1
|
Mejia R, Slatko B, Almazan C, Cimino R, Krolewiecki A, Duran NM, Valera Aspetty JE, Vargas PA, Oliveira Amorim CC, Geiger SM, Fujiwara RT, Ramirez JD, Llangarí-Arizo LM, Guadalupe I, Villanueva-Lizama LE, Cruz-Chan JV, Ojeda ML, Aranda EM, Benedetti SO, Camones Rivera MD, Sabino EM, Pineda C, Wetzel EJ, Cooper PJ. Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection. Trop Med Infect Dis 2024; 9:226. [PMID: 39453253 PMCID: PMC11511502 DOI: 10.3390/tropicalmed9100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
We discuss the potential usefulness of molecular testing of soil, dust, and water samples to detect medically important parasites, and where such testing could be used to supplement stool sampling in humans. A wide variety of parasites including protozoa and helminths, many of which are zoonotic, have an important infection reservoir in the environment. In some cases, this environmental period is essential for further parasite development. We describe the progress in implementing methods for the molecular detection of these parasites in soil across eight collaborating centers in Latin America and represent a variety of potential applications in improving our understanding of parasite epidemiology and mapping, surveillance, and control of these parasites. This methodology offers new opportunities for improving our understanding of a wide variety of parasites of public health importance and novel tools for their control.
Collapse
Affiliation(s)
- Rojelio Mejia
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Salta 4400, Argentina; (C.A.); (R.C.); (A.K.)
- Escuela de Medicina, Universidad Internacional del Ecuador UIDE, Quito 170411, Ecuador;
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (L.E.V.-L.); (J.V.C.-C.)
- Centro de Investigaciones Medicas, Facultad de Ciencias de la Salud, Universidad Nacional Del Este, Minga Guazu 7420, Paraguay; (M.L.O.); (E.M.A.); (S.O.B.)
| | - Barton Slatko
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Cristina Almazan
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Salta 4400, Argentina; (C.A.); (R.C.); (A.K.)
| | - Ruben Cimino
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Salta 4400, Argentina; (C.A.); (R.C.); (A.K.)
| | - Alejandro Krolewiecki
- Instituto de Investigaciones de Enfermedades Tropicales, Universidad Nacional de Salta, Salta 4400, Argentina; (C.A.); (R.C.); (A.K.)
| | - Natalia Montellano Duran
- Ingeniería en Biotecnología, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra 537, Bolivia; (N.M.D.); (J.E.V.A.); (P.A.V.)
| | - Jacob Edwin Valera Aspetty
- Ingeniería en Biotecnología, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra 537, Bolivia; (N.M.D.); (J.E.V.A.); (P.A.V.)
| | - Paola Andrea Vargas
- Ingeniería en Biotecnología, Universidad Católica Boliviana San Pablo, Santa Cruz de la Sierra 537, Bolivia; (N.M.D.); (J.E.V.A.); (P.A.V.)
| | - Chiara Cássia Oliveira Amorim
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.C.O.A.); (S.M.G.); (R.T.F.)
| | - Stefan Michael Geiger
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.C.O.A.); (S.M.G.); (R.T.F.)
| | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (C.C.O.A.); (S.M.G.); (R.T.F.)
| | - Juan David Ramirez
- Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110141, Colombia;
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Liliana E. Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (L.E.V.-L.); (J.V.C.-C.)
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida 97000, Mexico; (L.E.V.-L.); (J.V.C.-C.)
| | - María Leticia Ojeda
- Centro de Investigaciones Medicas, Facultad de Ciencias de la Salud, Universidad Nacional Del Este, Minga Guazu 7420, Paraguay; (M.L.O.); (E.M.A.); (S.O.B.)
| | - Eva Mereles Aranda
- Centro de Investigaciones Medicas, Facultad de Ciencias de la Salud, Universidad Nacional Del Este, Minga Guazu 7420, Paraguay; (M.L.O.); (E.M.A.); (S.O.B.)
| | - Sandra Ocampos Benedetti
- Centro de Investigaciones Medicas, Facultad de Ciencias de la Salud, Universidad Nacional Del Este, Minga Guazu 7420, Paraguay; (M.L.O.); (E.M.A.); (S.O.B.)
| | - Maritza Dalí Camones Rivera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco 10003, Peru; (M.D.C.R.); (C.P.)
| | - Eddyson Montalvo Sabino
- Instituto de Investigación de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas 01001, Peru;
| | - Carlos Pineda
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco 10003, Peru; (M.D.C.R.); (C.P.)
| | - Eric J. Wetzel
- Department of Biology, and Global Health Initiative, Wabash College, Crawfordsville, IN 47933, USA;
| | - Philip J. Cooper
- Escuela de Medicina, Universidad Internacional del Ecuador UIDE, Quito 170411, Ecuador;
- Institute of Infection and Immunity, St George’s University of London, London SW17 0RE, UK
| |
Collapse
|
2
|
Kumar R, Meena AS, Baraiya T, Swarnkar CP, Misra SS, Kumar A. Expression of Toll-like receptors in Haemonchus Contortus resistant sheep: An innate immune parameter for host defense against gastrointestinal nematode infection. Vet Immunol Immunopathol 2024; 275:110813. [PMID: 39142124 DOI: 10.1016/j.vetimm.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Innate immune parameters, a first line of defense against invading pathogens like bacteria, parasites, fungi, etc, play a significant role in the prevention and elimination of aetiological agents primarily by recognition of invading pathogen-specific molecules by different pattern recognition receptors. Toll-like receptors (TLRs), a type-I transmembrane glycoprotein, cause innate immune responses mainly by produing inflammatory cytokines, chemokines and interferons. The objective of present study was to determine the role of TLRs in parasite resistance in Malpura sheep. In the current study, transcript variation of TLRs and its downstream signalling molecules namely MyD88, TRIF, IRF-3, TRAF, TGF-β, NFκB, and CD14 were ascertained by real-time PCR in Haemonchus contortus resistant (R) and susceptible (S) Malpura sheep. Results have shown significantly (P<0.05) up-regulated expression of TLR-2, TLR-4, TLR-5, TLR-8 and TLR-10 in July however down-regulated patterns were observed in August and September in R-line sheep compared to S-line sheep. This indicates that at more or less equal parasite load, the TLR genes in R sheep produce more transcripts, but after parasite loads have increased hugely in the S line, they easily surpass the levels seen in the S line. Result suggests that transcriptional activity of the TLR genes was related to parasite load and there were differences between the lines at different infection intensities. Three-point transcript expression observation of the signalling molecules namely TRIF, IRF-3, TRAF, a similar pattern was observed in R sheep compared with S sheep.
Collapse
Affiliation(s)
- Rajiv Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India.
| | - A S Meena
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - Trusha Baraiya
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - C P Swarnkar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - S S Misra
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - Arun Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| |
Collapse
|
3
|
Encalada-Mena LA, Torres-Acosta JF, Sandoval-Castro CA, Reyes-Guerrero DE, Mancilla-Montelongo MG, López-Arellano R, Olmedo-Juárez A, López-Arellano ME. Comparison of P-glycoprotein gene expression of two Haemonchus contortus isolates from Yucatan, Mexico, with resistant or susceptible phenotype to ivermectin in relation to a susceptible reference strain. Vet Parasitol Reg Stud Reports 2024; 52:101047. [PMID: 38880566 DOI: 10.1016/j.vprsr.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024]
Abstract
The variability in the expression of different P-glycoprotein (P-gp) genes in parasitic nematodes of ruminants such as Haemonchus contortus (Hco-pgp) may be caused by different factors including nematode biology, geographical region and anthelmintic pressure. This study analysed the relative expression level of 10 P-gp genes in two H. contortus (Hco-pgp) field isolates from Yucatan, Mexico: 1) PARAISO (IVM-resistant) and 2) FMVZ-UADY (IVM-susceptible). These isolates were compared with a susceptible reference isolate from Puebla, Mexico, namely "CENID-SAI". In all cases H. contortus adult males were used. The Hco-pgp genes (1, 2, 3, 4, 9, 10, 11, 12, 14 and 16) were analysed for each isolate using the RT-qPCR technique. The Hco-pgp expressions were pairwise compared using the 2-ΔΔCt method and a t-test. The PARAISO isolate showed upregulation compared to the CENID-SAI isolate for Hco-pgp 1, 3, 9, 10 and 16 (P < 0.05), and the PARAISO isolate showed upregulation vs. FMVZ-UADY isolate for Hco-pgp 2 and 9 (P < 0.05), displaying 6.58- and 5.93-fold differences (P < 0.05), respectively. In contrast, similar Hco-pgp gene expression levels were recorded for FMVZ-UADY and CENID-SAI isolates except for Hco-pgp1 (P <0.1), which presented a significant upregulation (6.08-fold). The relative expression of Hco-pgp allowed confirming the IVM-resistant status of the PARAISO isolate and the IVM-susceptible status of the FMVZ-UADY isolate when compared to the CENID-SAI reference isolate. Therefore, understanding the association between the Hco-pgp genes expression of H. contortus and its IVM resistance status could help identifying the genes that could be used as molecular markers in the diagnosis of IVM resistance. However, it is important to consider the geographic origin of the nematode isolate and the deworming history at the farm of origin.
Collapse
Affiliation(s)
- Lisandro Alberto Encalada-Mena
- Facultad de Ciencias Agropecuarias, Universidad Autónoma de Campeche, Calle 53 S/N, Col. Unidad, Esfuerzo y Trabajo #2, C.P. 24350 Campeche, Mexico
| | - Juan Felipe Torres-Acosta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carr. Mérida-Xmatkuil, C.P. 97100 Mérida, Yucatán, Mexico
| | - Carlos Alfredo Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carr. Mérida-Xmatkuil, C.P. 97100 Mérida, Yucatán, Mexico
| | - David E Reyes-Guerrero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla # 8534, C.P. 62550 Jiutepec, Morelos, Mexico
| | - María Gabriela Mancilla-Montelongo
- CONACYT-Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km 15.5 Carr. Mérida-Xmatkuil, CP97100 Mérida, Yucatán, Mexico
| | - Raquel López-Arellano
- Laboratorio de Ensayos de Desarrollo Farmacéutico, Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Campo 4, Universidad Nacional Autónoma de México, Carr. México-Teoloyucan Km 2.5 Sn Sebastián Xhala, Cuautitlán Izcalli, Estado de México, Mexico
| | - Agustín Olmedo-Juárez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla # 8534, C.P. 62550 Jiutepec, Morelos, Mexico
| | - Ma Eugenia López-Arellano
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Carr. Fed. Cuernavaca-Cuautla # 8534, C.P. 62550 Jiutepec, Morelos, Mexico.
| |
Collapse
|
4
|
Cai E, Wu R, Wu Y, Gao Y, Zhu Y, Li J. A systematic review and meta-analysis on the current status of anthelmintic resistance in equine nematodes: A global perspective. Mol Biochem Parasitol 2024; 257:111600. [PMID: 38030084 DOI: 10.1016/j.molbiopara.2023.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The intensive application of anthelmintics in equine has led to considerable resistance in cyathostomins and Parascaris equorum. It has been well documented that benzimidazole (BZ) and pyrantel resistance is widespread in cyathostomins and Parascaris equorum. Since no new classes of anthelmintic have been introduced in the last 40 years, it is critical to be aware of the current risk factors of anthelmintic application to avoid further resistance. OBJECTIVE To review the factors affecting the level of anthelmintics resistance in equine around the world, type of anthelmintics, mode of application, dosage, nematode species, and location of anthelmintics application were evaluated and summarized. DESIGN/PROCEDURE A systematic review and meta-analyses following the PRISMA Framework were conducted to identify, evaluate, and synthesize primary literature reporting the efficacy of anthelmintic drugs in equines. Information on the bibliographic data, anthelmintic drugs, animals, continents, parasite genera, type of anthelmintics, and dosage was collected. Nonparametric tests (Kruskal-Wallis and Mann-Whitney) were used in SPSS (v.27) to investigate the association between variables. Factors that have a significant impact on efficacy have been subjected to binary logistic regression. Six meta-analyses were conducted in Microsoft Excel (2021) to qualify current resistance issues of the three major anthelmintics classes. RESULTS The final database was composed of 60 articles published between 1994 and 2022 with a total of 11835 animals. Anthelmintic class as well as anthelmintic active principle selection did have a significant effect on resistance (P < 0.01), whilst no correlation of the type of anthelmintics, mode of application, and dosage with efficacy were found. Anthelmintics resistance in ascarid was significantly more severe than in strongyle (P < 0.01). Macrocyclic lactone (ML) class and the benzimidazole and probenzimidazole (BP) class have the lowest efficacy against ascarid and strongyle, respectively (67.83% and 69.85%). The effect of location (by continent) also had a significant influence on the resistance of the ML class (P < 0.01). The resistance of the BP class which is the most prevalently applied was demonstrated in all six continents. Binary logistic regression revealed that parasite genera and drug class independently influenced the presence of drug resistance. The forest plots included in this study did not show a significant difference over time. CONCLUSION Current evidence indicated that anthelmintics resistance of ML and BP class were common in ascarid and strongyle. A combination of anthelmintics may reduce anthelmintics resistance, but multi-drug resistance may be a concern. Customerised anthelmintics strategy could help reduce resistance.
Collapse
Affiliation(s)
- Enjia Cai
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rongzheng Wu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhong Wu
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Yu Gao
- University of Veterinary Medicine Hannover Foundation, Hannover D-30559, Germany
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
6
|
Myhill LJ, Williams AR. Diet-microbiota crosstalk and immunity to helminth infection. Parasite Immunol 2023; 45:e12965. [PMID: 36571323 DOI: 10.1111/pim.12965] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/27/2022]
Abstract
Helminths are large multicellular parasites responsible for widespread chronic disease in humans and animals. Intestinal helminths live in close proximity with the host gut microbiota and mucosal immune network, resulting in reciprocal interactions that closely influence the course of infections. Diet composition may strongly regulate gut microbiota composition and intestinal immune function and therefore may play a key role in modulating anti-helminth immune responses. Characterizing the multitude of interactions that exist between different dietary components (e.g., dietary fibres), immune cells, and the microbiota, may shed new light on regulation of helminth-specific immunity. This review focuses on the current knowledge of how metabolism of dietary components shapes immune response during helminth infection, and how this information may be potentially harnessed to design new therapeutics to manage parasitic infections and associated diseases.
Collapse
Affiliation(s)
- Laura J Myhill
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Shaver AO, Wit J, Dilks CM, Crombie TA, Li H, Aroian RV, Andersen EC. Variation in anthelmintic responses are driven by genetic differences among diverse C. elegans wild strains. PLoS Pathog 2023; 19:e1011285. [PMID: 37011090 PMCID: PMC10101645 DOI: 10.1371/journal.ppat.1011285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Treatment of parasitic nematode infections in humans and livestock relies on a limited arsenal of anthelmintic drugs that have historically reduced parasite burdens. However, anthelmintic resistance (AR) is increasing, and little is known about the molecular and genetic causes of resistance for most drugs. The free-living roundworm Caenorhabditis elegans has proven to be a tractable model to understand AR, where studies have led to the identification of molecular targets of all major anthelmintic drug classes. Here, we used genetically diverse C. elegans strains to perform dose-response analyses across 26 anthelmintic drugs that represent the three major anthelmintic drug classes (benzimidazoles, macrocyclic lactones, and nicotinic acetylcholine receptor agonists) in addition to seven other anthelmintic classes. First, we found that C. elegans strains displayed similar anthelmintic responses within drug classes and significant variation across drug classes. Next, we compared the effective concentration estimates to induce a 10% maximal response (EC10) and slope estimates of each dose-response curve of each strain to the laboratory reference strain, which enabled the identification of anthelmintics with population-wide differences to understand how genetics contribute to AR. Because genetically diverse strains displayed differential susceptibilities within and across anthelmintics, we show that C. elegans is a useful model for screening potential nematicides before applications to helminths. Third, we quantified the levels of anthelmintic response variation caused by genetic differences among individuals (heritability) to each drug and observed a significant correlation between exposure closest to the EC10 and the exposure that exhibited the most heritable responses. These results suggest drugs to prioritize in genome-wide association studies, which will enable the identification of AR genes.
Collapse
Affiliation(s)
- Amanda O. Shaver
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Janneke Wit
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Clayton M. Dilks
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Timothy A. Crombie
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Hanchen Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Raffi V. Aroian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
8
|
Liu Y, Wang X, Luo X, Wang R, Zhai B, Wang P, Li J, Yang X. Transcriptomics and Proteomics of Haemonchus contortus in Response to Ivermectin Treatment. Animals (Basel) 2023; 13:ani13050919. [PMID: 36899776 PMCID: PMC10000067 DOI: 10.3390/ani13050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
A major problem faced by the agricultural industry is the resistance of Haemonchus contortus to anthelmintic drugs. For a better understanding of the response of H. contortus to IVM and for the screening of drug-resistance-related genes, we used RNA sequencing and isobaric tags for relative and absolute quantification (iTRAQ) technology to detect the transcriptomic and proteomic changes in H. contortus after ivermectin treatment. An integrated analysis of the two omics showed that the differentially expressed genes and proteins were significantly enriched in the pathways of amino acid degradation, the metabolism of xenobiotics by cytochrome P450, the biosynthesis of amino acids, and the tricarboxylic acid cycle. We found that the upregulated UDP-glycosyltransferases (UGT), glutathione S-transferase (GST), cytochrome P450 (CYP), and p-glycoprotein (Pgp) genes play important roles in drug resistance in H. contortus. Our work will help in the understanding of the transcriptome and proteome changes in H. contortus after IVM and will facilitate the discovery of genes related to drug resistance. This information can be further applied to increase the understanding of the response of IVM in relation to H. contortus.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaomin Wang
- The Bureau of Agriculture and Animal Husbandry of Kalaqin Banner, Chifeng 024400, China
- Correspondence: (X.W.); (X.Y.)
| | - Xiaoping Luo
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Lanzhou 730050, China
| | - Penglong Wang
- Department of Veterinary Parasitology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyan Li
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot 010030, China
| | - Xiaoye Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
- Correspondence: (X.W.); (X.Y.)
| |
Collapse
|
9
|
Tuersong W, Liu X, Wang Y, Wu S, Qin P, Zhu S, Liu F, Wang C, Hu M. Comparative Metabolome Analyses of Ivermectin-Resistant and -Susceptible Strains of Haemonchus contortus. Animals (Basel) 2023; 13:ani13030456. [PMID: 36766346 PMCID: PMC9913829 DOI: 10.3390/ani13030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Resistance to anthelmintics such as ivermectin (IVM) is currently a major problem in the treatment of Haemonchus contortus, an important parasitic nematode of small ruminants. Although many advances have been made in understanding the IVM resistance mechanism, its exact mechanism remains unclear for H. contortus. Therefore, understanding the resistance mechanism becomes increasingly important for controlling haemonchosis. Recent research showed that the metabolic state of bacteria influences their susceptibility to antibiotics. However, little information is available on the roles of metabolites and metabolic pathways in IVM resistance of H. contortus. In this study, comparative analyses of the metabolomics of IVM-susceptible and -resistant adult H. contortus worms were carried out to explore the role of H. contortus metabolism in IVM resistance. In total, 705 metabolites belonging to 42 categories were detected, and 86 differential metabolites (17 upregulated and 69 downregulated) were identified in the IVM-resistant strain compared to the susceptible one. A KEGG pathway analysis showed that these 86 differential metabolites were enriched in 42 pathways that mainly included purine metabolism; the biosynthesis of amino acids; glycine, serine, and threonine metabolism; and cysteine and methionine metabolism. These results showed that amino acid metabolism may be mediated by the uptake of IVM and related with IVM resistance in H. contortus. This study contributes to our understanding of the mechanisms of IVM resistance and may provide effective approaches to manage infection by resistant strains of H. contortus.
Collapse
|
10
|
Anthelmintic Agents from African Medicinal Plants: Review and Prospects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8023866. [PMID: 36624864 PMCID: PMC9825222 DOI: 10.1155/2022/8023866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 01/02/2023]
Abstract
Soil-transmitted helminthiasis affects more than 1.5 billion people globally and largely remains a sanitary problem in Africa. These infections place a huge economic burden on poor countries and affect livestock production, causing substantial economic losses and poor animal health. The emergence of anthelmintic resistance, especially in livestock, and the potential for its widespread in humans create a need for the development of alternative therapies. Medicinal plants play a significant role in the management of parasitic diseases in humans and livestock, especially in Africa. This report reviews anthelmintic studies that have been conducted on medicinal plants growing in Africa and published within the past two decades. A search was made in various electronic databases, and only full articles in English were included in the review. Reports show that aqueous and hydroalcoholic extracts and polar fractions obtained from these crude extracts form the predominant (80%) form of the extracts studied. Medicinal plants, extracts, and compounds with different chemical groups have been studied for their anthelmintic potential. Polyphenols and terpenoids are the most reported groups. More than 64% of the studies employed in vitro assays against parasitic and nonparasitic nematode models. Egg hatch inhibition, larval migration inhibition, and paralysis are the common parameters assessed in vitro. About 72% of in vivo models involved small ruminants, 15% rodents, and 5% chicken. Egg and worm burden are the main factors assessed in vivo. There were no reports on interventions in humans cited within the period under consideration. Also, few reports have investigated the potential of combining plant extracts with common anthelmintic drugs. This review reveals the huge potential of African medicinal plants as sources of anthelmintic agents and the dire need for in-depth clinical studies of extracts, fractions, and compounds from African plants as anthelmintic agents in livestock, companion animals, and humans.
Collapse
|
11
|
Signs of multiple anthelmintic resistance in sheep gastrointestinal nematodes in Sweden. Vet Parasitol Reg Stud Reports 2022; 36:100789. [PMID: 36436900 DOI: 10.1016/j.vprsr.2022.100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Gastrointestinal nematodes in small ruminants are clinically and economically important parasites that often are controlled with anthelmintics. In this study, we compiled information on the anthelmintic efficacy collected on sheep farms according to routines established by Farm & Animal Health in Sweden. The efficacies of benzimidazoles (i.e. albendazole or fenbendazole, n = 30), ivermectin (n = 47), levamisole (n = 2) or moxidectin (n = 2) were examined between 2015 and 2021 in 81 treatment groups on 49 non-randomly selected farms in south-central Sweden. Drug efficacies were estimated with the faecal egg count reduction test. In addition, efficacy data were in most cases supplemented with data on the abundance of the three most common nematode genera in sheep by performing droplet digital (dd) PCR on coprocultures. Efficacies of <95% for benzimidazoles or ivermectin were identified in 37% and 77% of the tested groups, respectively. In addition, on 27 (55%) of the 49 farms where both benzimidazoles and ivermectin were tested, multiple resistance was found on 8 (30%). In contrast, on each of the two farms tested for levamisole and moxidectin both drugs proved to be 100% effective. However, because post-sampling was performed earlier than recommended in several susceptible groups (benzimidazoles = 15, and ivermectin = 10 groups), this could have underestimated the severity of the situation. Mainly larvae from the genus Haemonchus were detected in post-treatment coprocultures, in all groups with declared resistance, suggesting that this parasite was primarily associated with anthelmintic resistance. Unexpectedly, the DNA of larvae, which survived treatment, was also detected on farms declared as susceptible. Taken together, this indicates that the situation regarding the anthelmintic efficacy has deteriorated compared with the latest nationwide study on Swedish sheep farms conducted more than a decade ago. Unlike the previous study, the farm selection here was not strictly randomized but rather opportunistic i.e., only farms with a recognized parasite problem were included. Thus, there is a need for a truly randomized study to get an update on the extent of the situation of anthelmintic resistance at a national level, as well as to identify risk factors involved in the resistance selection. Research is also required to establish the optimal intervals for sampling post-treatment.
Collapse
|
12
|
Doyle SR, Laing R, Bartley D, Morrison A, Holroyd N, Maitland K, Antonopoulos A, Chaudhry U, Flis I, Howell S, McIntyre J, Gilleard JS, Tait A, Mable B, Kaplan R, Sargison N, Britton C, Berriman M, Devaney E, Cotton JA. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep 2022; 41:111522. [PMID: 36261007 PMCID: PMC9597552 DOI: 10.1016/j.celrep.2022.111522] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Like other pathogens, parasitic helminths can rapidly evolve resistance to drug treatment. Understanding the genetic basis of anthelmintic drug resistance in parasitic nematodes is key to tracking its spread and improving the efficacy and sustainability of parasite control. Here, we use an in vivo genetic cross between drug-susceptible and multi-drug-resistant strains of Haemonchus contortus in a natural host-parasite system to simultaneously map resistance loci for the three major classes of anthelmintics. This approach identifies new alleles for resistance to benzimidazoles and levamisole and implicates the transcription factor cky-1 in ivermectin resistance. This gene is within a locus under selection in ivermectin-resistant populations worldwide; expression analyses and functional validation using knockdown experiments support that cky-1 is associated with ivermectin survival. Our work demonstrates the feasibility of high-resolution forward genetics in a parasitic nematode and identifies variants for the development of molecular diagnostics to combat drug resistance in the field.
Collapse
Affiliation(s)
- Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - David Bartley
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Penicuik, Midlothian EH26 0PZ, UK
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Alistair Antonopoulos
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ilona Flis
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sue Howell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - John S Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, Faculty of Veterinary Medicine, University of Calgary, Calgary T2N 1N4, Canada
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Barbara Mable
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | | | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - James A Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
13
|
Adduci I, Sajovitz F, Hinney B, Lichtmannsperger K, Joachim A, Wittek T, Yan S. Haemonchosis in Sheep and Goats, Control Strategies and Development of Vaccines against Haemonchus contortus. Animals (Basel) 2022; 12:ani12182339. [PMID: 36139199 PMCID: PMC9495197 DOI: 10.3390/ani12182339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Haemonchus contortus is the most pathogenic blood-feeding parasitic nematode in sheep and goats, threatening animal welfare and causing tremendous economic losses to the small ruminant industry. This comprehensive review article sums up current control strategies, worm-derived antigens and recent advances in anti-Haemonchus vaccine development. New insights into antigen engineering and general considerations for clinical trials are discussed here. Abstract The evolutionary success of parasitic worms causes significant economic losses and animal health problems, including in the small ruminant industry. The hematophagous nematode Haemonchus contortus is a common endoparasite that infects wild and domestic ruminants worldwide, especially in tropical and subtropical regions. To date, the most commonly applied control strategy is the administration of anthelminthic drugs. The main disadvantages of these chemicals are their ecotoxic effects, the necessary withdrawal period (especially important in dairy animals) and the increasing development of resistance. Vaccines offer an attractive alternative control strategy against Haemonchus infections. In previous years, several potential vaccine antigens prepared from H. contortus using the latest technologies have been assessed in clinical trials using different methods and strategies. This review highlights the current state of knowledge on anti-H. contortus vaccines (covering native, recombinant and DNA-based vaccines), including an evaluation, as well a discussion of the challenges and achievements in developing protective, efficient, and long-lasting vaccines to control H. contortus infection and haemonchosis in small ruminants. This paper also addresses novel developments tackling the challenge of glycosylation of putative candidates in recombinant form.
Collapse
Affiliation(s)
- Isabella Adduci
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Floriana Sajovitz
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Barbara Hinney
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Katharina Lichtmannsperger
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Thomas Wittek
- University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
| | - Shi Yan
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Wien, Austria
- Correspondence:
| |
Collapse
|
14
|
Rinaldi L, Krücken J, Martinez-Valladares M, Pepe P, Maurelli MP, de Queiroz C, Castilla Gómez de Agüero V, Wang T, Cringoli G, Charlier J, Gilleard JS, von Samson-Himmelstjerna G. Advances in diagnosis of gastrointestinal nematodes in livestock and companion animals. ADVANCES IN PARASITOLOGY 2022; 118:85-176. [PMID: 36088084 DOI: 10.1016/bs.apar.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diagnosis of gastrointestinal nematodes in livestock and companion animals has been neglected for years and there has been an historical underinvestment in the development and improvement of diagnostic tools, undermining the undoubted utility of surveillance and control programmes. However, a new impetus by the scientific community and the quickening pace of technological innovations, are promoting a renaissance of interest in developing diagnostic capacity for nematode infections in veterinary parasitology. A cross-cutting priority for diagnostic tools is the development of pen-side tests and associated decision support tools that rapidly inform on the levels of infection and morbidity. This includes development of scalable, parasite detection using artificial intelligence for automated counting of parasitic elements and research towards establishing biomarkers using innovative molecular and proteomic methods. The aim of this review is to assess the state-of-the-art in the diagnosis of helminth infections in livestock and companion animals and presents the current advances of diagnostic methods for intestinal parasites harnessing (i) automated methods for copromicroscopy based on artificial intelligence, (ii) immunodiagnosis, and (iii) molecular- and proteome-based approaches. Regardless of the method used, multiple factors need to be considered before diagnostics test results can be interpreted in terms of control decisions. Guidelines on how to apply diagnostics and how to interpret test results in different animal species are increasingly requested and some were recently made available in veterinary parasitology for the different domestic species.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy.
| | - J Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - P Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - M P Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | - C de Queiroz
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada; Faculty of Veterinary Medicine, St Georges University, Grenada
| | - V Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - T Wang
- Kreavet, Kruibeke, Belgium
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II", Naples, Italy
| | | | - J S Gilleard
- Faculty of Veterinary Medicine, 3331 Hospital Drive, Host-Parasite Interactions (HPI) Program University of Calgary, Calgary, Alberta, Canada
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Hassan NMF, Ghazy AA. Advances in diagnosis and control of anthelmintic resistant gastrointestinal helminths infecting ruminants. J Parasit Dis 2022; 46:901-915. [PMID: 36091263 PMCID: PMC9458815 DOI: 10.1007/s12639-021-01457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Infection with gastrointestinal helminths is widely spread among ruminant causing severe losses and adversely affects the livestock husbandry. Synthetic chemotherapeutics have been utilized throughout years, as a means of combating helminthiasis. Anthelmintic resistance (AR) has a serious concern on livestock industry which, mainly arises as outcome of misuse, improper dosing and frequent utilization of the synthetic drugs.Various gastrointestinal helminths have the capability to survive the therapeutic dose of anthelmintics and become resistant to the major anthelmintic classes. Early diagnosis might delay or reduce the risk of AR. Conventional phenotyping methods were commonly used for detection of anthelmintic resistant helminths, but appeared to lack of sensitivity, especially when the frequency of resistant allele is very low. Several molecular assays were carried out to detect the AR with greater accuracy. Sustainable effective preventive and control measures for gastrointestinal helminths infection remain the corner stone to overcome AR. Rational use of anthelmintics with keeping unexposed proportion of worm populations, could have the potentiality to maintain and prolong the efficacy of anthelmintics. Several alternative anthelmintic treatments might offer valuable solutions either alone or adjunct to synthetic drugs to dilute the spread of resistance alleles among the helminths population. This article reviews current status of various diagnostic methods and control measures for anthelmintic resistant gastrointestinal helminths infecting ruminants and tries to present a practical protocol to avoid or delay the development of AR.
Collapse
Affiliation(s)
- Noha M. F. Hassan
- Department of Parasitology and Animal Diseases, National Research Centre, P.O. Box: 12622, Cairo, Egypt
| | - Alaa A. Ghazy
- Department of Parasitology and Animal Diseases, National Research Centre, P.O. Box: 12622, Cairo, Egypt
| |
Collapse
|
16
|
The equine ascarids: resuscitating historic model organisms for modern purposes. Parasitol Res 2022; 121:2775-2791. [PMID: 35986167 PMCID: PMC9391215 DOI: 10.1007/s00436-022-07627-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organisms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the importance of foundational research programs. Although two variants of this parasite were recognized based on the number of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding assumptions that resistance mechanisms can be applied across clades.
Collapse
|
17
|
Transgenic Expression of Haemonchus contortus Cytochrome P450 Hco-cyp-13A11 Decreases Susceptibility to Particular but Not All Macrocyclic Lactones in the Model Organism Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23169155. [PMID: 36012413 PMCID: PMC9409383 DOI: 10.3390/ijms23169155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The number of reported macrocyclic lactones (ML) resistance cases across all livestock hosts is steadily increasing. Different studies in the parasitic nematode Haemonchus contortus assume the participation of cytochrome P450s (Cyps) enzymes in ML resistance. Still, functional data about their individual contribution to resistance or substrate specificity is missing. Via microinjection, transgenic Caenorhabditis elegans expressing HCON_00141052 (transgene-Hco-cyp-13A11) from extrachromosomal arrays were generated. After 24 h of exposure to different concentrations of ivermectin (IVM), ivermectin aglycone (IVMa), selamectin (SEL), doramectin (DRM), eprinomectin (EPR), and moxidectin (MOX), motility assays were performed to determine the impact of the H. contortus Cyp to the susceptibility of the worms against each ML. While transgene-Hco-cyp-13A11 significantly decreased susceptibility to IVM (four-fold), IVMa (2-fold), and SEL (3-fold), a slight effect for DRM and no effect for MOX, and EPR was observed. This substrate specificity of Hco-cyp-13A11 could not be explained by molecular modeling and docking studies. Hco-Cyp-13A11 molecular models were obtained for alleles from isolates with different resistance statuses. Although 14 amino acid polymorphisms were detected, none was resistance specific. In conclusion, Hco-cyp-13A11 decreased IVM, IVMa, and SEL susceptibility to a different extent, but its potential impact on ML resistance is not driven by polymorphisms.
Collapse
|
18
|
Laing R, Doyle SR, McIntyre J, Maitland K, Morrison A, Bartley DJ, Kaplan R, Chaudhry U, Sargison N, Tait A, Cotton JA, Britton C, Devaney E. Transcriptomic analyses implicate neuronal plasticity and chloride homeostasis in ivermectin resistance and response to treatment in a parasitic nematode. PLoS Pathog 2022; 18:e1010545. [PMID: 35696434 PMCID: PMC9232149 DOI: 10.1371/journal.ppat.1010545] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/24/2022] [Accepted: 04/23/2022] [Indexed: 12/28/2022] Open
Abstract
The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and response to treatment in parasitic helminths.
Collapse
Affiliation(s)
- Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Jennifer McIntyre
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kirsty Maitland
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Ray Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Umer Chaudhry
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Sargison
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Andy Tait
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Collette Britton
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Tuersong W, Zhou C, Wu S, Qin P, Wang C, Di W, Liu L, Liu H, Hu M. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus. Parasit Vectors 2022; 15:159. [PMID: 35524281 PMCID: PMC9077910 DOI: 10.1186/s13071-022-05274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ivermectin (IVM) is one of the most important and widely used anthelmintics in veterinary medicine. However, its efficacy is increasingly compromised by widespread resistance, and the exact mechanism of IVM resistance remains unclear for most parasitic nematodes, including Haemonchus contortus, a blood-sucking parasitic nematode of small ruminants. Methods In this study, an H. contortus IVM-resistant strain from Zhaosu, Xinjiang, China, was isolated and assessed by the control test, faecal egg count reduction test (FECRT) and the larval development assay (LDA). Subsequently, comparative analyses on the transcriptomics of IVM-susceptible and IVM-resistant adult worms of this parasite were carried out using RNA sequencing (RNA-seq) and bioinformatics. Results In total, 543 (416 known, 127 novel) and 359 (309 known, 50 novel) differentially expressed genes (DEGs) were identified in male and female adult worms of the resistant strain compared with those of the susceptible strain, respectively. In addition to several previously known candidate genes which were supposed to be associated with IVM resistance and whose functions were involved in receptor activity, transport, and detoxification, we found some new potential target genes, including those related to lipid metabolism, structural constituent of cuticle, and important pathways such as antigen processing and presentation, lysosome, autophagy, apoptosis, and NOD1-like receptor signalling pathways. Finally, the results of quantitative real-time polymerase chain reaction confirmed that the transcriptional profiles of selected DEGs (male: 8 genes, female: 10 genes) were consistent with those obtained by the RNA-seq. Conclusions Our results indicate that IVM has multiple effects, including both neuromuscular and non-neuromuscular targets, and provide valuable information for further studies on the IVM resistance mechanism in H. contortus. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05274-y.
Collapse
Affiliation(s)
- Waresi Tuersong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Simin Wu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
20
|
Cens T, Chavanieu A, Bertaud A, Mokrane N, Estaran S, Roussel J, Ménard C, De Jesus Ferreira M, Guiramand J, Thibaud J, Cohen‐Solal C, Rousset M, Rolland V, Vignes M, Charnet P. Molecular Targets of Neurotoxic Insecticides in
Apis mellifera. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thierry Cens
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Alain Chavanieu
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Anaïs Bertaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Nawfel Mokrane
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Sébastien Estaran
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Julien Roussel
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Claudine Ménard
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | | | - Janique Guiramand
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Jean‐Baptiste Thibaud
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Catherine Cohen‐Solal
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Matthieu Rousset
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Valérie Rolland
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Michel Vignes
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| | - Pierre Charnet
- Institut des Biomolécules Max Mousseron Université de Montpellier, CNRS, ENSCM 1919 Route de Mende 34293 Montpellier France
| |
Collapse
|
21
|
Absence of Polymorphisms in Codons 167, 198 and 200 of All Seven β-tubulin Isotypes of Benzimidazole Susceptible and Resistant Parascaris spp. Specimens from Australia. Pathogens 2022; 11:pathogens11050490. [PMID: 35631011 PMCID: PMC9143322 DOI: 10.3390/pathogens11050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Benzimidazoles resistance is widespread in strongyle parasitic nematodes and associated with polym orphisms in the codons 167, 198 and 200 of isotype 1 β-tubulin (tbb-1). In ascarids, benzimidazole (BZ) resistance has rarely been reported and in none of these cases were any of these polymorphisms detected. Here, available genome and transcriptome data from WormBase ParaSite were used to compare the complete β-tubulin reservoirs of Parascaris univalens, Ascaris suum and Ascaris lumbricoides. Adult Parascaris spp. specimens collected in Australia from horses after BZ treatment (susceptible, n = 13) or surviving BZ treatment and collected after ivermectin treatment (resistant, n = 10) were genotyped regarding codons 167, 198 and 200 using Sanger sequencing. Phylogenetic analyses clearly showed that there are no one-to-one ascarid orthologs of strongyle tbb-1 genes. In the reference genomes, as well as phenotypically susceptible and resistant Parascaris spp. from Australia, six out of seven β-tubulin genes showed a BZ-susceptible genotype (F167, E198, F200). The only exception were the testis-specific β-tubulin D genes from all three ascarid species that encode tyrosine at codon 200. This was observed independently of the BZ-susceptibility phenotype of Parascaris spp. These data suggest that different mechanisms lead to BZ resistance in ascarid and strongyle nematodes.
Collapse
|
22
|
Munguía B, Saldaña J, Nieves M, Melian ME, Ferrer M, Teixeira R, Porcal W, Manta E, Domínguez L. Sensitivity of Haemonchus contortus to anthelmintics using different in vitro screening assays: a comparative study. Parasit Vectors 2022; 15:129. [PMID: 35413885 PMCID: PMC9006605 DOI: 10.1186/s13071-022-05253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helminthiasis and resistance to commercial anthelmintic compounds are major causes of economic losses for livestock producers, resulting in an urgent need for new drugs and reliable in vitro screening tests capable of detecting potentially active products. Considering this, a series of novel benzimidazole derivatives (5-methylbenzimidazole 1,2-disubstituted, 5-carboxybenzimidazole, 5-methylbenzimidazole 2-one) was screened on exsheathed L3 (xL3) and on the adult stage of Haemonchus contortus (Kirby anthelmintic-susceptible McMaster isolate). METHODS This work presents the set-up of an automated motility assay on the xL3 stage of H. contortus using an infrared tracking device (WMicrotracker One) together with a larval development test (xL3 to L4) and a motility assay on the adult stage of H. contortus. A comparative study of the sensitivity of these in vitro assays using commercial anthelmintics with different mechanisms of action was carried out, also evaluating anthelmintic activity of a series of novel benzimidazole derivatives. RESULTS The automated xL3 assay had the great advantage of being able to analyze many compounds simultaneously, but it showed the limitation of having lower sensitivity, requiring higher concentrations of the commercial anthelmintics tested compared to those needed for the adult motility or development assays. Although none of the novel 1,2,5-tri-substituted benzimidazole derivatives could significantly decrease the motility of xL3s, one of them (1e) significantly affected the development of xL3s to L4, and five new compounds (1b, 1d, 1e, 2a and 2c) reduced the motility of H. contortus adult stage. CONCLUSIONS The analysis of the results strongly suggests that the in vitro xL3 to L4 development test, particularly for the L4 stage, could be closer to the pharmacological sensitivity of the adult stage of H. contortus (target of interest) for commercial anthelmintic selected, with different mechanisms of action, and for the series of benzimidazole derivatives assayed. Therefore, an automated motility assay on L4 using the infrared tracking device is being set up. Further studies will be conducted to evaluate the in vivo anthelmintic activity of the most active novel benzimidazole derivatives.
Collapse
Affiliation(s)
- Beatriz Munguía
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Jenny Saldaña
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Magdalena Nieves
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - María Elisa Melian
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Manuela Ferrer
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Ramiro Teixeira
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Williams Porcal
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Eduardo Manta
- Departamento de Química Orgánica, Facultad de Química, Laboratorio de Química Farmacéutica, Universidad de la República (Udelar), Montevideo, Uruguay
| | - Laura Domínguez
- Área de Farmacología, CIENFAR, Facultad de Química, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
23
|
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Appraisal of Cinnamaldehyde Analogs as Dual-Acting Antibiofilm and Anthelmintic Agents. Front Microbiol 2022; 13:818165. [PMID: 35369516 PMCID: PMC8966877 DOI: 10.3389/fmicb.2022.818165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cinnamaldehyde has a broad range of biological activities, which include antibiofilm and anthelmintic activities. The ever-growing problem of drug resistance and limited treatment options have created an urgent demand for natural molecules with antibiofilm and anthelmintic properties. Hence, we hypothesized that molecules with a scaffold structurally similar to that of cinnamaldehyde might act as dual inhibitors against fungal biofilms and helminths. In this regard, eleven cinnamaldehyde analogs were tested to determine their effects on fungal Candida albicans biofilm and nematode Caenorhabditis elegans. α-Methyl and trans-4-methyl cinnamaldehydes efficiently inhibited C. albicans biofilm formation (>90% inhibition at 50 μg/mL) with minimum inhibitory concentrations (MICs) of ≥ 200 μg/mL and 4-bromo and 4-chloro cinnamaldehydes exhibited anthelmintic property at 20 μg/mL against C. elegans. α-Methyl and trans-4-methyl cinnamaldehydes inhibited hyphal growth and cell aggregation. Scanning electron microscopy was employed to determine the surface architecture of C. albicans biofilm and cuticle of C. elegans, and confocal laser scanning microscopy was used to determine biofilm characteristics. The perturbation in gene expression of C. albicans was investigated using qRT-PCR analysis and α-methyl and trans-4-methyl cinnamaldehydes exhibited down-regulation of ECE1, IFD6, RBT5, UCF1, and UME6 and up-regulation of CHT4 and YWP1. Additionally, molecular interaction of these two molecules with UCF1 and YWP1 were revealed by molecular docking simulation. Our observations collectively suggest α-methyl and trans-4-methyl cinnamaldehydes are potent biofilm inhibitors and that 4-bromo and 4-chloro cinnamaldehydes are anthelmintic agents. Efforts are required to determine the range of potential therapeutic applications of cinnamaldehyde analogs.
Collapse
Affiliation(s)
- Sagar Kiran Khadke
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
24
|
Charlier J, Bartley DJ, Sotiraki S, Martinez-Valladares M, Claerebout E, von Samson-Himmelstjerna G, Thamsborg SM, Hoste H, Morgan ER, Rinaldi L. Anthelmintic resistance in ruminants: challenges and solutions. ADVANCES IN PARASITOLOGY 2022; 115:171-227. [PMID: 35249662 DOI: 10.1016/bs.apar.2021.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anthelmintic resistance (AR) is a growing concern for effective parasite control in farmed ruminants globally. Combatting AR will require intensified and integrated research efforts in the development of innovative diagnostic tests to detect helminth infections and AR, sustainable anthelmintic treatment strategies and the development of complementary control approaches such as vaccination and plant-based control. It will also require a better understanding of socio-economic drivers of anthelmintic treatment decisions, in order to support a behavioural shift and develop targeted communication strategies that promote the uptake of evidence-based sustainable solutions. Here, we review the state-of-the-art in these different fields of research activity related to AR in helminths of livestock ruminants in Europe and beyond. We conclude that in the advent of new challenges and solutions emerging from continuing spread of AR and intensified research efforts, respectively, there is a strong need for transnational multi-actor initiatives. These should involve all key stakeholders to develop indicators of infection and sustainable control, set targets and promote good practices to achieve them.
Collapse
Affiliation(s)
| | - D J Bartley
- Disease Control, Moredun Research Institute, Penicuik, United Kingdom
| | - S Sotiraki
- Veterinary Research Institute, Hellenic Agricultural Organisation ELGO-DIMITRA, Thessaloniki, Greece
| | - M Martinez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Sanidad Animal, León, Spain
| | - E Claerebout
- Ghent University, Faculty of Veterinary Medicine, Laboratory of Parasitology, Merelbeke, Belgium
| | - G von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Veterinary Centre for Resistance Research, Freie Universität Berlin, Berlin, Germany
| | - S M Thamsborg
- Veterinary Parasitology, University of Copenhagen, Frederiksberg C, Denmark
| | - H Hoste
- INRAE, UMR 1225 IHAP INRAE/ENVT, Toulouse University, Toulouse, France
| | - E R Morgan
- Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - L Rinaldi
- University of Naples Federico II, Unit of Parasitology and Parasitic Diseases, Department of Veterinary Medicine and Animal Production, CREMOPAR, Napoli, Italy.
| |
Collapse
|
25
|
Babineau M, Collis E, Ruffell A, Bunch R, McNally J, Lyons RE, Kotze AC, Hunt PW. Selection of genome-wide SNPs for pooled allelotyping assays useful for population monitoring. Genome Biol Evol 2022; 14:6531970. [PMID: 35179579 PMCID: PMC8911822 DOI: 10.1093/gbe/evac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic worms are serious pests of humans, livestock and crops worldwide. Multiple management strategies are employed in order to reduce their impact, and some of these may affect their genome and population allelic frequency distribution. The evolution of chemical resistance, ecological changes, and pest dispersal have allowed an increasing number of pests to become difficult to control with current management methods. Their lifestyle limits the use of ecological and individual-based management of populations. There is a need to develop rapid, affordable, and simple diagnostics to assess the efficacy of management strategies and delay the evolution of resistance to these strategies. This study presents a multi-locus, equal-representation, whole genome pooled SNPs selection approach as a monitoring tool for the ovine nematode parasite Haemonchus contortus. The SNP selection method used two reference genomes of different quality, then validated these SNPs against a high-quality recent genome assembly. From over 11 million high-quality SNPs identified, 334 SNPs were selected, of which 262 were species-specific, yielded similar allele frequencies when assessed as multiple individuals or as pools of individuals, and suitable to distinguish mixed nematode isolate pools from single isolate pools. As a proof-of-concept, 21 Australian H. contortus populations with various phenotypes and genotypes were screened. This analysis confirmed the overall low-level of genetic differentiation between populations collected from the field, but clearly identifying highly inbred populations, and populations showing genetic signatures associated with chemical resistance. The analysis showed that 66% of the SNPs were necessary for stability in assessing population genetic patterns, and SNP pairs did not show linkage according to allelic frequencies across the 21 populations. This method demonstrates that ongoing monitoring of parasite allelic frequencies and genetic changes can be achieved as a management assessment tool to identify drug-treatment failure, population incursions, and inbreeding signatures due to selection. The SNP selection method could also be applied to other parasite species.
Collapse
Affiliation(s)
- M Babineau
- CSIRO Agriculture and Food, Armidale, Australia
| | - E Collis
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - A Ruffell
- CSIRO Agriculture and Food, St-Lucia, Australia
| | - R Bunch
- CSIRO Agriculture and Food, Armidale, Australia
| | - J McNally
- CSIRO Agriculture and Food, Armidale, Australia
| | - R E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - A C Kotze
- CSIRO Agriculture and Food, St-Lucia, Australia
| | - P W Hunt
- CSIRO Agriculture and Food, Armidale, Australia
| |
Collapse
|
26
|
Fissiha W, Kinde MZ. Anthelmintic Resistance and Its Mechanism: A Review. Infect Drug Resist 2021; 14:5403-5410. [PMID: 34938088 PMCID: PMC8687516 DOI: 10.2147/idr.s332378] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
Helminths are a various types of parasites causing a major health problem for animals in different parts of the globe. Control of helminthiasis has largely relied on the use of pharmaceutical anthelmintics. Unfortunately, the exhaustive use of anthelmintic drugs has led to a serious and dramatic level of anthelmintic resistance. Anthelmintic resistance is a heritable loss of sensitivity of an anthelmintic in a parasite population that was in the past susceptible to the same anthelmintic. The development of anthelmintic resistance is evident to different helminths of almost every animal species and to different groups of anthelmintic in several continents. Frequent treatment, underdosing, genetics of the parasite, and targeting and timing of mass treatment are predisposing factors for anthelmintic resistance. Upregulation of cellular efflux mechanisms, an increase in drug metabolism, a change in drug receptor sites that reduces drug binding or the functional consequences of drug binding, and a decrease in drug receptor abundance through reduced expression within the parasite are the main mechanisms of anthelmintic resistance. In vivo method like fecal egg count reduction test and in vitro method such as egg hatch assays, larval motility test, larval development test and PCR can be used for the detection of anthelmintic resistance. Proper utilization of anthelmintic drugs, using combined anthelmintic and applying other alternatives are essential strategies to slow down the development of anthelmintic resistance. As anthelmintic resistance is a serious challenge throughout the world, proper utilization of the existing anthelmintics and reducing dependence on anthelmintics should be implemented to reduce its challenge.
Collapse
Affiliation(s)
- Workye Fissiha
- Department of Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Amhara Regional State, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Amhara Regional State, Ethiopia
| |
Collapse
|
27
|
A journey through 50 years of research relevant to the control of gastrointestinal nematodes in ruminant livestock and thoughts on future directions. Int J Parasitol 2021; 51:1133-1151. [PMID: 34774857 DOI: 10.1016/j.ijpara.2021.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022]
Abstract
This review article provides an historical perspective on some of the major research advances of relevance to ruminant livestock gastrointestinal nematode control over the last 50 years. Over this period, gastrointestinal nematode control has been dominated by the use of broad-spectrum anthelmintic drugs. Whilst this has provided unprecedented levels of successful control for many years, this approach has been gradually breaking down for more than two decades and is increasingly unsustainable which is due, at least in part, to the emergence of anthelmintic drug resistance and a number of other factors discussed in this article. We first cover the remarkable success story of the discovery and development of broad-spectrum anthelmintic drugs, the changing face of anthelmintic drug discovery research and the emergence of anthelmintic resistance. This is followed by a review of some of the major advances in the increasingly important area of non-pharmaceutical gastrointestinal nematode control including immunology and vaccine development, epidemiological modelling and some of the alternative control strategies such as breeding for host resistance, refugia-based methods and biological control. The last 50 years have witnessed remarkable innovation and success in research aiming to improve ruminant livestock gastrointestinal nematode control, particularly given the relatively small size of the research community and limited funding. In spite of this, the growing global demand for livestock products, together with the need to maximise production efficiencies, reduce environmental impacts and safeguard animal welfare - as well as specific challenges such as anthelmintic drug resistance and climate change- mean that gastrointestinal nematode researchers will need to be as innovative in the next 50 years as in the last.
Collapse
|
28
|
Gandasegui J, Grau-Pujol B, Cambra-Pelleja M, Escola V, Demontis MA, Cossa A, Jamine JC, Balaña-Fouce R, van Lieshout L, Muñoz J, Martínez-Valladares M. Improving stool sample processing and pyrosequencing for quantifying benzimidazole resistance alleles in Trichuris trichiura and Necator americanus pooled eggs. Parasit Vectors 2021; 14:490. [PMID: 34563247 PMCID: PMC8466976 DOI: 10.1186/s13071-021-04941-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is an urgent need for an extensive evaluation of benzimidazole efficacy in humans. In veterinary science, benzimidazole resistance has been mainly associated with three single-nucleotide polymorphisms (SNPs) in the isotype-1 β-tubulin gene. In this study, we optimized the stool sample processing methodology and resistance allele frequency assessment in Trichuris trichiura and Necator americanus anthelmintic-related SNPs by pyrosequencing, and standardized it for large-scale benzimidazole efficacy screening use. METHODS Three different protocols for stool sample processing were compared in 19 T. trichiura-positive samples: fresh stool, egg concentration using metallic sieves with decreasing pore size, and egg concentration followed by flotation with saturated salt solution. Yield of each protocol was assessed by estimating the load of parasite DNA by real-time PCR. Then, we sequenced a DNA fragment of the β-tubulin gene containing the putative benzimidazole resistance SNPs in T. trichiura and N. americanus. Afterwards, resistant and susceptible-type plasmids were produced and mixed at different proportions, simulating different resistance levels. These mixtures were used to compare previously described pyrosequencing assays with processes newly designed by our own group. Once the stool sample processing and the pyrosequencing methodology was defined, the utility of the protocols was assessed by measuring the frequencies of putative resistance SNPs in 15 T. trichiura- and 15 N. americanus-positive stool samples. RESULTS The highest DNA load was provided by egg concentration using metallic sieves with decreasing pore size. Sequencing information of the β-tubulin gene in Mozambican specimens was highly similar to the sequences previously reported, for T. trichiura and N. americanus, despite the origin of the sample. When we compared pyrosequencing assays using plasmids constructs, primers designed in this study provided the most accurate SNP frequencies. When pooled egg samples were analysed, none of resistant SNPs were observed in T. trichiura, whereas 17% of the resistant SNPs at codon 198 were found in one N. americanus sample. CONCLUSIONS We optimized the sample processing methodology and standardized pyrosequencing in soil-transmitted helminth (STH) pooled eggs. These protocols could be used in STH large-scale screenings or anthelmintic efficacy trials.
Collapse
Affiliation(s)
- Javier Gandasegui
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Berta Grau-Pujol
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique.,Fundación Mundo Sano, Buenos Aires, Argentina
| | - María Cambra-Pelleja
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain
| | - Valdemiro Escola
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Anelsio Cossa
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | | | - Lisette van Lieshout
- Departement of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - José Muñoz
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, León, Spain. .,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, Spain.
| | | |
Collapse
|
29
|
Martin F, Halvarsson P, Delhomme N, Höglund J, Tydén E. Exploring the β-tubulin gene family in a benzimidazole-resistant Parascaris univalens population. Int J Parasitol Drugs Drug Resist 2021; 17:84-91. [PMID: 34467878 PMCID: PMC8406161 DOI: 10.1016/j.ijpddr.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Benzimidazole (BZ) drugs are frequently used to treat infections with the equine ascarid Parascaris univalens due to increasing resistance to macrocyclic lactones and pyrantel. Benzimidazole resistance is rare in ascarids in contrast to strongyle parasites where this resistance is widespread. In strongyles, single nucleotide polymorphisms (SNPs) at codons 167, 198 and 200 in a β-tubulin gene have been correlated to BZ resistance, but little is known about the β-tubulin genes and their possible involvement in BZ resistance in P. univalens and other ascarids. Previously two β-tubulin genes have been identified in P. univalens. In this study, we present five additional β-tubulin genes as well as the phylogenetic relationship of all seven genes to β-tubulins of other clade III and V nematodes. In addition, the efficacy of fenbendazole for treatment of P. univalens on a Swedish stud farm was studied in 2019 and 2020 using faecal egg count reduction test. Reductions varied from 73% to 88%, indicating the presence of a resistant P. univalens population on the farm. The emergence of BZ resistance emphasizes the need for development of molecular markers for rapid and more sensitive detection of resistant populations. We therefore investigated whether possible SNPs at positions 167, 198 or 200 in any of the β-tubulin genes could be used to distinguish between resistant and susceptible P. univalens populations. Amplicon sequencing covering the mutation sites 167, 198 and 200 in all seven β-tubulin genes revealed an absence of SNPs in both resistant and susceptible populations, suggesting that the mechanism behind BZ resistance in ascarids is different from that in strongyle nematodes and the search for a molecular marker for BZ resistance in P. univalens needs to continue. First case of fenbendazole resistance in Parascaris univalens in Europe. The P. univalens β-tubulin family contains seven genes. P. univalens β-tubulin genes cluster with β-tubulins from other clade V nematodes. No resistance associated SNPs were identified in P. univalens β-tubulin genes.
Collapse
Affiliation(s)
- Frida Martin
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Box 7036, 750 07, Uppsala, Sweden.
| | - Peter Halvarsson
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Box 7036, 750 07, Uppsala, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Johan Höglund
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Box 7036, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Swedish University of Agricultural Sciences, Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Box 7036, 750 07, Uppsala, Sweden
| |
Collapse
|
30
|
Kashyap SS, Verma S, McHugh M, Wolday M, Williams PD, Robertson AP, Martin RJ. Anthelmintic resistance and homeostatic plasticity (Brugia malayi). Sci Rep 2021; 11:14499. [PMID: 34262123 PMCID: PMC8280109 DOI: 10.1038/s41598-021-93911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Homeostatic plasticity refers to the capacity of excitable cells to regulate their activity to make compensatory adjustments to long-lasting stimulation. It is found across the spectrum of vertebrate and invertebrate species and is driven by changes in cytosolic calcium; it has not been explored in parasitic nematodes when treated with therapeutic drugs. Here we have studied the adaptation of Brugia malayi to exposure to the anthelmintic, levamisole that activates muscle AChR ion-channels. We found three phases of the Brugia malayi motility responses as they adapted to levamisole: an initial spastic paralysis; a flaccid paralysis that follows; and finally, a recovery of motility with loss of sensitivity to levamisole at 4 h. Motility, calcium-imaging, patch-clamp and molecular experiments showed the muscle AChRs are dynamic with mechanisms that adjust their subtype composition and sensitivity to levamisole. This homeostatic plasticity allows the parasite to adapt resisting the anthelmintic.
Collapse
Affiliation(s)
- Sudhanva S Kashyap
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh Verma
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mark McHugh
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Mengisteab Wolday
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Paul D Williams
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Alan P Robertson
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Richard J Martin
- Department of Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
31
|
Hahnel SR, Roberts WM, Heisler I, Kulke D, Weeks JC. Comparison of electrophysiological and motility assays to study anthelmintic effects in Caenorhabditis elegans. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:174-187. [PMID: 34252686 PMCID: PMC8350797 DOI: 10.1016/j.ijpddr.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Currently, only a few chemical drug classes are available to control the global burden of nematode infections in humans and animals. Most of these drugs exert their anthelmintic activity by interacting with proteins such as ion channels, and the nematode neuromuscular system remains a promising target for novel intervention strategies. Many commonly-used phenotypic readouts such as motility provide only indirect insight into neuromuscular function and the site(s) of action of chemical compounds. Electrophysiological recordings provide more specific information but are typically technically challenging and lack high throughput for drug discovery. Because drug discovery relies strongly on the evaluation and ranking of drug candidates, including closely related chemical derivatives, precise assays and assay combinations are needed for capturing and distinguishing subtle drug effects. Past studies show that nematode motility and pharyngeal pumping (feeding) are inhibited by most anthelmintic drugs. Here we compare two microfluidic devices (“chips”) that record electrophysiological signals from the nematode pharynx (electropharyngeograms; EPGs) ─ the ScreenChip™ and the 8-channel EPG platform ─ to evaluate their respective utility for anthelmintic research. We additionally compared EPG data with whole-worm motility measurements obtained with the wMicroTracker instrument. As references, we used three macrocyclic lactones (ivermectin, moxidectin, and milbemycin oxime), and levamisole, which act on different ion channels. Drug potencies (IC50 and IC95 values) from concentration-response curves, and the time-course of drug effects, were compared across platforms and across drugs. Drug effects on pump timing and EPG waveforms were also investigated. These experiments confirmed drug-class specific effects of the tested anthelmintics and illustrated the relative strengths and limitations of the different assays for anthelmintic research. Anthelmintic drugs inhibit pharyngeal pumping and motility in C. elegans. Two electrophysiological assays and one motility assay were compared. Macrocyclic lactones and levamisole have drug-class-specific effects. A combination of assays most fully reveals anthelmintic effects. Strengths and limitations of the three assays were identified.
Collapse
Affiliation(s)
| | | | | | | | - Janis C Weeks
- InVivo Biosystems Inc. (formerly NemaMetrix Inc.), Eugene, OR, USA.
| |
Collapse
|
32
|
Gainza YA, Santos IBD, Figueiredo A, Santos LALD, Esteves SN, Barioni-Junior W, Minho AP, Chagas ACDS. Anthelmintic resistance of Haemonchus contortus from sheep flocks in Brazil: concordance of in vivo and in vitro (RESISTA-Test©) methods. ACTA ACUST UNITED AC 2021; 30:e025120. [PMID: 33950148 DOI: 10.1590/s1984-296120201093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
This study evaluated the resistance status of Haemonchus contortus from sheep flocks in the state of São Paulo, Brazil, through comparison between the fecal egg count reduction test (FECRT) and the larval development test (LDT). For the FECRT, 35 sheep were selected in each of five flocks and divided into groups treated with: benzimidazole, levamisole, ivermectin, monepantel and control. Feces were collected for EPG and fecal cultures. The LDT was performed using thiabendazole (TBZ), levamisole (LEV), ivermectin aglycone (IVM-A) and Zolvix (ZLV). Resistance to all drugs was detected using FECRT in 100% of the flocks, except in relation to ZLV (40% resistant and 20% suspected of resistance). LDT indicated resistance to TBZ and IVM-A in all flocks, to LEV in 80% of flocks and to ZLV in 10%. Total agreement was obtained between the two tests for TBZ and IVM (k = 1.0), while for LEV (k = 0.8) and ZLV (k = 0.9), substantial and almost perfect agreement were obtained, respectively. The concordance between the tests was significant, thus showing that it is possible to use the outcome of the LDT to predict the FECRT, and hence validating the former as a fast diagnostic test for use by sheep farmers in Brazil.
Collapse
Affiliation(s)
- Yousmel Alemán Gainza
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Isabella Barbosa Dos Santos
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | - Amanda Figueiredo
- Faculdade de Ciências Agrárias e Veterinárias - FCAV, Universidade Estadual Paulista - UNESP, Jaboticabal, SP, Brasil
| | | | | | | | | | | |
Collapse
|
33
|
Kahl A, von Samson-Himmelstjerna G, Krücken J, Ganter M. Chronic Wasting Due to Liver and Rumen Flukes in Sheep. Animals (Basel) 2021; 11:549. [PMID: 33669891 PMCID: PMC7923292 DOI: 10.3390/ani11020549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Grazing sheep and goats are constantly exposed to helminth infections in many parts of the world, including several trematode species that causes a range of clinical diseases. The clinical picture of flukes is dependent upon the organs in which they develop and the tissues they damage within the respective organs. Accordingly, infections with the common liver fluke Fasciola hepatica, which, as juvenile worm migrates through the liver parenchyma for several weeks, may be associated with hepatic disorders such as impairment of carbohydrate, protein and fat metabolism, followed by chronic wasting. In contrast, the lancet fluke Dicrocoelium dendriticum, which does not exhibit tissue migration and thus does not lead to major tissue damage and bleeding, also does not lead to significant clinical symptoms. Rumen flukes such as Cotylophoron daubneyi cause catarrhal inflammation during their migration through the intestinal and abomasal epithelium during its juvenile stages. Depending on the infection intensity this may result in a range of clinical symptoms including diarrhoea, inappetence or emaciation. In this review, we aim to provide an update on the current knowledge on flukes particularly concerning the clinical relevance of the most important fluke species in sheep.
Collapse
Affiliation(s)
- Alexandra Kahl
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (G.v.S.-H.); (J.K.)
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (G.v.S.-H.); (J.K.)
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (G.v.S.-H.); (J.K.)
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| |
Collapse
|
34
|
Mohammedsalih KM, Krücken J, Bashar A, Juma FR, Abdalmalaik AAH, Khalafalla A, Abakar A, Coles G, von Samson-Himmelstjerna G. Susceptible trichostrongyloid species mask presence of benzimidazole-resistant Haemonchus contortus in cattle. Parasit Vectors 2021; 14:101. [PMID: 33557939 PMCID: PMC7869217 DOI: 10.1186/s13071-021-04593-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. Methods The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 β-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. Results Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 β-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. Conclusions To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.![]()
Collapse
Affiliation(s)
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, 14163, Berlin, Germany
| | - Ahmed Bashar
- Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan
| | - Fathel-Rahman Juma
- Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan
| | | | - Amna Khalafalla
- Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32, Khartoum North, Sudan
| | - Adam Abakar
- Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wadmedani, Sudan
| | - Gerald Coles
- Ubley Biologics, Ubley, P.O. Box 170, Bristol, BS40 6JA, UK
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Street 7-13, 14163, Berlin, Germany.
| |
Collapse
|
35
|
Effect of macrocyclic lactones on nontarget coprophilic organisms: a review. Parasitol Res 2021; 120:773-783. [PMID: 33501585 DOI: 10.1007/s00436-021-07064-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Macrocyclic lactones are frequently used dewormers in livestock farms around the world. Due to their wide spectrum of action against nematodes and arthropods and their practicality of application at very low doses, their use has become massive since their discovery. These compounds are eliminated in a large percentage in the feces of animals, causing adverse effects on coprophilic fauna. Several research groups around the world have been devoted to evaluating these effects on this fauna. The aim of this review is to register the adverse effects of the concentrations in which macrocyclic lactones are eliminated in the feces of domestic animals and the importance of the coprophilic and edaphilous fauna on the degradation of the feces of the animals. The documented data shows that the use of macrocyclic lactones has a high toxicological risk for the different species that colonize the dung, thus causing an adverse effect on its disintegration and its subsequent incorporation into the soil. Even so, more studies at the regional level and their standardization are necessary to make the comparison between different areas possible.
Collapse
|
36
|
Correlation of NHR-48 Transcriptional Modulator Expression with Selected CYP Genes’ Expression during Thiabendazole Treatment of Anisakis simplex (s.l.)?—An In Vitro Study. Pathogens 2020; 9:pathogens9121030. [PMID: 33316888 PMCID: PMC7764245 DOI: 10.3390/pathogens9121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Anisakis simplex (s.l.) is a complex of three sibling (biological) species of parasitic nematodes of marine mammals, including A. berlandi, A. pegreffii and A. simplex (s.s.). It is characterized by a complex life cycle in which humans can become accidental hosts by consuming dishes made of raw or undercooked fish containing L3 larvae, which in many regions of the world is related to the national or regional culinary tradition. This has spurred scientific efforts to develop new methods for treating the disease, called anisakiasis, and to neutralize invasive L3. Thiabendazole (TBZ) is a wide-spectrum anthelminthic with a higher efficacy than albendazole, a drug whose long-term use induces resistance in many parasitic species. Cytochromes P450 participate in TBZ metabolism, and the expression of their genes is controlled by nuclear hormone receptors (NHR). This study aimed to examine the effects of TBZ on the above-described pathway in invasive larvae of A. simplex (s.l.). The efficacy of TBZ against A. simplex (s.l.) larvae was observed for the first time. Larvae were cultured in vitro for 72 h in a medium containing TBZ at five concentrations from 0.5 to 1.5 mM. However, the survival curves did not significantly differ from each other. This means that all of the concentrations of TBZ had a similar effect on the A. simplex (s.l.) L3 larvae during in vitro culture. Nevertheless, TBZ modified the expression of nhr-48, cyp13a3 and cyp1a1 genes in the L3 of A. simplex (s.l.).
Collapse
|
37
|
Kotze AC, Gilleard JS, Doyle SR, Prichard RK. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int J Parasitol Drugs Drug Resist 2020; 14:264-273. [PMID: 33307336 PMCID: PMC7726450 DOI: 10.1016/j.ijpddr.2020.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Anthelmintic resistance is a significant threat to livestock production systems worldwide and is emerging as an important issue in companion animal parasite management. It is also an emerging concern for the control of human soil-transmitted helminths and filaria. An important aspect of managing anthelmintic resistance is the ability to utilise diagnostic tests to detect its emergence at an early stage. In host-parasite systems where resistance is already widespread, diagnostics have a potentially important role in determining those drugs that remain the most effective. The development of molecular diagnostics for anthelmintic resistance is one focus of the Consortium for Anthelmintic Resistance and Susceptibility (CARS) group. The present paper reflects discussions of this issue that occurred at the most recent meeting of the group in Wisconsin, USA, in July 2019. We compare molecular resistance diagnostics with in vivo and in vitro phenotypic methods, and highlight the advantages and disadvantages of each. We assess whether our knowledge on the identity of molecular markers for resistance towards the different drug classes is sufficient to provide some expectation that molecular tests for field use may be available in the short-to-medium term. We describe some practical aspects of such tests and how our current capabilities compare to the requirements of an 'ideal' test. Finally, we describe examples of drug class/parasite species interactions that provide the best opportunity for commercial use of molecular tests in the near future. We argue that while such prototype tests may not satisfy the requirements of an 'ideal' test, their potential to provide significant advances over currently-used phenotypic methods warrants their development as field diagnostics.
Collapse
Affiliation(s)
- Andrew C. Kotze
- CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia,Corresponding author. , CSIRO Agriculture and Food, St. Lucia, Brisbane, 4072, QLD, Australia.
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Stephen R. Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
38
|
Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends Parasitol 2020; 37:48-64. [PMID: 33189582 DOI: 10.1016/j.pt.2020.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.
Collapse
|
39
|
Hahnel SR, Dilks CM, Heisler I, Andersen EC, Kulke D. Caenorhabditis elegans in anthelmintic research - Old model, new perspectives. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:237-248. [PMID: 33249235 PMCID: PMC7704361 DOI: 10.1016/j.ijpddr.2020.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022]
Abstract
For more than four decades, the free-living nematode Caenorhabditis elegans has been extensively used in anthelmintic research. Classic genetic screens and heterologous expression in the C. elegans model enormously contributed to the identification and characterization of molecular targets of all major anthelmintic drug classes. Although these findings provided substantial insights into common anthelmintic mechanisms, a breakthrough in the treatment and control of parasitic nematodes is still not in sight. Instead, we are facing increasing evidence that the enormous diversity within the phylum Nematoda cannot be recapitulated by any single free-living or parasitic species and the development of novel broad-spectrum anthelmintics is not be a simple goal. In the present review, we summarize certain milestones and challenges of the C. elegans model with focus on drug target identification, anthelmintic drug discovery and identification of resistance mechanisms. Furthermore, we present new perspectives and strategies on how current progress in C. elegans research will support future anthelmintic research.
Collapse
Affiliation(s)
| | - Clayton M Dilks
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | | - Erik C Andersen
- Northwestern University, Department of Molecular Biosciences, Evanston, IL, USA.
| | | |
Collapse
|
40
|
Martínez-Valladares M, Valderas-García E, Gandasegui J, Skuce P, Morrison A, Castilla Gómez de Agüero V, Cambra-Pellejà M, Balaña-Fouce R, Rojo-Vázquez FA. Teladorsagia circumcincta beta tubulin: the presence of the E198L polymorphism on its own is associated with benzimidazole resistance. Parasit Vectors 2020; 13:453. [PMID: 32894163 PMCID: PMC7487696 DOI: 10.1186/s13071-020-04320-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Benzimidazole resistance is associated with isotype-1 β-tubulin gene F200Y, E198A and F167Y SNPs. In this study, the recently described polymorphism E198L was reported and analysed in Teladorsagia circumcincta. METHODS The benzimidazole phenotypic resistance was measured by the faecal egg count reduction test (FECRT) and the egg hatch test (EHT) using a discriminating dose (DD) in 39 sheep flocks. Around 1000 larvae collected before and after treatment were used for DNA extraction. The resistant species identified in all flocks was T. circumcincta. The resistance alleles frequencies were measured for F200Y and E198A. A 371-bp fragment of the isotype-1 β-tubulin gene was analysed, including the three codons of interest, and a new pyrosequencing assay was designed for testing E198L. RESULTS The percentage of resistant flocks was 35% by FECRT or 26% by EHT; however, F200Y and E198A SNPs were absent in T. circumcincta. The amplification of a 371-bp fragment confirmed the absence of F167Y and F200Y in 6 resistant flocks. Regarding codon 198, all samples after treatment carried a leucine (CTA). A pyrosequencing assay analysed the allele frequencies for the first two bases at codon 198 independently, G/C and A/T. The correlation between C and T frequencies was almost 1 (r = 0.929, P < 0.0001) and the mean value of both was calculated to measure the leucine frequency; this value ranged between 10.4-80.7% before treatment, and 82.3-92.8% after treatment. High and similar correlations were reported between the genotypic variables (C frequency, T frequency or mean of both frequencies) and phenotypic resistance (r > 0.720, P < 0.0001), although negatively associated with the FECRT and positively with the EHT. According to multivariate linear regression analysis, the T frequency was the most significant variable influencing the phenotypic resistance (FECRT or EHT; P < 0.0001). In the EHT, 67.1% of the phenotypic variability is associated with the T frequency but in the FECRT only 33.4%; therefore, the EHT using a DD seems to detect the genotypic resistance more accurately than the FECRT. CONCLUSIONS The E198L polymorphism can confer BZ resistance on its own in T. circumcincta.
Collapse
Affiliation(s)
- María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain. .,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| | - Elora Valderas-García
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departmento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | | | - Philip Skuce
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Alison Morrison
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Verónica Castilla Gómez de Agüero
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Maria Cambra-Pellejà
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), Grulleros, 24346, León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Rafael Balaña-Fouce
- Departmento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071, León, Spain
| | - Francisco A Rojo-Vázquez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24071, León, Spain
| |
Collapse
|
41
|
Nematicidal Activity of Holigarna caustica (Dennst.) Oken Fruit Is Due to Linoleic Acid. Biomolecules 2020; 10:biom10071043. [PMID: 32674325 PMCID: PMC7408404 DOI: 10.3390/biom10071043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/28/2020] [Accepted: 07/10/2020] [Indexed: 01/24/2023] Open
Abstract
Holigarna caustica (Dennst.) Oken is used by the tribes of Northeast India for the treatment of intestinal problems. Therefore, the present study was undertaken to investigate the active principles of this plant responsible for its anthelmintic activity, using bioassay-guided fractionation. An ethanol extract of H. caustica fruit was fractionated on a silica gel column, followed by HPLC, while nematicidal activity was followed throughout on Caenorhabditis (C.) elegans as a model organism. Our study constitutes the first nematicidal report for this plant. Bioassay-guided purification led to the isolation of one compound (IC50 = 0.4 µM) as the only active constituent in the most active fraction. The compound was identified as linoleic acid based on spectroscopic data (1H and 13C NMR and ESI-MS). No cytotoxicity was observed in the crude extract or in linoleic acid (up to 356 µM). The results support the use of H. caustica for the treatment of intestinal problems by traditional healers in India.
Collapse
|
42
|
Martin F, Dube F, Karlsson Lindsjö O, Eydal M, Höglund J, Bergström TF, Tydén E. Transcriptional responses in Parascaris univalens after in vitro exposure to ivermectin, pyrantel citrate and thiabendazole. Parasit Vectors 2020; 13:342. [PMID: 32646465 PMCID: PMC7346371 DOI: 10.1186/s13071-020-04212-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Background Parascaris univalens is a pathogenic parasite of foals and yearlings worldwide. In recent years, Parascaris spp. worms have developed resistance to several of the commonly used anthelmintics, though currently the mechanisms behind this development are unknown. The aim of this study was to investigate the transcriptional responses in adult P. univalens worms after in vitro exposure to different concentrations of three anthelmintic drugs, focusing on drug targets and drug metabolising pathways. Methods Adult worms were collected from the intestines of two foals at slaughter. The foals were naturally infected and had never been treated with anthelmintics. Worms were incubated in cell culture media containing different concentrations of either ivermectin (10−9 M, 10−11 M, 10−13 M), pyrantel citrate (10−6 M, 10−8 M, 10−10 M), thiabendazole (10−5 M, 10−7 M, 10−9 M) or without anthelmintics (control) at 37 °C for 24 h. After incubation, the viability of the worms was assessed and RNA extracted from the anterior region of 36 worms and sequenced on an Illumina NovaSeq 6000 system. Results All worms were alive at the end of the incubation but showed varying degrees of viability depending on the drug and concentration used. Differential expression (Padj < 0.05 and log2 fold change ≥ 1 or ≤ − 1) analysis showed similarities and differences in the transcriptional response after exposure to the different drug classes. Candidate genes upregulated or downregulated in drug exposed worms include members of the phase I metabolic pathway short-chain dehydrogenase/reductase superfamily (SDR), flavin containing monooxygenase superfamily (FMO) and cytochrome P450-family (CYP), as well as members of the membrane transporters major facilitator superfamily (MFS) and solute carrier superfamily (SLC). Generally, different targets of the anthelmintics used were found to be upregulated and downregulated in an unspecific pattern after drug exposure, apart from the GABA receptor subunit lgc-37, which was upregulated only in worms exposed to 10−9 M of ivermectin. Conclusions To our knowledge, this is the first time the expression of lgc-37 and members of the FMO, SDR, MFS and SLC superfamilies have been described in P. univalens and future work should be focused on characterising these candidate genes to further explore their potential involvement in drug metabolism and anthelmintic resistance.![]()
Collapse
Affiliation(s)
- Frida Martin
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden.
| | - Faruk Dube
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Oskar Karlsson Lindsjö
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Matthías Eydal
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Johan Höglund
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| | - Tomas F Bergström
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Eva Tydén
- Division of Parasitology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, 750 07, Uppsala, Sweden
| |
Collapse
|
43
|
Comparative study of transcription profiles of the P-glycoprotein transporters of two Haemonchus contortus isolates: Susceptible and resistant to ivermectin. Mol Biochem Parasitol 2020; 238:111281. [PMID: 32434064 DOI: 10.1016/j.molbiopara.2020.111281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to analyze the mRNA transcription levels of ten functional genes of P-glycoproteins (P-gp) in free life stages, eggs and infective larvae (L3) and in endoparasitic stages, fourth larval stage (L4) and adult males of two native isolates of Haemonchus contortus: resistant and susceptible to IVM. The IVM resistant isolate was obtained from sheep naturally infected with H. contortus, and the susceptible isolate (with no pressure to IVM) conserved since 1990. The lethal effect of IVM was evaluated under in vitro conditions, which showed significant differences between susceptible and resistant H. contortus L3 isolates (P < 0.01). The IVM susceptible isolate revealed a lethal effect of 79.22% at 11.42 mM, whereas that resistant isolate showed no lethal effect at any of the four assessed concentrations (1.43, 2.85, 5.71 and 11.42 mM) of IVM. The expression levels of ten Hco-pgp genes (1, 2, 3, 4, 9, 10, 11, 12, 14, and 16) were evaluated in the resistant isolate of H. contortus and compared to the susceptible isolate (as control), using two constitutive genes (GAPDH and β-tubulin). Up-regulation at two statistical significant values (P ≤ 0.05, 0.1) was the criterion to associate IVM resistance with the free life and endoparasitic stages of H. contortus. The expression levels in H. contortus adult nematodes showed 5.64 to 127.56-fold increase for Hco-pgp genes 1, 9, 12, 14, and 16, followed by an increase for Hco-pgp-2 (49.75-fold) and Hco-pgp-10 (106.40-fold) in L4, and for Hco-pgp-16 (2.90-fold) in eggs (P ≤ 0.05). In addition, high expression levels with P < 0.1 were detected in H. contortus L3, L4, and adults for Hco-pgp genes 1, 4, 11, 12, and 16, with changes ranging from 2.17 to 29.72-fold. In conclusion, the highest expression was observed in the adult stage of H. contortus, and the most frequent gene with a significant P-value was Hco-pgp-16, revealing it plays an important role in IVM resistance.
Collapse
|
44
|
Fairweather I, Brennan GP, Hanna REB, Robinson MW, Skuce PJ. Drug resistance in liver flukes. Int J Parasitol Drugs Drug Resist 2020; 12:39-59. [PMID: 32179499 PMCID: PMC7078123 DOI: 10.1016/j.ijpddr.2019.11.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Liver flukes include Fasciola hepatica, Fasciola gigantica, Clonorchis sinensis, Opisthorchis spp., Fascioloides magna, Gigantocotyle explanatum and Dicrocoelium spp. The two main species, F. hepatica and F. gigantica, are major parasites of livestock and infections result in huge economic losses. As with C. sinensis, Opisthorchis spp. and Dicrocoelium spp., they affect millions of people worldwide, causing severe health problems. Collectively, the group is referred to as the Food-Borne Trematodes and their true significance is now being more widely recognised. However, reports of resistance to triclabendazole (TCBZ), the most widely used anti-Fasciola drug, and to other current drugs are increasing. This is a worrying scenario. In this review, progress in understanding the mechanism(s) of resistance to TCBZ is discussed, focusing on tubulin mutations, altered drug uptake and changes in drug metabolism. There is much interest in the development of new drugs and drug combinations, the re-purposing of non-flukicidal drugs, and the development of new drug formulations and delivery systems; all this work will be reviewed. Sound farm management practices also need to be put in place, with effective treatment programmes, so that drugs can be used wisely and their efficacy conserved as much as is possible. This depends on reliable advice being given by veterinarians and other advisors. Accurate diagnosis and identification of drug-resistant fluke populations is central to effective control: to determine the actual extent of the problem and to determine how well or otherwise a treatment has worked; for research on establishing the mechanism of resistance (and identifying molecular markers of resistance); for informing treatment options; and for testing the efficacy of new drug candidates. Several diagnostic methods are available, but there are no recommended guidelines or standardised protocols in place and this is an issue that needs to be addressed.
Collapse
Affiliation(s)
- I Fairweather
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| | - G P Brennan
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - R E B Hanna
- Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast, BT4 3SD, UK
| | - M W Robinson
- School of Biological Sciences, The Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - P J Skuce
- Disease Control, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, EH26 0PZ, UK
| |
Collapse
|
45
|
Khan S, Nisar A, Yuan J, Luo X, Dou X, Liu F, Zhao X, Li J, Ahmad H, Mehmood SA, Feng X. A Whole Genome Re-Sequencing Based GWA Analysis Reveals Candidate Genes Associated with Ivermectin Resistance in Haemonchus contortus. Genes (Basel) 2020; 11:E367. [PMID: 32231078 PMCID: PMC7230667 DOI: 10.3390/genes11040367] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022] Open
Abstract
The most important and broad-spectrum drug used to control the parasitic worms to date is ivermectin (IVM). Resistance against IVM has emerged in parasites, and preserving its efficacy is now becoming a serious issue. The parasitic nematode Haemonchus contortus (Rudolphi, 1803) is economically an important parasite of small ruminants across the globe, which has a successful track record in IVM resistance. There are growing evidences regarding the multigenic nature of IVM resistance, and although some genes have been proposed as candidates of IVM resistance using lower magnification of genome, the genetic basis of IVM resistance still remains poorly resolved. Using the full magnification of genome, we herein applied a population genomics approach to characterize genome-wide signatures of selection among pooled worms from two susceptible and six ivermectin-resistant isolates of H. contortus, and revealed candidate genes under selection in relation to IVM resistance. These candidates also included a previously known IVM-resistance-associated candidate gene HCON_00148840, glc-3. Finally, an RNA-interference-based functional validation assay revealed the HCON_00143950 as IVM-tolerance-associated gene in H. contortus. The possible role of this gene in IVM resistance could be detoxification of xenobiotic in phase I of xenobiotic metabolism. The results of this study further enhance our understanding on the IVM resistance and continue to provide further evidence in favor of multigenic nature of IVM resistance.
Collapse
Affiliation(s)
- Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Ayesha Nisar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Jianqi Yuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Xiaoping Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xueqin Dou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Fei Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Xiaochao Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| | - Junyan Li
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Habib Ahmad
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan
| | | | - Xingang Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai 200241, China
| |
Collapse
|
46
|
Sepúlveda-Crespo D, Reguera RM, Rojo-Vázquez F, Balaña-Fouce R, Martínez-Valladares M. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics. Med Res Rev 2020; 40:1715-1753. [PMID: 32166776 DOI: 10.1002/med.21668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
Abstract
Helminthiasis is one of the gravest problems worldwide. There is a growing concern on less available anthelmintics and the emergence of resistance creating a major threat to human and livestock health resources. Novel and broad-spectrum anthelmintics are urgently needed. The free-living nematode Caenorhabditis elegans could address this issue through automated high-throughput technologies for the screening of large chemical libraries. This review discusses the strong advantages and limitations for using C elegans as a screening method for anthelmintic drug discovery. C elegans is the best model available for the validation of novel effective drugs in treating most, if not all, helminth infections, and for the elucidation the mode of action of anthelmintic candidates. This review also focuses on available technologies in the discovery of anthelmintics published over the last 15 years with particular attention to high-throughput technologies over conventional screens. On the other hand, this review highlights how combinatorial and nanomedicine strategies could prolong the use of anthelmintics and control resistance problems.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Francisco Rojo-Vázquez
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, León, Spain
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), León, Spain.,Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| |
Collapse
|
47
|
Mohammedsalih KM, Krücken J, Khalafalla A, Bashar A, Juma FR, Abakar A, Abdalmalaik AAH, Coles G, von Samson-Himmelstjerna G. New codon 198 β-tubulin polymorphisms in highly benzimidazole resistant Haemonchus contortus from goats in three different states in Sudan. Parasit Vectors 2020; 13:114. [PMID: 32122383 PMCID: PMC7053126 DOI: 10.1186/s13071-020-3978-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/17/2020] [Indexed: 01/12/2023] Open
Abstract
Background Benzimidazole (BZ) resistance in gastrointestinal nematodes is a worldwide problem for livestock production, particularly in small ruminants. Assignment of the emergence of resistance using sensitive and reliable methods is required to adopt the correct strategies for control. In Sudan, BZ resistant Haemonchus contortus populations were recently reported in goats in South Darfur. This study aimed to provide additional data regarding albendazole efficacy and to describe the prevailing molecular BZ resistance mechanisms. Methods Faecal egg count reduction and egg hatch tests (EHT) were used to evaluate albendazole efficacy in three different areas of South Darfur using naturally (Rehed Al-Birdi and Tulus) and experimentally infected (Tulus and Um Dafuq) goats. Using samples from Central, East and South Darfur, pyro- and Sanger sequencing were used to detect the polymorphisms F167Y, E198A and F200Y in H. contortus isotype 1 β-tubulin in DNA extracted from pooled third-stage larval (L3) samples (n = 36) on days 0 and 10 during trials, and from pooled adult male H. contortus (treated goats, n = 14; abattoirs, n = 83) including samples from populations previously found to be resistant in South Darfur. Results Albendazole efficacies at 5, 7.5 and 10 mg/kg doses were 73.5–90.2% on day 14 in natural and experimental infections while 12.5 mg/kg showed > 96.6% efficacy. EC50 in the EHT were 0.8 and 0.11 µg/ml thiabendazole in natural and experimental infection trials, respectively. PCRs detected Haemonchus, Trichostrongylus and Cooperia in L3 samples from albendazole-treated goats. Haemonchus contortus allele frequencies in codons 167 and 200 using pyrosequencing assays were ≤ 7.4% while codon 198 assays failed. Sanger sequencing revealed five novel polymorphisms at codon 198. Noteworthy, an E198L substitution was present in 82% of the samples (L3 and adults) including all post-treatment samples. Moreover, E198V, E198K and potentially E198I, and E198Stop were identified in a few samples. Conclusions To our knowledge, this is the first report of E198L in BZ resistant H. contortus and the second where this is the predominant genotype associated with resistance in any strongyle species. Since this variant cannot be quantified using pyrosequencing, the results highlight important limitations in the general applicability of pyrosequencing to quantify BZ resistance genotypes.![]()
Collapse
Affiliation(s)
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| | - Amna Khalafalla
- Faculty of Veterinary Medicine, University of Khartoum, PO Box 32, Khartoum North, Sudan
| | - Ahmed Bashar
- Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | | | - Adam Abakar
- Faculty of Medical Laboratory Sciences, University of Gezira, PO Box 20, Wad Medani, Sudan
| | | | - Gerald Coles
- Ubley Biologics, PO Box 170, Ubley, Bristol, BS40 6JA, UK
| | - Georg von Samson-Himmelstjerna
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
48
|
Claerebout E, De Wilde N, Van Mael E, Casaert S, Velde FV, Roeber F, Veloz PV, Levecke B, Geldhof P. Anthelmintic resistance and common worm control practices in sheep farms in Flanders, Belgium. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100393. [PMID: 32448534 DOI: 10.1016/j.vprsr.2020.100393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
In contrast to many other European countries, no data were available on the presence of anthelmintic resistance in gastrointestinal nematodes in sheep in Belgium. A faecal egg count reduction test was performed in 26 sheep flocks in Flanders, Northern Belgium. Results indicated widespread resistance against benzimidazoles (albendazole, fenbendazole and mebendazole), with treatment failure on all 8 farms investigated. Haemonchus contortus and Teladorsagia circumcincta were the predominant species after treatment failure. Amino acid substitutions associated with benzimidazole resistance were detected at the codon positions 167 (8%) and 200 (92%) of the isotype-1 beta tubulin gene in H. contortus, codon positions 198 (47%) and 200 (43%) in T. circumcincta and position 200 (100%) in T. colubriformis. Resistance against macrocyclic lactones (ivermectin, doramectin and moxidectin) was recorded on 7 out of 20 flocks, mainly in H. contortus and T. circumcincta. Treatment failure was also observed for closantel (in combination with mebendazole) and for monepantel, on one farm each. Trichostrongylus spp. were implicated with resistance against monepantel. A questionnaire survey on farm management and worm control measures indicated that worm control was often not sustainable. Ewes and lambs were treated frequently (on average 2.6 and 3.2 times per year), mostly without weighing. Only few sheep farmers (9%) regularly used faecal egg counts to monitor worm infections. Despite the FECRT showing otherwise, most of the farmers perceived the efficacy of anthelmintics as very good (30%) or good (54%).
Collapse
Affiliation(s)
- Edwin Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium.
| | - Nathalie De Wilde
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Eva Van Mael
- Animal Healthcare Centre Flanders, Hagenbroeksesteenweg 167, 2500 Lier, Belgium
| | - Stijn Casaert
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Fiona Vande Velde
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Florian Roeber
- AusDiagnostics Pty. Ltd, Beaconsfield 2015, NSW, Australia
| | - Pamela Vinueza Veloz
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Bruno Levecke
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium
| |
Collapse
|
49
|
Role of DNA-detection-based tools for monitoring the soil-transmitted helminth treatment response in drug-efficacy trials. PLoS Negl Trop Dis 2020; 14:e0007931. [PMID: 32027646 PMCID: PMC7004296 DOI: 10.1371/journal.pntd.0007931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
50
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|