800-058 Guimaraes, Portugal
| |
Collapse
|
42
|
Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022; 11:653. [PMID: 35267286 PMCID: PMC8909097 DOI: 10.3390/foods11050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.
Collapse
Affiliation(s)
- Magalí Darré
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Ariel Roberto Vicente
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
43
|
Kheireddine A, Palmieri D, Vitullo D, Barberio A, Zouaoui M, De Curtis F, Sadfi-Zouaoui N, Lima G. Characterization of new yeast isolates collected from different fruits in Tunisia and biocontrol activity against Penicillium expansum on apples. JOURNAL OF PLANT PATHOLOGY 2021; 103:1169-1184. [DOI: 10.1007/s42161-021-00921-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 01/04/2025]
|
44
|
Pezzoni M, De Troch M, Pizarro RA, Costa CS. Homeophasic Adaptation in Response to UVA Radiation in Pseudomonas aeruginosa: Changes of Membrane Fatty Acid Composition and Induction of desA and desB Expression. Photochem Photobiol 2021; 98:886-893. [PMID: 34695237 DOI: 10.1111/php.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
In bacteria, exposure to changes in environmental conditions can alter membrane fluidity, thereby affecting its essential functions in cell physiology. To adapt to these changes, bacteria maintain appropriate fluidity by varying the composition of the fatty acids of membrane phospholipids, a phenomenon known as homeophasic adaptation. In Pseudomonas aeruginosa, this response is achieved mainly by two mechanisms of fatty acid desaturation: the FabA-FabB and DesA-DesB systems. This study analyzed the effect of ultraviolet-A (UVA) radiation-the major fraction of solar UV radiation reaching the Earth's surface-on the homeophasic process. The prototypical strain PAO1 was grown under sublethal UVA doses or in the dark, and the profiles of membrane fatty acids were compared at early logarithmic, logarithmic and stationary growth phases. In the logarithmic growth phase, it was observed that growth under sublethal UVA doses induced the expression of the desaturase-encoding genes desA and desB and increased the proportion of unsaturated fatty acids; in addition, membrane fluidity could also increase, as suggested by the indices used as indicators of this parameter. The opposite effect was observed in the stationary growth phase. These results demonstrate the relevant role of UVA on the homeophasic response at transcriptional level.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | | | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| |
Collapse
|
45
|
Wang W, Zhao D, Li KE, Xiang Q, Bai Y. Effect of UVC Light-Emitting Diodes on Pathogenic Bacteria and Quality Attributes of Chicken Breast. J Food Prot 2021; 84:1765-1771. [PMID: 34086892 DOI: 10.4315/jfp-21-066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to investigate the inactivation of foodborne pathogens and the quality characteristics of fresh chicken breasts after UVC light-emitting diode (UVC-LED) treatment. Fresh chicken breasts were separately inoculated with Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes at initial populations of 6.01, 5.80, and 6.22 log CFU/cm2, respectively, and then treated with UVC-LED irradiation at 1,000 to 4,000 mJ/cm2. UVC-LED irradiation inactivated the test bacteria in a dose-dependent manner. After UVC-LED treatment at 4,000 mJ/cm2, the populations of Salmonella Typhimurium, E. coli O157:H7, and L. monocytogenes on chicken breasts were decreased by 1.90, 2.25, and 2.18 log CFU/cm2, respectively. No significant changes (P > 0.05) were found in color, pH, texture, and thiobarbituric acid-reactive substances of chicken breasts following UVC-LED irradiation at doses ≤4,000 mJ/cm2. These results indicate that UVC-LED radiation is a promising technology for reducing the level of microorganisms while maintaining the physicochemical characteristics of poultry meat. HIGHLIGHTS
Collapse
Affiliation(s)
- Wenwen Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Dianbo Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - K E Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China; and Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
46
|
Combination of vaporized ethyl pyruvate and non-thermal atmospheric pressure plasma for the inactivation of bacteria on lettuce surfaces. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Vashisht P, Pendyala B, Gopisetty VVS, Patras A. Modeling and validation of delivered fluence of a continuous Dean flow pilot scale UV system: monitoring fluence by biodosimetry approach. Food Res Int 2021; 148:110625. [PMID: 34507769 DOI: 10.1016/j.foodres.2021.110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
The inactivation of pathogenic microorganisms in water and high transmittance liquid foods has been studied extensively. The efficiency of the process is relatively low for treating opaque liquid foods using traditional UV systems. This study evaluated the ability of UV-C light to inactivate foodborne pathogens in a simulated opaque fluid (6.5 to 17 cm-1) at commercial relevant flow rates (31.70, 63.40, 95.10 gph) using a pilot-scale Dean Flow UV system. In this study, a mathematical model for the prediction of delivered fluence was developed by the biodosimetry method. The results revealed that increased Reduction equivalent fluence (REF) rates were observed with increased flow rates due to additional turbulence. The experimental and calculated REF were well correlated with the UV-C absorption coefficient range of 6.5 to 17 cm-1 indicating efficient mixing in the reactor. REF scaled up linearly at experimental conditions as an inverse function of flow rate and absorption coefficient, and a linear mathematical model (R2 > 0.99, p < 0.05) to predict delivered REF was developed. The model was tested and validated against independent experiments using Salmonella Typhimurium and Bacillus cereus endospores. The predicted and experimental REF values were in close agreement (p > 0.05). It is demonstrated that the developed model can predict the REF, thus microbial inactivation of microbial suspensions in simulated fluid with the absorption coefficient of 6.5-17 cm-1 and flow rates of 31.70-95.10 gph. The pilot system will be field-tested against microorganisms in highly absorbing and scattering fluids.
Collapse
Affiliation(s)
- Pranav Vashisht
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Brahmaiah Pendyala
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| | - Vybhav Vipul Sudhir Gopisetty
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Ankit Patras
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| |
Collapse
|
48
|
Pilard E, Harrouard J, Miot-Sertier C, Marullo P, Albertin W, Ghidossi R. Wine yeast species show strong inter- and intra-specific variability in their sensitivity to ultraviolet radiation. Food Microbiol 2021; 100:103864. [PMID: 34416964 DOI: 10.1016/j.fm.2021.103864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
While the trend in winemaking is toward reducing the inputs and especially sulphites utilization, emerging technologies for the preservation of wine is a relevant topic for the industry. Amongst yeast spoilage in wine, Brettanomyces bruxellensis is undoubtedly the most feared. In this study, UV-C treatment is investigated. This non-thermal technique is widely used for food preservation. A first approach was conducted using a drop-platted system to compare the sensitivity of various strains to UV-C surface treatment. 147 strains distributed amongst fourteen yeast species related to wine environment were assessed for six UV-C doses. An important variability in UV-C response was observed at the interspecific level. Interestingly, cellar resident species, which are mainly associated with wine spoilage, shows higher sensitivity to UV-C than vineyard-resident species. A focus on B. bruxellensis species with 104 screened strains highlighted an important effect of the UV-C, with intra-specific variation. This intra-specific variation was confirmed on 6 strains in liquid red wine by using a home-made pilot. 6624 J.L-1 was enough for a reduction of 5 log10 of magnitude for 5 upon 6 strains. These results highlight the potential of UV-C utilization against wine yeast spoiler at cellar scale.
Collapse
Affiliation(s)
- Etienne Pilard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Jules Harrouard
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Cécile Miot-Sertier
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France
| | - Philippe Marullo
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France; Biolaffort, 11 Rue Aristide Bergès, F-33270, Floirac, France
| | - Warren Albertin
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France; ENSCBP, Bordeaux INP, F-33600, Pessac, France
| | - Rémy Ghidossi
- Univ. Bordeaux, ISVV, Unité de Recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux INP, F-33882, Villenave d'Ornon, France.
| |
Collapse
|
49
|
Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Rathi N, Kumar S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables– a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Lundgren GA, Braga SDP, de Albuquerque TMR, Árabe Rimá de Oliveira K, Tavares JF, Vieira WADS, Câmara MPS, de Souza EL. Antifungal effects of Conyza bonariensis (L.) Cronquist essential oil against pathogenic Colletotrichum musae and its incorporation in gum Arabic coating to reduce anthracnose development in banana during storage. J Appl Microbiol 2021; 132:547-561. [PMID: 34331731 DOI: 10.1111/jam.15244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 11/30/2022]
Abstract
AIM This study evaluated the inhibitory effects on mycelial growth and damage on membrane integrity and enzymatic activity caused by Conyza bonariensis essential oil (CBEO) on distinct pathogenic Colletotrichum musae isolates, as well as the preventive and curative effects of coatings with gum Arabic (GA) and CBEO to reduce anthracnose development in banana during room temperature storage. The effects of GA-CBEO coatings on some physicochemical parameters of banana were investigated during room temperature storage. METHOD AND RESULTS CBEO (0.4-1 μl ml-1 ) inhibited the mycelial growth of C. musae isolates in laboratory media. The exposure of C. musae conidia to CBEO (0.6 μl ml-1 ) for 3 and 5 days resulted in high percentages of conidia with damaged cytoplasmic membrane and without enzymatic activity. Coatings with GA (0.1 mg ml-1 ) and CBEO (0.4-1 μl ml-1 ) reduced the anthracnose development in banana artificially contaminated with C. musae during storage. In most cases, the disease severity indexes found for GA-CBEO-coated banana were lower than or similar to those for banana treated with commercial fungicide. GA-CBEO-coated banana had reduced alterations in physicochemical parameters during storage, indicating more prolonged storability. CONCLUSION The application of GA-CBEO coatings is effective to delay the anthracnose development in banana during storage, which should help to reduce the amount of fungicides used to control postharvest diseases in this fruit. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study showing the efficacy of coatings formulated with GA and CBEO to delay the development of anthracnose in banana, as well as to decrease alterations in physicochemical parameters indicative of postharvest quality of this fruit during storage. In a practical point of view, GA-CBEO coatings could be innovative strategies to delay the anthracnose development and postharvest losses in banana.
Collapse
Affiliation(s)
- Giovanna Alencar Lundgren
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Selma Dos Passos Braga
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Katarine Árabe Rimá de Oliveira
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Josean Fechine Tavares
- Unity of Characterization and Analysis, Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Marcos Paz Saraiva Câmara
- Laboratory of Mycology, Department of Agronomy, Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|