1
|
Abubakar AS, Ahmad B, Ahmad N, Liu L, Liu B, Qu Y, Chen J, Chen P, Zhao H, Chen J, Chen K, Gao G, Zhu A. Physicochemical evaluation, structural characterization, in vitro and in vivo bioactivities of water-soluble polysaccharides from Luobuma (Apocynum L.) tea. Food Chem 2024; 460:140453. [PMID: 39067428 DOI: 10.1016/j.foodchem.2024.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University Kano, PMB, 3011, Kano, Nigeria
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
| | - Nabi Ahmad
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Yatong Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
2
|
Zhang C, Pi X, Li X, Huo J, Wang W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem 2024; 458:140267. [PMID: 38968717 DOI: 10.1016/j.foodchem.2024.140267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Recently, with changes in dietary patterns, there has been increased interest in the concept of food and medicine homology, which can help prevent disease development. This has led to a growing focus on the development of functional health foods derived from edible herbal sources. Polysaccharides, found in many edible herbal sources, are gaining popularity as natural ingredients in the production of functional food products. The gut microbiota can effectively utilize most edible herbal polysaccharides (EHPs) and produce beneficial metabolites; therefore, the prebiotic potential of EHPs is gradually being recognized. In this review, we comprehensively discuss the structural features and characterization of EHPs to promote gut microbiota regulation as well as the structure-activity relationship between EHPs and gut microbiota. As prebiotics, intestinal microbiota can use EHPs to indirectly produce metabolites such as short-chain fatty acids to promote overall health; on the other hand, different EHP structures possess some degree of selectivity on gut microbiota regulation. Moreover, we evaluate the functionality and mechanism underlying EHPs in terms of anticancer activity, antimetabolic diseases, anti-inflammatory activity, and anti-neuropsychiatric diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Xiuwei Li
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036
| | - Jinhai Huo
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| | - Weiming Wang
- Heilongjiang Academy of Chinese Medicine Science, Institute of Chinese Materia Medica, Harbin, China, 150036.
| |
Collapse
|
3
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu J, Zou J, Wang J, Wang R, Zhai S, Chang X, Zhang X, Sun J, Luan F, Shi Y. Extraction, purification, structural features, and pharmacological properties of polysaccharides from Houttuynia cordata: A review. Int J Biol Macromol 2024; 279:135230. [PMID: 39218180 DOI: 10.1016/j.ijbiomac.2024.135230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Houttuynia cordata Thunb, also known as "Chinese medicine antibiotic", is a medicine food homology plant. It has functions of clearing heat, eliminating toxins, in folk medicine. The extraction purification and bioactivity of Houttuynia cordata polysaccharides (HCPs) have been of wide interest to researchers in recent years studies. Studies have confirmed that HCPs exhibit various biofunctionalities, such as anti-inflammatory, antiviral, antibacterial, antioxidant, immunomodulatory, regulation of gut microbiota, and gut-lung axis, as well as anti-radiation, and anti-cancer properties. Therefore, a comprehensive systematic review is needed to summarize the recent advances of HCPs and facilitate a better understanding of their biofunctionalities. This paper reviews the research progress of HCPs in extraction and purification methods, chemical structures, biological activities, possible mechanisms of action, and potential application prospects, which can provide some valuable insights and updated information for their further development and application of HCPs in the fields of therapeutic agents, functional foods, cosmetics, animal feeds.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Xi'an 712046, Shaanxi, PR China
| | - Xing Chang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
5
|
Wang H, Luan F, Shi Y, Yan S, Xin B, Zhang X, Guo D, Sun J, Zou J. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int J Biol Macromol 2024; 279:134745. [PMID: 39147347 DOI: 10.1016/j.ijbiomac.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Porphyra yezoensis, an important medicinal seaweed extensively cultivated and consumed in China, Japan, and South Korea, is traditionally considered a precious healthy food and food additive. Published studies showed that the polysaccharides are major bioactive macromolecules from P. yezoensis with great potential for the development of nutraceuticals and functional foods. As an important component of P. yezoensis, P. yezoensis polysaccharide (PYP) is mainly extracted by hot water extraction, ultrasonic-assisted extraction, and microwave-assisted extraction methods. Subsequently obtained by decolorization, deproteinization, removal of other small molecules, and separation on various chromatographic columns. The main structural components of PYP were (1 → 3)-linked β-D-galactose and (1 → 4)-linked 3,6-anhydro-α-L-galactose. Accumulating evidence has revealed that PYP has diverse biological activities, such as antioxidant, suppressing kidney stones, immunomodulatory, etc. This review systematically summarizes the recent preparation progress, chemical structures, bioactivities, and the underlying mechanisms of PYP. Information from this review provides insights into the further development of PYP as therapeutic agents and functional foods. Although there have been extensive studies on PYP, there are gaps in establishing quality standard, toxicological research, clinical application and other aspects. To enhance the utility of P. yezoensis, it is necessary to strengthen the research on these aspects.
Collapse
Affiliation(s)
- He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
6
|
Kherroubi S, Morjen M, Teka N, Mraihi F, Srairi-Abid N, Le Cerf D, Marrakchi N, Majdoub H, Cherif JK, Jebali J, Ternane R. Chemical characterization and pharmacological properties of polysaccharides from Allium roseum leaves: In vitro and in vivo assays. Int J Biol Macromol 2024; 277:134302. [PMID: 39094866 DOI: 10.1016/j.ijbiomac.2024.134302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Allium roseum is amongst the most important wild medicinal plants. It is known for its diverse biological properties, including antioxidant, antibacterial and antidiabetic activities. In this work, the polysaccharides (PARLs) were ultrasonically extracted from Allium roesum leaves then purified and analyzed by several techniques. Chemical composition and GC-MS analysis showed that the obtained polysaccharides were composed mainly of glucose (40.20 %), mannose (25.30 %), fructose (10.60 %) and galacturonic acid (15.11 %). Moreover, PARLs exhibited a potent antioxidant effect with higher capacities up to 69.61 % and 71.72 % for DPPH and ABTS free radicals, respectively. Furthermore, PARLs significantly modulated inflammatory response by reducing TNF-α, IL-6, and IL-8 pro-inflammatory mediators and promoting the anti-inflammatory IL-10 mediator in LPS stimulated THP-1 derived macrophages. The in-vivo tests proved that the extract was able to decrease carrageenan-induced rat paw swelling by around 68.15 % after 4 h of treatment. PARLs, significantly reduced the growth of U87 (glioblastoma) and IGROV-1 cancer cells with IC50 values of about 4.27 and 7.89 mg/mL respectively. This research clearly shows that Allium roseum polysaccharides can be used as natural antioxidants with anti-inflammatory and anticancer properties.
Collapse
Affiliation(s)
- Sara Kherroubi
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Maram Morjen
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia
| | - Nesrine Teka
- University of Monastir, Faculty of Sciences of Monastir, LR11ES55 Laboratory of Interfaces and Advanced Materials (LIMA), Monastir 5000, Tunisia
| | - Farouk Mraihi
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia
| | - Didier Le Cerf
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS (UMR 6270 & FR 3038), 76000 Rouen, France
| | - Naziha Marrakchi
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia; University of Tunis El Manar, Medicine School of Tunis, La Rabta, Tunis 1007, Tunisia
| | - Hatem Majdoub
- University of Monastir, Faculty of Sciences of Monastir, LR11ES55 Laboratory of Interfaces and Advanced Materials (LIMA), Monastir 5000, Tunisia.
| | - Jamila Kalthoum Cherif
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| | - Jed Jebali
- University of Tunis El Manar, Pasteur Institute of Tunis, LR20IPT01 Laboratory of Biomolecules, Venoms and Theranostic Applications (LBVAT), Tunis 1002, Tunisia.
| | - Riadh Ternane
- University of Carthage, Faculty of Sciences of Bizerte, LR05ES09 Laboratory of Application of Chemistry to Natural Resources and Substances and the Environment (LACReSNE), Bizerte 7021, Tunisia
| |
Collapse
|
7
|
Li SY, Tong MM, Li L, Hui F, Meng FZ, Zhao YL, Guo YM, Guo XY, Shi BL, Yan SM. Rectal microbiomes and serum metabolomics reveal the improved effect of Artemisia ordosica crude polysaccharides on the lactation performance, antioxidant status, and immune responses of lactating donkeys. J Dairy Sci 2024; 107:6696-6716. [PMID: 38608958 DOI: 10.3168/jds.2023-24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/02/2024] [Indexed: 04/14/2024]
Abstract
This study is aimed at investigating the effects of dietary supplementation with Artemisia ordosica crude polysaccharides (AOCP) on lactation performance, antioxidant status, and immune status of lactating donkeys and analyzing rectal microbiomes and serum metabolomes. Fourteen lactating Dezhou donkeys with similar age (6.16 ± 0.67 yr of BW ± SD), weight (250.06 ± 25.18 kg), DIM (39.11 ± 7.42 d), and average parity of 3 were randomly allocated into 2 treatments: a control group (CON, basal diet) and an AOCP group (AOCP, basal diet with 1.0 g/kg DM AOCP). Ten weeks were allotted for the experiment, 2 wk for adaptation, and 8 wk for collecting data and samples. The results showed that supplementation of donkey diets with AOCP increased lactation performance, including DMI, milking yield, estimated milk yield, solids-corrected milk, ECM, milk fat yield, milk protein yield, milk lactose yield, milk TS yield, and milk SNF yield. The digestibility of DM, CP, ADF, and NDF was increased in the AOCP group compared with the CON group. The AOCP group increased the concentrations of IgA, IgG, and IgM, the activities of the superoxide dismutase, catalase, and total antioxidant capacity in the serum. Artemisia ordosica crude polysaccharides decreased the concentrations of tumor necrosis factor-α, nitric oxide, reactive oxygen species, and malondialdehyde in the serum. Compared with the CON group, AOCP increased propionate, butyrate, isovalerate, and total VFA concentrations in rectal feces (P < 0.05). The addition of AOCP to increased diversity (Shannon index) and altered structure of the rectal microflora. As a result of AOCP supplementation, there has been a significant improvement in the colonization of beneficial bacteria, including Lactobacillus, Unclassified_f_Prevotellacea, Ruminococcus, and Fibrobacter genera. In contrast, a decrease in the colonization of the Clostridium_sensu_stricto_1 bacterial genus and other pathogenic bacteria was observed. Meanwhile, metabolomics analysis found that AOCP supplementation upregulated metabolites l-tyrosine content while downregulating 9(S)-HODE, choline, sucrose, lysophosphatidylcholine (LysoPC) (18:0), LysoPC (18:1(9Z)), and LysoPC (20:2(11Z,14Z)) concentrations. These altered metabolites were involved in the PPAR signaling pathway, prolactin signaling pathway, glycerophospholipid metabolism, carbohydrate digestion and absorption, and tyrosine metabolism pathways, which were mainly related to antioxidant capacity, immune responses, and protein metabolism in the lactating donkeys. As a consequence of feeding AOCP diets, beneficial bacteria were abundant, and antioxidant and protein metabolism-related pathways were enriched, which may enhance lactation performance in donkeys. Therefore, supplementing AOCP diets is a desirable dietary strategy to improve donkey health and lactation performance.
Collapse
Affiliation(s)
- S Y Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - M M Tong
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - L Li
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Hui
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - F Z Meng
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y L Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - Y M Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - X Y Guo
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - B L Shi
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
| | - S M Yan
- College of Animal Science, Inner Mongolia Agricultural University, Key Laboratory of Animal Nutrition and Feed Science at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China.
| |
Collapse
|
8
|
Rod-In W, You S, Park WJ, Surayot U. Suaeda maritima polysaccharides attenuate LPS-induced inflammation of RAW264.7 cells and antioxidative activity. Int Immunopharmacol 2024; 137:112482. [PMID: 38878490 DOI: 10.1016/j.intimp.2024.112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Our research focused on extracting polysaccharides from Suaeda maritima (SMP) to obtain crude polysaccharides (SMP-C), which were subsequently purified into SMP-F1 and SMP-F2. SMPs were evaluated for anti-inflammatory effects and SMP-F1 showed the highest inhibitory effects on nitric oxide (NO) production. The monosaccharide composition analysis of SMP-F1 (molecular weight of 112.2 × 103 g/mol) revealed predominant levels of glucose (45.4 %), arabinose (20.5 %), mannose (14.2 %), and galactose (12.7 %). The primary backbone of SMP-F1 consisted of (1 → 4)-D-glucopyranoside, (1 → 4,6)-D-glucopyranoside, (1 → 3)-D-mannopyranoside, (1 → 3,6)-D-mannopyranoside, and (1 → 5)-L-arabifuranoside. In addition, we hydrolysed SMP-F1 to SMP-H1, SMP-H2, and SMP-H3 and investigated their anti-inflammatory effects on RAW264.7 macrophages. Following SMP-F1 hydrolysis, SMP-H3 (molecular weight of 25.8 × 103 g/mol) exhibited superior anti-inflammatory properties compared to SMP-H1 and SMP-H2, demonstrating a significant decrease in NO production. SMP-H3 also demonstrated a remarkable reduction in the secretion of inflammatory mediators including NO, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines including tumour necrosis factor-alpha (TNF-α), interleukin (IL-1β and IL-6), while increasing IL-10 expression. Furthermore, SMP-H3 significantly inhibited LPS-stimulated cluster of differentiation (CD) 11b and CD40 expression. Our subsequent investigation unveiled the involvement of SMP-H3-activated macrophages in the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Additionally, SMP-H3 exhibited antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radicals. These findings suggest the potential of SMP-H3 as an ingredient in the development of alternative drugs or functional foods.
Collapse
Affiliation(s)
- Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand; Center of Excellence in Research for Agricultural Biotechnology, Naresuan University, Phitsanulok 65000, Thailand
| | - Sangguan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea; KBIoRANCh Co.,Ltd, Gangneung, Gangwon 25457, Republic of Korea
| | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Samut Sakhon 74000, Thailand.
| |
Collapse
|
9
|
Chen Y, Liu J, Xu Y, Sun C, Qu W, Du H, He M, Huo J, Sun J, Huang J, Yin J. Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods 2024; 13:2010. [PMID: 38998515 PMCID: PMC11240938 DOI: 10.3390/foods13132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The main active component of Polygonatum sibiricum (P. sibiricum) rhizome is Polygonatum sibiricum Polysaccharide (PsP) with antioxidant function. At present, only the mature rhizome of P. sibiricum is used to extract PsP, while the young rhizome of by-product is discarded directly as waste, resulting in significant wastage of P. sibiricum resources. We used ultrasound-assisted extraction-deep eutectic solvents (UAE-DESs) method to extract PsP of young and mature rhizomes, respectively. The extraction rate, structure composition and antioxidant ability of PsP between young and mature rhizomes were compared, so as to provide references for comprehensive utilization of P. sibiricum resources. The PsP extraction rate (33.88 ± 1.95%) of young rhizome was close to that (45.08 ± 1.92%) of mature rhizomes. The main component (PsP-2) of the PsP in young rhizome contained six kinds of monosaccharides, which belonged to acidic polysaccharides. The above characteristics of the PsP of young rhizome were similar to those of mature rhizome. The PsP of young rhizome also exhibited similar biological activity to that of the mature rhizome, which indicated even more advantages in DPPH free radical scavenging ability. The results of this study support the utility of the young rhizome, consequently helping to avoid unnecessary waste and provide reference for comprehensive utilization of P. sibiricum.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Liu
- Aer-Bio Active Health Institute, Beijing 100043, China
| | - Yifan Xu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chaoqun Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenjie Qu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hanchen Du
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Menglu He
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junsheng Huo
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Huang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiyong Yin
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
10
|
Liu D, Hou T, Geng C, Song L, Hou X, Chen Y, Wang F, Wang W, Han B, Gao L. Liposomes Enhance the Immunological Activity of Polygonatum Cyrtonema Hua Polysaccharides. J Pharm Sci 2024; 113:1572-1579. [PMID: 38237668 DOI: 10.1016/j.xphs.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Poor stability and difficult uptake of natural polysaccharides have been the main problems in their application. The purpose of this study was to optimize the preparation conditions of Polygonatum cyrtonema Hua polysaccharides liposomes (PCPL) and to investigate the immune enhancement activity of PCPL in vitro and in vivo, with a view to discovering new ways of natural polysaccharide application. The optimal preparation conditions of PCPL were as follows: the adding amount of Tween 80 of 0.5 %, the ultrasound time of 2 min and the ultrasound times of once. Under these conditions, the entrapment efficiency, drug loading rate and particle size of PCPL were 38.033 %±0.050, 2.172 %±0.003 and 146 nm, which indicated that PCPL with small particle size could be prepared by the reverse-phase evaporation method. Furthermore, PCPL promoted proliferation, phagocytosis, and secretion of nitric oxide and related cytokines in RAW264.7 cells. Moreover, PCPL improved spleen and thymus indices, increased the number or proportion of red blood cells, platelets, and lymphocytes in the blood, and ameliorated spleen and thymus atrophy in immunosuppressed mice. This study provides a new idea for applying Polygonatum cyrtonema Hua polysaccharides (PCP) and references for studying other polysaccharides.
Collapse
Affiliation(s)
- Dong Liu
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Tingting Hou
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Chunye Geng
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Lu Song
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Xuefeng Hou
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Yanjun Chen
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Wei Wang
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Bangxing Han
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Leilei Gao
- Generic Technology Research center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu'an 237012, China; Anhui Dabie Mountain Chinese Academy of Medicine, West Anhui University, Lu'an, 237012, Anhui, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
11
|
He Z, Liu X, Qin S, Yang Q, Na J, Xue Z, Zhong L. Anticancer Mechanism of Astragalus Polysaccharide and Its Application in Cancer Immunotherapy. Pharmaceuticals (Basel) 2024; 17:636. [PMID: 38794206 PMCID: PMC11124422 DOI: 10.3390/ph17050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Astragalus polysaccharide (APS) derived from A. membranaceus plays a crucial role in traditional Chinese medicine. These polysaccharides have shown antitumor effects and are considered safe. Thus, they have become increasingly important in cancer immunotherapy. APS can limit the spread of cancer by influencing immune cells, promoting cell death, triggering cancer cell autophagy, and impacting the tumor microenvironment. When used in combination with other therapies, APS can enhance treatment outcomes and reduce toxicity and side effects. APS combined with immune checkpoint inhibitors, relay cellular immunotherapy, and cancer vaccines have broadened the application of cancer immunotherapy and enhanced treatment effectiveness. By summarizing the research on APS in cancer immunotherapy over the past two decades, this review elaborates on the anticancer mechanism of APS and its use in cancer immunotherapy and clinical trials. Considering the multiple roles of APS, this review emphasizes the importance of using APS as an adjunct to cancer immunotherapy and compares other polysaccharides with APS. This discussion provides insights into the specific mechanism of action of APS, reveals the molecular targets of APS for developing effective clinical strategies, and highlights the wide application of APS in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Ziqing He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Qun Yang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Zhigang Xue
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.H.); (X.L.); (S.Q.); (Q.Y.); (J.N.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
12
|
Li T, Ma Z, Ding T, Yang Y, Wang F, Wan X, Liang F, Chen X, Yao H. Codon usage bias and phylogenetic analysis of chloroplast genome in 36 gracilariaceae species. Funct Integr Genomics 2024; 24:45. [PMID: 38429550 DOI: 10.1007/s10142-024-01316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Gracilariaceae is a group of marine large red algae and main source of agar with important economic and ecological value. The codon usage patterns of chloroplast genomes in 36 species from Graciliaceae show that GC range from 0.284 to 0.335, the average GC3 range from 0.135 to 0.243 and the value of ENC range from 35.098 to 42.327, which indicates these genomes are rich in AT and prefer to use codons ending with AT in these species. Nc plot, PR2 plot, neutrality plot analyses and correlation analysis indicate that these biases may be caused by multiple factors, such as natural selection and mutation pressure, but prolonged natural selection is the main driving force influencing codon usage preference. The cluster analysis and phylogenetic analysis show that the differentiation relationship of them is different and indicate that codons with weak or unbiased preferences may also play an irreplaceable role in these species' evolution. In addition, we identified 26 common high-frequency codons and 8-18 optimal codons all ending in A/U in these 36 species. Our results will not only contribute to carrying out transgenic work in Gracilariaceae species to maximize the protein yield in the future, but also lay a theoretical foundation for further exploring systematic classification of them.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Zheng Ma
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Tiemei Ding
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Yanxin Yang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fei Wang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xinjing Wan
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Fangyun Liang
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Xi Chen
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Huipeng Yao
- College of Life Science, Sichuan Agriculture University, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
13
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
14
|
Xu Y, Xu J, Fan Z, Zhang S, Wu Y, Han R, Yu N, Tong X. Effective separation of protein from Polygonatum cyrtonema crude polysaccharide utilizing ionic liquid tetrabutylammonium bromide. Front Chem 2024; 11:1287571. [PMID: 38260046 PMCID: PMC10800795 DOI: 10.3389/fchem.2023.1287571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Extraction of plant polysaccharides often results in a large amount of proteins, which is hard to eliminate from the crude extract, and conventional approaches for deproteinization are time-consuming and often involve hazardous organic solvents. In this study, ionic liquid tetrabutylammonium bromide (TBABr) was used to create an ionic liquid aqueous two-phase system (ILATPS) for the separation of the polysaccharide (PcP) and protein extracted from the rhizome of Polygonatum cyrtonema. Bovine serum albumin (BSA) was first applied to assess the feasibility of the ILATPS, and MgSO4 was determined to be the most suitable inorganic salt. By adopting the Taguchi experiment with an L9 (3^4) orthogonal array, it was found that the best condition for the efficient separation of crude PcP was at 25°C, with 1.5 g of TBABr, 15 mg of PcP, and 2.0 g of MgSO4, with the extraction efficiency for the protein and polysaccharide as 98.6% and 93.5%, respectively. The purified PcP was homogeneous, and its weight average molecular weight (Mw) was 7,554 Da. Monosaccharide composition analysis indicated the PcP comprised mannose, galactose, glucose, galacturonic acid, arabinose, and rhamnose at a molar ratio of 33:13:8:3.5:2:1. This approach offers a practical tactic to purify polysaccharides of plant origin.
Collapse
Affiliation(s)
- Yuling Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xu
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Zheng Fan
- Medical Department, Taihe Hospital of Chinese Medicine, Taihe, China
| | - Siyuan Zhang
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuanjie Wu
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Chumsook K, Praiboon J, Fu X. Sulfated Galactans from Agarophytes: Review of Extraction Methods, Structural Features, and Biological Activities. Biomolecules 2023; 13:1745. [PMID: 38136616 PMCID: PMC10741836 DOI: 10.3390/biom13121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Agarophytes are important seaweeds of the Rhodophyta type, which have been highly exploited for industrial use as sources of a widely consumed polysaccharide of agar. In addition to that, sulfated galactans (SGs) from agarophytes, which consist of various functional sulfate groups, have attracted the attention of scientists in current studies. SGs possess various biological activities, such as anti-tumor, anticoagulant, anti-inflammatory, antioxidant, anti-obesity, anti-diabetic, anti-microbial, anti-diarrhea, and gut microbiota regulation properties. Meanwhile, the taxonomy, ecological factors, i.e., environmental factors, and harvest period, as well as preparation methods, i.e., the pretreatment, extraction, and purification conditions, have been found to influence the chemical compositions and fine structures of SGs, which have, further, been shown to have an impact on their biological activities. However, the gaps in the knowledge of the properties of SGs due to the above complex factors have hindered their industrial application. The aim of this paper is to collect and systematically review the scientific evidence about SGs and, thus, to pave the way for broader and otherwise valuable industrial applications of agarophytes for human enterprise. In the future, this harvested biomass could be sustainably used not only as a source of agar production but also as natural materials in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Khosook Chumsook
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Department of Fishery Science and Technology (International) Program, Kasetsart University, Bangkok 10900, Thailand
| | - Jantana Praiboon
- Department of Fishery Biology, Kasetsart University, Bangkok 10900, Thailand;
| | - Xiaoting Fu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| |
Collapse
|
16
|
Liu Y, Ran L, Wang Y, Wan P, Zhou H. Basic characterization, antioxidant and immunomodulatory activities of polysaccharides from sea buckthorn leaves. Fitoterapia 2023; 169:105592. [PMID: 37343686 DOI: 10.1016/j.fitote.2023.105592] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The polysaccharides from Sea buckthorn leaves (SBLPs) were extracted by hot water and purified by DEAE cellulose, then separated into six polysaccharides (SBLP-S) by DEAE-52 column. Six separated polysaccharides were characterized by Ultraviolet Spectroscopy, Infrared Spectrum, High Performance Liquid Chromatographic and Congo red analysis. The antioxidant activity and immunological activity were investigated in vitro. The results revealed that the monosaccharide composition of SBLP-S-1, SBLP-S-2, SBLP-S-3, SBLP-S-5 and SBLP-S-6 contained Man, GlcN, Rib, Rha, GluA, GalA, Glu, Gal, Xyl, Ara and Fuc, among them, rare glucosamine was found. And SBLP-S-4 contained all above components except GlcN and GluA. FT-IR showed that SBLP-S were sulfated polysaccharide containing uronic acid. Molecular weights of SBLP-S were 338.659, 401.305, 599.849, 393.904, 626.895 and 176.862 kDa. The Congo-red test indicated that SBLP-S-2, SBLP-S-4, SBLP-S-5, and SBLP-S-6 had triple helix conformation. Crude polysaccharides had the strong scavenging activities on DPPH radicals, ABTS radicals and hydroxyl radicals. The six polysaccharides had the activity of immune stimulation on RAW264.7 cell. SBLP-S-2 promoted the phagocytosis best and SBLP-S-6 promoted the NO production best. The results suggested that SBLPs could be used as potential antioxidants and immunomodulatory agents in pharmaceutical and functional food fields.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Limei Ran
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yahong Wang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Peng Wan
- Department of Physiology, Jilin Medical College, Jilin City, Jilin 132013, China
| | - Hongli Zhou
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
17
|
Kakar MU, Karim H, Shabir G, Iqbal I, Akram M, Ahmad S, Shafi M, Gul P, Riaz S, Rehman R, Salari H. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci Nutr 2023; 11:3655-3674. [PMID: 37457175 PMCID: PMC10345683 DOI: 10.1002/fsn3.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 07/18/2023] Open
Abstract
Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Hammad Karim
- Sheikh Zayed Medical CollegeRahim Yar KhanPunjabPakistan
| | | | - Imran Iqbal
- Department of Information and Computational SciencesSchool of Mathematical Sciences and LMAMPeking UniversityBeijingChina
| | - Muhammad Akram
- Department of Life Sciences, School of ScienceUniversity of Management and Technology (UMT)LahorePakistan
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Muhammad Shafi
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Pari Gul
- Institute of BiochemistryUniversity of BalochistanQuettaPakistan
| | - Sania Riaz
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Rizwan‐ur‐ Rehman
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Hamid Salari
- Department of Horticulture, Faculty of AgricultureKabul UniversityKabulAfghanistan
| |
Collapse
|
18
|
Bayer IS. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023; 15:pharmaceutics15051364. [PMID: 37242606 DOI: 10.3390/pharmaceutics15051364] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are naturally occurring complex molecules with exceptional physicochemical properties and bioactivities. They originate from plant, animal, and microbial-based resources and processes and can be chemically modified. The biocompatibility and biodegradability of polysaccharides enable their increased use in nanoscale synthesis and engineering for drug encapsulation and release. This review focuses on sustained drug release studies from nanoscale polysaccharides in the fields of nanotechnology and biomedical sciences. Particular emphasis is placed on drug release kinetics and relevant mathematical models. An effective release model can be used to envision the behavior of specific nanoscale polysaccharide matrices and reduce impending experimental trial and error, saving time and resources. A robust model can also assist in translating from in vitro to in vivo experiments. The main aim of this review is to demonstrate that any study that establishes sustained release from nanoscale polysaccharide matrices should be accompanied by a detailed analysis of drug release kinetics by modeling since sustained release from polysaccharides not only involves diffusion and degradation but also surface erosion, complicated swelling dynamics, crosslinking, and drug-polymer interactions. As such, in the first part, we discuss the classification and role of polysaccharides in various applications and later elaborate on the specific pharmaceutical processes of polysaccharides in ionic gelling, stabilization, cross-linking, grafting, and encapsulation of drugs. We also document several drug release models applied to nanoscale hydrogels, nanofibers, and nanoparticles of polysaccharides and conclude that, at times, more than one model can accurately describe the sustained release profiles, indicating the existence of release mechanisms running in parallel. Finally, we conclude with the future opportunities and advanced applications of nanoengineered polysaccharides and their theranostic aptitudes for future clinical applications.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
19
|
Li F, Liu K. Research progress in the preparation, structural characterization, bioactivities, and potential applications of sulfated agarans from the genus Gracilaria. J Food Biochem 2022; 46:e14401. [PMID: 36136060 DOI: 10.1111/jfbc.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
The genus Gracilaria produces 80% of the world's industrial agar. Agar of this genus is a promising biologically active polymer, which has been used in the human diet and folk medicine, alternative for weight loss, treatment of diarrhea, etc. With more attention paid to the genus Gracilaria-sulfated agarans (GSAs), they exhibited multitudinous health benefits in antioxidant, antiviral, antibacterial, prebiotics, anti-tumor, anticoagulant, and antidiabetic. Various preparation procedures of GSAs making the diversities of structure and biological activity. Therefore, this review summarized the isolation, identification, bioactivity potentials, and applications of GSAs, providing a reference to the development of GSAs in functional food and pharmaceutical industry. PRACTICAL APPLICATIONS: The genus Gracilaria is known as a raw material for agar extraction. GSAs are food-grade agaran with the properties of thermoreversible gels at low concentrations, which are commonly used as an additive for making candies as well as raw material for making soup and snacks. They are used in folk medicine to treat diarrhea and other diseases. As an important bioactive macromolecule, GSAs have various biological activities (such as antioxidant, antiviral, antibacterial, probiotic, anti-tumor, anticoagulant, and antidiabetic activities), and have the potential to be developed as functional food and medicine. They could also be used to create innovative agar-based products such as antibacterial films and drug carriers.
Collapse
Affiliation(s)
- Feifei Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
20
|
Teka N, Alminderej FM, Souid G, El-Ghoul Y, Le Cerf D, Majdoub H. Characterization of Polysaccharides Sequentially Extracted from Allium roseum Leaves and Their Hepatoprotective Effects against Cadmium Induced Toxicity in Mouse Liver. Antioxidants (Basel) 2022; 11:antiox11101866. [PMID: 36290591 PMCID: PMC9599006 DOI: 10.3390/antiox11101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 12/02/2022] Open
Abstract
Allium roseum is one of the medicinal plants of the Liliaceae family, widely used in the food industry and traditional medicine. It is known for its various biological properties, such as its antioxidant, antiviral, antidiabetic, and anti-inflammatory activities. The present work aims to extract the polysaccharides from Allium roseum leaves and evaluate their antioxidant activities and hepatoprotective effects in vivo. Three polysaccharides from the leaves of Allium roseum were sequentially extracted in three media: water, chelating, and basic, respectively. They were characterized by size exclusion chromatography, gas chromatography mass spectrometry, FTIR-ATR, and NMR spectroscopy (1D and 2D). The different polysaccharides principally consist of glucose, galactose, mannose, rhamnose, xylose, and galacturonic acid. The antioxidant activity and hepatoprotective effect of the extracts against Cd-caused oxidative stress in liver mouse were tested. Cd treatment, during 24 h, enhanced significantly lipid peroxidation by a high production of malondyaldehyd (MDA) and superoxide dismutase (SOD) activity. In contrast, catalase activity (CAT) was decreased after the same period of exposure to the metal. The polysaccharides pre-treatment improved the antioxidant defense system to a great degree, mainly explained by the modulating levels of oxydative stress biomarkers (MDA, SOD, and CAT). This research clearly shows that Allium roseum polysaccharides, especially those extracted in aqueous medium, can be used as natural antioxidants with hepatoprotective properties.
Collapse
Affiliation(s)
- Nesrine Teka
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| | - Ghada Souid
- Research Unit: Mycotoxins, Phycotoxins and Associated Pathologies, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Yassine El-Ghoul
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| | - Didier Le Cerf
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS, UMR 6270 & FR 3038, 76000 Rouen, France
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (F.M.A.); (Y.E.-G.); (H.M.)
| |
Collapse
|
21
|
Yang Y, Li J, Hong Q, Zhang X, Liu Z, Zhang T. Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients 2022; 14:nu14183721. [PMID: 36145096 PMCID: PMC9503163 DOI: 10.3390/nu14183721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Five fractions from crude Hericium erinaceus polysaccharides (HEPs), including HEP-1, HEP-2, HEP-3, HEP-4 and HEP-5, were obtained through column chromatography with a DEAE Cellulose-52 column and Sephadex G-100 column. The contents of total carbohydrates and uronic acid in HEPs were 53.36% and 32.56%, respectively. HEPs were mainly composed of Fuc, Gal and Glu in a molar ratio of 7.9:68.4:23.7. Its chemical structure was characterized by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy. HEP-1 contains the backbone composed of (1→6)-linked-galactose with branches attached to O-2 of some glucose. The immunological activity assay indicated that HEP-1 significantly promoted the production of nitric oxide, interleukin-6, interleukin-10, interferon-γ and tumor necrosis factor-α and the phosphorylation of signaling molecules. Collectively, these results suggested that HEP-1 could improve immunity via NF-κB, MAPK and PI3K/Akt pathways. Hericium erinaceus polysaccharides might be explored as an immunomodulatory agent for use in dietary supplements.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Jihong Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| | - Tiehua Zhang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, 5333 Xi’an Road, Changchun 130062, China
- Correspondence: (Z.L.); (T.Z.); Tel.: +86-021-66553178 (Z.L.); +86-0431-87836361 (T.Z.)
| |
Collapse
|
22
|
Shi L, Guo Y, Cheng Y, Xing Y, Guo S, Zhang L, Xu Y, Jin X, Yan S, Shi B. An Artemisia ordosica extract: Effects on growth performance, immune, and inflammatory response in lipopolysaccharide-challenged broilers. Front Vet Sci 2022; 9:980690. [PMID: 36157186 PMCID: PMC9500547 DOI: 10.3389/fvets.2022.980690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Artemisia ordosica has been applied as a traditional Chinese/Mongolian medicine for treating csertain inflammatory ailments. This study was conducted to investigate the effect of Artemisia ordosica alcohol extract (AOAE) supplemented in diets on growth performance, immune, and inflammatory response in lipopolysaccharide (LPS)-challenged broilers. A total of 240 one-day-old Arbor Acre male broilers were randomly allotted into 5 groups with 6 replicates (n = 8), which were basal diet group (CON), LPS-challenge and basal diet group (LPS), LPS-challenge and the basal diet added with low (500 mg/kg), middle (750 mg/kg), and high (1,000 mg/kg) dose of AOAE groups (AOAE-L, AOAE-M, and AOAE-H), respectively. On d 16, 18, 20, 22, 24, 26, and 28, all broilers were injected intra-abdominally either with LPS or an equivalent amount of saline. Results showed that dietary AOAE alleviated the LPS-induced decrease in average daily gain and average daily feed intake in the broilers (P < 0.05). Dietary AOAE supplementation reversed the increased spleen index and the decreased bursa index in LPS-challenged broilers (P < 0.05). Moreover, feeding AOAE could mitigate the elevation of IL-1β in serum, liver, and spleen, IL-2 in serum and liver, IL-6 in serum and spleen, and the decrease of IgG in spleen, IgM in serum, liver, and spleen, and IL-4 in serum of the LPS-challenged broilers (P < 0.05). This study also showed that AOAE supplementation alleviated the increase of mRNA expression of TLR4, MyD88, TRAF6, NF-κB p65, NF-κB p50, IL-1β, and IL-6, and the decrease of gene expression of IκBα and PPARγ in liver and/or spleen of broilers challenged by LPS (P < 0.05). We speculated that AOAE administration could effectively alleviate LPS-induced inflammation via decreasing over-production of proinflammatory cytokines, ultimately relieving the growth inhibition of broilers caused by LPS. In conclusion, 1,000 mg/kg AOAE has a strong capacity to enhance immunity and inhibit inflammation, and can be used as a potential novel feed additive with applications in treating inflammation-related diseases and bacterial infection in broilers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
23
|
Chen L, He C, Zhou M, Long J, Li L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules 2022; 27:5828. [PMID: 36144560 PMCID: PMC9501385 DOI: 10.3390/molecules27185828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a common type of cancer that poses a serious threat to human health. Polysaccharides are important functional phytochemicals, and research shows that polysaccharides have good anti-gastric cancer effects. We collated all relevant literature published from 2000 to 2020 and found that more than 60 natural polysaccharides demonstrate anti-gastric cancer activity. At the present, the sources of these polysaccharides include fungi, algae, tea, Astragalus membranaceus, Caulis Dendrobii, and other foods and Chinese herbal medicines. By regulating various signaling pathways, including the PI3K/AKT, MAPK, Fas/FasL, Wnt/β-catenin, IGF-IR, and TGF-β signaling pathways, polysaccharides induce gastric cancer cell apoptosis, cause cell cycle arrest, and inhibit migration and invasion. In addition, polysaccharides can enhance the immune system and killing activity of immune cells in gastric cancer patients and rats. This comprehensive review covers the extraction, purification, structural characterization, and mechanism of plant and fungal polysaccharides against gastric cancer. We hope this review is helpful for researchers to design, research, and develop plant and fungal polysaccharides.
Collapse
Affiliation(s)
- Liping Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Min Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
24
|
C-Terminal Modification on the Immunomodulatory Activity, Antioxidant Activity, and Structure–Activity Relationship of Pulsed Electric Field (PEF)-Treated Pine Nut Peptide. Foods 2022; 11:foods11172649. [PMID: 36076834 PMCID: PMC9455170 DOI: 10.3390/foods11172649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel peptide VNAVL was synthesized by removing the C-terminal histidine on the basis of a bioactive peptide VNAVLH obtained from pine nut (Pinus koraiensis Sieb. et Zucc) protein. The effects of removing histidine on antioxidant activity, immunomodulatory activity, and secondary structure of the PEF-treated peptide were discussed. Compared with VNAVLH, VNAVL only exhibited lower antioxidant activity, but no immunomodulatory activity to release TNF-α, IL-6, and NO by activating RAW 264.7 cells. In addition, both antioxidant and immune activities of VNAVLH were significantly more sensitive to treatment with 40 kV/cm than other field intensities, whereas VNAVL was not sensitive to field strength changes. CD spectra and DSSP analysis verified that both peptides consisted of a β structure and random coil, but the ability of VNAVL to transform the random coil via PEF treatment is weaker than that of VNAVLH. Therefore, PEF treatment might expose the key active site located on the C-terminal histidine by altering the secondary structure of the peptide.
Collapse
|
25
|
Antioxidant Activity of Gracilaria lemaneiformis Polysaccharide Degradation Based on Nrf-2/Keap-1 Signaling Pathway in HepG2 Cells with Oxidative Stress Induced by H2O2. Mar Drugs 2022; 20:md20090545. [PMID: 36135734 PMCID: PMC9506308 DOI: 10.3390/md20090545] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 02/06/2023] Open
Abstract
The objective of this research was to investigate the antioxidant activity of Gracilarialemaneiformis polysaccharide degradation and its underlying mechanism involved in the Nrf-2/Keap-1 signaling pathway in HepG2 cells with oxidative stress induced by H2O2. The result of the scavenging ability of free radicals showed that GLP-HV (polysaccharide degraded by H2O2–vitamin C (Vc)) performed a better scavenging ability than GLP (G.lemaneiformis polysaccharide). Moreover, the scavenging ability of polysaccharide to these free radicals from strong to weak was as follows: superoxide radical, ferric ion, ABTS+, and DPPH radical, and their IC50 values were 3.56 ± 0.0028, 4.97 ± 0.18, 9.62 ± 0.35, and 23.85 ± 1.78 mg/mL, respectively. Furthermore, GLP-HV obviously relieved oxidative stress in HepG2 cells, which strengthened the activity of T-AOC, CAT, GSH-PX, and SOD, and diminished the intensity of MDA, intracellular ROS, and calcium ion based on the Nrf-2/Keap-1 signaling pathway. The PCR result revealed that polysaccharide upregulated the expression of the genes Nrf-2, HO-1, NQO-1, and ZO-1 and downregulated Keap-1. The correlation between chemical properties and antioxidant mechanism of GLP-HV was evaluated via a heat map. The results illustrated that reducing sugar and active groups presented a positive correlation, and molecular weight and viscosity exhibited a negative relation with antioxidant activity.
Collapse
|
26
|
Li C, Lai S, Yi R, Zhou X, Zhao X, Li Q. Blood Coral Polysaccharide Helps Prevent D-Gal/LPS-Induced Acute Liver Failure in Mice. J Inflamm Res 2022; 15:4499-4513. [PMID: 35966003 PMCID: PMC9374204 DOI: 10.2147/jir.s369176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Objective The liver protection of blood coral polysaccharide (BCP) was investigated. Materials and Methods We evaluated the effect of BCP on liver pathology, liver function, oxidation and inflammation-related indicators of D-Gal/LPS-induced acute liver failure (ALF) mice in vivo. Results Liver index and liver pathology observation in mice showed that BCP could inhibit liver tissue swelling and hemorrhage, hepatocyte damage, and inflammatory infiltration in ALF. Serum liver function results showed that BCP effectively inhibits the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), total bilirubin (TBil), alkaline phosphatase (AKP), myeloperoxidase (MPO). High dose-blood coral polysaccharide (H-BCP) was better than silymarin. Serum antioxidant and immune results showed that BCP increased the levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), and inhibited the levels of malondialdehyde (MDA) and nitric oxide (NO). Also, BCP increased immunoglobulins G (IgG) and A (IgA) levels, thereby enhancing humoral immunity. Liver anti-inflammatory ELISA results showed that BCP reduced the levels of interleukin (IL)-6, IL-1β, IL-17, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, and enhanced the level of anti-inflammatory factor IL-10. H-BCP was the most effective treatment. Real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) of liver tissues confirmed that BCP increases the relative expression levels of antioxidant and anti-inflammatory-related cuprozinc superoxide dismutase (Cu/Zn-SOD, SOD1), manganese superoxide dismutase (Mn-SOD, SOD2), CAT, GSH, GSH-Px, and IL-10. In contrast, it inhibits inflammation-related genes IL-6, IL-1β, IL-17, TNF-α, IFN-γ, inducible nitric oxide synthase (iNOS, NOS2), and cyclooxygenase (COX)-2. In addition, BCP also inhibits the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and enhance B-cell inhibitor-α (IκB-α) gene relative expression in the liver, which may be related to NF-κB pathway inhibition. Conclusion BCP prevents D-Gal/LPS-induced ALF in mice, and its effect is concentration dependent.
Collapse
Affiliation(s)
- Chong Li
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, Republic of Korea
| | - Shu Lai
- Department of Pharmacology, Jiulongpo District People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Ruokun Yi
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Xianrong Zhou
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China.,Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan, Republic of Korea
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People's Republic of China
| | - Qiang Li
- Department of Emergency, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, People's Republic of China
| |
Collapse
|
27
|
Wei X, Yao J, Wang F, Wu D, Zhang R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front Nutr 2022; 9:947706. [PMID: 35928842 PMCID: PMC9343709 DOI: 10.3389/fnut.2022.947706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The isolation, purification, and antioxidant activity of polysaccharides extracted from elderberry fruits were studied. Two neutral polysaccharides (EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all contain arabinose, galactose, glucose, and mannose, with molecular weights of 1.7981 × 106, 7.0523 × 106, 7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 Da, respectively. Structural characterization showed that the backbone of EFP-2 consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were detected by methylation analysis and NMR analysis. In addition, the MTT assay and zebrafish oxidative damage assay showed that EFP-2 had a protective effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and zebrafish with the addition of EFP-2 would have low levels of ROS in vivo which showed significant antioxidant activity. Therefore, the results showed that the elderberry polysaccharides have antioxidant activity and can be used as potential antioxidants in functional foods.
Collapse
Affiliation(s)
- Xinxin Wei
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Dejun Wu
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
- *Correspondence: Dejun Wu,
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Rentang Zhang,
| |
Collapse
|
28
|
Wang H, Ma C, Sun-Waterhouse D, Wang J, Neil Waterhouse GI, Kang W. Immunoregulatory polysaccharides from Apocynum venetum L. flowers stimulate phagocytosis and cytokine expression via activating the NF-κB/MAPK signaling pathways in RAW264.7 cells. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Abdin M, El‐Beltagy AE, Naeem MA. Characterisation, rheological properties and immunomodulatory efficiency of corn silk polysaccharides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Abdin
- Agriculture Research Center Food Technology Research Institute Giza 12611 Egypt
| | - Alaa El‐Dein El‐Beltagy
- Department of Food Science and Nutrition, College of Science Taif University Taif 21944 Saudi Arabia
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital Ain Shams University El Khalifa El Maamoun Cairo 11588 Egypt
| |
Collapse
|
30
|
Hu S, Lin S, He X, Sun N. Iron delivery systems for controlled release of iron and enhancement of iron absorption and bioavailability. Crit Rev Food Sci Nutr 2022; 63:10197-10216. [PMID: 35588258 DOI: 10.1080/10408398.2022.2076652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Iron deficiency is a global nutritional problem, and adding iron salts directly to food will have certain side effects on the human body. Therefore, there is growing interest in food-grade iron delivery systems. This review provides an overview of iron delivery systems, with emphasis on the controlled release of iron during gastrointestinal digestion, as well as the enhancement of iron absorption and bioavailability. Iron-bearing proteins are easily degraded by digestive enzymes and absorbed through receptor-mediated endocytosis. Instead, protein aggregates are slowly degraded in the stomach, which delays iron release and serves as a potential iron supplement. Amino acids, peptides and polysaccharides can bind iron through iron binding sites, but the formed compounds are prone to dissociation in the stomach. Moreover, peptides and polysaccharides can deliver iron by mediating the formation of ferric oxyhydroxide which is absorbed through endocytosis or bivalent transporter 1. In addition, liposomes are unstable during gastric digestion and iron is released in large quantities. Complexes formed by polysaccharides and proteins, and microcapsules formed by polysaccharides can delay the release of iron in the gastric environment and prolong iron release in the intestinal environment. This review is conducive to the development of iron functional ingredients and dietary supplements.
Collapse
Affiliation(s)
- Shengjie Hu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Songyi Lin
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| | - Xueqing He
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
| | - Na Sun
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, P. R. China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
31
|
Lin Y, Pi J, Jin P, Liu Y, Mai X, Li P, Fan H. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from Purple-heart Radish. Food Chem 2022; 372:131274. [PMID: 34638061 DOI: 10.1016/j.foodchem.2021.131274] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
A novel method of simultaneous extraction and separation of diverse polysaccharides from Purple-heart Radish was developed by integrating EAE with MAATPE. The effects of different enzymes, the ATPS composition, extraction temperature, time etc. were investigated by single-factor experiments and RSM. Under the optimum conditions, the extraction yields of PTP, PBP and total polysaccharides were 9.107 ± 0.391%, 32.506 ± 0.046% and 41.613 ± 0.437%, respectively. By means of HPGPC and PMP-HPLC, Mw of PTP and Mw of PBP were 15935 Da and 27962 Da, respectively. PTP and PBP were mainly composed of mannose, glucuronic acid, aminogalactose, glucose, galactose and arabinose. Moreover, both polysaccharides exhibited stronger antioxidant activities for scavenging multiple radicals and anti-lipid peroxidation. Compared to the conventional extraction methods, EAE-MAATPE achieved higher extraction efficiency due to the synergistic effect between EAE and MAATPE leading to rupture and enzymolysis of cell. Thus, EAE-MAATPE provided an efficient alternative to simultaneous extraction of different polysaccharides from natural products.
Collapse
Affiliation(s)
- Yuyang Lin
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaju Pi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peiyi Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingtao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoman Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingfan Li
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
32
|
Dedhia N, Marathe SJ, Singhal RS. Food polysaccharides: A review on emerging microbial sources, bioactivities, nanoformulations and safety considerations. Carbohydr Polym 2022; 287:119355. [DOI: 10.1016/j.carbpol.2022.119355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
|
33
|
Madruga LYC, Kipper MJ. Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques, and Applications. Adv Healthc Mater 2022; 11:e2101979. [PMID: 34788898 DOI: 10.1002/adhm.202101979] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer-based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well-established ones) to enhance or achieve new properties for electrospun fiber materials.
Collapse
Affiliation(s)
- Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
- School of Advanced Materials Discovery Colorado State University Fort Collins CO 80526 USA
- School of Biomedical Engineering Colorado State University Fort Collins CO 80526 USA
| |
Collapse
|
34
|
Kang J, Jia X, Wang N, Xiao M, Song S, Wu S, Li Z, Wang S, Cui SW, Guo Q. Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Effects of the steaming process on the structural properties and immunological activities of polysaccharides from Polygonatum cyrtonema. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
36
|
Yang S, Zhang J, Jiang Y, Xu Y, Jin X, Yan S, Shi B. Effects of dietary supplementation with Artemisia argyi alcohol extract on growth performance, blood biochemical properties and small intestinal immune markers of broilers challenged with lipopolysaccharide. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ContextBroilers are prone to immunological stress when subjected to unsuitable environmental conditions (such as virus attack, nutrient deficiency and high stocking density), lowering immunity and resulting in inflammatory bowel diseases. The herb-feed additive Artemisia argyi has been applied in poultry production, and its extract may improve small intestinal immune capacity.AimsThis study was conducted to investigate the effect of A. argyi alcohol extract (AAAE) on growth performance and blood biochemical and small intestinal immune markers of broilers challenged with a proinflammatory substance, lipopolysaccharide (LPS). The study also examined possible mechanisms of action, and aimed to clarify whether AAAE could be applied as a feed additive.MethodsIn total, 192 one-day-old Arbor Acres broilers were allocated to four groups following a 2×2 factorial arrangement (including six replicates with eight birds per replicate) with two dietary AAAE rates (0 or 750mg/kg) and two immune stress treatments (LPS or saline injection). Blood and small intestine were sampled on Days21 and 35.Key resultsDietary AAAE alleviated the LPS-induced decrease in bodyweight, average daily gain and average daily feed intake, and mitigated the elevated serum alanine aminotransferase, triglyceride, low-density lipoprotein cholesterol, adrenocorticotropic hormone and corticosterone concentrations at Day21 and/or Day35 in LPS-challenged broilers. AAAE significantly (P<0.05) attenuated LPS-induced increases in intestinal immunoglobulin (IgA, IgG and IgM) and interleukin (IL-1β and IL-6) concentrations. Moreover, the small intestinal mRNA abundances of the genes TLR4, MyD88, NF-κBp65, IL-1β and IL-6 in LPS-challenged broilers were decreased (P<0.05) in response to dietary AAAE treatment.ConclusionsThese results further demonstrated that AAAE at 750mg/kg enhanced small intestinal tissue immune capacity of broilers, thereby alleviating LPS-induced immune stress damage in broilers. Its mechanism of action may be related to the mediating of TLR4/NF-κB pathways.ImplicationsDietary AAAE can be used to improve the immune function of broilers, and to provide a new scientific theoretical basis for the development of new anti-stress feed additives.
Collapse
|
37
|
Qiu SM, Aweya JJ, Liu X, Liu Y, Tang S, Zhang W, Cheong KL. Bioactive polysaccharides from red seaweed as potent food supplements: a systematic review of their extraction, purification, and biological activities. Carbohydr Polym 2022; 275:118696. [PMID: 34742423 DOI: 10.1016/j.carbpol.2021.118696] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 02/05/2023]
Abstract
Most marine macroalgae such as red seaweeds are potential alternative sources of useful bioactive compounds. Beside serving as food source, recent studies have shown that red seaweeds are rich sources of bioactive polysaccharides. Red seaweed polysaccharides (RSPs) have various physiological and biological activities, which allow them to be used as immunomodulators, anti-obesity agents, and prebiotic ingredients. Lack of summary information and human clinical trials on the various polysaccharides from red seaweeds, however limits industrial-scale utilization of RSPs in functional foods. This review summarizes recent information on the approaches used for RSPs extraction and purification, mechanistic investigations of their biological activities, and related molecular principles behind their purported ability to prevent diseases. The information here also provides a theoretical foundation for further research into the structure and mechanism of action of RSPs and their potential applications in functional foods.
Collapse
Affiliation(s)
- Si-Min Qiu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Wancong Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China..
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China..
| |
Collapse
|
38
|
Ji C, Pan C, Huang H, Tao F, Lin S, Chen S, Qi B, Hu X, Yang X. Effects of origin and harvest period on characterisation, structure and antioxidant activity of polysaccharides derived from
Porphyra haitanensis. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chenyang Ji
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
- College of Food Science and Technology Guangdong Ocean University Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety Guangdong Province Engineering Laboratory for Marine Biological Products Guangdong Provincial Engineering Technology Research Center of Seafood Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution Zhanjiang 524088 China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian 116034 China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Haichao Huang
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- East China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Shanghai 200090 China
| | - Fengting Tao
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Shanting Lin
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing South China Sea Fisheries Research Institute Chinese Academy of Fishery Sciences Guangzhou 510300 China
| |
Collapse
|
39
|
Long X, Hu X, Liu S, Pan C, Chen S, Li L, Qi B, Yang X. Insights on preparation, structure and activities of Gracilaria lemaneiformis polysaccharide. Food Chem X 2021; 12:100153. [PMID: 34816120 PMCID: PMC8591341 DOI: 10.1016/j.fochx.2021.100153] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Gracilaria lemaneiformis is a kind of edible economic red algae, which is rich in polysaccharide, phycobiliprotein, pigments, minerals and other nutrients and functional components. Polysaccharide is one of the main active components of Gracilaria lemaneiformis, which has been reported to present various physiological bioactivities, including regulation of glycolipid metabolism, immune, anti-tumor, anti-inflammatory and other biological activities. This paper aims to provide a brief summary of extraction, purification, structural characteristics, and physiological activities of Gracilaria lemaneiformis polysaccharide (GLP). This article is able to provide theoretical basis for the future research and exploitation of GLP, and improve its potential development to promote the healthy and sustainable processing and high value utilization industry of Gracilaria lemaneiformis.
Collapse
Affiliation(s)
- Xiaoshan Long
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Xiao Hu
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Bo Qi
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
40
|
Sobuj MKA, Islam MA, Islam MS, Islam MM, Mahmud Y, Rafiquzzaman SM. Effect of solvents on bioactive compounds and antioxidant activity of Padina tetrastromatica and Gracilaria tenuistipitata seaweeds collected from Bangladesh. Sci Rep 2021; 11:19082. [PMID: 34580350 PMCID: PMC8476583 DOI: 10.1038/s41598-021-98461-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022] Open
Abstract
Seaweeds are now recognized as a treasure of bioactive compounds. However, the bioactivity of seaweed originating in Bangladesh is still unexplored. So, this study was designed to explore the secondary metabolites and antioxidant activities of solvent extracts of Padina tetrastromatica and Gracilaria tenuistipitata. Phytochemical screening and FTIR spectra confirm the diverse type of bioactive compounds. Antioxidant activity of extracts were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), reducing power (RP), phosphomolybdenum, hydrogen peroxide and nitric oxide (NO) scavenging assays. Here, methanolic extract of P. tetrastromatica showed highest amount of total phenolic content (85.61 mg of GA/g), total flavonoid content (41.77 mg of quercetin/g), DPPH (77.07%), ABTS (77.65%), RP (53.24 mg AAE/g), phosphomolybdenum (31.58 mg AAE/g), hydrogen peroxide (67.89%) and NO (70.64%) assays compared to its methanolic extracts of G. tenuistipitata. This study concluded that methanol as a solvent extract of brown seaweed (P. tetrastromatica) exhibited bioactivity and antioxidant potentiality which will be useful for pharmacological as well as in functional food application.
Collapse
Affiliation(s)
- Mohammad Khairul Alam Sobuj
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar, 4700, Bangladesh
| | - Md Ariful Islam
- Department of Fisheries Biology and Aquatic Environment, BSMRAU, Gazipur, 1706, Bangladesh
| | - Md Shoebul Islam
- Department of Fisheries Biology and Aquatic Environment, BSMRAU, Gazipur, 1706, Bangladesh
| | - Md Mohidul Islam
- Marine Fisheries and Technology Station, Bangladesh Fisheries Research Institute, Cox's Bazar, 4700, Bangladesh
| | - Yahia Mahmud
- Bangladesh Fisheries Research Institute, Mymensingh, 2201, Bangladesh
| | - S M Rafiquzzaman
- Department of Fisheries Biology and Aquatic Environment, BSMRAU, Gazipur, 1706, Bangladesh.
| |
Collapse
|
41
|
Antioxidant activity of sulfated Porphyra yezoensis polysaccharides and their regulating effect on calcium oxalate crystal growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112338. [PMID: 34474889 DOI: 10.1016/j.msec.2021.112338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
The nucleation, growth and aggregation of calcium oxalate (CaOx) crystals and the oxidative damage of renal tubular epithelial cells are the key factors to induce kidney stones. In this study, degraded Porphyra yezoensis polysaccharide (PYP0) with 14.14% sulfate group (-OSO3-) content was modified via the sulfur trioxide-pyridine method to obtain three kinds of sulfated P. yezoensis polysaccharides (PYPs), namely, PYPS1, PYPS2, and PYPS3, with -OSO3- group contents of 17.11%, 20.28%, and 27.14% respectively. Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR analyses showed that the -OSO3- groups replaced the hydroxyl groups at the C2, C4, and C6 positions on (1 → 3)-linked β-D-galactose, the basic structural skeleton unit of PYP0. The antioxidant activity of the PYPSs increased after sulfation, and their scavenging capacity for OH and DPPH free radicals was enhanced with the increase in their -OSO3- group content. Calcium oxalate (CaOx) crystal growth experiments showed that sulfated PYPs promoted the conversion of the thermodynamically stable and sharp CaOx monohydrate (COM) crystals into the thermodynamically unstable and round CaOx dihydrate crystals. With the increase in the -OSO3- group content of the polysaccharides, the concentration of soluble Ca2+ ions in the supernatant increased and the amount of CaOx precipitate decreased. PYPs were nontoxic to human kidney proximal tubular epithelial cells (HK-2) and could protect HK-2 from oxidative damage caused by nano-COM and reduce the level of reactive oxygen species in cells. PYPS3, which had the highest degree of sulfation, had the best protective capability. The results of this work showed that sulfation improved the biological activity of PYPs. This study could provide inspiration for the development of new drugs for the prevention and treatment of kidney stones.
Collapse
|
42
|
Surayot U, Wangtueai S, You S, Palanisamy S, Krusong W, Brennan CS, Barba FJ, Phimolsiripol Y, Seesuriyachan P. Extraction, Structural Characterisation, and Immunomodulatory Properties of Edible Amanitahemibapha subspecies javanica (Corner and Bas) Mucilage Polysaccharide as a Potential of Functional Food. J Fungi (Basel) 2021; 7:683. [PMID: 34575721 PMCID: PMC8468940 DOI: 10.3390/jof7090683] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
This research aimed to extract mucilage polysaccharides (MP) from Amanita hemibapha subspecies javanica (Corner and Bas), and further fractionate them using anion-exchange chromatography, yielding two fractions (MPF1 and MPF2). The crude extract, and fractions mainly consisted of carbohydrates (83.5-93.2%) with minor amounts of proteins (5.40-7.20%), and sulphates (1.40-9.30%). Determination of the monosaccharide composition revealed that glucose was the major unit, followed by galactose, mannose, rhamnose, and arabinose. The average molecular weight (MW) of the crude extract and fractions was in the range 104.0-479.4 × 103 g/mol. Interestingly, the crude extract, and fractions did not cause any toxic effect in RAW264.7 cells. However, they stimulated the RAW264.7 cells to release nitric oxide and cytokines through the activation of nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways via cell surface TLR4. Structural analysis of the most immunestimulating extract fraction, MPF2, revealed that the main backbone consisted of α-D-(1→6)-glucopyranoside. These results suggest that the MPs derived from A. hemibapha subspecies javanica (Corner and Bas) are potent in enhancing immunity; hence, they can be used as a functional ingredient in food products.
Collapse
Affiliation(s)
- Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (U.S.); (S.W.)
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangwon 210-702, Korea; (S.Y.); (S.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangwon 210-720, Korea
| | - Warawut Krusong
- Division of Fermentation Technology, Faculty of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Charles S. Brennan
- School of Science, STEM College, RMIT University, Melbourne 3000, Australia;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Advanced Manufacturing and Management Technology Research Center (AM2Tech), Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
43
|
Nigam S, Singh R, Bhardwaj SK, Sami R, Nikolova MP, Chavali M, Sinha S. Perspective on the Therapeutic Applications of Algal Polysaccharides. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2021; 30:785-809. [PMID: 34305487 PMCID: PMC8294233 DOI: 10.1007/s10924-021-02231-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 05/04/2023]
Abstract
Abstract Algae are an enormous source of polysaccharides and have gained much interest in human flourishing as organic drugs. Algal polysaccharides have aroused interest in the health sector owing to the various bioactivities namely anticancer, antiviral, immunoregulation, antidiabetic and antioxidant effects. The research community has comprehensively described the importance of algal polysaccharides regarding their extraction, purification, and potential use in various sectors. However, regardless of all the intriguing properties and potency in the health sector, these algal polysaccharides deserve detailed investigation. Hence, the present review emphasizes extensively on the previous and latest developments in the extraction, purification, structural properties and therapeutic bioactivities of algal polysaccharides to upgrade the knowledge for further advancement in this area of research. Moreover, the review also addresses the challenges, prospective research gaps and future perspective. We believe this review can provide a boost to upgrade the traditional methods of algal polysaccharide production for the development of efficacious drugs that will promote human welfare. Graphic Abstract
Collapse
Affiliation(s)
- Sonal Nigam
- Amity Institute of Microbial Technology, Amity University, Sector 125, Noida, 201 313 Uttar Pradesh India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| | - Sheetal Kaushik Bhardwaj
- Vant Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Rokkayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, 21944 Saudi Arabia
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str, 7017 Ruse, Bulgaria
| | - Murthy Chavali
- Nano Technology Research Centre (NTRC), MCETRC, and Aarshanano Composite Technologies Pvt. Ltd, Guntur, Andhra Pradesh 522 201 India
| | - Surbhi Sinha
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, 201313 Uttar Pradesh India
| |
Collapse
|
44
|
Yu L, Wang Y, Wen H, Jiang M, Wu F, Tian J. Synthesis and evaluation of acetylferulic paeonol ester and ferulic paeonol ester as potential antioxidants to inhibit fish oil oxidation. Food Chem 2021; 365:130384. [PMID: 34237572 DOI: 10.1016/j.foodchem.2021.130384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022]
Abstract
Acetylferulic paeonol ester (APE) and ferulic paeonol ester (FPE) were synthesized, and their structures were confirmed by NMR, mass spectra, IR and UV-vis data. The antioxidant properties of the synthesized compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and [(2-azino-bis (3-ethylbenzthiazoline)-6 -sulfonic acid] (ABTS) assay as well as the production of oxidation products (peroxides, conjugated dienes, thiobarbituric acid-reactive substances, free fatty acids and total aldehydes) in an elevated temperature (60 °C) storage trial of fish oil extracted from anchovy. Furthermore, the changes in fatty acid composition were monitored by gas chromatography-mass spectrometry. The results showed that APE was more effective in restraining fish oil oxidation compared to FPE, ferulic acid, paeonol and the commercial antioxidant-butylated hydroxytoluene (BHT). This study demonstrated molecular combinations obtained by covalent bonding two antioxidant active molecules can result in novel compounds with enhanced antioxidant activities.
Collapse
Affiliation(s)
- Lijuan Yu
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yang Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Wen
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Ming Jiang
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Wu
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Fish Nutrition and Feed Division, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
45
|
de Moura DF, Rocha TA, de Melo Barros D, da Silva MM, Dos Santos Santana M, Neta BM, Cavalcanti IMF, Martins RD, da Silva MV. Evaluation of the antioxidant, antibacterial, and antibiofilm activity of the sesquiterpene nerolidol. Arch Microbiol 2021; 203:4303-4311. [PMID: 34110480 DOI: 10.1007/s00203-021-02377-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
The aim of this study was to evaluate the antioxidant, antibacterial, and antibiofilm activities of nerolidol. The antioxidant activity of nerolidol was determined using the total antioxidant activity method. Antibacterial activity was performed using the microdilution method to determine the minimum inhibitory concentration (MIC) against seven standard strains of the ATCC and four bacterial clinical isolates with a resistance profile, following the Clinical and Laboratory Standards Institute (CLSI). The antibiofilm activity of nerolidol was performed using the crystal violet method. The results of the antioxidant test revealed a total antioxidant activity of 93.94%. Nerolidol inhibited the growth of Staphylococcus aureus (MIC = 1 mg/mL), Streptococcus mutans (MIC = 4 mg/mL), Pseudomonas aeruginosa (MIC = 0.5 mg/mL), and Klebsiella pneumoniae (MIC = 0.5 mg/mL). For clinical isolates, nerolidol showed an inhibitory potential against multidrug-resistant P. aeruginosa, K. pneumoniae carbapenemase (MIC = 0.5 mg/mL), methicillin-susceptible S. aureus (MIC = 2 mg/mL), and methicillin-resistant S. aureus (MIC = 2 mg/mL). Nerolidol showed similar antibacterial activity against ATCC strains and hospital clinical isolates with resistance profile, suggesting that even though these strains are resistant to antibiotics, they are still sensitive to nerolidol. Nerolidol exerted a dose-dependent effect on the inhibition of biofilm formation, even at subinhibitory concentrations. Nerolidol inhibited bacterial biofilms of ATCC strains at a rate ranging from 51 to 98%, at concentrations ranging from 0.5 to 4 mg/mL. For clinical bacterial isolates, biofilm inhibition ranged from 6 to 60%. Therefore, the present study showed the antioxidant, antibacterial, and antibiofilm properties of nerolidol.
Collapse
Affiliation(s)
- Danielle Feijó de Moura
- Laboratório de Parasitologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil.,Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Tamiris Alves Rocha
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil
| | - Dayane de Melo Barros
- Laboratório de Microbiologia de Alimentos, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marllyn Marques da Silva
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de células, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Marcielle Dos Santos Santana
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Beatriz Mendes Neta
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Laboratório do Microbiologia e Imunologia, Centro Acadêmico de Vitória da Universidade Federal de Pernambuco (CAV/UFPE), Rua do Alto do Reservatório S/N, Bela Vista, Vitória de Santo Antão, PE, 55608-680, Brazil. .,Setor de Microbiologia Clínica do Laboratório de Imunopatologia Keizo Asami da Universidade Federal de Pernambuco (LIKA/UFPE), Recife, PE, Brazil.
| | - René Duarte Martins
- Espaço Farmácia Viva, Centro Acadêmico de Vitoria, Universidade Federal de Pernambuco (CAV/UFPE), Vitória de Santo Antão, PE, Brazil
| | - Márcia Vanusa da Silva
- Laboratório de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, PE, Brazil.,Núcleo de Bioprospecção da Caatinga, Instituto Nacional do Semiárido, Paraíba, Brazil
| |
Collapse
|
46
|
Zhong QW, Zhou TS, Qiu WH, Wang YK, Xu QL, Ke SZ, Wang SJ, Jin WH, Chen JW, Zhang HW, Wei B, Wang H. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem 2021; 341:128148. [PMID: 33038776 DOI: 10.1016/j.foodchem.2020.128148] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
The brown seaweed Undaria pinnatifida polysaccharides show various biological activities, but their hypoglycemic activity and the underlying mechanism remain unclear. Here, three fractions of sulfated polysaccharides Up-3, Up-4, and Up-5 were prepared by microwave-assisted extraction from U. pinnatifida. In vitro assays demonstrated that Up-3 and Up-4 had strong α-glucosidase inhibitory activity, and Up-3, Up-4, and Up-5 could improve the glucose uptake in insulin-resistant HepG2 cells without affecting their viability. In vivo studies indicated Up-3 and Up-4 markedly reduced postprandial blood glucose levels. Up-U (a mixture of Up-3, Up-4, and Up-5), reduced fasting blood glucose levels, increased glucose tolerance and alleviated insulin resistance in HFD/STZ-induced hyperglycemic mice. Histopathological observation and hepatic glycogen measurement showed that Up-U alleviated the damage of the pancreas islet cell, reduced hepatic steatosis, and promoted hepatic glycogen synthesis. These findings suggest that Up-U could alleviate postprandial and HFD/STZ-induced hyperglycemia and was a potential agent for diabetes treatment.
Collapse
Affiliation(s)
- Qi-Wu Zhong
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tao-Shun Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Hui Qiu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ya-Kun Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiao-Li Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Song-Ze Ke
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Si-Jia Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Center for Human Nutrition, David Geffen School of Medicine, University of California, Rehabilitation Building 32-21, 1000 Veteran Avenue, Los Angeles, CA 90024, USA
| | - Wei-Hua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
47
|
Wang F, Kong LM, Xie YY, Wang C, Wang XL, Wang YB, Fu LL, Zhou T. Purification, structural characterization, and biological activities of degraded polysaccharides from Porphyra yezoensis. J Food Biochem 2021; 45:e13661. [PMID: 33595138 DOI: 10.1111/jfbc.13661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
The degraded polysaccharides from Porphyra yezoensis (DPPY) prepared using the H2 O2 -Vc method under optimized conditions were isolated and purified by DEAE Cellulose-52, and Sephadex G-100, providing four pure components, namely, DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5. Their relative molecular weights were measured to be 10.8, 10.7, 18.7, and 35.5 kDa, respectively. GC-MS analysis revealed that all the four fractions were mainly composed of galactose, together with a small portion of glucose, mannose, xylose, and rhamnose. Structural analysis revealed that the purified polysaccharides mainly possess a backbone of (1 → 3)-β-D-galactose (1 → 4)-3,6-anhydro-α-L-galactopyranose (G-A) units and (1 → 3)-β-D-galactose (1 → 4)-α-L-galactose-6-sulfate (G-L6S) units. They were found to promote the proliferation of RAW264.7 macrophages and enhance phagocytosis of the RAW264.7 cells. Antioxidant assays indicated that DPPY-0.5 possessed the most potent reducing power and free radical scavenging ability among the four purified polysaccharides. High sulfate content and proper molecular weight of these fractions are favorable to their immunomodulatory and antioxidant activities. PRACTICAL APPLICATIONS: Porphyra yezoensis, common economic red algae widely distributed in East Asian countries, contains a high content of polysaccharides with a variety of biological activities. However, P. yezoensis polysaccharide (PPY) has not been well utilized due to the relatively low biological activities and lack of understanding of its structure-activity relationship. Thus, it is necessary to improve the bioactivities and elucidate the structure-activity relationship of this polysaccharide for its practical use. In the present work, four purified fractions (DPPY-0, DPPY-0.1, DPPY-0.3, and DPPY-0.5) were isolated from the degraded P. yezoensis polysaccharide, and were investigated for their antioxidant and immunoregulatory activities. The results of the present work will lay a foundation for the application of the degraded P. yezoensis polysaccharide in the food industry as a functional food ingredient.
Collapse
Affiliation(s)
- Fan Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Li-Min Kong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Yuan-Yuan Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Chong Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Xiao-Ling Wang
- Faculty of Food Science, Zhejiang Pharmaceutical College, Ningbo, P.R. China
| | - Yan-Bo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Ling-Lin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P.R. China
| |
Collapse
|
48
|
Chen G, Bai Y, Zeng Z, Peng Y, Zhou W, Shen W, Zeng X, Liu Z. Structural Characterization and Immunostimulatory Activity of Heteropolysaccharides from Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1368-1378. [PMID: 33481588 DOI: 10.1021/acs.jafc.0c06913] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fuzhuan brick tea (FBT), one of the unique dark teas, has various health-promoting functions. In the present study, one polysaccharide fraction, namely FBTPS-2-1, was extracted and purified from FBT, and its structure and potential immunostimulatory activity were investigated. The results showed that FBTPS-2-1,one of typical heteropolysaccharides, was mainly composed of Gal, Ara, and Glc with little molar content of Man, Rha, GalA, and GlcA in molar ratio of 46.59:22.13:13.57:8.20:6.02:2.12:1.38 and molecular weight of 748 kDa. The backbone of FBTPS-2-1 contained →4)-β-d-Galp-(1→4)-β-d-Galp-(1→, →4)-β-d-Galp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-α-d-Glcp-(1→, →4)-α-d-Glcp-(1→4)-β-d-Galp-(1→, →3)-β-d-Galp-(1→4)-β-d-Galp-(1→, →3,6)-β-d-Galp-(1→3)-β-d-Galp-(1→ and →3,6)-β-d-Galp-(1→3,6)-β-d-Galp-(1→. The linkages of branches in FBTPS-2-1 were mainly composed of α-l-Araf-(1→3,6)-β-d-Galp-(1→, →5)-α-l-Araf-(1→3,6)-β-d-Galp-(1→, →6)-β-d-Galp-(1→3,6)-β-d-Galp-(1→, α-l-Araf-(1→3,5)-α-l-Araf-(1→, →3,5)-α-l-Araf-(1→5)-α-l-Araf-(1→, α-d-Galp-(1→3,5)-α-l-Araf-(1→ and →5)-α-l-Araf-(1→6)-β-d-Galp-(1→. Furthermore, FBTPS-2-1 could increase the phagocytosis of macrophages and promote the secretion of NO and a variety of inflammatory cytokines, including TNF-α, IL-1β, and IL-6, indicating noticeable immune enhancement activity. Thus, FBTPS-2-1 could serve as a potentially functional food to improve human health by modulating the host immunoreaction.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yixun Bai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziqi Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wangting Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, Hunan 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| |
Collapse
|
49
|
Antioxidant Potential of Physicochemically Characterized Gracilaria blodgettii Sulfated Polysaccharides. Polymers (Basel) 2021; 13:polym13030442. [PMID: 33573123 PMCID: PMC7866499 DOI: 10.3390/polym13030442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Marine rhodophyte polysaccharides have a wide range of described biological properties with nontoxic characteristics, and show great potential in prebiotics and the functional foods industries. However, there is a virtual lack of Gracilaria blodgettii polysaccharides (GBP) profiling and their bioactivities. This study was designed while keeping in view the lack of physical and chemical characterization of GBP. This polysaccharide was also not previously tested for any bioactivities. A linear random coil conformation was observed for GBP, which was found to be a polysaccharide. A significant sulfate (w/w, 9.16%) and 3,6-anhydrogalactose (AHG, w/w, 17.97%) content was found in GBP. The significant difference in its setting (27.33 °C) and melting (64.33 °C) points makes it resistant to increasing heat. This, in turn, points to its utility in industrial scale processing and in enhancing the shelf-life of products under high temperatures. A radical scavenging activity of 19.80%, 25.42% and 8.80% was noted for GBP (3 mg/mL) in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (ABTS) and hydroxyl radical (HO) scavenging assays, respectively. Therefore, the findings suggest that Gracilaria blodgettii polysaccharides display a good antioxidant potential and may have potential applications in the functional food industry.
Collapse
|
50
|
Liu K, Li XY, Luo JP, Zha XQ. Bioactivities. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|