1
|
Ziar R, Tesar PJ, Clayton BLL. Astrocyte and oligodendrocyte pathology in Alzheimer's disease. Neurotherapeutics 2025:e00540. [PMID: 39939240 DOI: 10.1016/j.neurot.2025.e00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Astrocytes and oligodendrocytes, once considered passive support cells, are now recognized as active participants in the pathogenesis of Alzheimer's disease. Emerging evidence highlights the critical role that these glial cells play in the pathological features of Alzheimer's, including neuroinflammation, excitotoxicity, synaptic dysfunction, and myelin degeneration, which contribute to neurodegeneration and cognitive decline. Here, we review the current understanding of astrocyte and oligodendrocyte pathology in Alzheimer's disease and highlight research that supports the therapeutic potential of modulating astrocyte and oligodendrocyte functions to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Rania Ziar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
2
|
Maillard P, Fletcher E, Carmichael O, Schwarz C, Seiler S, DeCarli C. Cerebrovascular markers of WMH and infarcts in ADNI: A historical perspective and future directions. Alzheimers Dement 2024; 20:8953-8968. [PMID: 39535353 DOI: 10.1002/alz.14358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
White matter hyperintensities (WMH) and infarcts found on magnetic resonance imaging (MR infarcts) are common biomarkers of cerebrovascular disease. In this review, we summarize the methods, publications, and conclusions stemming from the Alzheimer's Disease Neuroimaging Initiative (ADNI) related to these measures. We combine analysis of WMH and MR infarct data from across the three main ADNI cohorts with a review of existing literature discussing new methodologies and scientific findings derived from these data. Although ADNI inclusion criteria were designed to minimize vascular risk factors and disease, data across all the ADNI cohorts found consistent trends of increasing WMH volumes associated with advancing age, female sex, and cognitive impairment. ADNI, initially proposed as a study to investigate biomarkers of AD pathology, has also helped elucidate the impact of asymptomatic cerebrovascular brain injury on cognition within a cohort relatively free of vascular disease. Future ADNI work will emphasize additional vascular biomarkers. HIGHLIGHTS: White matter hyperintensities (WMHs) are common to advancing age and likely reflect brain vascular injury among older individuals. WMH and to a lesser extent, magnetic resonance (MR) infarcts, affect risk for transition to cognitive impairment. WMHs and MR infarcts are present, even among Alzheimer's Disease Neuroimaging Initiative (ADNI) participants highly selected to have Alzheimer's disease (AD) as the primary pathology. WMH burden in ADNI is greater among individuals with cognitive impairment and has been associated with AD neurodegenerative markers and cerebral amyloidosis. The negative additive effects of cerebrovascular disease appear present, even in select populations, and future biomarker work needs to further explore this relationship.
Collapse
Affiliation(s)
- Pauline Maillard
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Evan Fletcher
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| | - Owen Carmichael
- Biomedical Imaging, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | - Stephan Seiler
- Department of Neurology, University of California at Davis, Sacramento, California, USA
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Charles DeCarli
- Department of Neurology, University of California at Davis, Sacramento, California, USA
| |
Collapse
|
3
|
Bachmann D, Saake A, Studer S, Buchmann A, Rauen K, Gruber E, Michels L, Nitsch RM, Hock C, Gietl A, Treyer V. Hypertension and cerebral blood flow in the development of Alzheimer's disease. Alzheimers Dement 2024; 20:7729-7744. [PMID: 39254220 PMCID: PMC11567827 DOI: 10.1002/alz.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION We investigated the interactive associations between amyloid and hypertension on the entorhinal cortex (EC) tau and atrophy and the role of cerebral blood flow (CBF) as a shared mechanism by which amyloid and hypertension contribute to EC tau and regional white matter hyperintensities (WMHs). METHODS We analyzed data from older adults without dementia participating in the Add-Tau study (NCT02958670, n = 138) or Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 523) who had available amyloid-positron emission tomography (PET), tau-PET, fluid-attenuated inversion recovery (FLAIR), and T1-weighted magnetic resonance imaging (MRI). A subsample in both cohorts had available arterial spin labeling (ASL) MRI (Add-Tau: n = 78; ADNI: n = 89). RESULTS The detrimental effects of hypertension on AD pathology and EC thickness were more pronounced in the Add-Tau cohort. Increased amyloid burden was associated with decreased occipital gray matter CBF in the ADNI cohort. In both cohorts, lower regional gray matter CBF was associated with higher EC tau and posterior WMH burden. DISCUSSION Reduced cerebral perfusion may be one common mechanism through which hypertension and amyloid are related to increased EC tau and WMH volume. HIGHLIGHTS Hypertension is associated with increased entorhinal cortex (EC) tau, particularly in the presence of amyloid. Decreased cortical cerebral blood flow (CBF) is associated with higher regional white matter hyperintensity volume. Increasing amyloid burden is associated with decreasing CBF in the occipital lobe. MTL CBF and amyloid are synergistically associated with EC tau.
Collapse
Affiliation(s)
- Dario Bachmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Health Sciences and TechnologyETH ZürichZurichSwitzerland
| | - Antje Saake
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Sandro Studer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Andreas Buchmann
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Katrin Rauen
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
- Neuroscience Center ZurichUniversity of ZurichZurichSwitzerland
| | - Esmeralda Gruber
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
| | - Lars Michels
- Department of NeuroradiologyClinical Neuroscience Center, University Hospital ZurichZurichSwitzerland
| | - Roger M. Nitsch
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Christoph Hock
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- NeurimmuneZurichSwitzerland
| | - Anton Gietl
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Geriatric PsychiatryPsychiatric Hospital ZurichZurichSwitzerland
| | - Valerie Treyer
- Institute for Regenerative MedicineUniversity of ZurichZurichSwitzerland
- Department of Nuclear MedicineUniversity Hospital of Zurich, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Lu J, Li CJ, Wang J, Wang Y. Neuropathology and neuroinflammation in Alzheimer's disease via bidirectional lung-brain axis. Front Aging Neurosci 2024; 16:1449575. [PMID: 39280699 PMCID: PMC11392776 DOI: 10.3389/fnagi.2024.1449575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia worldwide. Although the neuropathology of AD is clear, its pathogenesis remains unclear. Recently, conceptualising AD as brain-centred has reoriented many scientists because the close functional relationship between the peripheral and central nerves is increasingly recognised. Recently, various studies have focused on the crosstalk between peripherals and centrals. A new hotspot of research and new therapeutic strategies have emerged from this great progress. This mini-review is an overview of the potential molecular mechanism in AD via the bidirectional lung-brain axis, providing a new perspective for the systemic understanding of AD onset.
Collapse
Affiliation(s)
- Jie Lu
- Department of Respiratory and Critical Care Medicine, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang, China
| | - Cheng-Jun Li
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| | - Jing Wang
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| | - Yang Wang
- Department of Pleurisy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, China
| |
Collapse
|
5
|
Majumder M, Dutta D. Oligodendrocyte Dysfunction in Tauopathy: A Less Explored Area in Tau-Mediated Neurodegeneration. Cells 2024; 13:1112. [PMID: 38994964 PMCID: PMC11240328 DOI: 10.3390/cells13131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Aggregation of the microtubule-associated protein tau (MAPT) is the hallmark pathology in a spectrum of neurodegenerative disorders collectively called tauopathies. Physiologically, tau is an inherent neuronal protein that plays an important role in the assembly of microtubules and axonal transport. However, disease-associated mutations of this protein reduce its binding to the microtubule components and promote self-aggregation, leading to formation of tangles in neurons. Tau is also expressed in oligodendrocytes, where it has significant developmental roles in oligodendrocyte maturation and myelin synthesis. Oligodendrocyte-specific tau pathology, in the form of fibrils and coiled coils, is evident in major tauopathies including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Multiple animal models of tauopathy expressing mutant forms of MAPT recapitulate oligodendroglial tau inclusions with potential to cause degeneration/malfunction of oligodendrocytes and affecting the neuronal myelin sheath. Till now, mechanistic studies heavily concentrated on elucidating neuronal tau pathology. Therefore, more investigations are warranted to comprehensively address tau-induced pathologies in oligodendrocytes. The present review provides the current knowledge available in the literature about the intricate relations between tau and oligodendrocytes in health and diseases.
Collapse
Affiliation(s)
- Moumita Majumder
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Debashis Dutta
- Department of Pediatrics, Darby’s Children Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Qiu T, Hong H, Zeng Q, Xu X, Wang Y, Zhu L, Zhang L, Li K, Dai S, Li X, Xie F, Zhang Y, Luo X. Effect of cerebral small vessel disease on the integrity of cholinergic system in mild cognitive impairment patients: a longitudinal study. J Neurol 2024; 271:2704-2715. [PMID: 38381177 PMCID: PMC11055699 DOI: 10.1007/s00415-024-12218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
We aimed to investigate the effect of cerebral small vessel disease (SVD) on cholinergic system integrity in mild cognitive impairment (MCI) patients. Nucleus basalis of Meynert (NBM) volume and cholinergic pathways integrity was evaluated at baseline, 1-, 2-, and 4-year follow-ups in 40 cognitively unimpaired (CU) participants, 29 MCI patients without SVD, and 23 MCI patients with SVD. We compared cholinergic markers among three groups and examined their associations with SVD burden in MCI patients. We used linear mixed models to assess longitudinal changes in cholinergic markers over time among groups. Mediation analysis was employed to investigate the mediating role of cholinergic system degeneration between SVD and cognitive impairment. Increased mean diffusivity (MD) in medial and lateral pathways was observed in MCI patients with SVD compared to those without SVD and CU participants. Both MCI groups showed decreased NBM volume compared to CU participants, while there was no significant difference between the two MCI groups. Longitudinally, compared to CU participants, MCI patients with SVD displayed a more rapid change in MD in both pathways, but not in NBM volume. Furthermore, SVD burden was associated with cholinergic pathway disruption and its faster rate of change in MCI patients. However, mediation analyses showed that cholinergic pathways did not mediate significant indirect effects of SVD burden on cognitive impairment. Our findings suggest that SVD could accelerate the degeneration of cholinergic pathways in MCI patients. However, they do not provide evidence to support that SVD could contribute to cognitive impairment through cholinergic system injury.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanyan Wang
- Laboratory Medicine Center, Linyi People's Hospital, Linyi, China
| | - Lixin Zhu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Lige Zhang
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shouping Dai
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Fei Xie
- Department of Equipment and Medical Engineering, Linyi People's Hospital, Linyi, China
| | - Yusong Zhang
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Grasset L, Frison E, Helmer C, Catheline G, Chêne G, Dufouil C. Understanding the relationship between type-2 diabetes, MRI markers of neurodegeneration and small vessel disease, and dementia risk: a mediation analysis. Eur J Epidemiol 2024; 39:409-417. [PMID: 38190014 PMCID: PMC11101545 DOI: 10.1007/s10654-023-01080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/03/2023] [Indexed: 01/09/2024]
Abstract
To explore to which extent neurodegeneration and cerebral small vessel disease (SVD) could mediate the association between type-2 diabetes and higher dementia risk. The analytical sample consisted in 2228 participants, out of the Three-City study, aged 65 and older, free of dementia at baseline who underwent brain MRI. Diabetes was defined by medication intake or fasting or non-fasting elevated glucose levels. Dementia status was assessed every 2 to 3 years, during up to 12 years of follow-up. Brain parenchymal fraction (BPF) and white matter hyperintensities volume (WMHV) were selected as markers of neurodegeneration and cerebral SVD respectively. We performed a mediation analysis of the effect of baseline BPF and WMHV (mediators) on the association between diabetes and dementia risk using linear and Cox models adjusted for age, sex, education level, hypertension, hypercholesterolemia, BMI, smoking and alcohol drinking status, APOE-ε4 status, and study site. At baseline, 8.8% of the participants had diabetes. Diabetes (yes vs. no) was associated with higher WMHV (βdiab = 0.193, 95% CI 0.040; 0.346) and lower BPF (βdiab = -0.342, 95% CI -0.474; -0.210), as well as with an increased risk of dementia over 12 years of follow-up (HRdiab = 1.65, 95% CI 1.04; 2.60). The association between diabetes status and dementia risk was statistically mediated by higher WMHV (HRdiab=1.05, 95% CI 1.01; 1.11, mediated part = 10.8%) and lower BPF (HRdiab = 1.12, 95% CI 1.05; 1.20, mediated part = 22.9%). This study showed that both neurodegeneration and cerebral SVD statistically explained almost 30% of the association between diabetes and dementia.
Collapse
Affiliation(s)
- Leslie Grasset
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France.
- INSERM U1219, University of Bordeaux, 146 rue Léo Saignat, 33077, Bordeaux cedex, France.
| | - Eric Frison
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Service d'Information Médicale, CHU Bordeaux, Bordeaux, France
| | - Catherine Helmer
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
| | - Gwénaëlle Catheline
- INCIA, EPHE, CNRS, Université PSL, University of Bordeaux, 33076, Bordeaux, France
| | - Geneviève Chêne
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| | - Carole Dufouil
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR 1219, CIC1401-EC, F-33000, Bordeaux, France
- Pole de sante publique Centre Hospitalier Universitaire (CHU) de Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
8
|
Royse SK, Snitz BE, Hengenius JB, Huppert TJ, Roush RE, Ehrenkranz RE, Wilson JD, Bertolet M, Reese AC, Cisneros G, Potopenko K, Becker JT, Cohen AD, Shaaban CE. Unhealthy white matter connectivity, cognition, and racialization in older adults. Alzheimers Dement 2024; 20:1483-1496. [PMID: 37828730 PMCID: PMC10947965 DOI: 10.1002/alz.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMH) may promote clinical Alzheimer's disease (AD) disparities between Black American (BA) and non-Hispanic White (nHW) populations. Using a novel measurement, unhealthy white matter connectivity (UWMC), we interrogated racialized group differences in associations between WMH in AD pathology-affected regions and cognition. METHODS UWMC is the proportion of white matter fibers that pass through WMH for every pair of brain regions. Individual regression models tested associations of UWMC in beta-amyloid (Aβ) or tau pathology-affected regions with cognition overall, stratified by racialized group, and with a racialized group interaction. RESULTS In 201 older adults ranging from cognitively unimpaired to AD, BA participants exhibited greater UWMC and worse cognition than nHW participants. UWMC was negatively associated with cognition in 17 and 5 Aβ- and tau-affected regions, respectively. Racialization did not modify these relationships. DISCUSSION Differential UWMC burden, not differential UWMC-and-cognition associations, may drive clinical AD disparities between racialized groups. HIGHLIGHTS Unhealthy white matter connectivity (UWMC) in Alzheimer's disease (AD) pathology-affected brain regions is associated with cognition. Relationships between UWMC and cognition are similar between Black American (BA) and non-Hispanic White (nHW) individuals. More UWMC may partially drive higher clinical AD burden in BA versus nHW populations. UWMC risk factors, particularly social and environmental, should be identified.
Collapse
Affiliation(s)
- Sarah K. Royse
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Beth E. Snitz
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - James B. Hengenius
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Theodore J. Huppert
- Department of Electrical EngineeringUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca E. Roush
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - James D. Wilson
- Department of Mathematics and StatisticsUniversity of San FranciscoSan FranciscoCaliforniaUSA
| | - Marnie Bertolet
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BiostatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Geraldine Cisneros
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Katey Potopenko
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - James T. Becker
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of BiostatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ann D. Cohen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | |
Collapse
|
9
|
Pendlebury ST, Luengo-Fernandez R, Seeley A, Downer MB, McColl A, Rothwell PM. Infection, delirium, and risk of dementia in patients with and without white matter disease on previous brain imaging: a population-based study. THE LANCET. HEALTHY LONGEVITY 2024; 5:e131-e140. [PMID: 38310893 DOI: 10.1016/s2666-7568(23)00266-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND The increased risk of dementia after delirium and infection might be influenced by cerebral white matter disease (WMD). In patients with transient ischaemic attack (TIA) and minor stroke, we assessed associations between hospital admissions with delirium and 5-year dementia risk and between admissions with infection and dementia risk, stratified by WMD severity (moderate or severe vs absent or mild) on baseline brain imaging. METHODS We included patients with TIA and minor stroke (National Institutes of Health Stroke Score <3) from the Oxford Vascular Study (OXVASC), a longitudinal population-based study of the incidence and outcomes of acute vascular events in a population of 94 567 individuals, with no age restrictions, attending eight general practices in Oxfordshire, UK. Hospitalisation data were obtained through linkage to the Oxford Cognitive Comorbidity, Frailty, and Ageing Research Database-Electronic Patient Records (ORCHARD-EPR). Brain imaging was done using CT and MRI, and WMD was prospectively graded according to the age-related white matter changes (ARWMC) scale and categorised into absent, mild, moderate, or severe WMD. Delirium and infection were defined by ICD-10 coding supplemented by hand-searching of hospital records. Dementia was diagnosed using clinical or cognitive assessment, medical records, and death certificates. Associations between hospitalisation with delirium and hospitalisation with infection, and post-event dementia were assessed using time-varying Cox analysis with multivariable adjustment, and all models were stratified by WMD severity. FINDINGS From April 1, 2002, to March 31, 2012, 1369 individuals were prospectively recruited into the study. Of 1369 patients (655 with TIA and 714 with minor stroke, mean age 72 [SD 13] years, 674 female and 695 male, and 364 with moderate or severe WMD), 209 (15%) developed dementia. Hospitalisation during follow-up occurred in 891 (65%) patients of whom 103 (12%) had at least one delirium episode and 236 (26%) had at least one infection episode. Hospitalisation without delirium or infection did not predict subsequent dementia (HR 1·01, 95% CI 0·86-1·20). In contrast, hospitalisation with delirium predicted subsequent dementia independently of infection in patients with and without WMD (2·64, 1·47-4·74; p=0·0013 vs 3·41, 1·91-6·09; p<0·0001) especially in those with unimpaired baseline cognition (cognitive test score above cutoff; 4·01, 2·23-7·19 vs 3·94, 1·95-7·93; both p≤0·0001). However, hospitalisation with infection only predicted dementia in those with moderate or severe WMD (1·75, 1·04-2·94 vs 0·68, 0·39-1·20; pdiff=0·023). INTERPRETATION The increased risk of dementia after delirium is unrelated to the presence of WMD, whereas infection increases risk only in patients with WMD, suggesting differences in underlying mechanisms and in potential preventive strategies. FUNDING National Institute for Health and Care Research and Wellcome Trust.
Collapse
Affiliation(s)
- Sarah T Pendlebury
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Departments of Acute General Internal Medicine and Geratology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Ramon Luengo-Fernandez
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Anna Seeley
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Matthew B Downer
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Aubretia McColl
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Peter M Rothwell
- Wolfson Centre for Prevention of Stroke and Dementia, Wolfson Building, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
Kawade N, Yamanaka K. Novel insights into brain lipid metabolism in Alzheimer's disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024; 14:194-216. [PMID: 37330425 PMCID: PMC10839347 DOI: 10.1002/2211-5463.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A genome-wide association study has shown that several AD risk genes are involved in lipid metabolism. Additionally, epidemiological studies have indicated that the levels of several lipid species are altered in the AD brain. Therefore, lipid metabolism is likely changed in the AD brain, and these alterations might be associated with an exacerbation of AD pathology. Oligodendrocytes are glial cells that produce the myelin sheath, which is a lipid-rich insulator. Dysfunctions of the myelin sheath have been linked to white matter abnormalities observed in the AD brain. Here, we review the lipid composition and metabolism in the brain and myelin and the association between lipidic alterations and AD pathology. We also present the abnormalities in oligodendrocyte lineage cells and white matter observed in AD. Additionally, we discuss metabolic disorders, including obesity, as AD risk factors and the effects of obesity and dietary intake of lipids on the brain.
Collapse
Affiliation(s)
- Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental MedicineNagoya UniversityJapan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of MedicineNagoya UniversityJapan
- Institute for Glyco‐core Research (iGCORE)Nagoya UniversityJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityJapan
| |
Collapse
|
11
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Fresnais D, Ihle-Hansen H, Lundström E, Andersson ÅG, Fure B. Cerebrovascular Hemodynamics in Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of Transcranial Doppler Studies. Dement Geriatr Cogn Disord 2023; 52:277-295. [PMID: 38008061 PMCID: PMC10911167 DOI: 10.1159/000535422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
INTRODUCTION Transcranial Doppler (TCD) sonography is a noninvasive tool for measuring cerebrovascular hemodynamics. Studies have reported alterations in cerebrovascular hemodynamics in normal aging, mild cognitive impairment (MCI), and dementia, as well as in different etiologies of dementia. This systematic review and meta-analysis was designed to investigate the relationship between cerebral blood velocity (CBv) and pulsatility index (PI) in the middle cerebral artery (MCA) in persons with MCI and dementia. METHODS A systematic literature search was conducted in Pubmed, Embase, Cochrane Library, Epistemonikos, PsychINFO, and CINAHL. The search was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. After screening of 33,439 articles, 86 were reviewed in full-text, and 35 fulfilled the inclusion criteria. RESULTS CBv was significantly lower and PI significantly higher in MCA in vascular dementia (VaD) and Alzheimer's disease (AD) compared to cognitively normal (CN) older persons. Also, CBv was lower in MCI compared to CN. There were no significant differences in CBv in MCA in AD compared with VaD, although PI was higher in VaD compared to AD. CONCLUSION Alterations in cerebrovascular hemodynamics are seen in AD, VaD, and MCI. While PI was slightly higher in VaD compared to AD, the reduction in CBv appears to be equally pronounced across neurodegenerative and vascular etiologies of dementia.
Collapse
Affiliation(s)
- David Fresnais
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
- Department of Internal Medicine, Central Hospital Karlstad, Karlstad, Sweden
| | | | - Erik Lundström
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
- Department of Neurology, Academic University Hospital Uppsala, Uppsala, Sweden
| | - Åsa G Andersson
- Department of Geriatrics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
| | - Brynjar Fure
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Orebro, Sweden
- Department of Internal Medicine, Central Hospital Karlstad, Karlstad, Sweden
| |
Collapse
|
13
|
Brickman AM, Rizvi B. White matter hyperintensities and Alzheimer's disease: An alternative view of an alternative hypothesis. Alzheimers Dement 2023; 19:4260-4261. [PMID: 37437028 PMCID: PMC11465501 DOI: 10.1002/alz.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/14/2023]
Abstract
White matter hyperintensities (WMH) - - areas of increased signal appearing on T2-weighted magnetic resonance imaging - - are associated with Alzheimer’s disease (AD) risk and progression in late onset and genetic forms. Although typically attributable to macrostructural damage due to small vessel cerebrovascular disease or dysfunction, in a paper by Garnier-Crussard and colleagues[1 ], the authors review recent work suggesting an additional Wallerian-like component to WMH and argue that the elevated WMH seen in AD is a downstream phenomenon secondary to neurodegeneration. Here, we maintain that consideration of pathological correlates, animal work, brain perfusion patterns, longitudinal and incident data, and vascular risk factors provides evidence that is not inconsistent with a vasculogenic source of WMH. Future studies inspired by the consistent observations linking WMH to AD are needed to continue to understand potential vascular contributions to the disease.
Collapse
Affiliation(s)
- Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168 Street, New York, NY 10032
| | - Batool Rizvi
- Center for the Neurobiology of Learning and Memory and Department of Neurobiology and Behavior, University of California, Irvine, 1400 Biological Sciences III, Irvine, CA, 92697
| |
Collapse
|
14
|
Garnier-Crussard A, Cotton F, Krolak-Salmon P, Chételat G. White matter hyperintensities in Alzheimer's disease: Beyond vascular contribution. Alzheimers Dement 2023; 19:3738-3748. [PMID: 37027506 DOI: 10.1002/alz.13057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023]
Abstract
White matter hyperintensities (WMH), frequently seen in older adults, are usually considered vascular lesions, and participate in the vascular contribution to cognitive impairment and dementia. However, emerging evidence highlights the heterogeneity of WMH pathophysiology, suggesting that non-vascular mechanisms could also be involved, notably in Alzheimer's disease (AD). This led to the alternative hypothesis that in AD, part of WMH may be secondary to AD-related processes. The current perspective brings together the arguments from different fields of research, including neuropathology, neuroimaging and fluid biomarkers, and genetics, in favor of this alternative hypothesis. Possible underlying mechanisms leading to AD-related WMH, such as AD-related neurodegeneration or neuroinflammation, are discussed, as well as implications for diagnostic criteria and management of AD. We finally discuss ways to test this hypothesis and remaining challenges. Acknowledging the heterogeneity of WMH and the existence of AD-related WMH may improve personalized diagnosis and care of patients.
Collapse
Affiliation(s)
- Antoine Garnier-Crussard
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - François Cotton
- Radiology Department, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CREATIS, INSERM U1044, CNRS UMR 5220, UCBL1, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
| |
Collapse
|
15
|
Alban SL, Lynch KM, Ringman JM, Toga AW, Chui HC, Sepehrband F, Choupan J. The association between white matter hyperintensities and amyloid and tau deposition. Neuroimage Clin 2023; 38:103383. [PMID: 36965457 PMCID: PMC10060905 DOI: 10.1016/j.nicl.2023.103383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with β-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their β-amyloid and tau pathologies, then assessed the effects of β-amyloid and tau on WMH volume and number. We then determined regions in which β-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global β-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where β-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). β-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between β-amyloid and WMH burden emphasizes the relationship between β-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on β-amyloid's vascular effects and the implications of impaired brain clearance in AD.
Collapse
Affiliation(s)
- Sierra L Alban
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M Lynch
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., Scarsdale, NY, USA
| |
Collapse
|
16
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Newton P, Tchounguen J, Pettigrew C, Lim C, Lin Z, Lu H, Moghekar A, Albert M, Soldan A. Regional White Matter Hyperintensities and Alzheimer's Disease Biomarkers Among Older Adults with Normal Cognition and Mild Cognitive Impairment. J Alzheimers Dis 2023; 92:323-339. [PMID: 36744337 PMCID: PMC10041440 DOI: 10.3233/jad-220846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) frequently co-occurs with other brain pathologies. Recent studies suggest there may be a mechanistic link between AD and small vessel cerebrovascular disease (CVD), as opposed to simply the overlap of two disorders. OBJECTIVE We investigated the cross-sectional relationship between white matter hyperintensity (WMH) volumes (markers of CVD) and cerebrospinal fluid (CSF) biomarkers of AD. METHODS WMH volumes were assessed globally and regionally (i.e., frontal, parietal, temporal, occipital, and limbic). CSF AD biomarkers (i.e., Aβ 40, Aβ 42, Aβ 42/Aβ 40 ratio, phosphorylated tau-181 [p-tau181], and total tau [t-tau]) were measured among 152 non-demented individuals (134 cognitively unimpaired and 18 with mild cognitive impairment (MCI)). RESULTS Linear regression models showed that among all subjects, higher temporal WHM volumes were associated with AD biomarkers (higher levels of p-tau181, t-tau, and Aβ 40), particularly among APOE ɛ 4 carriers (independent of Aβ 42 levels). Higher vascular risk scores were associated with greater parietal and frontal WMH volumes (independent of CSF AD biomarker levels). Among subjects with MCI only, parietal WMH volumes were associated with a lower level of Aβ 42/Aβ 40. In addition, there was an association between higher global WMH volumes and higher CSF t-tau levels among younger participants versus older ones (∼<65 versus 65+ years), independent of Aβ 42/Aβ 40 and p-tau181. CONCLUSION These findings suggest that although WMH are primarily related to systemic vascular risk and neurodegeneration (i.e., t-tau), AD-specific pathways may contribute to the formation of WMH in a regionally-specific manner, with neurofibrillary tangles (i.e., p-tau) playing a role in temporal WMHs and amyloid (i.e., Aβ 42/Aβ 40) in parietal WMHs.
Collapse
Affiliation(s)
- Princess Newton
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chantelle Lim
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - the BIOCARD Research Team
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
18
|
Shir D, Mielke MM, Hofrenning EI, Lesnick TG, Knopman DS, Petersen RC, Jack CR, Algeciras-Schimnich A, Vemuri P, Graff-Radford J. Associations of Neurodegeneration Biomarkers in Cerebrospinal Fluid with Markers of Alzheimer's Disease and Vascular Pathology. J Alzheimers Dis 2023; 92:887-898. [PMID: 36806507 PMCID: PMC10193844 DOI: 10.3233/jad-221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND The National Institute on Aging-Alzheimer's Association Research Framework proposes defining Alzheimer's disease by grouping imaging and fluid biomarkers by their respective pathologic processes. The AT(N) structure proposes several neurodegenerative fluid biomarkers (N) including total tau (t-tau), neurogranin (Ng), and neurofilament light chain (NfL). However, pathologic drivers influencing each biomarker remain unclear. OBJECTIVE To determine whether cerebrospinal fluid (CSF)-neurodegenerative biomarkers (N) map differentially to Alzheimer's disease pathology measured by Aβ42 (an indicator of amyloidosis, [A]), p-tau (an indicator of tau deposition, [T]), and MRI vascular pathology indicators (measured by white-matter integrity, infarcts, and microbleeds [V]). METHODS Participants were from Mayo Clinic Study of Aging (MCSA) with CSF measures of NfL, Ng, t-tau, Aβ42, and p-tau and available MRI brain imaging. Linear models assessed associations between CSF neurodegeneration (N) markers, amyloid markers (A), tau (T), and vascular pathology (V). RESULTS Participants (n = 408) had a mean age of 69.2±10.7; male, 217 (53.2%); cognitively unimpaired, 359 (88%). All three neurodegeneration biomarkers correlated with age (p < 0.001 for NfL and t-tau, p = 0.018 for Ng). Men had higher CSF-NfL levels; women had higher Ng (p < 0.001). NfL and t-tau levels correlated with infarcts (p = 0.009, p = 0.034 respectively); no biomarkers correlated with white-matter integrity. N biomarkers correlated with p-tau levels (T, p < 0.001). Higher Aβ42 levels associated with higher N-biomarker levels but only among cognitively unimpaired (A, p < 0.001). CONCLUSION The influence of vascular pathology in the general population on CSF (N) biomarkers is modest, with greater influence of infarcts than white-matter disruption. Neurodegeneration markers more closely correlated with tau than amyloid markers.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101
| | | | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
19
|
Roseborough AD, Saad L, Goodman M, Cipriano LE, Hachinski VC, Whitehead SN. White matter hyperintensities and longitudinal cognitive decline in cognitively normal populations and across diagnostic categories: A meta-analysis, systematic review, and recommendations for future study harmonization. Alzheimers Dement 2023; 19:194-207. [PMID: 35319162 DOI: 10.1002/alz.12642] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The primary aim of this paper is to improve the clinical interpretation of white matter hyperintensities (WMHs) and provide an overarching summary of methodological approaches, allowing researchers to design future studies targeting current knowledge gaps. METHODS A meta-analysis and systematic review was performed investigating associations between baseline WMHs and longitudinal cognitive outcomes in cognitively normal populations, and populations with mild cognitive impairment (MCI), Alzheimer's disease (AD), and stroke. RESULTS Baseline WMHs increase the risk of cognitive impairment and dementia across diagnostic categories and most consistently in MCI and post-stroke populations. Apolipoprotein E (APOE) genotype and domain-specific cognitive changes relating to strategic anatomical locations, such as frontal WMH and executive decline, represent important considerations. Meta-analysis reliability was assessed using multiple methods of estimation, and results suggest that heterogeneity in study design and reporting remains a significant barrier. DISCUSSION Recommendations and future directions for study of WMHs are provided to improve cross-study comparison and translation of research into consistent clinical interpretation.
Collapse
Affiliation(s)
- Austyn D Roseborough
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lorenzo Saad
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Maren Goodman
- Western Libraries, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Cipriano
- Ivey Business School and Department of Epidemiology and Biostatistics, The University of Western Ontario, London, Ontario, Canada
| | - Vladimir C Hachinski
- Department of Clinical Neurological Sciences, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Shawn N Whitehead
- Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology, The Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Rizvi B, Sathishkumar M, Kim S, Márquez F, Granger SJ, Larson MS, Miranda BA, Hollearn MK, McMillan L, Nan B, Tustison NJ, Lao PJ, Brickman AM, Greenia D, Corrada MM, Kawas CH, Yassa MA. Posterior white matter hyperintensities are associated with reduced medial temporal lobe subregional integrity and long-term memory in older adults. Neuroimage Clin 2022; 37:103308. [PMID: 36586358 PMCID: PMC9830310 DOI: 10.1016/j.nicl.2022.103308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
White matter hyperintensities are a marker of small vessel cerebrovascular disease that are strongly related to cognition in older adults. Similarly, medial temporal lobe atrophy is well-documented in aging and Alzheimer's disease and is associated with memory decline. Here, we assessed the relationship between lobar white matter hyperintensities, medial temporal lobe subregional volumes, and hippocampal memory in older adults. We collected MRI scans in a sample of 139 older adults without dementia (88 females, mean age (SD) = 76.95 (10.61)). Participants were administered the Rey Auditory Verbal Learning Test (RAVLT). Regression analyses tested for associations among medial temporal lobe subregional volumes, regional white matter hyperintensities and memory, while adjusting for age, sex, and education and correcting for multiple comparisons. Increased occipital white matter hyperintensities were related to worse RAVLT delayed recall performance, and to reduced CA1, dentate gyrus, perirhinal cortex (Brodmann area 36), and parahippocampal cortex volumes. These medial temporal lobe subregional volumes were related to delayed recall performance. The association of occipital white matter hyperintensities with delayed recall performance was fully mediated statistically only by perirhinal cortex volume. These results suggest that white matter hyperintensities may be associated with memory decline through their impact on medial temporal lobe atrophy. These findings provide new insights into the role of vascular pathologies in memory loss in older adults and suggest that future studies should further examine the neural mechanisms of these relationships in longitudinal samples.
Collapse
Affiliation(s)
- Batool Rizvi
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Mithra Sathishkumar
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Soyun Kim
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Freddie Márquez
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Steven J Granger
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Myra S Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Blake A Miranda
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Martina K Hollearn
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Bin Nan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Nicholas J Tustison
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Dana Greenia
- Department of Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Maria M Corrada
- Department of Neurology, School of Medicine, University of California, Irvine, CA, USA; Department of Epidemiology, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Neurology, School of Medicine, University of California, Irvine, CA, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA, USA; Department of Neurology, School of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Song S, Gaynor AM, Gazes Y, Lee S, Xu Q, Habeck C, Stern Y, Gu Y. Physical activity moderates the association between white matter hyperintensity burden and cognitive change. Front Aging Neurosci 2022; 14:945645. [PMID: 36313016 PMCID: PMC9610117 DOI: 10.3389/fnagi.2022.945645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Objective Greater physical activity (PA) could delay cognitive decline, yet the underlying mechanisms remain unclear. White matter hyperintensity (WMH) burden is one of the key brain pathologies that have been shown to predict faster cognitive decline at a late age. One possible pathway is that PA may help maintain cognition by mitigating the detrimental effects of brain pathologies, like WMH, on cognitive change. This study aims to examine whether PA moderates the association between WMH burden and cognitive change. Materials and methods This population-based longitudinal study included 198 dementia-free adults aged 20-80 years. Leisure-time physical activity (LTPA) was assessed by a self-reported questionnaire. Occupational physical activity (OPA) was a factor score measuring the physical demands of each job. Total physical activity (TPA) was operationalized as the average of z-scores of LTPA and OPA. Outcome variables included 5-year changes in global cognition and in four reference abilities (fluid reasoning, processing speed, memory, and vocabulary). Multivariable linear regression models were used to estimate the moderation effect of PA on the association between white matter hyperintensities and cognitive change, adjusting for age, sex, education, and baseline cognition. Results Over approximately 5 years, global cognition (p < 0.001), reasoning (p < 0.001), speed (p < 0.001), and memory (p < 0.05) scores declined, and vocabulary (p < 0.001) increased. Higher WMH burden was correlated with more decline in global cognition (Spearman's rho = -0.229, p = 0.001), reasoning (rho = -0.402, p < 0.001), and speed (rho = -0.319, p < 0.001), and less increase in vocabulary (rho = -0.316, p < 0.001). Greater TPA attenuated the association between WMH burden and changes in reasoning (βTPA^*WMH = 0.029, 95% CI = 0.006-0.052, p = 0.013), speed (βTPA^*WMH = 0.035, 95% CI = -0.004-0.065, p = 0.028), and vocabulary (βTPA^*WMH = 0.034, 95% CI = 0.004-0.065, p = 0.029). OPA seemed to be the factor that exerted a stronger moderation on the relationship between WMH burden and cognitive change. Conclusion Physical activity may help maintain reasoning, speed, and vocabulary abilities in face of WMH burden. The cognitive reserve potential of PA warrants further examination.
Collapse
Affiliation(s)
- Suhang Song
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA, United States
| | - Alexandra M. Gaynor
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Yunglin Gazes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Seonjoo Lee
- Department of Psychiatry and Biostatistics, Columbia University, New York, NY, United States
- Mental Health Data Science, New York State Psychiatric Institute, New York, NY, United States
| | - Qianhui Xu
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Christian Habeck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
- Division of Cognitive Neuroscience, Department of Neurology, Columbia University, New York, NY, United States
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, United States
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Shaaban CE, Tudorascu DL, Glymour MM, Cohen AD, Thurston RC, Snyder HM, Hohman TJ, Mukherjee S, Yu L, Snitz BE. A guide for researchers seeking training in retrospective data harmonization for population neuroscience studies of Alzheimer's disease and related dementias. FRONTIERS IN NEUROIMAGING 2022; 1:978350. [PMID: 37464990 PMCID: PMC10353763 DOI: 10.3389/fnimg.2022.978350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Due to needs surrounding rigor and reproducibility, subgroup specific disease knowledge, and questions of external validity, data harmonization is an essential tool in population neuroscience of Alzheimer's disease and related dementias (ADRD). Systematic harmonization of data elements is necessary to pool information from heterogeneous samples, and such pooling allows more expansive evaluations of health disparities, more precise effect estimates, and more opportunities to discover effective prevention or treatment strategies. The key goal of this Tutorial in Population Neuroimaging Curriculum, Instruction, and Pedagogy article is to guide researchers in creating a customized population neuroscience of ADRD harmonization training plan to fit their needs or those of their mentees. We provide brief guidance for retrospective data harmonization of multiple data types in this area, including: (1) clinical and demographic, (2) neuropsychological, and (3) neuroimaging data. Core competencies and skills are reviewed, and resources are provided to fill gaps in training as well as data needs. We close with an example study in which harmonization is a critical tool. While several aspects of this tutorial focus specifically on ADRD, the concepts and resources are likely to benefit population neuroscientists working in a range of research areas.
Collapse
Affiliation(s)
- C. Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dana L. Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Ann D. Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca C. Thurston
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Heather M. Snyder
- Medical and Scientific Relations, Alzheimer’s Association, Chicago, IL, United States
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Lan Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth E. Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Vipin A, Koh CL, Wong BYX, Zailan FZ, Tan JY, Soo SA, Satish V, Kumar D, Wang BZ, Ng ASL, Chiew HJ, Ng KP, Kandiah N. Amyloid-Tau-Neurodegeneration Profiles and Longitudinal Cognition in Sporadic Young-Onset Dementia. J Alzheimers Dis 2022; 90:543-551. [DOI: 10.3233/jad-220448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined amyloid-tau-neurodegeneration biomarker effects on cognition in a Southeast-Asian cohort of 84 sporadic young-onset dementia (YOD; age-at-onset <65 years) patients. They were stratified into A+N+, A– N+, and A– N– profiles via cerebrospinal fluid amyloid-β1–42 (A), phosphorylated-tau (T), MRI medial temporal atrophy (neurodegeneration– N), and confluent white matter hyperintensities cerebrovascular disease (CVD). A, T, and CVD effects on longitudinal Mini-Mental State Examination (MMSE) were evaluated. A+N+ patients demonstrated steeper MMSE decline than A– N+ (β = 1.53; p = 0.036; CI 0.15:2.92) and A– N– (β = 4.68; p = 0.001; CI 1.98:7.38) over a mean follow-up of 1.24 years. Within A– N+, T– CVD+ patients showed greater MMSE decline compared to T+CVD– patients (β = – 2.37; p = 0.030; CI – 4.41:– 0.39). A+ results in significant cognitive decline, while CVD influences longitudinal cognition in the A– sub-group.
Collapse
Affiliation(s)
- Ashwati Vipin
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Chen Ling Koh
- National Neuroscience Institute, Singapore, Singapore
| | | | - Fatin Zahra Zailan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Jayne Yi Tan
- National Neuroscience Institute, Singapore, Singapore
| | - See Ann Soo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | - Vaynii Satish
- National Neuroscience Institute, Singapore, Singapore
| | - Dilip Kumar
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
| | | | - Adeline Su Lyn Ng
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Hui Jin Chiew
- National Neuroscience Institute, Singapore, Singapore
| | - Kok Pin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
24
|
Song S, Gaynor AM, Cruz E, Lee S, Gazes Y, Habeck C, Stern Y, Gu Y. Mediterranean Diet and White Matter Hyperintensity Change over Time in Cognitively Intact Adults. Nutrients 2022; 14:3664. [PMID: 36079921 PMCID: PMC9460774 DOI: 10.3390/nu14173664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Current evidence on the impact of Mediterranean diet (MeDi) on white matter hyperintensity (WMH) trajectory is scarce. This study aims to examine whether greater adherence to MeDi is associated with less accumulation of WMH. This population-based longitudinal study included 183 cognitively intact adults aged 20−80 years. The MeDi score was obtained from a self-reported food frequency questionnaire; WMH was assessed by 3T MRI. Multivariable linear regression was used to estimate the effect of MeDi on WMH change. Covariates included socio-demographic factors and brain markers. Moderation effects by age, gender, and race/ethnicity were examined, followed by stratification analyses. Among all participants, WMH increased from baseline to follow-up (mean difference [follow-up-baseline] [standard deviation] = 0.31 [0.48], p < 0.001). MeDi adherence was negatively associated with the increase in WMH (β = −0.014, 95% CI = −0.026−−0.001, p = 0.034), adjusting for all covariates. The association between MeDi and WMH change was moderated by age (young group = reference, p-interaction[middle-aged × MeDi] = 0.075, p-interaction[older × MeDi] = 0.037). The association between MeDi and WMH change was observed among the young group (β = −0.035, 95% CI = −0.058−−0.013, p = 0.003), but not among other age groups. Moderation effects by gender and race/ethnicity did not reach significance. Greater adherence to MeDi was associated with a lesser increase in WMH over time. Following a healthy diet, especially at younger age, may help to maintain a healthy brain.
Collapse
Affiliation(s)
- Suhang Song
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Department of Health Policy and Management, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Alexandra M. Gaynor
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Emily Cruz
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | - Seonjoo Lee
- Department of Psychiatry and Biostatistics, Columbia University, New York, NY 10032, USA
- Mental Health Data Science, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Yunglin Gazes
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| | - Christian Habeck
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
| | - Yaakov Stern
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Yian Gu
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, New York, NY 10032, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
- Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Liu X, Sun P, Yang J, Fan Y. Biomarkers involved in the pathogenesis of cerebral small-vessel disease. Front Neurol 2022; 13:969185. [PMID: 36119691 PMCID: PMC9475115 DOI: 10.3389/fneur.2022.969185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral small-vessel disease (CSVD) has been found to have a strong association with vascular cognitive impairment (VCI) and functional loss in elderly patients. At present, the diagnosis of CSVD mainly relies on brain neuroimaging markers, but they cannot fully reflect the overall picture of the disease. Currently, some biomarkers were found to be related to CSVD, but the underlying mechanisms remain unclear. We aimed to systematically review and summarize studies on the progress of biomarkers related to the pathogenesis of CSVD, which is mainly the relationship between these indicators and neuroimaging markers of CSVD. Concerning the pathophysiological mechanism of CSVD, the biomarkers of CSVD have been described as several categories related to sporadic and genetic factors. Monitoring of biomarkers might contribute to the early diagnosis and progression prediction of CSVD, thus providing ideas for better diagnosis and treatment of CSVD.
Collapse
|
26
|
Keuss SE, Coath W, Nicholas JM, Poole T, Barnes J, Cash DM, Lane CA, Parker TD, Keshavan A, Buchanan SM, Wagen AZ, Storey M, Harris M, Malone IB, Sudre CH, Lu K, James SN, Street R, Thomas DL, Dickson JC, Murray-Smith H, Wong A, Freiberger T, Crutch S, Richards M, Fox NC, Schott JM. Associations of β-Amyloid and Vascular Burden With Rates of Neurodegeneration in Cognitively Normal Members of the 1946 British Birth Cohort. Neurology 2022; 99:e129-e141. [PMID: 35410910 PMCID: PMC9280996 DOI: 10.1212/wnl.0000000000200524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The goals of this work were to quantify the independent and interactive associations of β-amyloid (Aβ) and white matter hyperintensity volume (WMHV), a marker of presumed cerebrovascular disease (CVD), with rates of neurodegeneration and to examine the contributions of APOE ε4 and vascular risk measured at different stages of adulthood in cognitively normal members of the 1946 British Birth Cohort. METHODS Participants underwent brain MRI and florbetapir-Aβ PET as part of Insight 46, an observational population-based study. Changes in whole-brain, ventricular, and hippocampal volume were directly measured from baseline and repeat volumetric T1 MRI with the boundary shift integral. Linear regression was used to test associations with baseline Aβ deposition, baseline WMHV, APOE ε4, and office-based Framingham Heart Study Cardiovascular Risk Score (FHS-CVS) and systolic blood pressure (BP) at ages 36, 53, and 69 years. RESULTS Three hundred forty-six cognitively normal participants (mean [SD] age at baseline scan 70.5 [0.6] years; 48% female) had high-quality T1 MRI data from both time points (mean [SD] scan interval 2.4 [0.2] years). Being Aβ positive at baseline was associated with 0.87-mL/y faster whole-brain atrophy (95% CI 0.03, 1.72), 0.39-mL/y greater ventricular expansion (95% CI 0.16, 0.64), and 0.016-mL/y faster hippocampal atrophy (95% CI 0.004, 0.027), while each 10-mL additional WMHV at baseline was associated with 1.07-mL/y faster whole-brain atrophy (95% CI 0.47, 1.67), 0.31-mL/y greater ventricular expansion (95% CI 0.13, 0.60), and 0.014-mL/y faster hippocampal atrophy (95% CI 0.006, 0.022). These contributions were independent, and there was no evidence that Aβ and WMHV interacted in their effects. There were no independent associations of APOE ε4 with rates of neurodegeneration after adjustment for Aβ status and WMHV, no clear relationships between FHS-CVS or systolic BP and rates of neurodegeneration when assessed across the whole sample, and no evidence that FHS-CVS or systolic BP acted synergistically with Aβ. DISCUSSION Aβ and presumed CVD have distinct and additive effects on rates of neurodegeneration in cognitively normal elderly. These findings have implications for the use of MRI measures as biomarkers of neurodegeneration and emphasize the importance of risk management and early intervention targeting both pathways.
Collapse
Affiliation(s)
- Sarah E Keuss
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - William Coath
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Jennifer M Nicholas
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Teresa Poole
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Josephine Barnes
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - David M Cash
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Christopher A Lane
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Thomas D Parker
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Ashvini Keshavan
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Sarah M Buchanan
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Aaron Z Wagen
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Mathew Storey
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Matthew Harris
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Ian B Malone
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Carole H Sudre
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Kirsty Lu
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Sarah-Naomi James
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Rebecca Street
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - David L Thomas
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - John C Dickson
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Heidi Murray-Smith
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Andrew Wong
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Tamar Freiberger
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Sebastian Crutch
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Marcus Richards
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Nick C Fox
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK
| | - Jonathan M Schott
- From the Dementia Research Centre (S.E.K., W.C., J.M.N., T.P., J.B., D.M.C., C.A.L., A.K. S.M.B., A.Z.W., M.S., M.H., I.B.M., C.H.S., K.L., R.S., H.M.-S, T.F., S.C., N.C.F., J.M.S.), Dementia Research Institute (D.M.C., N.C.F.), Leonard Wolfson Experimental Neurology Centre (D.L.T.), and Department of Brain Repair and Neurorehabilitation (D.L.T.), UCL Queen Square Institute of Neurology; Department of Medical Statistics (J.M.N., T.P.), London School of Hygiene and Tropical Medicine; 4. Department of Medicine (T.D.P.), Division of Brain Sciences, Imperial College London; MRC Unit for Lifelong Health and Ageing at UCL (C.H.S., S.-N.J., A.W., M.R.); Centre for Medical Image Computing (C.H.S.), University College London; School of Biomedical Engineering & Imaging Sciences (C.H.S.), King's College London; and Institute of Nuclear Medicine (J.C.D.), University College London Hospitals, UK.
| |
Collapse
|
27
|
Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Front Neurosci 2022; 16:902146. [PMID: 35784845 PMCID: PMC9243337 DOI: 10.3389/fnins.2022.902146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are incompletely understood. Emerging findings have revealed that disruption of nuclear processes play key roles in ND pathogenesis. The nucleus is a nexus for gene regulation and cellular processes that together, may underlie pathomechanisms of NDs. Furthermore, many genetic risk factors for NDs encode proteins that are either present in the nucleus or are involved in nuclear processes (for example, RNA binding proteins, epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances in nuclear transcriptomics have been significant, studies of the nuclear proteome in brain have been relatively limited. We propose that a comprehensive analysis of nuclear proteomic alterations of various brain cell types in NDs may provide novel biological and therapeutic insights. This may be feasible because emerging technical advances allow isolation and investigation of intact nuclei from post-mortem frozen human brain tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain cell types harbor unique protein markers which can be used to isolate cell-type specific nuclei followed by down-stream proteomics by mass spectrometry. Here we review the literature providing a rationale for investigating proteomic changes occurring in nuclei in NDs and then highlight the potential for brain cell type-specific nuclear proteomics to enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
Collapse
Affiliation(s)
- Ruth S. Nelson
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | | | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States,*Correspondence: Srikant Rangaraju
| |
Collapse
|
28
|
Uretsky M, Bouix S, Killiany RJ, Tripodis Y, Martin B, Palmisano J, Mian AZ, Buch K, Farris C, Daneshvar DH, Dwyer B, Goldstein L, Katz D, Nowinski C, Cantu R, Kowall N, Huber BR, Stern RA, Alvarez VE, Stein TD, McKee A, Mez J, Alosco ML. Association Between Antemortem FLAIR White Matter Hyperintensities and Neuropathology in Brain Donors Exposed to Repetitive Head Impacts. Neurology 2022; 98:e27-e39. [PMID: 34819338 PMCID: PMC8726571 DOI: 10.1212/wnl.0000000000013012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Late neuropathologies of repetitive head impacts from contact sports can include chronic traumatic encephalopathy (CTE) and white matter degeneration. White matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR) MRI scans are often viewed as microvascular disease from vascular risk, but might have unique underlying pathologies and risk factors in the setting of repetitive head impacts. We investigated the neuropathologic correlates of antemortem WMH in brain donors exposed to repetitive head impacts. The association between WMH and repetitive head impact exposure and informant-reported cognitive and daily function were tested. METHODS This imaging-pathologic correlation study included symptomatic male decedents exposed to repetitive head impacts. Donors had antemortem FLAIR scans from medical records and were without evidence of CNS neoplasm, large vessel infarcts, hemorrhage, or encephalomalacia. WMH were quantified using log-transformed values for total lesion volume (TLV), calculated using the lesion prediction algorithm from the Lesion Segmentation Toolbox. Neuropathologic assessments included semiquantitative ratings of white matter rarefaction, cerebrovascular disease, hyperphosphorylated tau (p-tau) severity (CTE stage, dorsolateral frontal cortex), and β-amyloid (Aβ). Among football players, years of play was a proxy for repetitive head impact exposure. Retrospective informant-reported cognitive and daily function were assessed using the Cognitive Difficulties Scale (CDS) and Functional Activities Questionnaire (FAQ). Regression models controlled for demographics, diabetes, hypertension, and MRI resolution. Statistical significance was defined as p ≤ 0.05. RESULTS The sample included 75 donors: 67 football players and 8 nonfootball contact sport athletes or military veterans. Dementia was the most common MRI indication (64%). Fifty-three (70.7%) had CTE at autopsy. Log TLV was associated with white matter rarefaction (odds ratio [OR] 2.32, 95% confidence interval [CI] 1.03, 5.24; p = 0.04), arteriolosclerosis (OR 2.38, 95% CI 1.02, 5.52; p = 0.04), CTE stage (OR 2.58, 95% CI 1.17, 5.71; p = 0.02), and dorsolateral frontal p-tau severity (OR 3.03, 95% CI 1.32, 6.97; p = 0.01). There was no association with Aβ. More years of football play was associated with log TLV (unstandardized β 0.04, 95% CI 0.01, 0.06; p = 0.01). Greater log TLV correlated with higher FAQ (unstandardized β 4.94, 95% CI 0.42, 8.57; p = 0.03) and CDS scores (unstandardized β 15.35, 95% CI -0.27, 30.97; p = 0.05). DISCUSSION WMH might capture long-term white matter pathologies from repetitive head impacts, including those from white matter rarefaction and p-tau, in addition to microvascular disease. Prospective imaging-pathologic correlation studies are needed. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence of associations between FLAIR white matter hyperintensities and neuropathologic changes (white matter rarefaction, arteriolosclerosis, p-tau accumulation), years of American football play, and reported cognitive symptoms in symptomatic brain donors exposed to repetitive head impacts.
Collapse
Affiliation(s)
- Madeline Uretsky
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Sylvain Bouix
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Ronald J Killiany
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Yorghos Tripodis
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Brett Martin
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Joseph Palmisano
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Asim Z Mian
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Karen Buch
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Chad Farris
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Daniel H Daneshvar
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Brigid Dwyer
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Lee Goldstein
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Douglas Katz
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Christopher Nowinski
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Robert Cantu
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Neil Kowall
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Bertrand Russell Huber
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Robert A Stern
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Victor E Alvarez
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Thor D Stein
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Ann McKee
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Jesse Mez
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA
| | - Michael L Alosco
- From the Boston University Alzheimer's Disease Research Center and CTE Center, Department of Neurology (M.U., R.J.K., Y.T., D.H.D., B.D., L.G., D.K., C.N., R.C., N.K., B.R.H., R.A.S., V.E.A., T.D.S., A.M., J.M., M.L.A.), Department of Anatomy and Neurobiology (R.J.K., R.A.S.), Center for Biomedical Imaging (R.J.K.), Department of Radiology (A.Z.M., C.F.), Framingham Heart Study (C.F., T.D.S., A.M., J.M.), Department of Pathology and Laboratory Medicine (L.G., N.K., T.D.S., A.M.), Department of Psychiatry (L.G.), Department of Ophthalmology (L.G.), and Department of Neurosurgery (R.C., R.A.S.), Boston University School of Medicine; Department of Psychiatry, Psychiatry Neuroimaging Laboratory (S.B.), Brigham and Women's Hospital, Harvard Medical School; Department of Biostatistics (Y.T.) and Biostatistics and Epidemiology Data Analytics Center (B.M., J.P.), Boston University School of Public Health; Departments of Radiology (K.B.) and Physical Medicine & Rehabilitation (D.H.D.), Massachusetts General Hospital, Boston; Braintree Rehabilitation Hospital (B.D., D.K.); Department of Biomedical, Electrical & Computer Engineering (L.G.), Boston University College of Engineering; Concussion Legacy Foundation (C.N., R.C.), Boston; Department of Neurosurgery (R.C.), Emerson Hospital, Concord; VA Boston Healthcare System (B.R.H., V.E.A., T.D.S., A.M.), US Department of Veterans Affairs, Jamaica Plain; National Center for PTSD (B.R.H., V.E.A.), VA Boston Healthcare, Jamaica Plain; and Department of Veterans Affairs Medical Center (V.E.A., T.D.S., A.M.), Bedford, MA.
| |
Collapse
|
29
|
Lee KH, Kang KM. Association between Cerebral Small Vessel and Alzheimer’s Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:486-507. [PMID: 36238505 PMCID: PMC9514514 DOI: 10.3348/jksr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
뇌소혈관질환은 뇌 자기공명영상에서 흔히 관찰되는 혈관성 변화로 뇌백질 고신호강도, 뇌미세출혈, 열공성 경색, 혈관주위공간 등을 포함한다. 이러한 혈관성 변화가 알츠하이머병(Alzheimer’s disease; 이하 AD)의 발병 및 진행과 관련되어 있고, 대표 병리인 베타 아밀로이드 및 타우 단백의 침착과도 연관되어 있다는 증거들이 축적되고 있다. 혈관성 변화는 생활 습관 개선이나 약물 치료를 통해 예방과 개선이 가능하기 때문에 뇌소혈관질환과 AD 및 AD 생체지표의 관련성을 연구하는 것이 중요하다. 본 종설에서는 AD와 AD 생체지표에 대해 간략히 소개하고, AD와 혈관성 변화의 관련성에 대해 축적된 증거들을 제시한 다음, 뇌소혈관질환의 병태 생리와 MR 영상 소견을 설명하고자 한다. 또 뇌소혈관질환과 AD 진단의 위험도 및 AD 생체지표와의 관련성에 대한 기존 연구 결과들을 정리하고자 한다.
Collapse
Affiliation(s)
- Kyung Hoon Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Fiford CM, Sudre CH, Young AL, Macdougall A, Nicholas J, Manning EN, Malone IB, Walsh P, Goodkin O, Pemberton HG, Barkhof F, Alexander DC, Cardoso MJ, Biessels GJ, Barnes J. Presumed small vessel disease, imaging and cognition markers in the Alzheimer's Disease Neuroimaging Initiative. Brain Commun 2021; 3:fcab226. [PMID: 34661106 PMCID: PMC8514859 DOI: 10.1093/braincomms/fcab226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/18/2023] Open
Abstract
MRI-derived features of presumed cerebral small vessel disease are frequently found in Alzheimer's disease. Influences of such markers on disease-progression measures are poorly understood. We measured markers of presumed small vessel disease (white matter hyperintensity volumes; cerebral microbleeds) on baseline images of newly enrolled individuals in the Alzheimer's Disease Neuroimaging Initiative cohort (GO and 2) and used linear mixed models to relate these to subsequent atrophy and neuropsychological score change. We also assessed heterogeneity in white matter hyperintensity positioning within biomarker abnormality sequences, driven by the data, using the Subtype and Stage Inference algorithm. This study recruited both sexes and included: controls: [n = 159, mean(SD) age = 74(6) years]; early and late mild cognitive impairment [ns = 265 and 139, respectively, mean(SD) ages =71(7) and 72(8) years, respectively]; Alzheimer's disease [n = 103, mean(SD) age = 75(8)] and significant memory concern [n = 72, mean(SD) age = 72(6) years]. Baseline demographic and vascular risk-factor data, and longitudinal cognitive scores (Mini-Mental State Examination; logical memory; and Trails A and B) were collected. Whole-brain and hippocampal volume change metrics were calculated. White matter hyperintensity volumes were associated with greater whole-brain and hippocampal volume changes independently of cerebral microbleeds (a doubling of baseline white matter hyperintensity was associated with an increase in atrophy rate of 0.3 ml/year for brain and 0.013 ml/year for hippocampus). Cerebral microbleeds were found in 15% of individuals and the presence of a microbleed, as opposed to none, was associated with increases in atrophy rate of 1.4 ml/year for whole brain and 0.021 ml/year for hippocampus. White matter hyperintensities were predictive of greater decline in all neuropsychological scores, while cerebral microbleeds were predictive of decline in logical memory (immediate recall) and Mini-Mental State Examination scores. We identified distinct groups with specific sequences of biomarker abnormality using continuous baseline measures and brain volume change. Four clusters were found; Group 1 showed early Alzheimer's pathology; Group 2 showed early neurodegeneration; Group 3 had early mixed Alzheimer's and cerebrovascular pathology; Group 4 had early neuropsychological score abnormalities. White matter hyperintensity volumes becoming abnormal was a late event for Groups 1 and 4 and an early event for 2 and 3. In summary, white matter hyperintensities and microbleeds were independently associated with progressive neurodegeneration (brain atrophy rates) and cognitive decline (change in neuropsychological scores). Mechanisms involving white matter hyperintensities and progression and microbleeds and progression may be partially separate. Distinct sequences of biomarker progression were found. White matter hyperintensity development was an early event in two sequences.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Health Sciences, University College London, London WC1E 3HB, UK
| | - Alexandra L Young
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 3AF, UK
| | - Amy Macdougall
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Jennifer Nicholas
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Olivia Goodkin
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Hugh G Pemberton
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Healthcare Engineering, London WC1E 6DH, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - M Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | |
Collapse
|
31
|
Quattrini G, Marizzoni M, Pizzini FB, Galazzo IB, Aiello M, Didic M, Soricelli A, Albani D, Romano M, Blin O, Forloni G, Golay X, Jovicich J, Nathan PJ, Richardson JC, Salvatore M, Frisoni GB, Pievani M. Convergent and Discriminant Validity of Default Mode Network and Limbic Network Perfusion in Amnestic Mild Cognitive Impairment Patients. J Alzheimers Dis 2021; 82:1797-1808. [PMID: 34219733 DOI: 10.3233/jad-210531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previous studies reported default mode network (DMN) and limbic network (LIN) brain perfusion deficits in patients with amnestic mild cognitive impairment (aMCI), frequently a prodromal stage of Alzheimer's disease (AD). However, the validity of these measures as AD markers has not yet been tested using MRI arterial spin labeling (ASL). OBJECTIVE To investigate the convergent and discriminant validity of DMN and LIN perfusion in aMCI. METHODS We collected core AD markers (amyloid-β 42 [Aβ42], phosphorylated tau 181 levels in cerebrospinal fluid [CSF]), neurodegenerative (hippocampal volumes and CSF total tau), vascular (white matter hyperintensities), genetic (apolipoprotein E [APOE] status), and cognitive features (memory functioning on Paired Associate Learning test [PAL]) in 14 aMCI patients. Cerebral blood flow (CBF) was extracted from DMN and LIN using ASL and correlated with AD features to assess convergent validity. Discriminant validity was assessed carrying out the same analysis with AD-unrelated features, i.e., somatomotor and visual networks' perfusion, cerebellar volume, and processing speed. RESULTS Perfusion was reduced in the DMN (F = 5.486, p = 0.039) and LIN (F = 12.678, p = 0.004) in APOE ɛ4 carriers compared to non-carriers. LIN perfusion correlated with CSF Aβ42 levels (r = 0.678, p = 0.022) and memory impairment (PAL, number of errors, r = -0.779, p = 0.002). No significant correlation was detected with tau, neurodegeneration, and vascular features, nor with AD-unrelated features. CONCLUSION Our results support the validity of DMN and LIN ASL perfusion as AD markers in aMCI, indicating a significant correlation between CBF and amyloidosis, APOE ɛ4, and memory impairment.
Collapse
Affiliation(s)
- Giulia Quattrini
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Moira Marizzoni
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | | | | | - Mira Didic
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, Marseille, France.,APHM, Timone, Service de Neurologie et Neuropsychologie, Hôpital Timone Adultes, Marseille, France
| | - Andrea Soricelli
- IRCCS SDN, Napoli, Italy.,Department of Sport Sciences, University of Naples Parthenope, Naples, Italy
| | - Diego Albani
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Melissa Romano
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- Aix-Marseille Univ, INSERM, INS, Instit Neurosci des Syst, DHUNE, Ap-Hm, Marseille, France
| | - Gianluigi Forloni
- Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Pradeep J Nathan
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jill C Richardson
- Neurosciences Therapeutic Area, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, United Kingdom
| | | | - Giovanni B Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory of Alzheimer's Neuroimaging and Epidemiology (LANE), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|
32
|
Park M, Baik K, Lee YG, Kang SW, Jung JH, Jeong SH, Lee PH, Sohn YH, Ye BS. Implication of Small Vessel Disease MRI Markers in Alzheimer's Disease and Lewy Body Disease. J Alzheimers Dis 2021; 83:545-556. [PMID: 34366356 DOI: 10.3233/jad-210669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Small vessel disease (SVD) magnetic resonance imaging (MRI) markers including deep and periventricular white matter hyperintensities (PWMH), lacunes, and microbleeds are frequently observed in Alzheimer's disease (AD) and Lewy body disease (LBD), but their implication has not been clearly elucidated. OBJECTIVE To investigate the implication of SVD MRI markers in cognitively impaired patients with AD and/or LBD. METHODS We consecutively recruited 57 patients with pure AD-related cognitive impairment (ADCI), 49 with pure LBD-related cognitive impairment (LBCI), 45 with mixed ADCI/LBCI, and 34 controls. All participants underwent neuropsychological tests, brain MRI, and amyloid positron emission tomography. SVD MRI markers including the severity of deep and PWMH and the number of lacunes and microbleeds were visually rated. The relationships among vascular risk factors, SVD MRI markers, ADCI, LBCI, and cognitive scores were investigated after controlling for appropriate covariates. RESULTS LBCI was associated with more severe PWMH, which was conversely associated with an increased risk of LBCI independently of vascular risk factors and ADCI. PWMH was associated with attention and visuospatial dysfunction independently of vascular risk factors, ADCI, and LBCI. Both ADCI and LBCI were associated with more lobar microbleeds, but not with deep microbleeds. CONCLUSION Our findings suggest that PWMH could reflect degenerative process related with LBD, and both AD and LBD independently increase lobar microbleeds.
Collapse
Affiliation(s)
- Mincheol Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Woo Kang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Ho Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
33
|
Garnier-Crussard A, Bougacha S, Wirth M, Dautricourt S, Sherif S, Landeau B, Gonneaud J, De Flores R, de la Sayette V, Vivien D, Krolak-Salmon P, Chételat G. White matter hyperintensity topography in Alzheimer's disease and links to cognition. Alzheimers Dement 2021; 18:422-433. [PMID: 34322985 PMCID: PMC9292254 DOI: 10.1002/alz.12410] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023]
Abstract
Introduction White matter hyperintensities (WMH) are often described in Alzheimer's disease (AD), but their topography and specific relationships with cognition remain unclear. Methods Regional WMH were estimated in 54 cognitively impaired amyloid beta–positive AD (Aβpos‐AD), compared to 40 cognitively unimpaired amyloid beta–negative older controls (Aβneg‐controls) matched for vascular risk factors. The cross‐sectional association between regional WMH volume and cognition was assessed within each group, controlling for cerebral amyloid burden, global cortical atrophy, and hippocampal atrophy. Results WMH volume was larger in Aβpos‐AD compared to Aβneg‐controls in all regions, with the greatest changes in the splenium of the corpus callosum (S‐CC). In Aβpos‐AD patients, larger total and regional WMH volume, especially in the S‐CC, was strongly associated with decreased cognition. Discussion WMH specifically contribute to lower cognition in AD, independently from amyloid deposition and atrophy. This study emphasizes the clinical relevance of WMH in AD, especially posterior WMH, and most notably S‐CC WMH.
Collapse
Affiliation(s)
- Antoine Garnier-Crussard
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,Clinical and Research Memory Center of Lyon, Lyon Institute For Elderly, Hospices Civils de Lyon, Lyon, France.,University of Lyon, Lyon, France
| | - Salma Bougacha
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Sophie Dautricourt
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,Department of Neurology, CHU de Caen, Caen, France
| | - Siya Sherif
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Julie Gonneaud
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Robin De Flores
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Vincent de la Sayette
- Department of Neurology, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, NIMH, Caen, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,Department of Clinical Research, CHU de Caen, Caen, France
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center of Lyon, Lyon Institute For Elderly, Hospices Civils de Lyon, Lyon, France.,University of Lyon, Lyon, France.,Neuroscience Research Centre of Lyon, INSERM 1048, CNRS 5292, Lyon, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders,", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| |
Collapse
|
34
|
Oh KT, Kim D, Ye BS, Lee S, Yun M, Yoo SK. Segmentation of white matter hyperintensities on 18F-FDG PET/CT images with a generative adversarial network. Eur J Nucl Med Mol Imaging 2021; 48:3422-3431. [PMID: 33693968 DOI: 10.1007/s00259-021-05285-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE White matter hyperintensities (WMH) are typically segmented using MRI because WMH are hardly visible on 18F-FDG PET/CT. This retrospective study was conducted to segment WMH and estimate their volumes from 18F-FDG PET with a generative adversarial network (WhyperGAN). METHODS We selected patients whose interval between MRI and FDG PET/CT scans was within 3 months, from January 2017 to December 2018, and classified them into mild, moderate, and severe groups by following the semiquantitative rating method of Fazekas. For each group, 50 patients were selected, and of them, we randomly selected 35 patients for training and 15 for testing. WMH were automatically segmented from FLAIR MRI with manual adjustment. Patches of WMH were extracted from 18F-FDG PET and segmented MRI. WhyperGAN was compared with H-DenseUnet, a deep learning method widely used for segmentation tasks, for segmentation performance based on the dice similarity coefficient (DSC), recall, and average volume differences (AVD). For volume estimation, the predicted WMH volumes from PET were compared with ground truth volumes. RESULTS The DSC values were associated with WMH volumes on MRI. For volumes >60 mL, the DSC values were 0.751 for WhyperGAN and 0.564 for H-DenseUnet. For volumes ≤60 mL, the DSC values rapidly decreased as the volume decreased (0.362 for WhyperGAN vs. 0.237 for H-DenseUnet). For recall, WhyperGAN achieved the highest value in the severe group (0.579 for WhyperGAN vs. 0.509 for H-DenseUnet). For AVD, WhyperGAN achieved the lowest score in the severe group (0.494 for WhyperGAN vs. 0.941 for H-DenseUnet). For the WMH volume estimation, WhyperGAN performed better than H-DenseUnet and yielded excellent correlation coefficients (r = 0.998, 0.983, and 0.908 in the severe, moderate, and mild group). CONCLUSIONS Although limited by visual analysis, the WhyperGAN based can be used to automatically segment and estimate volumes of WMH from 18F-FDG PET/CT. This would increase the usefulness of 18F-FDG PET/CT for the evaluation of WMH in patients with cognitive impairment.
Collapse
Affiliation(s)
- Kyeong Taek Oh
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dongwoo Kim
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sangwon Lee
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sun Kook Yoo
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Waller R, Narramore R, Simpson JE, Heath PR, Verma N, Tinsley M, Barnes JR, Haris HT, Henderson FE, Matthews FE, Richardson CD, Brayne C, Ince PG, Kalaria RN, Wharton SB. Heterogeneity of cellular inflammatory responses in ageing white matter and relationship to Alzheimer's and small vessel disease pathologies. Brain Pathol 2021; 31:e12928. [PMID: 33336479 PMCID: PMC8412112 DOI: 10.1111/bpa.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022] Open
Abstract
White matter lesions (WML) are common in the ageing brain, often arising in a field effect of diffuse white matter abnormality. Although WML are associated with cerebral small vessel disease (SVD) and Alzheimer’s disease (AD), their cause and pathogenesis remain unclear. The current study tested the hypothesis that different patterns of neuroinflammation are associated with SVD compared to AD neuropathology by assessing the immunoreactive profile of the microglial (CD68, IBA1 and MHC‐II) and astrocyte (GFAP) markers in ageing parietal white matter (PARWM) obtained from the Cognitive Function and Ageing Study (CFAS), an ageing population‐representative neuropathology cohort. Glial responses varied extensively across the PARWM with microglial markers significantly higher in the subventricular region compared to either the middle‐zone (CD68 p = 0.028, IBA1 p < 0.001, MHC‐II p < 0.001) or subcortical region (CD68 p = 0.002, IBA1 p < 0.001, MHC‐II p < 0.001). Clasmatodendritic (CD) GFAP+ astrocytes significantly increased from the subcortical to the subventricular region (p < 0.001), whilst GFAP+ stellate astrocytes significantly decreased (p < 0.001). Cellular reactions could be grouped into two distinct patterns: an immune response associated with MHC‐II/IBA1 expression and CD astrocytes; and a more innate response characterised by CD68 expression associated with WML. White matter neuroinflammation showed weak relationships to the measures of SVD, but not to the measures of AD neuropathology. In conclusion, glial responses vary extensively across the PARWM with diverse patterns of white matter neuroinflammation. Although these findings support a role for vascular factors in the pathogenesis of age‐related white matter neuroinflammation, additional factors other than SVD and AD pathology may drive this. Understanding the heterogeneity in white matter neuroinflammation will be important for the therapeutic targeting of age‐associated white matter damage.
Collapse
Affiliation(s)
- Rachel Waller
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Ruth Narramore
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Nikita Verma
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Megan Tinsley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jordan R Barnes
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Hanna T Haris
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Frances E Henderson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona E Matthews
- Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Connor D Richardson
- Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Raj N Kalaria
- Translational and Clinical Research Institute, University of Newcastle, Newcastle upon Tyne, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
36
|
Hirao K, Yamashita F, Tsugawa A, Haime R, Fukasawa R, Sato T, Kanetaka H, Umahara T, Sakurai H, Hanyu H, Shimizu S. Association of White Matter Hyperintensity Progression with Cognitive Decline in Patients with Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2021; 80:877-883. [PMID: 33579856 PMCID: PMC8075400 DOI: 10.3233/jad-201451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: White matter hyperintensities (WMH) on MRI have been reported to increase the risk of conversion from mild cognitive impairment (MCI) to Alzheimer’s disease (AD). However, effects of the progression of WMH on the cognition of patients with MCI remains unclear to date. Objective: To investigate the association between WMH progression and cognitive decline in amnestic MCI patients. Methods: Thirty-eight subjects with amnestic MCI were analyzed prospectively every year for 2 years. Fourteen MCI subjects dropped out on the final visit, and therefore 24 subjects with MCI were analyzed for the entire duration. The volumes of periventricular hyperintensities (PVH) and deep WMH (DWMH) were measured on T2 FLAIR using the 3D-slicer. The associations between PVH/DWMH progression and cognitive decline were investigated. Results: An increase in DWMH volume significantly correlated with changes in Mini-Mental State Examination and category verbal fluency scores, whereas an increase in PVH volume did not correlate with changes in any item. Conclusion: DWMH progression was closely associated with a decline in frontal lobe function and semantic memory, suggesting that WMH progression might affect some AD pathophysiologies in amnestic MCI patients.
Collapse
Affiliation(s)
- Kentaro Hirao
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Fumio Yamashita
- Department of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Iwate, Japan
| | - Akito Tsugawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Rieko Haime
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Raita Fukasawa
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Tomohiko Sato
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hidekazu Kanetaka
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Takahiko Umahara
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hirofumi Sakurai
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Haruo Hanyu
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Soichiro Shimizu
- Department of Geriatric Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
37
|
Gaubert M, Lange C, Garnier-Crussard A, Köbe T, Bougacha S, Gonneaud J, de Flores R, Tomadesso C, Mézenge F, Landeau B, de la Sayette V, Chételat G, Wirth M. Topographic patterns of white matter hyperintensities are associated with multimodal neuroimaging biomarkers of Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2021; 13:29. [PMID: 33461618 PMCID: PMC7814451 DOI: 10.1186/s13195-020-00759-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022]
Abstract
Background White matter hyperintensities (WMH) are frequently found in Alzheimer’s disease (AD). Commonly considered as a marker of cerebrovascular disease, regional WMH may be related to pathological hallmarks of AD, including beta-amyloid (Aβ) plaques and neurodegeneration. The aim of this study was to examine the regional distribution of WMH associated with Aβ burden, glucose hypometabolism, and gray matter volume reduction. Methods In a total of 155 participants (IMAP+ cohort) across the cognitive continuum from normal cognition to AD dementia, FLAIR MRI, AV45-PET, FDG-PET, and T1 MRI were acquired. WMH were automatically segmented from FLAIR images. Mean levels of neocortical Aβ deposition (AV45-PET), temporo-parietal glucose metabolism (FDG-PET), and medial-temporal gray matter volume (GMV) were extracted from processed images using established AD meta-signature templates. Associations between AD brain biomarkers and WMH, as assessed in region-of-interest and voxel-wise, were examined, adjusting for age, sex, education, and systolic blood pressure. Results There were no significant associations between global Aβ burden and region-specific WMH. Voxel-wise WMH in the splenium of the corpus callosum correlated with greater Aβ deposition at a more liberal threshold. Region- and voxel-based WMH in the posterior corpus callosum, along with parietal, occipital, and frontal areas, were associated with lower temporo-parietal glucose metabolism. Similarly, lower medial-temporal GMV correlated with WMH in the posterior corpus callosum in addition to parietal, occipital, and fontal areas. Conclusions This study demonstrates that local white matter damage is correlated with multimodal brain biomarkers of AD. Our results highlight modality-specific topographic patterns of WMH, which converged in the posterior white matter. Overall, these cross-sectional findings corroborate associations of regional WMH with AD-typical Aß deposition and neurodegeneration.
Collapse
Affiliation(s)
- Malo Gaubert
- German Center for Neurodegenerative Diseases, Dresden, Germany.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, LMU University Hospital Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Catharina Lange
- German Center for Neurodegenerative Diseases, Dresden, Germany. .,Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Antoine Garnier-Crussard
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France.,Clinical and Research Memory Center of Lyon, Lyon Institute for Elderly, Hospices Civils de Lyon, Lyon, France
| | - Theresa Köbe
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Salma Bougacha
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Julie Gonneaud
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Robin de Flores
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Clémence Tomadesso
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Florence Mézenge
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Brigitte Landeau
- Inserm UMR-S U1237, Caen-Normandie University, GIP Cyceron, Caen, France
| | - Vincent de la Sayette
- Normandy University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU of Caen, Neuropsychology and Imaging of Human Memory, Caen, France
| | - Gaël Chételat
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases, Dresden, Germany.
| |
Collapse
|
38
|
Sharma MJ, Callahan BL. Cerebrovascular and Neurodegenerative Pathologies in Long-Term Stable Mild Cognitive Impairment. J Alzheimers Dis 2021; 79:1269-1283. [PMID: 33427736 DOI: 10.3233/jad-200829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is considered by some to be a prodromal phase of a progressive disease (i.e., neurodegeneration) resulting in dementia; however, a substantial portion of individuals (ranging from 5-30%) remain cognitively stable over the long term (sMCI). The etiology of sMCI is unclear but may be linked to cerebrovascular disease (CVD), as evidence from longitudinal studies suggest a significant proportion of individuals with vasculopathy remain stable over time. OBJECTIVE To quantify the presence of neurodegenerative and vascular pathologies in individuals with long-term (>5-year) sMCI, in a preliminary test of the hypothesis that CVD may be a contributor to non-degenerative cognitive impairment. We expect frequent vasculopathy at autopsy in sMCI relative to neurodegenerative disease, and relative to individuals who convert to dementia. METHODS In this retrospective study, using data from the National Alzheimer's Coordinating Center, individuals with sMCI (n = 28) were compared to those with MCI who declined over a 5 to 9-year period (dMCI; n = 139) on measures of neurodegenerative pathology (i.e., Aβ plaques, neurofibrillary tangles, TDP-43, and cerebral amyloid angiopathy) and CVD (infarcts, lacunes, microinfarcts, hemorrhages, and microbleeds). RESULTS Alzheimer's disease pathology (Aβ plaques, neurofibrillary tangles, and cerebral amyloid angiopathy) was significantly higher in the dMCI group than the sMCI group. Microinfarcts were the only vasculopathy associated with group membership; these were more frequent in sMCI. CONCLUSION The most frequent neuropathology in this sample of long-term sMCI was microinfarcts, tentatively suggesting that silent small vessel disease may characterize non-worsening cognitive impairment.
Collapse
Affiliation(s)
- Manu J Sharma
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| | - Brandy L Callahan
- Department of Psychology, University of Calgary, Calgary (AB), Canada
- Hotchkiss Brain Institute, Calgary (AB), Canada
| |
Collapse
|
39
|
Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, Zhang T, Levey AI, Rangaraju S, Seyfried NT. Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology 2021; 46:98-115. [PMID: 32898852 PMCID: PMC7689445 DOI: 10.1038/s41386-020-00840-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/05/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
The repeated failures of amyloid-targeting therapies have challenged our narrow understanding of Alzheimer's disease (AD) pathogenesis and inspired wide-ranging investigations into the underlying mechanisms of disease. Increasing evidence indicates that AD develops from an intricate web of biochemical and cellular processes that extend far beyond amyloid and tau accumulation. This growing recognition surrounding the diversity of AD pathophysiology underscores the need for holistic systems-based approaches to explore AD pathogenesis. Here we describe how network-based proteomics has emerged as a powerful tool and how its application to the AD brain has provided an informative framework for the complex protein pathophysiology underlying the disease. Furthermore, we outline how the AD brain network proteome can be leveraged to advance additional scientific and translational efforts, including the discovery of novel protein biomarkers of disease.
Collapse
Affiliation(s)
- Sruti Rayaprolu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lenora Higginbotham
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Pritha Bagchi
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Caroline M Watson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tian Zhang
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
40
|
Lao PJ, Gutierrez J, Keator D, Rizvi B, Banerjee A, Igwe KC, Laing KK, Sathishkumar M, Moni F, Andrews H, Krinsky-McHale S, Head E, Lee JH, Lai F, Yassa MA, Rosas HD, Silverman W, Lott IT, Schupf N, Brickman AM. Alzheimer-Related Cerebrovascular Disease in Down Syndrome. Ann Neurol 2020; 88:1165-1177. [PMID: 32944999 PMCID: PMC7729262 DOI: 10.1002/ana.25905] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Adults with Down syndrome (DS) develop Alzheimer disease (AD) pathology by their 5th decade. Compared with the general population, traditional vascular risks in adults with DS are rare, allowing examination of cerebrovascular disease in this population and insight into its role in AD without the confound of vascular risk factors. We examined in vivo magnetic resonance imaging (MRI)-based biomarkers of cerebrovascular pathology in adults with DS, and determined their cross-sectional relationship with age, beta-amyloid pathology, and mild cognitive impairment or clinical AD diagnostic status. METHODS Participants from the Biomarkers of Alzheimer's Disease in Down Syndrome study (n = 138, 50 ± 7 years, 39% women) with MRI data and a subset (n = 90) with amyloid positron emission tomography (PET) were included. We derived MRI-based biomarkers of cerebrovascular pathology, including white matter hyperintensities (WMH), infarcts, cerebral microbleeds, and enlarged perivascular spaces (PVS), as well as PET-based biomarkers of amyloid burden. Participants were characterized as cognitively stable (CS), mild cognitive impairment-DS (MCI-DS), possible AD dementia, or definite AD dementia based on in-depth assessments of cognition, function, and health status. RESULTS There were detectable WMH, enlarged PVS, infarcts, and microbleeds as early as the 5th decade of life. There was a monotonic increase in WMH volume, enlarged PVS, and presence of infarcts across diagnostic groups (CS < MCI-DS < possible AD dementia < definite AD dementia). Higher amyloid burden was associated with a higher likelihood of an infarct. INTERPRETATION The findings highlight the prevalence of cerebrovascular disease in adults with DS and add to a growing body of evidence that implicates cerebrovascular disease as a core feature of AD and not simply a comorbidity. ANN NEUROL 2020;88:1165-1177.
Collapse
Affiliation(s)
- Patrick J Lao
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - José Gutierrez
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| | - David Keator
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Batool Rizvi
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Arit Banerjee
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Kay C Igwe
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Krystal K Laing
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Mithra Sathishkumar
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Fahmida Moni
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Howard Andrews
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Sharon Krinsky-McHale
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| | - Elizabeth Head
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Joseph H Lee
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - H Diana Rosas
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA
- Department of Radiology, Athinoula Martinos Center, Massachusetts General Hospital, Harvard University, Charlestown, MA
| | - Wayne Silverman
- Department of Pediatrics, University of California, Irvine, Irvine, CA
| | - Ira T Lott
- Department of Pediatrics, University of California, Irvine, Irvine, CA
| | - Nicole Schupf
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY
| | - Adam M Brickman
- Gertrude H. Sergievsky Center and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
41
|
Taylor WD, Deng Y, Boyd BD, Donahue MJ, Albert K, McHugo M, Gandelman JA, Landman BA. Medial temporal lobe volumes in late-life depression: effects of age and vascular risk factors. Brain Imaging Behav 2020; 14:19-29. [PMID: 30251182 DOI: 10.1007/s11682-018-9969-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Substantial work associates late-life depression with hippocampal pathology. However, there is less information about differences in hippocampal subfields and other connected temporal lobe regions and how these regions may be influenced by vascular factors. Individuals aged 60 years or older with and without a DSM-IV diagnosis of Major Depressive Disorder completed clinical assessments and 3 T cranial MRI using a protocol allowing for automated measurement of medial temporal lobe subfield volumes. A subset also completed pseudo-continuous arterial spin labeling, allowing for the measurement of hippocampal cerebral blood flow. In 59 depressed and 21 never-depressed elders (mean age = 66.4 years, SD = 5.8y, range 60-86y), the depressed group did not exhibit statistically significant volumetric differences for the total hippocampus or hippocampal subfields but did exhibit significantly smaller volumes of the perirhinal cortex, specifically in the BA36 region. Additionally, age had a greater effect in the depressed group on volumes of the cornu ammonis, entorhinal cortex, and BA36 region. Finally, both clinical and radiological markers of vascular risk were associated with smaller BA36 volumes, while reduced hippocampal blood flow was associated with smaller hippocampal and cornu ammonis volumes. In conclusion, while we did not observe group differences in hippocampal regions, we observed group differences and an effect of vascular pathology on the BA36 region, part of the perirhinal cortex. This is a critical region exhibiting atrophy in prodromal Alzheimer's disease. Moreover, the observed greater effect of age in the depressed groups is concordant with past longitudinal studies reporting greater hippocampal atrophy in late-life depression.
Collapse
Affiliation(s)
- Warren D Taylor
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA. .,Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.
| | - Yi Deng
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Brian D Boyd
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Manus J Donahue
- The Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Kimberly Albert
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | - Maureen McHugo
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA
| | | | - Bennett A Landman
- The Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 1601 23rd Avenue South, Nashville, TN, 37212, USA.,The Department of Radiology and Radiological Science, Vanderbilt University Medical Center, Nashville, TN, 37212, USA.,The Department of Electrical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
42
|
White matter hyperintensities and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev 2020; 120:16-27. [PMID: 33188821 DOI: 10.1016/j.neubiorev.2020.11.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND White matter hyperintensities of presumed vascular origin (WMH) are one of the imaging features of cerebral small vessel disease. Controversies persist about the effects of WMH on cognitive dysfunction. This meta-analysis aimed to identify the associations of WMH with risks of cognitive impairment and dementia. METHODS We searched PubMed, EMBASE and Cochrane Library for prospective studies. Primary analyses of cognitive dysfunction and sub-analyses of specific outcomes and study characteristics were conducted using random-effect models. RESULTS Thirty-six prospective studies with 19,040 participants were included. WMH at baseline conferred a 14 % elevated risk of cognitive impairment and all-cause dementia (ACD). WMH also conferred 25 % elevated risk of Alzheimer's disease and 73 % elevated risk of vascular dementia. Risk effects of high-grade WMH and continually increasing WMH (in volume or severity) on ACD were revealed. Periventricular WMH conferred a 1.51-fold excess risk for dementia. CONCLUSIONS WMH were associated with increased risk of cognitive dysfunction and could become a neuroimaging indicator of dementia.
Collapse
|
43
|
Luo C, Li M, Qin R, Chen H, Huang L, Yang D, Ye Q, Liu R, Xu Y, Zhao H, Bai F. Long Longitudinal Tract Lesion Contributes to the Progression of Alzheimer's Disease. Front Neurol 2020; 11:503235. [PMID: 33178095 PMCID: PMC7597387 DOI: 10.3389/fneur.2020.503235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The degenerative pattern of white matter (WM) microstructures during Alzheimer's disease (AD) and its relationship with cognitive function have not yet been clarified. The present research aimed to explore the alterations of the WM microstructure and its impact on amnestic mild cognitive (aMCI) and AD patients. Mechanical learning methods were used to explore the validity of WM microstructure lesions on the classification in AD spectrum disease. Methods: Neuropsychological data and diffusion tensor imaging (DTI) images were collected from 28 AD subjects, 31 aMCI subjects, and 27 normal controls (NC). Tract-based spatial statistics (TBSS) were used to extract diffusion parameters in WM tracts. We performed ANOVA analysis to compare diffusion parameters and clinical features among the three groups. Partial correlation analysis was used to explore the relationship between diffusion metrics and cognitive functions controlling for age, gender, and years of education. Additionally, we performed the support vector machine (SVM) classification to determine the discriminative ability of DTI metrics in the differentiation of aMCI and AD patients from controls. Results: As compared to controls or aMCI patients, AD patients displayed widespread WM lesions, including in the inferior longitudinal fasciculus, inferior fronto-occipital fasciculi, and superior longitudinal fasciculus. Significant correlations between fractional anisotropy (FA), mean diffusivity (MD), and radial diffusion (RD) of the long longitudinal tract and memory deficits were found in aMCI and AD groups, respectively. Furthermore, through SVM classification, we found DTI indicators generated by FA and MD parameters can effectively distinguish AD patients from the control group with accuracy rates of up to 89 and 85%, respectively. Conclusion: The WM microstructure is extensively disrupted in AD patients, and the WM integrity of the long longitudinal tract is closely related to memory, which would hold potential value for monitoring the progression of AD. The method of classification based on SVM and WM damage features may be objectively helpful to the classification of AD diseases.
Collapse
Affiliation(s)
- Caimei Luo
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Mengchun Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Haifeng Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Lili Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Dan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Qing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Hui Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Feng Bai
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Affiliated Drum Tower Hospital of Medical School, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| |
Collapse
|
44
|
Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer's Dementia: Future Directions and Implications. Neuropsychol Rev 2020; 30:546-557. [PMID: 33011894 DOI: 10.1007/s11065-020-09460-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Recent reports suggest declines in the age-specific risk of Alzheimer's dementia in higher income Western countries. At the same time, investigators believe that worldwide trends of increasing mid-life modifiable risk factors [e.g., cardiovascular disease (CVD) risk factors] coupled with the growth of the world's oldest age groups may nonetheless lead to an increase in Alzheimer's dementia. Thus, understanding the overlap in neuroanatomical profiles associated with CVD risk factors and AD may offer more relevant targets for investigating ways to reduce the growing dementia epidemic than current targets specific to isolated AD-related neuropathology. We hypothesized that a core group of common brain structural alterations exist between CVD risk factors and Alzheimer's dementia. Two co-authors conducted independent literature reviews in PubMed using search terms for CVD risk factor burden (separate searches for 'cardiovascular disease risk factors', 'hypertension', and 'Type 2 diabetes') and 'aging' or 'Alzheimer's dementia' with either 'grey matter volumes' or 'white matter'. Of studies that reported regionally localized results, we found support for our hypothesis, determining 23 regions commonly associated with both CVD risk factors and Alzheimer's dementia. Within this context, we outline future directions for research as well as larger cerebrovascular implications for these commonalities. Overall, this review supports previous as well as more recent calls for the consideration that both vascular and neurodegenerative factors contribute to the pathogenesis of dementia.
Collapse
|
45
|
Gelman S, Palma J, Ghavami A. Axonal Conduction Velocity in CA1 Area of Hippocampus is Reduced in Mouse Models of Alzheimer's Disease. J Alzheimers Dis 2020; 77:1383-1388. [PMID: 32925062 DOI: 10.3233/jad-200661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The timing of action potentials arrival at synaptic terminals partially determines integration of synaptic inputs and is important for information processing in the CNS. Therefore, axonal conduction velocity (VC) is a salient parameter, influencing the timing of synaptic inputs. Even small changes in VC may disrupt information coding in networks requiring accurate timing. We recorded compound action potentials in hippocampal slices to measure VC in three mouse models of Alzheimer's disease. We report an age-dependent reduction in VC in area CA1 in two amyloid-β precursor protein transgenic mouse models, line 41 and APP/PS1, and in a tauopathy model, rTg4510.
Collapse
|
46
|
Kim HW, Hong J, Jeon JC. Cerebral Small Vessel Disease and Alzheimer's Disease: A Review. Front Neurol 2020; 11:927. [PMID: 32982937 PMCID: PMC7477392 DOI: 10.3389/fneur.2020.00927] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Despite this, clear pathophysiology for AD has not been confirmed, and effective treatments are still not available. As AD results in a complex disease process for cognitive decline, various theories have been suggested as the cause of AD. Recently, cerebral small vessel disease (SVD) has been suggested to contribute to the pathogenesis of AD, as well as contributing to vascular dementia. Cerebral SVD refers to a varied group of diseases that affect cerebral small arteries and microvessels. These can be seen as white matter hyperintensities, cerebral microbleeds, and lacunes on magnetic resonance imaging. Data from epidemiological and clinical-pathological studies have found evidence of the relationship between cerebral SVD and AD. This review aims to discuss the complex relationship between cerebral SVD and AD. Recent reports that evaluate the association between these diseases will be reviewed.
Collapse
Affiliation(s)
- Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Jeongho Hong
- Department of Neurology, Keimyung University Dongsan Medical Center, Daegu, South Korea
| | - Jae Cheon Jeon
- Institute for Medical Science, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
47
|
Laing KK, Simoes S, Baena-Caldas GP, Lao PJ, Kothiya M, Igwe KC, Chesebro AG, Houck AL, Pedraza L, Hernández AI, Li J, Zimmerman ME, Luchsinger JA, Barone FC, Moreno H, Brickman AM. Cerebrovascular disease promotes tau pathology in Alzheimer's disease. Brain Commun 2020; 2:fcaa132. [PMID: 33215083 PMCID: PMC7660042 DOI: 10.1093/braincomms/fcaa132] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/04/2023] Open
Abstract
Small vessel cerebrovascular disease, visualized as white matter hyperintensities on T2-weighted magnetic resonance imaging, contributes to the clinical presentation of Alzheimer's disease. However, the extent to which cerebrovascular disease represents an independent pathognomonic feature of Alzheimer's disease or directly promotes Alzheimer's pathology is unclear. The purpose of this study was to examine the association between white matter hyperintensities and plasma levels of tau and to determine if white matter hyperintensities and tau levels interact to predict Alzheimer's disease diagnosis. To confirm that cerebrovascular disease promotes tau pathology, we examined tau fluid biomarker concentrations and pathology in a mouse model of ischaemic injury. Three hundred ninety-one participants from the Alzheimer's Disease Neuroimaging Initiative (74.5 ± 7.1 years of age) were included in this cross-sectional analysis. Participants had measurements of plasma total-tau, cerebrospinal fluid beta-amyloid, and white matter hyperintensities, and were diagnosed clinically as Alzheimer's disease (n = 97), mild cognitive impairment (n = 186) or cognitively normal control (n = 108). We tested the relationship between plasma tau concentration and white matter hyperintensity volume across diagnostic groups. We also examined the extent to which white matter hyperintensity volume, plasma tau, amyloid positivity status and the interaction between white matter hyperintensities and plasma tau correctly classifies diagnostic category. Increased white matter hyperintensity volume was associated with higher plasma tau concentration, particularly among those diagnosed clinically with Alzheimer's disease. Presence of brain amyloid and the interaction between plasma tau and white matter hyperintensity volume distinguished Alzheimer's disease and mild cognitive impairment participants from controls with 77.6% and 63.3% accuracy, respectively. In 63 Alzheimer's Disease Neuroimaging Initiative participants who came to autopsy (82.33 ± 7.18 age at death), we found that higher degrees of arteriosclerosis were associated with higher Braak staging, indicating a positive relationship between cerebrovascular disease and neurofibrillary pathology. In a transient middle cerebral artery occlusion mouse model, aged mice that received transient middle cerebral artery occlusion, but not sham surgery, had increased plasma and cerebrospinal fluid tau concentrations, induced myelin loss, and hyperphosphorylated tau pathology in the ipsilateral hippocampus and cerebral hemisphere. These findings demonstrate a relationship between cerebrovascular disease, operationalized as white matter hyperintensities, and tau levels, indexed in the plasma, suggesting that hypoperfusive injury promotes tau pathology. This potential causal association is supported by the demonstration that transient cerebral artery occlusion induces white matter damage, increases biofluidic markers of tau, and promotes cerebral tau hyperphosphorylation in older-adult mice.
Collapse
Affiliation(s)
- Krystal K Laing
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gloria P Baena-Caldas
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- School of Biomedical Sciences, Health Sciences Division, Universidad del Valle, Cali, Colombia, USA
| | - Patrick J Lao
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Milankumar Kothiya
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Kay C Igwe
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Alexander L Houck
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lina Pedraza
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | - A Iván Hernández
- Department of Pathology. SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Jie Li
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
| | | | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frank C Barone
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Herman Moreno
- Departments of Neurology and Physiology/Pharmacology, SUNY Downstate, Brooklyn, NY, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | |
Collapse
|
48
|
White matter hyperintensities are associated with subthreshold amyloid accumulation. Neuroimage 2020; 218:116944. [PMID: 32445880 DOI: 10.1016/j.neuroimage.2020.116944] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 11/20/2022] Open
Abstract
The association between white matter hyperintensities (WMH) and amyloid accumulation over time in cognitively normal, amyloid-negative elderly people remains largely unexplored. In order to study whether baseline WMH were associated with longitudinal subthreshold amyloid accumulation, 159 cognitively normal participants from the Alzheimer's Disease Neuroimaging Initiative who were amyloid-negative at baseline were examined. All the participants underwent a T1 and a Fluid-Attenuated Inversion Recovery MRI scan at baseline. Amyloid PET imaging was performed at baseline and follow-up visits in 2-year intervals for up to 8 years. Partial volume correction was applied for quantifying cortical Standardised Uptake Value Ratios (SUVR). The associations between global and regional WMH burden and amyloid accumulation were assessed using linear mixed models adjusted by demographic characteristics and baseline SUVR. Partial volume correction increased the measured annual rate of change (+2.4%) compared to that obtained from non-corrected data (+0.5%). There were no significant correlations between baseline WMHs and baseline subthreshold cortical amyloid uptake. In a longitudinal analysis, increased baseline cortical SUVR and increased baseline burden of global (p = 0.006), frontal (p = 0.006), and parietal WMH (p = 0.003) were associated with faster amyloid accumulation. WMH-related amyloid accumulation occurred in parietal, frontal, and, to a lesser extent, cingulate cortices. These results remained unchanged after a sensitivity analysis excluding participants with the highest cortical SUVRs. This is the first study to identify a specific spatial distribution of WMH which is associated with future amyloid accumulation in cognitively normal elderly subjects without PET-detectable amyloid pathology. These findings may have important implications in prevention trials for the early identification of amyloid accumulation.
Collapse
|
49
|
Femir-Gurtuna B, Kurt E, Ulasoglu-Yildiz C, Bayram A, Yildirim E, Soncu-Buyukiscan E, Bilgic B. White-matter changes in early and late stages of mild cognitive impairment. J Clin Neurosci 2020; 78:181-184. [PMID: 32334962 DOI: 10.1016/j.jocn.2020.04.078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/13/2020] [Indexed: 01/03/2023]
Abstract
Mild Cognitive Impairment (MCI) is characterized by cognitive deficits that exceed age-related decline, but not interfering with daily living activities. Amnestic type of the disorder (aMCI) is known to have a high risk to progress to Alzheimer's Disease (AD), the most common type of dementia. Identification of very early structural changes in the brain related to the cognitive decline in MCI patients would further contribute to the understanding of the dementias. In the current study, we target to investigate whether the white-matter changes are related to structural changes, as well as the cognitive performance of MCI patients. Forty-nine MCI patients were classified as Early MCI (E-MCI, n = 24) and Late MCI (L-MCI, n = 25) due to their performance on The Free and Cued Selective Reminding Test (FCSRT). Age-Related White-Matter Changes (ARWMC) scale was used to evaluate the white-matter changes in the brain. Volumes of specific brain regions were calculated with the FreeSurfer program. Both group and correlation analyses were conducted to show if there was any association between white-matter hyperintensities (WMHs) and structural changes and cognitive performance. Our results indicate that, L-MCI patients had significantly more WMHs not in all but only in the frontal regions compared to E-MCI patients. Besides, ARWMC scores were not correlated with total hippocampal and white-matter volumes. It can be concluded that WMHs play an important role in MCI and cognitive functions are affected by white-matter changes of MCI patients, especially in the frontal regions.
Collapse
Affiliation(s)
- Banu Femir-Gurtuna
- Graduate School of Health Sciences, Istanbul University, 34126, Fatih-Istanbul, Turkey; Department of Psychology, Faculty of Social Sciences, Beykoz University, 34810, Beykoz-Istanbul, Turkey.
| | - Elif Kurt
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Capa-Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Capa-Istanbul, Turkey.
| | - Cigdem Ulasoglu-Yildiz
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Capa-Istanbul, Turkey.
| | - Ali Bayram
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093, Capa-Istanbul, Turkey; Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Capa-Istanbul, Turkey.
| | - Elif Yildirim
- Department of Psychology, Faculty of Arts and Science, Isik University, 34980, Sile-Istanbul, Turkey.
| | - Ezgi Soncu-Buyukiscan
- Department of Psychology, Faculty of Arts and Science, Yeditepe University, 34755, Atasehir-Istanbul, Turkey.
| | - Basar Bilgic
- Hulusi Behcet Life Sciences Research Laboratory, Neuroimaging Unit, Istanbul University, 34093, Capa-Istanbul, Turkey; Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul Faculty of Medicine, Istanbul University, 34093, Capa-Istanbul, Turkey.
| |
Collapse
|
50
|
Walsh P, Sudre CH, Fiford CM, Ryan NS, Lashley T, Frost C, Barnes J. CSF amyloid is a consistent predictor of white matter hyperintensities across the disease course from aging to Alzheimer's disease. Neurobiol Aging 2020; 91:5-14. [PMID: 32305782 DOI: 10.1016/j.neurobiolaging.2020.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/06/2023]
Abstract
This study investigated the relationship between white matter hyperintensities (WMH) and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers. Subjects included 180 controls, 107 individuals with a significant memory concern, 320 individuals with early mild cognitive impairment, 171 individuals with late mild cognitive impairment, and 151 individuals with AD, with 3T MRI and CSF Aβ1-42, total tau (t-tau), and phosphorylated tau (p-tau) data. Multiple linear regression models assessed the relationship between WMH and CSF Aβ1-42, t-tau, and p-tau. Directionally, a higher WMH burden was associated with lower CSF Aβ1-42 within each diagnostic group, with no evidence for a difference in the slope of the association across diagnostic groups (p = 0.4). Pooling all participants, this association was statistically significant after adjustment for t-tau, p-tau, age, diagnostic group, and APOE-ε4 status (p < 0.001). Age was the strongest predictor of WMH (partial R2~16%) compared with CSF Aβ1-42 (partial R2~5%). There was no evidence for an association with WMH and either t-tau or p-tau. These data are supportive of a link between amyloid burden and presumed vascular pathology.
Collapse
Affiliation(s)
- Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Centre for Medical Image Computing, University College London, London, UK
| | - Cassidy M Fiford
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Chris Frost
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|