1
|
Lim C, Lee H, Moon Y, Han SH, Kim HJ, Chung HW, Moon WJ. Volume and Permeability of White Matter Hyperintensity on Cognition: A DCE Imaging Study of an Older Cohort With and Without Cognitive Impairment. J Magn Reson Imaging 2024. [PMID: 39425583 DOI: 10.1002/jmri.29631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The impact of blood-brain barrier (BBB) leakage on white matter hyperintensity (WMH) subtypes (location) and its association with clinical factors and cognition remains unclear. PURPOSE To investigate the relationship between WMH volume, permeability, clinical factors, and cognition in older individuals across the cognitive spectrum. STUDY TYPE Prospective, cross-sectional. SUBJECTS A total of 193 older adults with/without cognitive impairment; 128 females; mean age 70.1 years (standard deviation 6.8). FIELD STRENGTH/SEQUENCE 3 T, GE Dynamic contrast-enhanced, three-dimensional (3D) Magnetization-prepared rapid gradient-echo (MPRAGE T1WI), 3D fluid-attenuated inversion recovery (FLAIR). ASSESSMENT Periventricular WMH (PWMH), deep WMH (DWMH), and normal-appearing white matter (NAWM) were segmented using FMRIB automatic segmentation tool algorithms on 3D FLAIR. Hippocampal volume and cortex volume were segmented on 3D T1WI. BBB permeability (Ktrans) and blood plasma volume (Vp) were determined using the Patlak model. Vascular risk factors and cognition were assessed. STATISTICAL TESTS Univariate and multivariate analyses were performed to identify factors associated with WMH permeability. Logistic regression analysis assessed the association between WMH imaging features and cognition, adjusting for age, sex, apolipoprotein E4 status, education, and brain volumes. A P-value <0.05 was considered significant. RESULTS PWMH exhibited higher Ktrans (0.598 ± 0.509 × 10-3 minute-1) compared to DWMH (0.496 ± 0.478 × 10-3 minute-1) and NAWM (0.476 ± 0.398 × 10-3 minute-1). Smaller PWMH volume and cardiovascular disease (CVD) history were significantly associated with higher Ktrans in PWMH. In DWMH, higher Ktrans were associated with CVD history and cortical volume. In NAWM, it was linked to CVD history and dyslipidemia. Larger PWMH volume (odds ratio [OR] 1.106, confidence interval [CI]: 1.021-1.197) and smaller hippocampal volume (OR 0.069; CI: 0.019-0.253) were independently linked to worse global cognition after covariate adjustment. DATA CONCLUSION Elevated BBB leakage in PWMH was associated with lower PWMH volume and prior CVD history. Notably, PWMH volume, rather than permeability, was correlated with cognitive decline, suggesting that BBB leakage in WMH may be a consequence of CVD rather than indicate disease progression. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Changmok Lim
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hunwoo Lee
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lee EH, Yoo H, Kim YJ, Cheon BK, Ryu S, Chang Y, Yun J, Jang H, Kim JP, Kim HJ, Koh SB, Jeong JH, Na DL, Seo SW, Kang SH. Different associations between body mass index and Alzheimer's markers depending on metabolic health. Alzheimers Res Ther 2024; 16:194. [PMID: 39210402 PMCID: PMC11363444 DOI: 10.1186/s13195-024-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Increasing evidence supports the association between body mass index (BMI), Alzheimer's disease, and vascular markers. Recently, metabolically unhealthy conditions have been reported to affect the expression of these markers. We aimed to investigate the effects of BMI status on Alzheimer's and vascular markers in relation to metabolic health status. METHODS We recruited 1,736 Asians without dementia (71.6 ± 8.0 years). Participants were categorized into underweight, normal weight, or obese groups based on their BMI. Each group was further divided into metabolically healthy (MH) and unhealthy (MU) groups based on the International Diabetes Foundation definition of metabolic syndrome. The main outcome was Aβ positivity, defined as a Centiloid value of 20.0 or above and the presence of vascular markers, defined as severe white matter hyperintensities (WMH). Logistic regression analyses were performed for Aβ positivity and severe WMH with BMI status or interaction terms between BMI and metabolic health status as predictors. Mediation analyses were performed with hippocampal volume (HV) and baseline Mini-Mental State Examination (MMSE) scores as the outcomes, and linear mixed models were performed for longitudinal change in MMSE scores. RESULTS Being underweight increased the risk of Aβ positivity (odds ratio [OR] = 2.37, 95% confidence interval [CI] 1.13-4.98), whereas obesity decreased Aβ positivity risk (OR = 0.63, 95% CI 0.50-0.80). Especially, obesity decreased the risk of Aβ positivity (OR = 0.38, 95% CI 0.26-0.56) in the MH group, but not in the MU group. Obesity increased the risk of severe WMH (OR = 1.69, 1.16-2.47). Decreased Aβ positivity mediate the relationship between obesity and higher HV and MMSE scores, particularly in the MH group. Obesity demonstrated a slower decline in MMSE (β = 1.423, p = 0.037) compared to being normal weight, especially in the MH group. CONCLUSIONS Our findings provide new evidence that metabolic health has a significant effect on the relationship between obesity and Alzheimer's markers, which, in turn, lead to better clinical outcomes.
Collapse
Affiliation(s)
- Eun Hye Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Heejin Yoo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Bo Kyoung Cheon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Seoul National University Hospital, Seoul National University college of Medicine, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
3
|
Lee S, Kim SE, Jang H, Kim JP, Sohn G, Park YH, Ham H, Gu Y, Park CJ, Kim HJ, Na DL, Kim K, Seo SW. Distinct effects of blood pressure parameters on Alzheimer's and vascular markers in 1,952 Asian individuals without dementia. Alzheimers Res Ther 2024; 16:125. [PMID: 38863019 PMCID: PMC11167921 DOI: 10.1186/s13195-024-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Risk factors for cardiovascular disease, including elevated blood pressure, are known to increase risk of Alzheimer's disease. There has been increasing awareness of the relationship between long-term blood pressure (BP) patterns and their effects on the brain. We aimed to investigate the association of repeated BP measurements with Alzheimer's and vascular disease markers. METHODS We recruited 1,952 participants without dementia between August 2015 and February 2022. During serial clinic visits, we assessed both systolic BP (SBP) and diastolic BP (DBP), and visit-to-visit BP variability (BPV) was quantified from repeated measurements. In order to investigate the relationship of mean SBP (or DBP) with Alzheimer's and vascular markers and cognition, we performed multiple linear and logistic regression analyses after controlling for potential confounders (Model 1). Next, we investigated the relationship of with variation of SBP (or DBP) with the aforementioned variables by adding it into Model 1 (Model 2). In addition, mediation analyses were conducted to determine mediation effects of Alzheimer's and vascular makers on the relationship between BP parameters and cognitive impairment. RESULTS High Aβ uptake was associated with greater mean SBP (β = 1.049, 95% confidence interval 1.016-1.083). High vascular burden was positively associated with mean SBP (odds ratio = 1.293, 95% CI 1.015-1.647) and mean DBP (1.390, 1.098-1.757). High tau uptake was related to greater systolic BPV (0.094, 0.001-0.187) and diastolic BPV (0.096, 0.007-0.184). High Aβ uptake partially mediated the relationship between mean SBP and the Mini-Mental State Examination (MMSE) scores. Hippocampal atrophy mediated the relationship between diastolic BPV and MMSE scores. CONCLUSIONS Each BP parameter affects Alzheimer's and vascular disease markers differently, which in turn leads to cognitive impairment. Therefore, it is necessary to appropriately control specific BP parameters to prevent the development of dementia. Furthermore, a better understanding of pathways from specific BP parameters to cognitive impairments might enable us to select the managements targeting the specific BP parameters to prevent dementia effectively.
Collapse
Affiliation(s)
- Sungjoo Lee
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Si Eun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, 48108, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Gyeongmo Sohn
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, 48108, Republic of Korea
| | - Yu Hyun Park
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Hongki Ham
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Yuna Gu
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Chae Jung Park
- Research Institute, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Kyunga Kim
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Biomedical Statistics Center, Research Institute for Future Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Data Convergence & Future Medicine, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, 06351, Republic of Korea.
- Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| |
Collapse
|
4
|
Jung W, Kim SE, Kim JP, Jang H, Park CJ, Kim HJ, Na DL, Seo SW, Suk HI. Deep learning model for individualized trajectory prediction of clinical outcomes in mild cognitive impairment. Front Aging Neurosci 2024; 16:1356745. [PMID: 38813529 PMCID: PMC11135285 DOI: 10.3389/fnagi.2024.1356745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives Accurately predicting when patients with mild cognitive impairment (MCI) will progress to dementia is a formidable challenge. This work aims to develop a predictive deep learning model to accurately predict future cognitive decline and magnetic resonance imaging (MRI) marker changes over time at the individual level for patients with MCI. Methods We recruited 657 amnestic patients with MCI from the Samsung Medical Center who underwent cognitive tests, brain MRI scans, and amyloid-β (Aβ) positron emission tomography (PET) scans. We devised a novel deep learning architecture by leveraging an attention mechanism in a recurrent neural network. We trained a predictive model by inputting age, gender, education, apolipoprotein E genotype, neuropsychological test scores, and brain MRI and amyloid PET features. Cognitive outcomes and MRI features of an MCI subject were predicted using the proposed network. Results The proposed predictive model demonstrated good prediction performance (AUC = 0.814 ± 0.035) in five-fold cross-validation, along with reliable prediction in cognitive decline and MRI markers over time. Faster cognitive decline and brain atrophy in larger regions were forecasted in patients with Aβ (+) than with Aβ (-). Conclusion The proposed method provides effective and accurate means for predicting the progression of individuals within a specific period. This model could assist clinicians in identifying subjects at a higher risk of rapid cognitive decline by predicting future cognitive decline and MRI marker changes over time for patients with MCI. Future studies should validate and refine the proposed predictive model further to improve clinical decision-making.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Si Eun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chae Jung Park
- National Cancer Center Research Institute, Goyang, Republic of Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Center for Clinical Epidemiology, Samsung Medical Center, Seoul, Republic of Korea
- Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Heung-Il Suk
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lee KW, Hong YJ, Yang EJ, Lee SB, Kim SH, Na S, Kim YD, Park JW. Feasibility and usefulness of cognitive monitoring using a new home-based cognitive test in mild cognitive impairment: a prospective single arm study. BMC Geriatr 2024; 24:241. [PMID: 38459495 PMCID: PMC10924318 DOI: 10.1186/s12877-024-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The risk of dementia is increased in subjects with mild cognitive impairment (MCI). Despite the plethora of in-person cognitive tests, those that can be administered over the phone are lacking. We hypothesized that a home-based cognitive test (HCT) using phone calls would be feasible and useful in non-demented elderly. We aimed to assess feasibility and validity of a new HCT as an optional cognitive monitoring tool without visiting hospitals. METHODS Our study was conducted in a prospective design during 24 weeks. We developed a new HCT consisting of 20 questions (score range 0-30). Participants with MCI (n = 38) were consecutively enrolled and underwent regular HCTs during 24 weeks. Associations between HCT scores and in-person cognitive scores and Alzheimer's disease (AD) biomarkers were evaluated. In addition, HCT scores in MCI participants were cross-sectionally compared with age-matched cognitively normal (n = 30) and mild AD dementia (n = 17) participants for discriminative ability of the HCT. RESULTS HCT had good intra-class reliability (test-retest Cronbach's alpha 0.839). HCT scores were correlated with the Mini-Mental State Examination (MMSE), verbal memory delayed recall, and Stroop test scores but not associated with AD biomarkers. HCT scores significantly differed among cognitively normal, MCI, and mild dementia participants, indicating its discriminative ability. Finally, 32 MCI participants completed follow-up evaluations, and 8 progressed to dementia. Baseline HCT scores in dementia progressors were lower than those in non-progressors (p = 0.001). CONCLUSION The feasibility and usefulness of the HCT were demonstrated in elderly subjects with MCI. HCT could be an alternative option to monitor cognitive decline in early stages without dementia.
Collapse
Affiliation(s)
- Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea
| | - Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea.
| | - Eun Jin Yang
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea
| | - Si Baek Lee
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea
| | - Seong Hoon Kim
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea
| | - Seunghee Na
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young-Do Kim
- Department of Neurology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jeong Wook Park
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, 11765, Seoul, Korea
| |
Collapse
|
6
|
Jang H, Lee S, An S, Park Y, Kim SJ, Cheon BK, Kim JH, Kim HJ, Na DL, Kim JP, Kim K, Seo SW. Association of Glycemic Variability With Imaging Markers of Vascular Burden, β-Amyloid, Brain Atrophy, and Cognitive Impairment. Neurology 2024; 102:e207806. [PMID: 38165363 PMCID: PMC10834128 DOI: 10.1212/wnl.0000000000207806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND AND OBJECTIVE We aimed to investigate the association between glycemic variability (GV) and neuroimaging markers of white matter hyperintensities (WMH), beta-amyloid (Aβ), brain atrophy, and cognitive impairment. METHODS This was a retrospective cohort study that included participants without dementia from a memory clinic. They all had Aβ PET, brain MRI, and standardized neuropsychological tests and had fasting glucose (FG) levels tested more than twice during the study period. We defined GV as the intraindividual visit-to-visit variability in FG levels. Multivariable linear regression and logistic regression were used to identify whether GV was associated with the presence of severe WMH and Aβ uptake with DM, mean FG levels, age, sex, hypertension, and presence of APOE4 allele as covariates. Mediation analyses were used to investigate the mediating effect of WMH and Aβ uptake on the relationship between GV and brain atrophy and cognition. RESULTS Among the 688 participants, the mean age was 72.2 years, and the proportion of female participants was 51.9%. Increase in GV was predictive of the presence of severe WMH (coefficient [95% CI] 1.032 [1.012-1.054]; p = 0.002) and increased Aβ uptake (1.005 [1.001-1.008]; p = 0.007). Both WMH and increased Aβ uptake partially mediated the relationship between GV and frontal-executive dysfunction (GV → WMH → frontal-executive; direct effect, -0.319 [-0.557 to -0.080]; indirect effect, -0.050 [-0.091 to -0.008]) and memory dysfunction (GV → Aβ → memory; direct effect, -0.182 [-0.338 to -0.026]; indirect effect, -0.067 [-0.119 to -0.015]), respectively. In addition, increased Aβ uptake completely mediated the relationship between GV and hippocampal volume (indirect effect, -1.091 [-2.078 to -0.103]) and partially mediated the relationship between GV and parietal thickness (direct effect, -0.00101 [-0.00185 to -0.00016]; indirect effect, -0.00016 [-0.00032 to -0.000002]). DISCUSSION Our findings suggest that increased GV is related to vascular and Alzheimer risk factors and neurodegenerative markers, which in turn leads to subsequent cognitive impairment. Furthermore, GV can be considered a potentially modifiable risk factor for dementia prevention.
Collapse
Affiliation(s)
- Hyemin Jang
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Sungjoo Lee
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Sungsik An
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Yuhyun Park
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Soo-Jong Kim
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Bo Kyoung Cheon
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Ji Hyun Kim
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Hee Jin Kim
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Duk L Na
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Jun Pyo Kim
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Kyunga Kim
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| | - Sang Won Seo
- From the Alzheimer's Disease Convergence Research Center (H.J., S.A., Y.P., S.-J.K., B.K.C., J.H.K., H.J.K., D.L.N., J.P.K., S.W.S.), Samsung Medical Center; Department of Digital Health (H.J., S.L., K.K., S.W.S.), Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University; Department of Neurology (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center, Sungkyunkwan University School of Medicine; Neuroscience Center (H.J., H.J.K., J.P.K., S.W.S.), Samsung Medical Center; Happymind Clinic (D.L.N.); Biomedical Statistics Center (K.K.), Research Institute for Future Medicine, Samsung Medical Center; and Department of Data Convergence and Future Medicine (K.K.), Sungkyunkwan University School of Medicine, Seoul, Korea. Dr. Jang is currently at the Department of Neurology, Seoul National University Hospital, Korea
| |
Collapse
|
7
|
Byun JY, Lee MK, Jung SL. Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:184-196. [PMID: 38362402 PMCID: PMC10864162 DOI: 10.3348/jksr.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 02/17/2024]
Abstract
Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.
Collapse
|
8
|
Na S, Lee C, Ho S, Hong YJ, Jeong JH, Park KH, Kim S, Wang MJ, Choi SH, Han S, Kang SW, Kang S, Yang DW. A Longitudinal Study on Memory Enhancement in Subjective Cognitive Decline Patients: Clinical and Neuroimaging Perspectives. J Alzheimers Dis 2024; 97:193-204. [PMID: 38108349 DOI: 10.3233/jad-230667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) refers to the self-reported persistent cognitive decline despite normal objective testing, increasing the risk of dementia compared to cognitively normal individuals. OBJECTIVE This study aims to investigate the attributes of SCD patients who demonstrated memory function improvement. METHODS In this prospective study of SCD, a total of 120 subjects were enrolled as part of a multicenter cohort study aimed at identifying predictors for the clinical progression to mild cognitive impairment or dementia (CoSCo study). All subjects underwent 18F-florbetaben PET and brain MRI scans at baseline and annual neuropsychological tests. At the 24-month follow-up, we classified SCD patients based on changes in memory function, the z-score of the Seoul verbal learning test delayed recall. RESULTS Of the 120 enrolled patients, 107 successfully completed the 24-month follow-up assessment. Among these, 80 patients (74.8%) with SCD exhibited memory function improvements. SCD patients with improved memory function had a lower prevalence of coronary artery disease at baseline and performed better in the trail-making test part B compared to those without improvement. Anatomical and biomarker analysis showed a lower frequency of amyloid PET positivity and larger volumes in the left and right superior parietal lobes in subjects with improved memory function. CONCLUSIONS Our prospective study indicates that SCD patients experiencing memory improvement over a 24-month period had a lower amyloid burden, fewer cardiovascular risk factors, and superior executive cognitive function. Identifying these key factors associated with cognitive improvement may assist clinicians in predicting future memory function improvements in SCD patients.
Collapse
Affiliation(s)
- Seunghee Na
- Department of Neurology, College of Medicine, The Catholic University of Korea, Incheon St. Mary's Hospital, Incheon, South Korea
| | - Chonghwee Lee
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, South Korea
| | - SeongHee Ho
- Department of Neurology, Hanyang University Hanmaeum Changwon Hospital, Changwon, Korea
| | - Yun Jeong Hong
- Department of Neurology, College of Medicine, The Catholic University of Korea, Uijeongbu St. Mary's Hospital, Uijeongbu, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | | | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | | | - Seung Wan Kang
- Data Center for Korean EEG, College of Nursing, Seoul National University, Seoul, South Korea
- iMediSync Inc. Seoul, South Korea
| | - Sungmin Kang
- Research and Development, PeopleBio Inc., Seongnam-si, Gyeonggi-do, South Korea
| | - Dong Won Yang
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, South Korea
| |
Collapse
|
9
|
Chun MY, Jang H, Kim SJ, Park YH, Yun J, Lockhart SN, Weiner M, De Carli C, Moon SH, Choi JY, Nam KR, Byun BH, Lim SM, Kim JP, Choe YS, Kim YJ, Na DL, Kim HJ, Seo SW. Emerging role of vascular burden in AT(N) classification in individuals with Alzheimer's and concomitant cerebrovascular burdens. J Neurol Neurosurg Psychiatry 2023; 95:44-51. [PMID: 37558399 PMCID: PMC10803958 DOI: 10.1136/jnnp-2023-331603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is characterised by amyloid-beta accumulation (A), tau aggregation (T) and neurodegeneration (N). Vascular (V) burden has been found concomitantly with AD pathology and has synergistic effects on cognitive decline with AD biomarkers. We determined whether cognitive trajectories of AT(N) categories differed according to vascular (V) burden. METHODS We prospectively recruited 205 participants and classified them into groups based on the AT(N) system using neuroimaging markers. Abnormal V markers were identified based on the presence of severe white matter hyperintensities. RESULTS In A+ category, compared with the frequency of Alzheimer's pathological change category (A+T-), the frequency of AD category (A+T+) was significantly lower in V+ group (31.8%) than in V- group (64.4%) (p=0.004). Each AT(N) biomarker was predictive of cognitive decline in the V+ group as well as in the V- group (p<0.001). Additionally, the V+ group showed more severe cognitive trajectories than the V- group in the non-Alzheimer's pathological changes (A-T+, A-N+; p=0.002) and Alzheimer's pathological changes (p<0.001) categories. CONCLUSION The distribution and longitudinal outcomes of AT(N) system differed according to vascular burdens, suggesting the importance of incorporating a V biomarker into the AT(N) system.
Collapse
Affiliation(s)
- Min Young Chun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Soo-Jong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
| | - Samuel N Lockhart
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael Weiner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Charles De Carli
- Department of Neurology, University of California-Davis, Davis, California, USA
| | - Seung Hwan Moon
- Departmentof Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae Yong Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Kyung Rok Nam
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Byung-Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang-Moo Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yeong Sim Choe
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
| | - Young Ju Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
10
|
Kang SH, Kang M, Han JH, Lee ES, Lee KJ, Chung SJ, Suh SI, Koh SB, Eo JS, Kim CK, Oh K. Independent effect of Aβ burden on cognitive impairment in patients with small subcortical infarction. Alzheimers Res Ther 2023; 15:178. [PMID: 37838715 PMCID: PMC10576878 DOI: 10.1186/s13195-023-01307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND The effect of amyloid-β (Aβ) on cognitive impairment in patients with small subcortical infarction remains controversial, although a growing body of evidence shows a substantial overlap between Alzheimer's disease (AD) and subcortical ischemic vascular dementia, another form of cerebral small vessel disease (cSVD). Therefore, we investigated the relationships between Aβ positivity and the development of post-stroke cognitive impairment (PSCI) in patients with small subcortical infarction. METHODS We prospectively recruited 37 patients aged ≥ 50 years, with first-ever small subcortical infarction, who underwent amyloid positron emission tomography, 3 months after stroke at Korea University Guro Hospital. We also enrolled CU participants matched for age and sex with stroke patients for comparison of Aβ positivity. Patients were followed up at 3 and 12 months after the stroke to assess cognitive decline. Logistic and linear mixed-effect regression analyses were performed to identify the effect of Aβ positivity on PSCI development and long-term cognitive trajectories. RESULTS At 3 months after stroke, 12/37 (32.4%) patients developed PSCI, and 11/37 (29.7%) patients had Aβ deposition. Aβ positivity (odds ratio [OR] = 72.2, p = 0.024) was predictive of PSCI development regardless of cSVD burden. Aβ positivity (β = 0.846, p = 0.014) was also associated with poor cognitive trajectory, assessed by the Clinical Dementia Rating-Sum of Box, for 1 year after stroke. CONCLUSIONS Our findings highlight that Aβ positivity is an important predictor for PSCI development and cognitive decline over 1 year. Furthermore, our results provide evidence that anti-AD medications may be a strategy for preventing cognitive decline in patients with small subcortical infarctions.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Minwoong Kang
- Department of Biomedical Research Center, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Jung Hoon Han
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Eun Seong Lee
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Keon-Joo Lee
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Su Jin Chung
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea
| | - Sang-Il Suh
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Jae Seon Eo
- Department of Nuclear Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Kyungmi Oh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| |
Collapse
|
11
|
Yoon CW, Kim J, Suh YJ, Kim BC, Youn YC, Jeong JH, Han HJ, Choi SH. Angiotensin-converting enzyme insertion/deletion gene polymorphism and the progression of cerebral microbleeds. Front Neurol 2023; 14:1230141. [PMID: 37900609 PMCID: PMC10602736 DOI: 10.3389/fneur.2023.1230141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Background and purpose The angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism has been studied as a genetic candidate for cerebral small vessel disease (CSVD). However, no previous study has evaluated the relationship between the ACE I/D polymorphism and cerebral microbleed (CMB), an important CSVD marker. We evaluated the association between ACE I/D polymorphisms and 2-year changes in CMBs. Methods The CHALLENGE (Comparison Study of Cilostazol and Aspirin on Changes in Volume of Cerebral Small Vessel Disease White Matter Changes) database was analyzed. Of 256 subjects, 186 participants who underwent a 2-year follow-up brain scan and ACE genotyping were included. Our analysis was conducted by dividing the ACE genotype into two groups (DD vs. ID/II) under the assumption of the recessive effects of the D allele. A linear mixed-effect model was used to compare the 2-year changes in the number of CMBs between the DD and combined ID/II genotypes. Results Among 186 patients included in this study, 24 (12.9%) had the DD genotype, 91 (48.9%) had the ID genotype, and 71 (38.2%) had the II genotype. Baseline clinical characteristics and cerebral small vessel disease markers were not different between the two groups (DD vs. ID/II) except for the prevalence of hypertension (DD 66.7% vs. ID/II 84.6%; p = 0.04). A multivariate linear mixed-effects model showed that the DD carriers had a greater increase in total CMB counts than the ID/II carriers after adjusting for the baseline number of CMBs, age, sex, and hypertension (estimated mean of difference [standard error (SE)] = 1.33 [0.61]; p = 0.03). When we performed an analysis of cases divided into deep and lobar CMBs, only lobar CMBs were significantly different between the two groups (estimated mean of difference [SE] = 0.94 [0.42]; p = 0.02). Conclusion The progression of CMBs over 2 years was greater in the ACE DD carriers compared with the combined II/ID carriers. The results of our study indicate a possible association between the ACE I/D polymorphism and CMB. A study with a larger sample size is needed to confirm this association.
Collapse
Affiliation(s)
- Cindy W. Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Jonguk Kim
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young Ju Suh
- Department of Biomedical Sciences, Inha University School of Medicine, Incheon, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| |
Collapse
|
12
|
Hong YJ, Ho S, Jeong JH, Park KH, Kim S, Wang MJ, Choi SH, Yang DW. Impacts of baseline biomarkers on cognitive trajectories in subjective cognitive decline: the CoSCo prospective cohort study. Alzheimers Res Ther 2023; 15:132. [PMID: 37550761 PMCID: PMC10405399 DOI: 10.1186/s13195-023-01273-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a risk factor for Alzheimer's disease (AD); however, the rates of cognitive decline are variable according to underlying pathologies and biomarker status. We conducted an observational study and aimed to investigate baseline characteristics and biomarkers related with cognitive declines in SCD. Our study also assessed whether SCD participants showed different cognitive and biomarker trajectories according to baseline amyloid deposition. METHODS This study is a part of a longitudinal cohort study conducted in multi-centers in South Korea between 2018 and 2021. Individuals (≥ 60 years old) with persistent cognitive complaint despite of normal cognitive functions were eligible for the study. All participants underwent neuropsychological tests, florbetaben PET scans, plasma amyloid markers, and brain MRI scans. Annual follow-up evaluations included neuropsychological tests and assessments for clinical progressions. Regional brain volumetry and amyloid burden represented by PET-based standardized uptake value ratio (SUVR) were measured. We compared cognitive and brain atrophic changes over 24 months between amyloid positive-SCD (Aβ + SCD) and amyloid negative-SCD (Aβ-SCD) groups. Baseline factors associated with cognitive outcomes were investigated. RESULTS A total of 120 participants with SCD were enrolled and 107 completed follow-up evaluations. Aβ + SCD participants (n = 20, 18.5%) were older and more frequently APOE4 carriers compared with Aβ-SCD participants (n = 87). Baseline cognitive scores were not different between the two groups, except the Seoul Verbal Learning Test (SVLT) scores showing lower scores in the Aβ + SCD group. After 24 months, plasma amyloid markers were higher, and regional volumes (entorhinal, hippocampal, and pallidum) were smaller in the Aβ + SCD participants compared with Aβ-SCD participants adjusted by age, sex, and baseline volumes. SVLT delayed recall and controlled oral word association test (COWAT) scores indicated more declines in Aβ + SCD participants. Baseline left entorhinal volumes were related to verbal memory decline, while baseline frontal volumes and global SUVR values were related to frontal functional decline. CONCLUSION Aβ + SCD participants showed more cognitive decline and medial temporal atrophic changes during 24 months. Baseline neurodegeneration and amyloid burden were related with future cognitive trajectories in SCD. TRIAL REGISTRATION This study was registered at CRIS (KCT0003397).
Collapse
Affiliation(s)
- Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - SeongHee Ho
- Department of Neurology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kee Hyung Park
- Department of Neurology, Gachon University Gil Hospital, Incheon, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Min Jeong Wang
- Department of Neurology, Roa Neurology Clinic, Seongnam, South Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, South Korea
| | - Dong Won Yang
- Department of Neurology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
13
|
Hong YJ, Lee SB, Kim SH, Lee MA, Park JW, Yang DW. Development of a home-based cognitive test for cognitive monitoring in subjective cognitive decline with high risk of Alzheimer's disease. Medicine (Baltimore) 2023; 102:e33096. [PMID: 36862894 PMCID: PMC9981357 DOI: 10.1097/md.0000000000033096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Subjective cognitive decline (SCD) indicates a self-perceived persistent cognitive worsening despite of normal performance in standard neuropsychological tests. Owing to its heterogeneity and potential risk of Alzheimer's disease, baseline biomarkers to predict cognitive decline are important. In the present study, we developed a home-based cognitive test (HCT) to monitor cognitive changes regularly without visiting hospitals. This study aims to compare cognitive and biomarker trajectories during a 48-month period between amyloid positive SCD and amyloid negative SCD subjects. METHODS Data will be collected from a prospective observational cohort study conducted in South Korea. Eighty participants with SCD aged ≥ 60 years are eligible for the study. All participants undergo annual neuropsychological tests and neurological examinations, bi-annual brain MRI scans and plasma amyloid markers, and baseline florbetaben Positron Emission Tomography scans. The amyloid burden and regional volumes will be measured. Cognitive and biomarker changes will be compared between the amyloid-positive SCD and amyloid negative SCD groups. Validation would be performed to assess reliability and feasibility of HCT. CONCLUSIONS This study would suggest a perspective on SCD in terms of cognitive and biomarker trajectories. Baseline characteristics and biomarker status might affect faster cognitive decline and future biomarker trajectories. In addition, HCT could be an alternative option of in-person neuropsychological tests to track cognitive changes without visiting hospitals.
Collapse
Affiliation(s)
- Yun Jeong Hong
- Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
- * Correspondence: Yun Jeong Hong, Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, 271 Cheonbo-ro, Uijeongbu 11765, Gyeonggi-do, Korea (e-mail: )
| | - Si Baek Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Seong Hoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Myung Ah Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Jeong Wook Park
- Department of Neurology, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Dong Won Yang
- Department of Neurology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Yoon CW, Rha JH, Park HK, Park SH, Kwon S, Kim BC, Youn YC, Jeong JH, Han HJ, Choi SH. Sex differences in the progression of cerebral microbleeds in patients with concomitant cerebral small vessel disease. Front Neurol 2022; 13:1054624. [PMID: 36619919 PMCID: PMC9810543 DOI: 10.3389/fneur.2022.1054624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background and purpose Sex differences in cerebral microbleeds (CMBs) are not well-known. We aimed to assess the impact of sex on the progression of CMBs. Methods The CHALLENGE (Comparison Study of Cilostazol and Aspirin on Changes in Volume of Cerebral Small Vessel Disease White Matter Changes) database was analyzed. Out of 256 subjects, 189 participants with a follow-up brain scan were included in the analysis. The linear mixed-effect model was used to compare the 2-year changes in the number of CMBs between men and women. Results A total of 65 men and 124 women were analyzed. There were no significant differences in the prevalence (70.8 vs. 71.8%; P = 1.000) and the median [interquartile range (IQR)] number of total CMBs [1 (0-7) vs. 2 (0-7); P = 0.810] at baseline between men and women. The median (IQR) increase over 2 years in the number of CMBs was statistically higher in women than in men [1 (0-2) vs. 0 (0-1), P = 0.026]. The multivariate linear mixed-effects model showed that women had a significantly greater increase in the number of total, deep, and lobar CMBs compared to men after adjusting for age and the baseline number of CMBs [estimated log-transformed mean of difference between women and men: 0.040 (P = 0.028) for total CMBs, 0.037 (P = 0.047) for deep CMBs, and 0.047 (P = 0.009) for lobar CMBs]. Conclusion The progression of CMB over 2 years was significantly greater in women than in men.
Collapse
Affiliation(s)
- Cindy W. Yoon
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Joung-Ho Rha
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Hee-Kwon Park
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soo-Hyun Park
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Soonwook Kwon
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea,*Correspondence: Seong Hye Choi
| |
Collapse
|
15
|
He R, Qin Y, Zhou X, Liu Z, Xu Q, Guo J, Yan X, Tang B, Zeng S, Sun Q. The effect of regional white matter hyperintensities on essential tremor subtypes and severity. Front Aging Neurosci 2022; 14:933093. [PMID: 36325187 PMCID: PMC9621611 DOI: 10.3389/fnagi.2022.933093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the effect of regional white matter hyperintensities (WMHs) on Essential tremor (ET) subtypes and to explore the association between WMHs load and the severity of motor and non-motor symptoms in patients with ET. Methods A cohort of 176 patients with ET (including 86 patients with pure ET and 90 patients with ET plus) and 91 normal controls (NC) was consecutively recruited. Demographic, clinical, and imaging characteristics were compared between individuals with pure ET, ET plus, and NC. The cross-sectional association among regional WMHs and the severity of tremor and non-motor symptoms were assessed within each group. Results Compared with the pure ET subgroup, the ET plus subgroup demonstrated higher TETRAS scores, NMSS scores, and lower MMSE scores (all P < 0.05). Periventricular and lobar WMHs' loads of pure ET subgroup intermediated between NC subjects and ET plus subgroup. WMHs in the frontal horn independently increased the odds of ET (OR = 1.784, P < 0.001). The age (P = 0.021), WMHs in the frontal lobe (P = 0.014), and WMHs in the occipital lobe (P = 0.020) showed a significant impact on TETRAS part II scores in the ET plus subgroup. However, only the disease duration was positively associated with TETRAS part II scores in patients with pure ET (P = 0.028). In terms of non-motor symptoms, NMSS scores of total patients with ET were associated with disease duration (P = 0.029), TETRAS part I scores (P = 0.017), and WMH scores in the frontal lobe (P = 0.033). MMSE scores were associated with age (P = 0.027), body mass index (P = 0.006), education level (P < 0.001), and WMHs in the body of the lateral ventricle (P = 0.005). Conclusion Our results indicated that the WMHs in the frontal horn could lead to an increased risk of developing ET. WMHs may be used to differentiate pure ET and ET plus. Furthermore, WMHs in the frontal and occipital lobes are strong predictors of worse tremor severity in the ET plus subgroup. Regional WMHs are associated with cognitive impairment in patients with ET.
Collapse
Affiliation(s)
- Runcheng He
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhou
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Sheng Zeng
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Sheng Zeng
| | - Qiying Sun
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- *Correspondence: Qiying Sun
| |
Collapse
|
16
|
Kang SH, Park YH, Shin J, Kim HR, Yun J, Jang H, Kim HJ, Koh SB, Na DL, Suh MK, Seo SW. Cortical neuroanatomical changes related to specific language impairments in primary progressive aphasia. Front Aging Neurosci 2022; 14:878758. [PMID: 36092818 PMCID: PMC9452784 DOI: 10.3389/fnagi.2022.878758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Language function test-specific neural substrates in Korean patients with primary progressive aphasia (PPA) might differ from those in other causes of dementia and English-speaking PPA patients. We investigated the correlation between language performance tests and cortical thickness to determine neural substrates in Korean patients with PPA. Materials and methods Ninety-six patients with PPA were recruited from the memory clinic. To acquire neural substrates, we performed linear regression using the scores of each language test as a predictor, cortical thickness as an outcome and age, sex, years of education, and intracranial volume as confounders. Results Poor performance in each language function test was associated with lower cortical thickness in specific cortical regions: (1) object naming and the bilateral anterior to mid-portion of the lateral temporal and basal temporal regions; (2) semantic generative naming and the bilateral anterior to mid-portion of the lateral temporal and basal temporal regions; (3) phonemic generative naming and the left prefrontal and inferior parietal regions; and (4) comprehension and the left posterior portion of the superior and middle temporal regions. In particular, the neural substrates of the semantic generative naming test in PPA patients, left anterior to mid-portion of the lateral and basal temporal regions, quite differed from those in patients with other causes of dementia. Conclusion Our findings provide a better understanding of the different pathomechanisms for language impairments among PPA patients from those with other causes of dementia.
Collapse
Affiliation(s)
- Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jiho Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hang-Rai Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seong-Beom Koh
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mee Kyung Suh
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- *Correspondence: Mee Kyung Suh,
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, South Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Sang Won Seo, ;
| |
Collapse
|
17
|
Oh M, Oh JS, Oh SJ, Lee SJ, Roh JH, Kim WR, Seo HE, Kang JM, Seo SW, Lee JH, Na DL, Noh Y, Kim JS. [ 18F]THK-5351 PET Patterns in Patients With Alzheimer's Disease and Negative Amyloid PET Findings. J Clin Neurol 2022; 18:437-446. [PMID: 35796269 PMCID: PMC9262461 DOI: 10.3988/jcn.2022.18.4.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose Alzheimer’s disease (AD) does not always mean amyloid positivity. [18F]THK-5351 has been shown to be able to detect reactive astrogliosis as well as tau accompanied by neurodegenerative changes. We evaluated the [18F]THK-5351 retention patterns in positron-emission tomography (PET) and the clinical characteristics of patients clinically diagnosed with AD dementia who had negative amyloid PET findings. Methods We performed 3.0-T magnetic resonance imaging, [18F]THK-5351 PET, and amyloid PET in 164 patients with AD dementia. Amyloid PET was visually scored as positive or negative. [18F]THK-5351 PET were visually classified as having an intratemporal or extratemporal spread pattern. Results The 164 patients included 23 (14.0%) who were amyloid-negative (age 74.9±8.3 years, mean±standard deviation; 9 males, 14 females). Amyloid-negative patients were older, had a higher prevalence of diabetes mellitus, and had better visuospatial and memory functions. The frequency of the apolipoprotein E ε4 allele was higher and the hippocampal volume was smaller in amyloid-positive patients. [18F]THK-5351 uptake patterns of the amyloid-negative patients were classified into intratemporal spread (n=10) and extratemporal spread (n=13). Neuropsychological test results did not differ significantly between these two groups. The standardized uptake value ratio of [18F]THK-5351 was higher in the extratemporal spread group (2.01±0.26 vs. 1.61±0.15, p=0.001). After 1 year, Mini Mental State Examination (MMSE) scores decreased significantly in the extratemporal spread group (-3.5±3.2, p=0.006) but not in the intratemporal spread group (-0.5±2.8, p=0.916). The diagnosis remained as AD (n=5, 50%) or changed to other diagnoses (n=5, 50%) in the intratemporal group, whereas it remained as AD (n=8, 61.5%) or changed to frontotemporal dementia (n=4, 30.8%) and other diagnoses (n=1, 7.7%) in the extratemporal spread group. Conclusions Approximately 70% of the patients with amyloid-negative AD showed abnormal [18F]THK-5351 retention. MMSE scores deteriorated rapidly in the patients with an extratemporal spread pattern.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Ju Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jee Hoon Roh
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Ram Kim
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Ha-Eun Seo
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Young Noh
- Neuroscience Research Institute, Gachon University, Incheon, Korea.,Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Jung JH, Kim YJ, Chung SJ, Yoo HS, Lee YH, Baik K, Jeong SH, Lee YG, Lee HS, Ye BS, Sohn YH, Jeong Y, Lee PH. White matter connectivity networks predict levodopa-induced dyskinesia in Parkinson's disease. J Neurol 2022; 269:2948-2960. [PMID: 34762146 DOI: 10.1007/s00415-021-10883-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although levodopa-induced dyskinesia-relevant white matter change has been evaluated, it is uncertain whether these changes may reflect the underlying predisposing conditions leading to the development of levodopa-induced dyskinesia. OBJECTIVE To elucidate the role of white matter connectivity networks in the development of levodopa-induced dyskinesia in drug-naïve Parkinson's disease. METHODS We recruited 30 patients who developed levodopa-induced dyskinesia within 5 years from MRI acquisition (vulnerable-group), 47 patients who had not developed levodopa-induced dyskinesia within 5 years (resistant-group), and 28 controls. We performed comparative analyses of whole-brain white matter integrity and connectivity using tract-based spatial and network- and degree-based statistics. We evaluated the predictability of levodopa-induced dyskinesia development and relationship with its latency, using the average connectivity strength as a predictor in Cox- and linear-regression, respectively. RESULTS Mean-diffusivity was lower mainly at the left frontal region in the vulnerable-group compared to the resistant-group. Network-based statistics identified a subnetwork consisting of the bilateral fronto-striato-pallido-thalamic and lateral parietal regions (subnetwork A) and degree-based statistics identified four subnetworks (hub-subnetwork) consisting of edges centered on the left superior frontal gyrus, left putamen, left insular, or left precentral gyrus, where the vulnerable-group had stronger connectivity compared to the resistant-group. Stronger connectivity within the subnetwork A and hub-subnetwork centered on the left superior frontal gyrus was a predictor of levodopa-induced dyskinesia development independent of known risk factors and had an inverse relationship with its latency. CONCLUSIONS Our data suggest that white matter connectivity subnetworks within corticostriatal regions play a pivotal role in the development of levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Jin Ho Jung
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Yae Ji Kim
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Ho Jeong
- Department of Neurology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea
| | - Young Gun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Jeong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
19
|
Structural covariance changes in major cortico-basal ganglia and thalamic networks in amyloid-positive patients with white matter hyperintensities. Neurobiol Aging 2022; 117:117-127. [DOI: 10.1016/j.neurobiolaging.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022]
|
20
|
Jeong SY, Suh CH, Park HY, Heo H, Shim WH, Kim SJ. [Brain MRI-Based Artificial Intelligence Software in Patients with Neurodegenerative Diseases: Current Status]. TAEHAN YONGSANG UIHAKHOE CHI 2022; 83:473-485. [PMID: 36238504 PMCID: PMC9514516 DOI: 10.3348/jksr.2022.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
The incidence of neurodegenerative diseases in the older population has increased in recent years. A considerable number of studies have been performed to characterize these diseases. Imaging analysis is an important biomarker for the diagnosis of neurodegenerative disease. Objective and reliable assessment and precise detection are important for the early diagnosis of neurodegenerative diseases. Artificial intelligence (AI) using brain MRI applied to the study of neurodegenerative diseases could promote early diagnosis and optimal decisions for treatment plans. MRI-based AI software have been developed and studied worldwide. Representatively, there are MRI-based volumetry and segmentation software. In this review, we present the development process of brain volumetry analysis software in neurodegenerative diseases, currently used and developed AI software for neurodegenerative disease in the Republic of Korea, probable uses of AI in the future, and AI software limitations.
Collapse
|
21
|
Hong YJ, Park JW, Lee SB, Kim SH, Kim Y, Ryu DW, Park KW, Yang DW. The Influence of Amyloid Burden on Cognitive Decline over 2 years in Older Adults with Subjective Cognitive Decline: A Prospective Cohort Study. Dement Geriatr Cogn Disord 2022; 50:437-445. [PMID: 34736258 DOI: 10.1159/000519766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Subjective cognitive decline (SCD) is a self-perceived cognitive worsening without objective cognitive impairment. Due to its heterogeneity and potential risk of Alzheimer's disease (AD), baseline biomarkers to predict progression are clinically important. In the present study, cognitive trajectories during a 24-month period were compared between amyloid-positive SCD (A+SCD) and amyloid-negative SCD (A-SCD) subjects, and biomarkers associated with memory decline were investigated. METHODS Data from a prospective cohort study in Korea between 2016 and 2019 were analyzed. SCD subjects ≥50 years of age were eligible. All participants underwent neuropsychological tests, brain magnetic resonance imaging, and florbetaben positron emission tomography scans. Amyloid burden and regional volumes were measured. Cognitive changes corrected for age were compared between A+SCD and A-SCD groups. Biomarkers associated with memory decline were assessed. RESULTS Forty-seven SCD subjects (69.9 ± 6.7 years, mini-mental state examination (MMSE) score 27.5) were enrolled, and 31 completed at least 1 annual follow-up (mean follow-up: 24.7 months). Baseline characteristics except age, hippocampal atrophy, and white matter hyperintensities were similar between A+SCDs (n = 12, 25.6%) and A-SCDs (n = 35). A+SCD subjects showed greater decline in the verbal memory function compared with the A-SCD subjects after adjustment for age. MMSE scores decreased more in the A+SCD (1.1 in the A+SCD; 0.55 in the A-SCD), although it was not statistically significant. Amyloid burden and baseline memory score were associated with memory decline. CONCLUSIONS Within SCD, A+SCD subjects showed faster memory decline compared with the A-SCD subjects and amyloid burden might be associated with future memory decline in SCD.
Collapse
Affiliation(s)
- Yun Jeong Hong
- Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Wook Park
- Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Baek Lee
- Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong-Hoon Kim
- Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongbang Kim
- Neurology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Woo Ryu
- Neurology, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung Won Park
- Neurology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Dong Won Yang
- Neurology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
22
|
Lee SJ, Hwang YH, Hong JM, Choi JW, Park JH, Park B, Kang DH, Kim YW, Kim YS, Hong JH, Yoo J, Kim CH, Sohn SI, Lee JS. Influence of cerebral microbleeds on mechanical thrombectomy outcomes. Sci Rep 2022; 12:3637. [PMID: 35256626 PMCID: PMC8901625 DOI: 10.1038/s41598-022-07432-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
In ischemic stroke patients undergoing endovascular treatment (EVT), we aimed to test the hypothesis that cerebral microbleeds (CMBs) are associated with clinical outcomes, while estimating the mediating effects of hemorrhagic transformation (HT), small-vessel disease burden (white matter hyperintensities, WMH), and procedural success. From a multicenter EVT registry, patients who underwent pretreatment MR imaging were analyzed. They were trichotomized according to presence of CMBs (none vs. 1–4 vs. ≥ 5). The association between CMB burden and 3-month mRS was evaluated using multivariable ordinal logistic regression, and mediation analyses were conducted to estimate percent mediation. Of 577 patients, CMBs were present in 91 (15.8%); 67 (11.6%) had 1–4 CMBs, and 24 (4.2%) had ≥ 5. Increases in CMBs were associated with hemorrhagic complications (β = 0.27 [0.06–0.047], p = 0.010) in multivariable analysis. The CMB effect on outcome was partially mediated by post-procedural HT degree (percent mediation, 14% [0–42]), WMH (23% [7–57]) and lower rates of successful reperfusion (6% [0–25]). In conclusion, the influence of CMBs on clinical outcomes is mediated by small-vessel disease burden, post-procedural HT, and lower reperfusion rates, listed in order of percent mediation size.
Collapse
|
23
|
Roh HW, Kim NR, Lee DG, Cheong JY, Seo SW, Choi SH, Kim EJ, Cho SH, Kim BC, Kim SY, Kim EY, Chang J, Lee SY, Yoon D, Choi JW, An YS, Kang HY, Shin H, Park B, Son SJ, Hong CH. Baseline Clinical and Biomarker Characteristics of Biobank Innovations for Chronic Cerebrovascular Disease With Alzheimer's Disease Study: BICWALZS. Psychiatry Investig 2022; 19:100-109. [PMID: 35042283 PMCID: PMC8898610 DOI: 10.30773/pi.2021.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE We aimed to present the study design and baseline cross-sectional participant characteristics of biobank innovations for chronic cerebrovascular disease with Alzheimer's disease study (BICWALZS) participants. METHODS A total of 1,013 participants were enrolled in BICWALZS from October 2016 to December 2020. All participants underwent clinical assessments, basic blood tests, and standardized neuropsychological tests (n=1,013). We performed brain magnetic resonance imaging (MRI, n=817), brain amyloid positron emission tomography (PET, n=713), single nucleotide polymorphism microarray chip (K-Chip, n=949), locomotor activity assessment (actigraphy, n=200), and patient-derived dermal fibroblast sampling (n=175) on a subset of participants. RESULTS The mean age was 72.8 years, and 658 (65.0%) were females. Based on clinical assessments, total of 168, 534, 211, 80, and 20 had subjective cognitive decline, mild cognitive impairment (MCI), Alzheimer's dementia, vascular dementia, and other types of dementia or not otherwise specified, respectively. Based on neuroimaging biomarkers and cognition, 199, 159, 78, and 204 were cognitively normal (CN), Alzheimer's disease (AD)-related cognitive impairment, vascular cognitive impairment, and not otherwise specified due to mixed pathology (NOS). Each group exhibited many differences in various clinical, neuropsychological, and neuroimaging results at baseline. Baseline characteristics of BICWALZS participants in the MCI, AD, and vascular dementia groups were generally acceptable and consistent with 26 worldwide dementia cohorts and another independent AD cohort in Korea. CONCLUSION The BICWALZS is a prospective and longitudinal study assessing various clinical and biomarker characteristics in older adults with cognitive complaints. Details of the recruitment process, methodology, and baseline assessment results are described in this paper.
Collapse
Affiliation(s)
- Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Na-Rae Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong-Gi Lee
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea.,Human Genome Research and Bio-Resource Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Young Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jaerak Chang
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Dukyong Yoon
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yongin, Republic of Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Seoul, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Suwon, Republic of Korea.,Department of Artificial Intelligence, Ajou University, Suwon, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea.,Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
24
|
Association Between Body Mass Index and Cognitive Function in Mild Cognitive Impairment Regardless of APOE ε4 Status. Dement Neurocogn Disord 2022; 21:30-41. [PMID: 35154338 PMCID: PMC8811203 DOI: 10.12779/dnd.2022.21.1.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
|
25
|
Kim BC, Youn YC, Jeong JH, Han HJ, Kim JH, Lee JH, Park KH, Park KW, Kim EJ, Oh MS, Shim Y, Lee JM, Choi YH, Park G, Kim S, Park HY, Yoon B, Yoon SJ, Cho SJ, Park KC, Na DL, Park SA, Choi SH. Cilostazol Versus Aspirin on White Matter Changes in Cerebral Small Vessel Disease: A Randomized Controlled Trial. Stroke 2021; 53:698-709. [PMID: 34781708 DOI: 10.1161/strokeaha.121.035766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease is characterized by progressive cerebral white matter changes (WMCs). This study aimed to compare the effects of cilostazol and aspirin on changes in WMC volume in patients with cerebral small vessel disease. METHODS In a multicenter, double-blind, randomized controlled trial, participants with moderate or severe WMCs and at least one lacunar infarction detected on brain magnetic resonance imaging were randomly assigned to the cilostazol and aspirin groups in a 1:1 ratio. Cilostazol slow release (200 mg) or aspirin (100 mg) capsules were administered once daily for 2 years. The primary outcome was the change in WMC volume on magnetic resonance images from baseline to 2 years. Secondary imaging outcomes include changes in the number of lacunes or cerebral microbleeds, fractional anisotropy, and mean diffusivity on diffusion tensor images, and brain atrophy. Secondary clinical outcomes include all ischemic strokes, all ischemic vascular events, and changes in cognition, motor function, mood, urinary symptoms, and disability. RESULTS Between July 2013 and August 2016, 256 participants were randomly assigned to the cilostazol (n=127) and aspirin (n=129) groups. Over 2 years, the percentage of WMC volume to total WM volume and the percentage of WMC volume to intracranial volume increased in both groups, but neither analysis showed significant differences between the groups. The peak height of the mean diffusivity histogram in normal-appearing WMs was significantly reduced in the aspirin group compared with the cilostazol group. Cilostazol significantly reduced the risk of ischemic vascular event compared with aspirin (0.5 versus 4.5 cases per 100 person-years; hazard ratio, 0.11 [95% CI, 0.02-0.89]). CONCLUSIONS There was no significant difference between the effects of cilostazol and aspirin on WMC progression in patients with cerebral small vessel disease. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01932203.
Collapse
Affiliation(s)
- Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea (B.C.K.)
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, Republic of Korea (Y.C.Y.)
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Republic of Korea (J.H.J.)
| | - Hyun Jeong Han
- Department of Neurology, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea (H.J.H.)
| | - Jong Hun Kim
- Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea (J.H.K.)
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (J.-H.L.)
| | - Kee Hyung Park
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea (K.H.P.)
| | - Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine and Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea (K.W.P.)
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea (E.-J.K.)
| | - Mi Sun Oh
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea. (M.S.O.)
| | - YongSoo Shim
- Department of Neurology, The Catholic University of Korea Eunpyeong St. Mary's Hospital, Seoul, Republic of Korea (Y.S.)
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea. (J.-M.L., Y.-H.C., G.P.)
| | - Yong-Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea. (J.-M.L., Y.-H.C., G.P.)
| | - Gilsoon Park
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea. (J.-M.L., Y.-H.C., G.P.)
| | - Sohui Kim
- Department of Electronic Engineering, Hanyang University, Seoul, Republic of Korea. (S.K.)
| | - Hyun Young Park
- Department of Neurology, Wonkwang University School of Medicine, Iksan, Republic of Korea (H.Y.P.)
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon, Republic of Korea (B.Y.)
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea (S.J.Y.)
| | - Soo-Jin Cho
- Department of Neurology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea. (S.-J.C.)
| | - Key Chung Park
- Department of Neurology, Kyung Hee University School of Medicine, Seoul, Republic of Korea (K.C.P.)
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea (D.L.N.)
| | - Sun Ah Park
- Department of Anatomy and Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea (S.A.P.)
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea (S.H.C.)
| |
Collapse
|
26
|
Chung SJ, Cho KH, Lee YH, Yoo HS, Baik K, Jung JH, Ye BS, Sohn YH, Cha J, Lee PH. Diffusion tensor imaging-based pontine damage as a degeneration marker in synucleinopathy. J Neurosci Res 2021; 99:2922-2931. [PMID: 34521154 DOI: 10.1002/jnr.24926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 11/08/2022]
Abstract
The pons is one of the earliest affected regions in patients with synucleinopathies. We aimed to investigate the diagnostic value of measuring pontine damage using diffusion tensor imaging (DTI) in these patients. We enrolled 49 patients with Parkinson's disease (PD), 16 patients with idiopathic rapid eye movement sleep behavior disorder (iRBD), 23 patients with multiple system atrophy (MSA), and 39 healthy controls in this study. All the participants underwent high-resolution T1-weighted imaging and DTI. Mean diffusivity (MD) and fraction anisotropy (FA) values in the pons were calculated to characterize structural damage. The discriminatory power of pontine MD and FA values to differentiate patients with synucleinopathies from healthy controls was examined using receiver operating characteristics (ROC) analyses. Compared to healthy controls, patients with PD, iRBD, and MSA had increased MD values and decreased FA values in the pons, although no correlation was observed between these DTI measures and disease severity. The ROC analyses showed that MD values in the pons had a fair discriminatory power to differentiate healthy controls from patients with PD (area under the curve [AUC], 0.813), iRBD (AUC, 0.779), and MSA (AUC, 0.951). The AUC for pontine FA values was smaller than that for pontine MD values when differentiating healthy controls from patients with PD (AUC, 0.713; p = 0.054) and iRBD (AUC, 0.686; p = 0.045). Our results suggest that MD values in the pons may be a useful marker of brain stem neurodegeneration in patients with synucleinopathies.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Kyoo Ho Cho
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Inje University Busan Paik Hospital, Busan, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Bentham C, De Marco M, Venneri A. Cerebrovascular Pathology and Responsiveness to Treatment in Alzheimer's Disease: A Systematic Review. Curr Alzheimer Res 2021; 18:103-124. [PMID: 33855943 DOI: 10.2174/1567205018666210414121227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 02/12/2021] [Accepted: 03/31/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Responsiveness to treatment with cholinesterase inhibitors (ChEIs) is difficult to predict in Alzheimer's disease (AD). In the current review, vascular burden is considered as a potential moderator of treatment responsiveness. Cerebrovascular burden co-occurs in at least 30% of AD brains, although it is debated if vascular pathology plays a causal or synergistic role in AD pathogenesis. Vascular burden, therefore, could potentially limit response to treatment due to limited brain reserve or foster treatment efficacy as those with vascular pathology may represent a subgroup with comparable clinical expression but less progressed AD neurodegeneration. METHODS A systematic search of Web of Science, Pubmed, Scopus and EthoS identified 32 papers which met the criteria for inclusion. Association of treatment response and vascular burden across five broad markers are discussed: cerebral hypoperfusion, intima-media thickness, white matter changes, cerebral microbleeds and co-existing diagnosis of cerebrovascular disease. RESULTS Analysis of frontal regional cerebral blood flow and intima-media thickness may have predictive ability to distinguish those with AD who may respond optimally to short-term treatment with ChEIs. The impact of white matter changes is less consistent; the majority of studies demonstrates no association with treatment response and those that do implicate changes in executive functioning. There is preliminary evidence that deep cerebral microbleeds limit treatment response in subcortical cognitive domains, but this finding requires replication. The use of diagnosis of co-occurring cerebrovascular disease yields no robust variability in response to ChEIs in AD. CONCLUSION There is limited evidence that markers of cerebral hypoperfusion, intima-media thickness and cerebral microbleeds moderate response to ChEIs. Findings for other markers of vascular burden are less consistent and do not support any moderating effect.
Collapse
Affiliation(s)
- Charlotte Bentham
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Matteo De Marco
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Chung SJ, Jeon S, Yoo HS, Lee YH, Yun M, Lee SK, Lee PH, Sohn YH, Evans AC, Ye BS. Neural Correlates of Cognitive Performance in Alzheimer's Disease- and Lewy Bodies-Related Cognitive Impairment. J Alzheimers Dis 2021; 73:873-885. [PMID: 31868668 DOI: 10.3233/jad-190814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinicopathological studies have demonstrated that the neuropsychological profiles and outcomes are different between two dementia subtypes, namely Alzheimer's disease (AD) and Lewy bodies-related disease. OBJECTIVE We investigated the neural correlates of cognitive dysfunction in patients with AD-related cognitive impairment (ADCI) and those with Lewy bodies-related cognitive impairment (LBCI). METHODS We enrolled 216 ADCI patients, 183 LBCI patients, and 30 controls. Cortical thickness and diffusion tensor imaging analyses were performed to correlate gray matter and white matter (WM) abnormalities to cognitive composite scores for memory, visuospatial, and attention/executive domains in the ADCI spectrum (ADCI patients and controls) and the LBCI spectrum (LBCI patients and controls) separately. RESULTS Memory dysfunction correlated with cortical thinning and increased mean diffusivity in the AD-prone regions, particularly the medial temporal region, in ADCI. Meanwhile, it only correlated with increased mean diffusivity in the WM adjacent to the anteromedial temporal, insula, and basal frontal cortices in LBCI. Visuospatial dysfunction correlated with cortical thinning in posterior brain regions in ADCI, while it correlated with decreased fractional anisotropy in the corpus callosum and widespread WM regions in LBCI. Attention/executive dysfunction correlated with cortical thinning and WM abnormalities in widespread brain regions in both disease spectra; however, ADCI had more prominent correlation with cortical thickness and LBCI did with fractional anisotropy values. CONCLUSIONS Our study demonstrated that ADCI and LBCI have different neural correlates with respect to cognitive dysfunction. Cortical thinning had greater effects on cognitive dysfunction in the ADCI, while WM disruption did in the LBCI.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seun Jeon
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Alan C Evans
- McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Kang SH, Kim ME, Jang H, Kwon H, Lee H, Kim HJ, Seo SW, Na DL. Amyloid Positivity in the Alzheimer/Subcortical-Vascular Spectrum. Neurology 2021; 96:e2201-e2211. [PMID: 33722997 DOI: 10.1212/wnl.0000000000011833] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/28/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated the frequency of β-amyloid (Aβ) positivity in 9 groups classified according to a combination of 3 different cognition states and 3 distinct levels of white matter hyperintensities (WMH) (minimal, moderate, and severe) and aimed to determine which factors were associated with Aβ after controlling for WMH and vice versa. METHODS A total of 1,047 individuals with subjective cognitive decline (SCD, n = 294), mild cognitive impairment (MCI, n = 237), or dementia (n = 516) who underwent Aβ PET scans were recruited from the memory clinic at Samsung Medical Center in Seoul, Korea. We investigated the following: (1) Aβ positivity in the 9 groups, (2) the relationship between Aβ positivity and WMH severity, and (3) clinical and genetic factors independently associated with Aβ or WMH. RESULTS Aβ positivity increased as the severity of cognitive impairment increased (SCD [15.7%], MCI [43.5%], and dementia [76.2%]), whereas it decreased as the severity of WMH increased (minimal [54.5%], moderate [53.9%], and severe [41.0%]) or the number of lacunes (0 [59.0%], 1-3 [42.0%], and >3 [23.4%]) increased. Aβ positivity was associated with higher education, absence of diabetes, and presence of APOE ε4 after controlling for cognitive and WMH status. CONCLUSION Our analysis of Aβ positivity involving a large sample classified according to the stratified cognitive states and WMH severity indicates that Alzheimer and cerebral small vessel diseases lie on a continuum. Our results offer clinicians insightful information about the association among Aβ, WMH, and cognition.
Collapse
Affiliation(s)
- Sung Hoon Kang
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Monica Eunseo Kim
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hyemin Jang
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hojeong Kwon
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hyejoo Lee
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Hee Jin Kim
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea
| | - Duk L Na
- From the Department of Neurology, Sungkyunkwan University School of Medicine (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), Neuroscience Center (S.H.K., H.J., H.L., H.J.K., S.W.S., D.L.N.), and Stem Cell & Regenerative Medicine Institute (D.L.N.), Samsung Medical Center; Department of Neurology (S.H.K.), Korea University Guro Hospital, Korea University College of Medicine, Seoul; Chicago College of Osteopathic Medicine (M.E.K.), Midwestern University, IL; New York University (H.K.), NY; and Department of Health Sciences and Technology, SAIHST (D.L.N.), Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
30
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
31
|
Lee EC, Kang JM, Seo S, Seo HE, Lee SY, Park KH, Na DL, Noh Y, Seong JK. Association of Subcortical Structural Shapes With Tau, Amyloid, and Cortical Atrophy in Early-Onset and Late-Onset Alzheimer's Disease. Front Aging Neurosci 2020; 12:563559. [PMID: 33192457 PMCID: PMC7650820 DOI: 10.3389/fnagi.2020.563559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/05/2020] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to compare the topographical subcortical shape and to investigate the effects of tau or amyloid burden on atrophic patterns in early onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). One hundred and sixty-one participants (53 EOAD, 44 LOAD, 33 young controls, and 31 older controls) underwent [18F]THK5351 positron emission tomography (PET), [18F]flutemetamol (FLUTE) PET, and 3T MRI scans. We used surface-based analysis to evaluate subcortical structural shape, permutation-based statistics for group comparisons, and Spearman's correlations to determine associations with THK, FLUTE, cortical thickness, and neuropsychological test results. When compared to their age-matched controls, EOAD patients exhibited shape reduction in the bilateral amygdala, hippocampus, caudate, and putamen, while in LOAD patients, the bilateral amygdala and hippocampus showed decreased shapes. In EOAD, widespread subcortical shrinkage, with less association of the hippocampus, correlated with THK retention and cortical thinning, while in LOAD patients, subcortical structures were limited which had significant correlation with THK or mean cortical thickness. Subcortical structural shape showed less correlation with FLUTE global retention in both EOAD and LOAD. Multiple cognitive domains, except memory function, correlated with the bilateral amygdala, caudate, and putamen in EOAD patients, while more restricted regions in the subcortical structures were correlated with neuropsychological test results in LOAD patients. Subcortical structures were associated with AD hallmarks in EOAD. However, the correlation was limited in LOAD. Moreover, relationship between subcortical structural atrophy and cognitive decline were quite different between EOAD and LOAD. These findings suggest that the effects of Alzheimer's pathologies on subcortical structural changes in EOAD and LOAD and they may have different courses of pathomechanism.
Collapse
Affiliation(s)
- Eun-Chong Lee
- School of Biomedical Engineering, Korea University, Seoul, South Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Seongho Seo
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| | - Ha-Eun Seo
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| | - Kee Hyung Park
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea.,Department of Health Science and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, South Korea.,Department of Artificial Intelligence, Korea University, Seoul, South Korea
| |
Collapse
|
32
|
Kim BR, Kwon H, Chun MY, Park KD, Lim SM, Jeong JH, Kim GH. White Matter Integrity Is Associated With the Amount of Physical Activity in Older Adults With Super-aging. Front Aging Neurosci 2020; 12:549983. [PMID: 33192451 PMCID: PMC7525045 DOI: 10.3389/fnagi.2020.549983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies have introduced the concept of “SuperAgers,” defined as older adults with youthful memory performance associated with the increased cortical thickness of the anterior cingulate cortex. Given that age-related structural brain changes are observed earlier in the white matter (WM) than in the cortical areas, we investigated whether WM integrity is different between the SuperAgers (SA) and typical agers (TA) and whether it is associated with superior memory performance as well as a healthy lifestyle. A total of 35 SA and 55 TA were recruited for this study. Further, 3.0-T magnetic resonance imaging (MRI), neuropsychological tests, and lifestyle factors related to cognitive function, such as physical activity and duration of sleep, were evaluated in all participants. SA was defined as individuals demonstrating the youthful performance of verbal and visual memory, as measured by the Seoul Verbal Learning Test (SVLT) and the Rey-Osterrieth Complex Figure Test (RCFT), respectively. Tract-based spatial statistics (TBSS) analysis was used to compare the diffusion values such as fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD) between the SA and TA. SA exhibited better performance in memory, attention, visuospatial, and frontal executive functions than the TA did. SA also exhibited greater amounts of physical activity than the TA did. As compared to TA, SA demonstrated higher FA with lower MD, RD, and AD in the corpus callosum and higher FA and lower RD in the right superior longitudinal fasciculus (SLF), which is significantly associated with memory function. Interestingly, FA values of the body of corpus callosum were correlated with the amount of physical activity. Our findings suggest that WM integrity of the corpus callosum is associated with superior memory function and a higher level of physical activities in SA compared to TA.
Collapse
Affiliation(s)
- Bori R Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea.,Ewha Medical Research Institute, Ewha Womans University, Seoul, South Korea
| | - Hunki Kwon
- Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| | - Min Young Chun
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Kee Duk Park
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University Seoul Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, College of Medicine, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
33
|
Roh HW, Choi JG, Kim NR, Choe YS, Choi JW, Cho SM, Seo SW, Park B, Hong CH, Yoon D, Son SJ, Kim EY. Associations of rest-activity patterns with amyloid burden, medial temporal lobe atrophy, and cognitive impairment. EBioMedicine 2020; 58:102881. [PMID: 32736306 PMCID: PMC7394758 DOI: 10.1016/j.ebiom.2020.102881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We sought to investigate the possible associations of rest-activity patterns with cortical amyloid burden, medial temporal lobe (MTL) neurodegeneration, and cognitive function in patients in the early stage of cognitive impairment. METHODS Rest-activity patterns were assessed in 100 participants (70 with mild cognitive impairment and 30 with mild dementia) using wrist actigraphy. All participants underwent 18F-flutemetamol positron emission tomography (PET) imaging to quantify cortical amyloid burden, structural brain magnetic resonance imaging (MRI) to quantify MTL grey matter volume, neuropsychological testing, and clinical diagnosis. We used multiple linear regression models adjusted for covariates, including demographics, diabetes, hypertension, depressive symptom, psychotropic medication, sleep medication, weekend effect, and apolipoprotein-ε allele status. FINDINGS After adjusting for possible confounders, we found that the midline estimation of statistic of rhythm (MESOR) associated positively with frontal/executive function (estimate = 1.17, standard error [SE] = 0.37, p = 0.002). The least active 5-h (L5) onset time associated positively with MTL grey matter volume and memory function (estimate = 1.24, SE = 0.33, p = 0.001, and estimate = 3.77, SE = 1.22, p = 0.003, respectively), particularly in amyloid-negative participants. Additional path analysis revealed that MTL grey matter volume partially mediated the association between L5 onset time and memory function in amyloid-negative participants. INTERPRETATION Decreased MESOR and advanced L5 onset time may be useful as early signs of cognitive decline or MTL neurodegeneration. Furthermore, amyloid pathology may act as a moderator of the relationships between rest-activity patterns, neurodegeneration, and cognitive function. FUNDING Korea Centres for Disease Control and Prevention (#4845-303); National Research Foundation of Korea (2019M3C7A1031905, 2019R1A5A2026045).
Collapse
Affiliation(s)
- Hyun Woong Roh
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jung-Gu Choi
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Na-Rae Kim
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeong Sim Choe
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun-Mi Cho
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea; Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dukyong Yoon
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Eun Young Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
34
|
Jeong HE, Shin DH, Lee DC. Medial Temporal Atrophy Alone is Insufficient to Predict Underlying Alzheimer's Disease Pathology. Korean J Fam Med 2020; 41:352-358. [PMID: 32521990 PMCID: PMC7509126 DOI: 10.4082/kjfm.18.0144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/24/2018] [Indexed: 01/21/2023] Open
Abstract
Background The medial temporal region is the earliest affected structure in patients with Alzheimer’s disease (AD), and its atrophy is known as the hallmark of AD. This study aimed to investigate the value of medial temporal atrophy (MTA) for detecting 18F-florbetaben positron emission tomography (PET)-proven AD pathology. Methods We retrospectively enrolled 265 subjects complaining of cognitive decline at a dementia outpatient clinic from March 2015 to December 2017. All subjects underwent brain magnetic resonance imaging, 18F-fluorodeoxyglucose PET, and 18F-florbetaben PET at baseline. We performed multivariable logistic regression analyses on variables including age, sex, years of education, white matter hyperintensities, apolipoprotein E (APOE) genotype, and memory composite scores in various combinations to investigate whether MTA was indicative of underlying AD pathology. Results Our sample population of 265 patients comprised 121 with AD-related cognitive impairment, 42 with Lewy bodies-related cognitive impairment, 32 with vascular cognitive impairment, and 70 with other or undetermined pathologies. In the multivariable logistic regression analyses, MTA was not an independent predictor of underlying AD pathology (P>0.200). The predictive power of underlying AD-related cognitive impairment significantly increased when multiple variables including APOE genotype and memory composite scores were considered together (area under the curve >0.750). Conclusion Our results suggest that MTA alone may be insufficient to accurately predict the presence of AD pathology. It is necessary to comprehensively consider various other factors such as APOE genotype and a detailed memory function to determine whether the patient is at high risk of AD.
Collapse
Affiliation(s)
- Hyo Eun Jeong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Da Hye Shin
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Duk-Chul Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Chung SJ, Yoo HS, Lee YH, Jung JH, Baik K, Ye BS, Sohn YH, Lee PH. White matter hyperintensities and risk of levodopa-induced dyskinesia in Parkinson's disease. Ann Clin Transl Neurol 2020; 7:229-238. [PMID: 32032471 PMCID: PMC7034502 DOI: 10.1002/acn3.50991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Objective To investigate whether the burden of white matter hyperintensities (WMHs) is associated with the risk of developing levodopa‐induced dyskinesia (LID) in Parkinson’s disease (PD). Methods According to the Clinical Research Center for Dementia of South Korea WMH visual rating scale, 336 patients with drug‐naïve early stage PD (follow‐up >3 years) were divided into two groups of PD with minimal WMHs (PD‐WMH–; n = 227) and moderate‐to‐severe WMHs (PD‐WMH+; n = 109). The Cox regression model was used to estimate the hazard ratio for the development of LID in the PD‐WMH + group compared with the PD‐WMH– group, while adjusting for age at PD onset, sex, striatal dopamine depletion, and PD medication dose. Additionally, we assessed the effects of WMH burden rated by the Scheltens scale and regional WMH distribution on the development of LID. Results Patients in the PD‐WMH + group were older and had more severe parkinsonian motor signs despite comparable striatal dopamine transporter availability than those in the PD‐WMH– group. Patients in the PD‐WMH + group had a higher risk of developing LID (hazard ratio, 2.66; P < 0.001) than those in the PD‐WMH– group after adjustment for other confounding factors. A greater WMH burden was associated with earlier occurrence of LID (hazard ratio, 1.04; P = 0.001), although the effects of WMHs on LID development did not exhibit region‐specific patterns. Interpretation The present study demonstrates that the burden of WMHs is associated with occurrence of LID in patients with PD, suggesting comorbid WMHs as a risk factor for LID.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Kim Y, Lee H, Son TO, Jang H, Cho SH, Kim SE, Kim SJ, Lee JS, Kim JP, Jung YH, Lockhart SN, Kim HJ, Na DL, Park HY, Seo SW. Reduced forced vital capacity is associated with cerebral small vessel disease burden in cognitively normal individuals. NEUROIMAGE-CLINICAL 2019; 25:102140. [PMID: 31896465 PMCID: PMC6940695 DOI: 10.1016/j.nicl.2019.102140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 01/18/2023]
Abstract
Decreased FVC (% pred) was associated with increased cerebral small vessel disease burden even in cognitively normal subjects. This reduced lung function was related to low Mini-Mental Status Examination (MMSE) scores in cognitively normal subjects. Path analyses showed that white matter hyperintensities partially mediated the positive relationship between FVC (% pred) and MMSE score. There was no significant association between low FVC (% pred) and cortical thickness in cognitively normal subjects.
Background Pulmonary dysfunction is associated with elevated risk of cognitive decline. However, the mechanism underlying this relationship has not been fully investigated. In this study, we investigate the relationships between pulmonary function, cerebral small vessel disease (CSVD) markers, cortical thickness, and the Mini-Mental Status Examination (MMSE) scores in cognitively normal individuals. Methods We used a cross-sectional study design. We identified 1924 patients who underwent pulmonary function testing, three-dimensional brain magnetic resonance imaging (MRI), and the MMSE. Pulmonary function was analyzed according to the quintiles of percentage predicted values (% pred) for forced vital capacity (FVC) or forced expiratory volume in 1 s (FEV1). Regarding CSVD markers, we visually rated white matter hyperintensities (WMH) and manually counted lacunes and microbleeds. Cortical thickness was measured by surface-based methods. Results Compared with the highest quintile of FVC, the lowest quintile of FVC (% pred) showed a higher risk of WMH (OR 1.98, 95% CI: 1.21–3.24) and lacunes (OR 1.86, 95% CI: 1.12–3.08). There were no associations between FVC or FEV1 and cortical thickness. Low FVC, but not FEV1, was associated with low MMSE scores. Path analyses showed that WMH partially mediated the positive relationship between FVC (% pred) and MMSE score. Conclusions Our findings suggested that decreased pulmonary function was associated with increased CSVD burdens, which in turn wass associated with decreased cognition, even in cognitively normal subjects.
Collapse
Affiliation(s)
- Yeshin Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, South Korea
| | - Hyun Lee
- Division of Pulmonary Medicine and Allergy, Department of Internal Medicine, Hanyang Medical Center, Hanyang University College of Medicine, South Korea
| | - Tea Ok Son
- Cheongju Samsung Rehabilitation Hospital, Cheongju, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea
| | - Soo Hyun Cho
- Department of Neurology, Chonnam National University Hospital, Gwangju, South Korea
| | - Si Eun Kim
- Departments of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, South Korea
| | - Seung Joo Kim
- Department of Neurology, Gyeongsang National University School of Medicine and Gyeonsang National University Changwon Hospital, Changwon, South Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul, South Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea
| | - Young Hee Jung
- Department of Neurology, Myongji Hospital, Hanyang University Medical Center, Republic of Korea
| | - Samuel N Lockhart
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Gangnam-gu, Republic of Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Kangnam-ku, Seoul 06351, South Korea.
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Neuroscience Center, Samsung Medical Center, Seoul, South Korea; Samsung Alzheimer Research Center, Samsung Medical Center, Seoul, South Korea; Center for Clinical Epidemiology, Samsung Medical Center, Seoul, South Korea; Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
37
|
The effect of severity of white matter hyperintensities on loss of functional independency in patients with mild cognitive impairment: A CREDOS-LTCI (clinical research center for dementia of South Korea-long term card insurance) study. Arch Gerontol Geriatr 2019; 87:103993. [PMID: 31851899 DOI: 10.1016/j.archger.2019.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE By combining data from the Clinical Research Center for Dementia of South Korea(CREDOS) study and long-term care insurance(LTCI), we aimed to assess whether the severity of white matter hyperintensity(WMH) predicted functional decline in cases of amnestic mild cognitive impairment(MCI). METHODS WMH was evaluated in 3,569 patients with amnestic MCI using the visual rating scale developed for the CREDOS study. The participants were classified as having amnestic MCI with minimal WMH change(aMCI), with moderate WMH change(maMCI) and with severe WMH change(saMCI) according to the severity of the WMH measurements. A Kaplan-Meier survival probability estimate was used to compute median time from the diagnosis of MCI to LTCI enrollment for the three MCI groups. The effect of various risk factors of LTCI enrollment was evaluated using Cox's proportional hazards model, adjusted for covariates. RESULTS As compared with aMCI cases, maMCI and saMCI patients required help with daily activities of living at a younger age. The saMCI and maMCI patients had higher risk of LTCI enrollment as compared with that of the aMCI patients. Younger patients(≤ 65y) with MCI had a 3.201 times higher risk of early LTCI enrollment than older patients(> 65y) did. High clinical dementia rating score and female sex were also risk factors of early LTCI enrollment. CONCLUSIONS WMH predicted the rate of global functional decline and loss of independence in patients with MCI. The findings support the use of neuroimaging of WMH, in conjunction with biomarkers, as a tool in predicting functional decline in patients with MCI.
Collapse
|
38
|
White matter hyperintensities as a predictor of freezing of gait in Parkinson's disease. Parkinsonism Relat Disord 2019; 66:105-109. [PMID: 31324555 DOI: 10.1016/j.parkreldis.2019.07.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/14/2019] [Accepted: 07/14/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION To investigate the effect of white matter hyperintensities (WMH) on long-term motor outcomes in Parkinson's disease (PD). METHODS We retrospectively reviewed medical records of 268 patients with de novo PD (follow-up > 3 years). According to the Clinical Research Center for Dementia of South Korea (CREDOS) WMH visual rating scale scores, the patients were divided into two groups: a PD group with minimal WMH (PD-WMH-; n = 198) and a PD group with moderate to severe WMH (PD-WMH+; n = 70). We compared longitudinal increases in doses of dopaminergic medications between the two groups using a mixed model. We also assessed the effects of WMH on the development of freezing of gait (FOG). RESULTS Patients in the PD-WMH + group were older than those in the PD-WMH- group, and had more severe motor deficits and more severely decreased striatal dopamine transporter availability. The PD-WMH + group required higher doses of dopaminergic medications for symptom control, compared to the PD-WMH- group, over the follow-up period. After adjusting for age, sex, striatal dopamine transporter availability, and levodopa-equivalent dose, the PD-WMH + group showed a higher risk of developing FOG (HR, 3.29; 95% CI, 1.79-6.05; p < 0.001) than the PD-WMH- group. CONCLUSION This study demonstrates that WMH burden negatively affects the longitudinal requirement of dopaminergic medication and the development of FOG. These findings suggest that baseline WMH severity or volume may be a useful prognostic marker of motor outcomes in PD.
Collapse
|
39
|
Prediction of Alzheimer's Pathological Changes in Subjective Cognitive Decline Using the Self-report Questionnaire and Neuroimaging Biomarkers. Dement Neurocogn Disord 2019; 18:19-29. [PMID: 31097969 PMCID: PMC6494779 DOI: 10.12779/dnd.2019.18.1.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose Subjective cognitive decline (SCD) may be the first symptomatic stage of Alzheimer's disease (AD). Hence, a screening tool to characterize the patients' complaints and assess the risk of AD is required. We investigated the SCD neuroimaging biomarker distributions and the relevance between the self-report questionnaire and Alzheimer's pathologic changes. Methods Individuals aged 50 and above with consistent cognitive complaints without any objective cognitive impairments were eligible for the study. The newly developed questionnaire consisted of 2 parts; 10 questions translated from the ‘SCD-plus criteria’ and a Korean version of the cognitive failure questionnaire by Broadbent. All the subjects underwent physical examinations such as blood work, detailed neuropsychological tests, the self-report questionnaire, brain magnetic resonance imagings, and florbetaben positron emission tomography (PET) scans. Amyloid PET findings were interpreted using both visual rating and quantitative analysis. Group comparisons and association analysis were performed using SPSS (version 18.0). Results A total of 31 participants with SCD completed the study and 25.8% showed positive amyloid depositions. The degree of periventricular white matter hyperintensities (WMH) and hippocampal atrophy were more severe in amyloid-positive SCDs compared to the amyloid-negative group. In the self-reported questionnaire, the ‘informant's report a decline’ and ‘symptom's onset after 65 years of age’ were associated with more Alzheimer's pathologic changes. Conclusions Amyloid-positive SCDs differed from amyloid-negative SCDs on WMH, hippocampal atrophy, and a few self-reported clinical features, which gave clues on the prediction of AD pathology.
Collapse
|
40
|
Chung SJ, Lee YH, Yoo HS, Sohn YH, Ye BS, Cha J, Lee PH. Distinct FP-CIT PET patterns of Alzheimer's disease with parkinsonism and dementia with Lewy bodies. Eur J Nucl Med Mol Imaging 2019; 46:1652-1660. [PMID: 30980099 DOI: 10.1007/s00259-019-04315-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Little is known regarding the clinical relevance or neurobiology of subtle motor disturbance in Alzheimer's disease (AD). This study aims to investigate the patterns of striatal 18F-FP-CIT uptake in patients with AD-related cognitive impairment (ADCI) with mild parkinsonism. METHODS We recruited 29 consecutive patients with ADCI with mild parkinsonism. All patients underwent 18F-FP-CIT PET scans and dopamine transporter (DAT) availability in striatal subregions (anterior/posterior caudate, anterior/posterior putamen, ventral putamen, ventral striatum) was quantified. Additionally, 32 patients with dementia with Lewy bodies (DLB) and 21 healthy controls were included to perform inter-group comparative analyses of the striatal DAT availability. The discriminatory power of striatal DAT availability to differentiate ADCI from DLB was assessed using receiver operating characteristics (ROC) analyses. The Spearman's correlation coefficient was calculated to assess the relationship between motor severity and DAT availability in striatal subregions. RESULTS Patients with ADCI with mild parkinsonism exhibited decreased DAT availability in the caudate that was intermediate between healthy controls and patients with DLB. The DAT availability in other striatal subregions, including the posterior putamen, did not differ between the ADCI with parkinsonism and healthy control groups. The ROC analysis showed that DAT availability of all striatal subregions, especially the whole striatum, had a fair discriminatory power. Parkinsonian motor severity did not correlate with the striatal DAT availability in ADCI with parkinsonism. CONCLUSIONS The present study demonstrated that patients with ADCI with mild parkinsonism had distinct DAT scan patterns and suggests that parkinsonism is associated with the extranigral source of pathology.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea.,Department of Neurology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea
| | - Jungho Cha
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 30722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
41
|
Park JE, Choi KY, Kim BC, Choi SM, Song MK, Lee JJ, Kim J, Song HC, Kim HW, Ha JM, Seo EH, Song WK, Park SG, Lee JS, Lee KH. Cerebrospinal Fluid Biomarkers for the Diagnosis of Prodromal Alzheimer's Disease in Amnestic Mild Cognitive Impairment. Dement Geriatr Cogn Dis Extra 2019; 9:100-113. [PMID: 31011328 PMCID: PMC6465729 DOI: 10.1159/000496920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background/Aims Disease-modifying therapy for Alzheimer's disease (AD) has led to a need for biomarkers to identify prodromal AD and very early stage of AD dementia. We aimed to identify the cutoff values of cerebrospinal fluid (CSF) biomarkers for detecting prodromal AD. Methods We assessed 56 patients with amnestic mild cognitive impairment (aMCI) who underwent lumbar puncture. Additionally, 87 healthy elderly individuals and 34 patients with AD dementia served as controls. Positron emission tomography was performed using florbetaben as a probe. We analyzed the concentration of Aβ1–42, total tau protein (t-Tau), and tau protein phosphorylated at threonine 181 (p-Tau181) in CSF with INNOTEST enzyme-linked immunosorbent assay. Results For the detection of prodromal AD in patients with aMCI, the cutoff values of CSF Aβ1–42, t-Tau, and p-Tau181 were 749.5 pg/mL, 225.6 pg/mL, and 43.5 pg/mL, respectively. To discriminate prodromal AD in patients with aMCI, the t-Tau/Aβ1–42 and p-Tau181/Aβ1–42 ratios defined cutoff values at 0.298 and 0.059, respectively. Conclusions CSF biomarkers are very useful tools for the differential diagnosis of prodromal AD in aMCI patients. The concentration of CSF biomarkers is well correlated with the stages of the AD spectrum.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-PLUS Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Kyu Yeong Choi
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Min-Kyung Song
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jang Jae Lee
- National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| | - Jahae Kim
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Ho-Chun Song
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Hoo-Won Kim
- Department of Neurology, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Jung-Min Ha
- Department of Nuclear Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Eun Hyun Seo
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Woo Keun Song
- School of Life Science, Bioimaging, and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Science, Bioimaging, and Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Sup Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,BK21-PLUS Research Team for Bioactive Control Technology, Chosun University, Gwangju, Republic of Korea
| | - Kun Ho Lee
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea.,National Research Center for Dementia, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
42
|
Non-alcoholic fatty liver disease and cerebral small vessel disease in Korean cognitively normal individuals. Sci Rep 2019; 9:1814. [PMID: 30755685 PMCID: PMC6372789 DOI: 10.1038/s41598-018-38357-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the association between nonalcoholic fatty liver disease (NAFLD) and cerebral small vessel disease (CSVD) burden, especially according to the NAFLD severity. A total of 1,260 participants were included. The CSVD burden was assessed with white matter hyperintensities (WMH), lacunes, and microbleeds (MBs) on brain MRI. An ultrasound diagnosis of fatty liver was made based on standard criteria, and the Fibrosis-4 (FIB-4) index was used to classify participants with NAFLD with having a high-intermediate (FIB-4 ≥1.45) or low (FIB-4 < 1.45) probability of advanced fibrosis. A multivariable logistic regression analysis was used to assess the association between NAFLD and the presence of moderate to severe WMH, lacunes, and MBs. NAFLD had a significant association only with moderate to severe WMH (OR: 1.64, 95% CI: 1.10-2.42), even after controlling for cardiometabolic risk factors. A linear trend test showed a significant association between the severity of NAFLD fibrosis and the presence of moderate to severe WMH (p for trend <0.001). Our findings suggest that NAFLD, especially NAFLD with fibrosis, has a significant association with the presence of moderate to severe WMH in cognitively normal individuals, and NAFLD severity predicted more frequent moderate to severe WMH.
Collapse
|
43
|
Liu Y, Braidy N, Poljak A, Chan DKY, Sachdev P. Cerebral small vessel disease and the risk of Alzheimer's disease: A systematic review. Ageing Res Rev 2018; 47:41-48. [PMID: 29898422 DOI: 10.1016/j.arr.2018.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) comprises a variety of disorders affecting small arteries and microvessels of the brain, manifesting as white matter hyperintensities (WMHs), cerebral microbleeds (CMBs), and deep brain infarcts. In addition to its contribution to vascular dementia (VaD), it has also been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). METHOD A systematic review of the literature available on Medline, Embase and Pubmed was undertaken, whereby CSVD was divided into WMHs, CMBs and deep brain infarcts. Biomarkers of AD pathology in the cerebrospinal fluid or plasma, or positron emission tomographic imaging for amyloid and/or tau deposition were used for AD pathology. RESULTS A total of 4117 articles were identified and 41 articles met criteria for inclusion. These consisted of 17 articles on vascular risk factors for clinical AD, 21 articles on Aβ pathology and 15 articles on tau pathology, permitting ten meta-analyses. CMBs or lobar CMBs were associated with pooled relative risk (RR) of AD at 1.546, (95%CI 0.842-2.838, z = 1.41 p = 0.160) and 1.526(95%CI 0.760-3.063, z = 1.19, p = 0.235) respectively, both non-significant. Microinfarcts were associated with significantly increased AD risk, with pooled odds ratio OR at 1.203(95%CI 1.014-1.428, 2.12 p = 0.034). Aβ pathology was significantly associated with WMHs in AD patients but not in normal age-matched controls. The pooled β (linear regression) for total WMHs with CSF Aβ42 in AD patients was -0.19(95%CI -0.26-0.11, z = 4.83 p = 0.000) and the pooled r (correlation coefficient) for WMHs and PiB in the normal population was -0.10 (95%CI -0.11-0.30, 0.93 p = 0.351). CMBs were significantly associated with Aβ pathology in AD patients. The pooled standardized mean difference (SMD) was -0.453, 95%CI -0.697- -0.208, z = 3.63 p = 0.000. There was no significant relationship between the incidence of lacunes and levels of CSFAβ, with a pooled β of 0.057 (95%CI -0.050-0.163, z = 1.05 p = 0.295). No significant relationship was found between CMBs and the levels of CSFt-tau/CSFp-tau in AD patients (-0.014, 95%CI -0.556-0.529, z = 0.05 p = 0.960; -0.058, 95%CI -0.630-0.515, z = 0.20 p = 0.844) and cortical CMBs and CSF p-tau in the normal population (0.000, 95%CI -0.706-0.706, z = 0.00 p = 0.999). CONCLUSIONS Some CSVD markers were significantly associated with clinical AD pathology and may be associated with Aβ/tau pathology. WMHs and microinfarcts were associated with increased risk of AD. It remains unclear whether they precede or follow AD pathology.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Daniel K Y Chan
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
44
|
Kim JS, Kim M, Kang SH, Oh K, Suh S, Seo WK. The associations between bone mineral density and cerebral white matter hyperintensity in elderly stroke patients. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
45
|
Kim J, Na HK, Shin JH, Kim HJ, Seo SW, Seong JK, Na DL. Atrophy patterns in cerebral amyloid angiopathy with and without cortical superficial siderosis. Neurology 2018; 90:e1751-e1758. [PMID: 29678935 DOI: 10.1212/wnl.0000000000005524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/26/2018] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate differential atrophy patterns based on the presence of cortical superficial siderosis (cSS) and the role of cSS in predicting amyloid positivity in memory clinic patients fulfilling the diagnostic criteria for probable cerebral amyloid angiopathy (CAA). METHODS We retrospectively collected data from 44 cognitively impaired patients with probable CAA who underwent 3-dimensional, T1-weighted MRIs (cSS+, n = 27; cSS-, n = 17). Amyloid-positive patients with Alzheimer disease (AD) (n = 56) and amyloid-negative cognitively normal participants (n = 34) were recruited as controls. Among the patients with CAA who underwent amyloid-PET scans (75.0%), we investigated whether amyloid-negative cases were unevenly distributed based on cSS presentation. APOE genotypes, Mini-Mental State Examination scores, and cortical atrophy pattern along with hippocampal volume were compared across groups. RESULTS Ten patients with probable CAA presented amyloid negativity and all of them belonged to the cSS- group (58.8%). Compared to the cSS- group, the cSS+ group presented higher APOE ε4 frequency, worse memory dysfunction, and lower hippocampal volume. Compared with cognitively normal participants, the cSS+ group exhibited atrophy in the precuneus, posterior cingulate, parietotemporal, superior frontal, and medial temporal areas, a pattern similar to AD-specific atrophy. The cSS- group exhibited atrophy in the parietotemporal, superior frontal, and precentral regions. CONCLUSION Our findings imply that the current version of the Boston criteria may not be sufficient enough to remove non-CAA cases from a cognitively impaired population, especially in the absence of cSS. Patients with probable CAA presenting cSS appear to reflect a CAA phenotype that shares pathologic hallmarks with AD, providing insight into the CAA-to-AD continuum.
Collapse
Affiliation(s)
- Joonho Kim
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Han Kyu Na
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Jeong-Hyeon Shin
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea
| | - Joon-Kyung Seong
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea.
| | - Duk L Na
- From the Department of Neurology, Severance Hospital (H.K.N.), Yonsei University College of Medicine (J.K.), Seoul; Department of Bio-convergence Engineering (J.-H.S., J.-K.S.), and School of Biomedical Engineering (J.-K.S.), Korea University, Seoul; and Department of Neurology, Sungkyunkwan University School of Medicine (H.J.K., S.W.S., D.L.N.), and Neuroscience Center (H.J.K., S.W.S., D.L.N), Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Myung W, Lee C, Park JH, Woo SY, Kim S, Kim S, Chung JW, Kang HS, Lim SW, Choi J, Na DL, Kim SY, Lee JH, Han SH, Choi SH, Kim SY, Carroll BJ, Kim DK. Occupational Attainment as Risk Factor for Progression from Mild Cognitive Impairment to Alzheimer's Disease: A CREDOS Study. J Alzheimers Dis 2018; 55:283-292. [PMID: 27662289 DOI: 10.3233/jad-160257] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High occupational attainment has been known as a marker of cognitive reserve. Previous studies in the general population have shown that high occupational attainment is associated with reduced risk of Alzheimer's disease (AD). However, few studies have assessed the effect of occupational attainment on the clinical course of mild cognitive impairment (MCI). In this study, we evaluated whether individuals with high occupational attainment show more frequent progression from MCI to AD. Participants (n = 961) with MCI were recruited from a nationwide, hospital-based multi-center cohort, and were followed for up to 60 months (median: 17.64, interquartile range [12.36, 29.28]). We used Cox regression for competing risks to analyze the effect of occupational attainment on development of AD, treating dementia other than AD as a competing risk. Among the 961 individuals with MCI, a total of 280 (29.1%) converted to dementia during the follow-up period. The risk of progression to AD was higher in the individuals with high occupational attainment after controlling for potential confounders (hazard ratio = 1.83, 95% confidence interval = 1.25-2.69, p = 0.002). High occupational attainment in individuals with MCI is an independent risk factor for higher progression rate of MCI to AD. This result suggests that the protective effect of high occupational attainment against cognitive decline disappears in the MCI stage, and that careful assessment of occupational history can yield important clinical information for prognosis in individuals with MCI.
Collapse
Affiliation(s)
- Woojae Myung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chunsoo Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Hong Park
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sook-Young Woo
- Biostatistical Team, Samsung Biomedical Research Institute, Seoul, Korea
| | - Seonwoo Kim
- Biostatistical Team, Samsung Biomedical Research Institute, Seoul, Korea
| | - Sangha Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Won Chung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyo Shin Kang
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Shinn-Won Lim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Korea
| | - Junbae Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Korea
| | - Sang Yun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | | | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Choi H, Yang Y, Han HJ, Jeong JH, Park MY, Kim YB, Jo KD, Choi JY, Kang KH, Kang H, Kwon DY, Yoo BG, Lee HJ, Shin BS, Jeon SM, Kwon OD, Kim JS, Lee SJ, Kim Y, Park TH, Kim YJ, Yang HJ, Park HY, Shin HE, Lee JS, Jung YH, Lee AY, Shin DI, Shin KJ, Park KH. Observational Study of Clinical and Functional Progression Based on Initial Brain MRI Characteristics in Patients with Alzheimer's Disease. J Alzheimers Dis 2018; 66:1721-1730. [PMID: 30452413 PMCID: PMC6294580 DOI: 10.3233/jad-180565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) is a useful tool to predict the diagnosis and progression of Alzheimer's disease (AD), especially for primary physicians. However, the correlation between baseline MRI findings and AD progression has not been fully established. OBJECTIVE To investigate the correlation between hippocampal atrophy (HA) and white matter hyperintensities (WMH) on initial brain MRI images and the degree of cognitive decline and functional changes over 1 year. METHODS In this prospective, 12-month observational study, dementia outpatients were recruited from 29 centers across South Korea. Baseline assessments of HA and WMH on baseline brain MRI were derived as well as cognitive function, dementia severity, activities of daily living, and acetylcholinesterase inhibitor (AChEI) use. Follow-up assessments were conducted at 6 and 12 months. RESULTS Among 899 enrolled dementia patients, 748 were diagnosed with AD of whom 654 (87%) were taking AChEIs. Baseline WMH showed significant correlations with age, current alcohol consumption, and Clinical Dementia Rating score; baseline HA was correlated with age, family history, physical exercise, and the results of cognitive assessments. Among the AChEI group, changes in the Korean version of the Instrumental Activities of Daily Living (K-IADL) were correlated with the severity of HA on baseline brain MRI, but not with the baseline severity of WMH. In the no AChEI group, changes in K-IADL were correlated with the severity of WMH and HA at baseline. CONCLUSION Baseline MRI findings could be a useful tool for predicting future clinical outcomes by primary physicians, especially in relation to patients' functional status.
Collapse
Affiliation(s)
- Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Korea
| | - YoungSoon Yang
- Department of Neurology, Ewha Womans University, Mokdong Hospital, Seoul, Korea
| | - Hyun Jeong Han
- Department of Neurology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jee Hyang Jeong
- Department of Neurology, Gangneung Asan Hospital, Gangneung, Korea
| | - Mee Young Park
- Department of Neurology, Konkuk University Chungju Hospital, Chunju, Korea
| | - Yong Bum Kim
- Department of Neurology, Kyungpook National University Medical Center, Daegu, Korea
| | - Kwang Deog Jo
- Department of Neurology, Gyeongsang National University School of Medicine, Jinju, Korea
| | - Jin-Yong Choi
- Department of Neurology, Korea University Ansan Hospital, Ansan, Korea
| | - Kyung-Hun Kang
- Department of Neurology, Kosin University College of Medicine, Busan, Korea
| | - Heeyoung Kang
- Department of Neurology, Gwangju Veterans Hospital, Gwangju, Korea
| | - Do-Young Kwon
- Department of Neurology, Chonbuk National University Medical School, Jeonju, Chonbuk, Korea
| | | | - Hyun Jin Lee
- Department of Neurology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | | | - Sung-Man Jeon
- Department of Neurology, Eulji University College of Medicine, Daejeon, Korea
| | - Oh Dae Kwon
- Department of Neurology, Myongji Hospital, Goyang, Korea
| | - Jin-Suk Kim
- Samsung Changwon Hospital, Changwon, Seoul, Korea
| | - Soo-Joo Lee
- Department of Neurology, Seoul Medical Center, Seoul, Korea
| | | | - Tai-Hwan Park
- Department of Neurology, Yeungnam University College of Medicine, Daegu, Korea
| | - Young Jin Kim
- Department of Neurology, Ulsan University Hospital, Ulsan, Korea
| | - Hui-Jun Yang
- Department of Neurology, Institute of Wonkwang Medical Science, Wonkwang University School of Medicine, Iksan, Korea
| | - Hyun-Young Park
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Eun Shin
- Department of Neurology, Cheju National University Hospital, Jeju, Korea
| | - Jung Seok Lee
- Department of Neurology, SVH Medical Center, Seoul, Korea
| | - Yo Han Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon, Seoul, Korea
| | - Ae Young Lee
- Department of Neurology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dong-Ick Shin
- Department of Neurology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kyong Jin Shin
- Department of Neurology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kee Hyung Park
- Department of Neurology, College of Medicine, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
48
|
Diffusion Tensor Changes According to Age at Onset and Apolipoprotein E Genotype in Alzheimer Disease. Alzheimer Dis Assoc Disord 2017; 30:297-304. [PMID: 27227996 DOI: 10.1097/wad.0000000000000155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Age at onset is one of the most important factors that affects the clinical course in Alzheimer disease (AD), whereas other factors such as apolipoprotein E (apoE) genotype may also play a major role. In this study, we aimed to investigate the effect of age at onset and apoE genotype on white-matter changes in AD using diffusion tensor imaging. About 213 patients with AD and 66 normal individuals underwent diffusion tensor imaging, and apoE genotype was obtained in all AD patients and in 24 normal individuals. When multiple regression analysis was conducted, a younger age at onset was associated with lower fractional anisotropy in both deep-located long-range limbic and association fibers and superficial-located short-range association fibers in the frontal, the temporal, and the parietal lobes, and with a higher mean diffusivity in deep-located fibers and the bilateral medial thalamus. When analyzed separately in apoE e4 carriers and noncarriers, e4 carriers showed an association between a younger age at onset and lower fractional anisotropy, mainly in deep-located fibers, whereas noncarriers showed this association in both deep-located and superficial-located fibers. There was no difference in the spatial distribution between carriers and noncarriers in the association between the age at onset and mean diffusivity. Our results suggest that the topographical distribution of white-matter changes in AD is significantly affected by the interaction between age at onset and apoE genotype.
Collapse
|
49
|
Myung W, Park JH, Woo SY, Kim S, Kim SH, Chung JW, Kang HS, Lim SW, Choi J, Na DL, Kim SY, Lee JH, Han SH, Choi SH, Kim SY, Carroll BJ, Kim DK. Extrapyramidal Signs and Risk of Progression from Mild Cognitive Impairment to Dementia: A Clinical Research Center for Dementia of South Korea Study. Psychiatry Investig 2017; 14:754-761. [PMID: 29209378 PMCID: PMC5714716 DOI: 10.4306/pi.2017.14.6.754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Extrapyramidal signs (EPS) are common in patients with mild cognitive impairment (MCI). However, few studies have assessed the effect of EPS on the clinical course of MCI. We aimed to evaluate whether patients with EPS show more frequent progression from MCI to Alzheimer's disease (AD) and to other types of dementia. METHODS Participants (n=882) with MCI were recruited, and were followed for up to 5 years. The EPS positive group was defined by the presence of at least one EPS based on a focused neurologic examination at baseline. RESULTS A total of 234 converted to dementia during the follow-up period. The risk of progression to AD was lower in the patients with EPS after adjusting for potential confounders [hazard ratio (HR)=0.70, 95% confidence interval (CI)=0.53-0.93, p=0.01]. In contrast, the patients with EPS had a six-fold elevated risk of progression to dementia other than AD (HR=6.33, 95%CI=2.30-17.39, p<0.001). CONCLUSION EPS in patients with MCI is a strong risk factor for progression of MCI to non-Alzheimer dementia. The careful neurologic examination for EPS in patients with MCI can yield important clinical information for prognosis.
Collapse
Affiliation(s)
- Woojae Myung
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jin Hong Park
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sook-Young Woo
- Biostatistical Team, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Seonwoo Kim
- Biostatistical Team, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Sang Ha Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Won Chung
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyo Shin Kang
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Shinn-Won Lim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Junbae Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Duk L. Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Bernard J. Carroll
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
50
|
Diagonal Earlobe Crease is a Visible Sign for Cerebral Small Vessel Disease and Amyloid-β. Sci Rep 2017; 7:13397. [PMID: 29042572 PMCID: PMC5645376 DOI: 10.1038/s41598-017-13370-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/21/2017] [Indexed: 11/16/2022] Open
Abstract
We investigated the frequency and clinical significance of diagonal earlobe crease (DELC) in cognitively impaired patients using imaging biomarkers, such as white matter hyperintensities (WMH) on MRI and amyloid-β (Aβ) PET. A total of 471 cognitively impaired patients and 243 cognitively normal (CN) individuals were included in this study. Compared with CN individuals, cognitively impaired patients had a greater frequency of DELC (OR 1.6, 95% CI 1.1–2.2, P = 0.007). This relationship was more prominent in patients with dementia (OR 1.8, 95% CI 1.2–2.7, P = 0.002) and subcortical vascular cognitive impairment (OR 2.4, 95% CI 1.6–3.6, P < 0.001). Compared with Aβ-negative cognitively impaired patients with minimal WMH, Aβ-positive patients with moderate to severe WMH were significantly more likely to exhibit DELC (OR 7.3, 95% CI 3.4–16.0, P < 0.001). We suggest that DELC can serve as a useful supportive sign, not only for the presence of cognitive impairment, but also for cerebral small vessel disease (CSVD) and Aβ-positivity. The relationship between DELC and Aβ-positivity might be explained by the causative role of CSVD in Aβ accumulation.
Collapse
|