1
|
de Almeida RGB, Cunha DGF. Optimizing surface water quality parameters in monitoring networks in a developing sub-tropical region with high anthropogenic pressure (São Paulo State Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35345-9. [PMID: 39467866 DOI: 10.1007/s11356-024-35345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Efficient water quality monitoring is a central aspect of water resources management, especially in developing countries, where water quality is under high anthropogenic pressure and resources for monitoring are usually limited. Here, we evaluated an alternative to optimize water quality parameters (WQPs) in the water quality monitoring network (WQMN) of the most populous state in Brazil (São Paulo State). We focused on the monitoring goal of identifying water quality temporal trends, selecting WQPs with high statistical explanatory power and those that were particularly sensitive to natural and anthropogenic perturbations. We considered 12 initial WQPs (dissolved copper, total zinc, total lead, total chromium, total mercury, total nickel, total cadmium, total iron, total manganese, total aluminum, total copper, and surfactant) with data from 2004 to 2018 for 56 monitoring sites distributed across four major watersheds with contrasting land uses in the state. We performed principal component analysis, followed by objective criteria to refine WQPs recommendation for the WQMN. Our results indicated the opportunity of reducing at least one parameter from the initial set of WQPs in all watersheds. Total iron, total manganese, and total aluminum were the most relevant initial WQPs, since their maintenance in monitoring were indicated in all the analyzed cases. Natural watershed conditions (e.g., geomorphology and water geochemistry) potentially governed their concentrations in surface water. On the other hand, total mercury, total chromium, and dissolved copper had the maintenance indicated in only one watershed, especially due to concentrations consistently below the respective limits of quantification (LoQs). Future investigations can complement our recommendations for these parameters, since changes in LoQs could throw another light on water quality spatial and temporal variations and the need for reference areas for assessing baseline conditions can also be relevant. Moreover, we argue that depending on the monitoring goals of the WQMN, additional sampling of biota and sediments could be useful as many of the studied WQPs' bioconcentrate. Our results illustrated an alternative approach towards adaptive monitoring in São Paulo state in accordance with the intended monitoring goal (i.e., water quality temporal trends), converging with the more flexible monitoring adopted in well-structured networks worldwide. While we did not cover other monitoring goals in our study (as the control of illegal discharge of effluents or industrial spills, for example), we expect our methodology can contribute to establishing technical guidelines for reviewing the existing WQMNs in Brazil and other developing countries with similar challenges.
Collapse
Affiliation(s)
| | - Davi Gasparini Fernandes Cunha
- Departamento de Hidráulica e Saneamento, Escola de Engenharia de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400. Centro, São Carlos, SP, CEP 13566-590, Brazil
| |
Collapse
|
2
|
Nehzomi ZS, Shirani K. Investigating the role of food pollutants in autism spectrum disorder: a comprehensive analysis of heavy metals, pesticides, and mycotoxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03551-4. [PMID: 39466439 DOI: 10.1007/s00210-024-03551-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Food pollutants, including heavy metals, pesticides, and mycotoxins, have been proposed as potential risk factors for autism spectrum disorder (ASD) during pregnancy and early childhood. This paper examines the impact of food pollutants on ASD risk. A systematic search through PubMed, Google Scholar, and Sciverse yielded studies from 1990 to present. Research indicates elevated levels of heavy metals in children with ASD, linking pesticides and toxins to brain development disruptions. Mycotoxins, specifically, show a correlation with ASD and can contaminate food, posing a threat to neurodevelopment. Strategies like choosing organic foods and reducing exposure to toxins may benefit individuals with ASD and those vulnerable to the disorder. Further research is essential to comprehend the food pollutant-ASD relationship and devise effective exposure reduction strategies.
Collapse
Affiliation(s)
| | - Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Meng Y, Liu S, Yu M, Liang H, Tong Y, Song J, Shi J, Cai W, Wu Q, Wen Z, Wang J, Guo F. The Changes of Blood and CSF Ion Levels in Depressed Patients: a Systematic Review and Meta-analysis. Mol Neurobiol 2024; 61:5369-5403. [PMID: 38191692 DOI: 10.1007/s12035-023-03891-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Micronutrient deficiencies and excesses are closely related to developing and treating depression. Traditional and effective antidepressants include tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and lithium. There is no consensus on the fluctuation of zinc (Zn2+), magnesium (Mg2+), calcium (Ca2+), copper (Cu2+), iron (Fe2+), and manganese (Mn2+) ion levels in depressed individuals before and after therapy. In order to determine whether there were changes in blood and cerebrospinal fluid (CSF) levels of these ions in depressed patients compared with healthy controls and depressed patients treated with TCAs, SSRIs, or lithium, we applied a systematic review and meta-analysis. Using the Stata 17.0 software, we performed a systematic review and meta-analysis of the changes in ion levels in human samples from healthy controls, depressive patients, and patients treated with TCAs, SSRIs, and lithium, respectively. By searching the PubMed, EMBASE, Google Scholar, Web of Science, China National Knowledge Infrastructure (CNKI), and WAN FANG databases, 75 published analyzable papers were chosen. In the blood, the levels of Zn2+ and Mg2+ in depressed patients had decreased while the Ca2+ and Cu2+ levels had increased compared to healthy controls, Fe2+ and Mn2+ levels have not significantly changed. After treatment with SSRIs, the levels of Zn2+ and Ca2+ in depressed patients increased while Cu2+ levels decreased. Mg2+ and Ca2+ levels were increased in depressed patients after Lithium treatment. The findings of the meta-analysis revealed that micronutrient levels were closely associated with the onset of depression and prompted more research into the underlying mechanisms as well as the pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Yulu Meng
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Shuangshuang Liu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Science Experiment Center, China Medical University, Shenyang, 110122, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yu Tong
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Ji Song
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jian Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wen Cai
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qiong Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhifeng Wen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Jialu Wang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Feng Guo
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
4
|
Almatrafi AM, Alayoubi AM, Alluqmani M, Hashmi JA, Basit S. Exome Sequence Analysis to Characterize Undiagnosed Family Segregating Motor Impairment and Dystonia. J Clin Med 2024; 13:4252. [PMID: 39064292 PMCID: PMC11278008 DOI: 10.3390/jcm13144252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Hypermanganesemia with dystonia 1 (HMNDYT1) is a rare genetic disorder characterized by elevated blood manganese levels. This condition is associated with polycythemia, motor neurodegeneration with extrapyramidal features, and hepatic dysfunction, which can progress to cirrhosis in some patients. Materials and Methods: In this study, a consanguineous Saudi family with two affected individuals exhibiting symptoms of severe motor impairment, spastic paraparesis, postural instability, and dystonia was studied. Clinical and radiographic evaluations were conducted on the affected individuals. Whole exome sequencing (WES) was performed to diagnose the disease and to determine the causative variant underlying the phenotype. Moreover, Sanger sequencing was used for validation and segregation analysis of the identified variant. Bioinformatics tools were utilized to predict the pathogenicity of candidate variants based on ACMG criteria. Results: Exome sequencing detected a recurrent homozygous missense variant (c.266T>C; p.L89P) in exon 1 of the SLC30A10 gene. Sanger sequencing was employed to validate the segregation of the discovered variant in all available family members. Bioinformatics tools predicted that the variant is potentially pathogenic. Moreover, conservation analysis showed that the variant is highly conserved in vertebrates. Conclusions: This study shows that exome sequencing is instrumental in diagnosing undiagnosed neurodevelopmental disorders. Moreover, this study expands the mutation spectrum of SLC30A10 in distinct populations.
Collapse
Affiliation(s)
- Ahmad M. Almatrafi
- Department of Biology, College of Science, Taibah University, Medina 42353, Saudi Arabia
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
| | - Abdulfatah M. Alayoubi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Majed Alluqmani
- Department of Neurology, College of Medicine, Taibah University, Medina 42353, Saudi Arabia;
| | - Jamil A. Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Madinah 42353, Saudi Arabia;
- Department of Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia;
| |
Collapse
|
5
|
Juyal VK, Thakuri SC, Panwar M, Rashmi, Prakash O, Perveen K, Bukhari NA, Nand V. Manganese(II) and Zinc(II) metal complexes of novel bidentate formamide-based Schiff base ligand: synthesis, structural characterization, antioxidant, antibacterial, and in-silico molecular docking study. Front Chem 2024; 12:1414646. [PMID: 39100916 PMCID: PMC11294232 DOI: 10.3389/fchem.2024.1414646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
A new bidentate Schiff base ligand (C16H16Cl2N4), condensation product of ethylene diamine and 4-chloro N-phenyl formamide, and its metal complexes [M(C16H16Cl2N4)2(OAc)2] (where M = Mn(II) and Zn(II)) were synthesized and characterized using various analytical and spectral techniques, including high-resolution mass spectrometry (HRMS), elemental analysis, ultraviolet-visible (UV-vis), Fourier-transform infrared (FTIR) spectroscopy, AAS, molar conductance, 1H NMR, and powder XRD. All the compounds were non-electrolytes and nanocrystalline. The synthesized compounds were assessed for antioxidant potential by DPPH radical scavenging and FRAP assay, with BHT serving as the positive control. Inhibitory concentration at 50% inhibition (IC50) values were calculated and used for comparative analysis. Furthermore, the prepared compounds were screened for antibacterial activity against two Gram-negative bacteria (Staphylococcus aureus and Bacillus subtilis) and two Gram-positive bacteria (Escherichia coli and Salmonella typhi) using disk-diffusion methods, with amikacin employed as the standard reference. The comparison of inhibition zones revealed that the complexes showed better antibacterial activity than the ligand. To gain insights into the molecular interactions underlying the antibacterial activity, the ligand and complexes were analyzed for their binding affinity with S. aureus tyrosyl-tRNA synthetase (PDB ID: 1JIL) and S. typhi cell membrane protein OmpF complex (PDB ID: 4KR4). These analyses revealed robust interactions, validating the observed antibacterial effects against the tested bacterial strains.
Collapse
Affiliation(s)
- Vijay Kumar Juyal
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Shweta Chand Thakuri
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Mohit Panwar
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Rashmi
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| | - Om Prakash
- Regional Ayurveda Research Institute, Ministry of Ayush, Gwalior, India
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh, Riyadh, Saudi Arabia
| | - Viveka Nand
- Department of Chemistry, G.B. Pant University of Agriculture and Technology, Pantnagar, India
| |
Collapse
|
6
|
Hoy JA, Haas GT, Hallock P. Was the massive increase in use of teratogenic agrichemicals in western states (USA) associated with declines in wild ruminant populations between 1994 and 2013? CHEMOSPHERE 2024; 359:142320. [PMID: 38735490 DOI: 10.1016/j.chemosphere.2024.142320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Population declines were documented in multiple ruminant species in Montana and surrounding states starting in 1995. While weather, food sources, and predation certainly contributed, the declines were often attributed, at least partly, to unexplained factors. Use of teratogenic agrichemicals, notably neonicotinoid insecticides, fungicides, and glyphosate-based herbicides, massively increased regionally in 1994-96. The question explored in this review is whether this vastly increased use of these teratogenic pesticides might have contributed to observed population declines. We provide references and data documenting that specific developmental malformations on vertebrates can be associated with exposure to one or more of these agrichemicals. These pesticides are known to disrupt thyroid and other hormonal functions, mitochondrial functions, and biomineralization, all of which are particularly harmful to developing fetuses. Exposures can manifest as impaired embryonic development of craniofacial features, internal and reproductive organs, and musculoskeletal/integumental systems, often resulting in reproductive failure or weakened neonates. This paper reviews: a) studies of ruminant populations in the region, especially elk and white-tailed deer, prior to and after 1994; b) published and new data on underdeveloped facial bones in regional ruminants; c) published and new data on reproductive abnormalities in live and necropsied animals before and after 1994; and d) studies documenting the effects of exposures to three of the most applied teratogenic chemicals. While answers to the question posed above are complex and insufficient evidence is available for definitive answers, this review provides ideas for further consideration.
Collapse
Affiliation(s)
- Judith A Hoy
- 2858 Pheasant Lane, Stevensville, MT, 59870, USA; Bitterroot Wildlife Rehab Center, Stevensville, MT, 59870, (now retired), USA
| | - Gary T Haas
- Big Sky Beetle Works, 5189 Highway 93 North, Box 776, Florence, MT, 59833-0776, USA
| | - Pamela Hallock
- College of Marine Science, University of South Florida, 140 Seventh Avenue S., St. Petersburg, FL, 33701, USA.
| |
Collapse
|
7
|
Wei L, He H, Yang S, Shi Q, Wang X, Huang L, Lu J, Shen Y, Zhi K, Xiang J, Chen C, Mo J, Zheng Z, Zou Y, Yang X, Tang S, Li X, Lu C. Synergistic suppression of BDNF via epigenetic mechanism deteriorating learning and memory impairment caused by Mn and Pb co-exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116365. [PMID: 38657452 DOI: 10.1016/j.ecoenv.2024.116365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1β, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.
Collapse
Affiliation(s)
- Lancheng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Hongjian He
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Shuting Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qianqian Shi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Liyuan Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jianyong Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yinghui Shen
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Kaikai Zhi
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junni Xiang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Chengying Chen
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Jiao Mo
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zhijian Zheng
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yunfeng Zou
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Xiaobo Yang
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China; Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University) , Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| | - Cailing Lu
- School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
8
|
Ngwa HA, Bargues-Carot A, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Manganese and Vanadium Co-Exposure Induces Severe Neurotoxicity in the Olfactory System: Relevance to Metal-Induced Parkinsonism. Int J Mol Sci 2024; 25:5285. [PMID: 38791326 PMCID: PMC11121436 DOI: 10.3390/ijms25105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.
Collapse
Affiliation(s)
- Hilary Afeseh Ngwa
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
| | - Alejandra Bargues-Carot
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| | - Anumantha G. Kanthasamy
- Iowa Center for Advanced Neurotoxicity, Department of Biomedical Sciences, Iowa State University, Ames, IA 50010, USA
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA; (A.B.-C.); (H.J.); (V.A.)
| |
Collapse
|
9
|
Sarawi WS, Attia HA, Alomar HA, Alhaidar R, Rihan E, Aldurgham N, Ali RA. The protective role of sesame oil against Parkinson's-like disease induced by manganese in rats. Behav Brain Res 2024; 465:114969. [PMID: 38548024 DOI: 10.1016/j.bbr.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rawan Alhaidar
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Esraa Rihan
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nora Aldurgham
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
10
|
Gonzalez-Cuyar LF, Nelson G, Nielsen SS, Dlamini WW, Keyser-Gibson A, Keene CD, Paulsen M, Criswell SR, Senini N, Sheppard L, Samy S, Simpson CD, Baker MG, Racette BA. Olfactory tract/bulb metal concentration in Manganese-exposed mineworkers. Neurotoxicology 2024; 102:96-105. [PMID: 38582332 DOI: 10.1016/j.neuro.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Manganese (Mn) is an essential micronutrient as well as a well-established neurotoxicant. Occupational and environmental exposures may bypass homeostatic regulation and lead to increased systemic Mn levels. Translocation of ultrafine ambient airborne particles via nasal neuronal pathway to olfactory bulb and tract may be an important pathway by which Mn enters the central nervous system. OBJECTIVE To measure olfactory tract/bulb tissue metal concentrations in Mn-exposed and non-exposed mineworkers. METHODS Using inductively coupled plasma-mass spectrometry (ICP-MS), we measured and compared tissue metal concentrations in unilateral olfactory tracts/bulbs of 24 Mn-exposed and 17 non-exposed South African mineworkers. We used linear regression to investigate the association between cumulative Mn exposures and olfactory tract/bulb Mn concentration. RESULTS The difference in mean olfactory tract/bulb Mn concentrations between Mn-exposed and non-Mn exposed mineworkers was 0.16 µg/g (95% CI -0.11, 0.42); but decreased to 0.09 µg/g (95% CI 0.004, 0.18) after exclusion of one influential observation. Olfactory tract/bulb metal concentration and cumulative Mn exposure suggested there may be a positive association; for each mg Mn/m3-year there was a 0.05 µg/g (95% CI 0.01, 0.08) greater olfactory tract/bulb Mn concentration overall, but -0.003 (95% CI -0.02, 0.02) when excluding the three influential observations. Recency of Mn exposure was not associated with olfactory tract/bulb Mn concentration. CONCLUSIONS Our findings suggest that Mn-exposed mineworkers might have higher olfactory tract/bulb tissue Mn concentrations than non-Mn exposed mineworkers, and that concentrations might depend more on cumulative dose than recency of exposure.
Collapse
Affiliation(s)
- Luis F Gonzalez-Cuyar
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA.
| | - Gill Nelson
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown 2193, South Africa; Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA; Department of Epidemiology, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Amelia Keyser-Gibson
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA
| | - C Dirk Keene
- University of Washington, School of Medicine and Department of Laboratory Medicine and Pathology, Division of Neuropathology, 325 9th Ave, Seattle, WA 98104, USA
| | - Michael Paulsen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Susan R Criswell
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Natalie Senini
- Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA; Department of Biostatistics, School of Public Health, University of Washington, 3980 15th Ave NE, Seattle, WA 98195, USA
| | - Shar Samy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Marissa G Baker
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, USA
| | - Brad A Racette
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, 27 St Andrews Rd, Parktown 2193, South Africa; Department of Neurology, Barrow Neurological Institute, 240 W Thomas Rd, Phoenix, AZ 85013, USA; Department of Neurology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Nishito Y, Kamimura Y, Nagamatsu S, Yamamoto N, Yasui H, Kambe T. Zinc and manganese homeostasis closely interact in mammalian cells. FASEB J 2024; 38:e23605. [PMID: 38597508 DOI: 10.1096/fj.202400181r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Understanding the homeostatic interactions among essential trace metals is important for explaining their roles in cellular systems. Recent studies in vertebrates suggest that cellular Mn metabolism is related to Zn metabolism in multifarious cellular processes. However, the underlying mechanism remains unclear. In this study, we examined the changes in the expression of proteins involved in cellular Zn and/or Mn homeostatic control and measured the Mn as well as Zn contents and Zn enzyme activities to elucidate the effects of Mn and Zn homeostasis on each other. Mn treatment decreased the expression of the Zn homeostatic proteins metallothionein (MT) and ZNT1 and reduced Zn enzyme activities, which were attributed to the decreased Zn content. Moreover, loss of Mn efflux transport protein decreased MT and ZNT1 expression and Zn enzyme activity without changing extracellular Mn content. This reduction was not observed when supplementing with the same Cu concentrations and in cells lacking Cu efflux proteins. Furthermore, cellular Zn homeostasis was oppositely regulated in cells expressing Zn and Mn importer ZIP8, depending on whether Zn or Mn concentration was elevated in the extracellular milieu. Our results provide novel insights into the intricate interactions between Mn and Zn homeostasis in mammalian cells and facilitate our understanding of the physiopathology of Mn, which may lead to the development of treatment strategies for Mn-related diseases in the future.
Collapse
Affiliation(s)
- Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Kamimura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shino Nagamatsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nao Yamamoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yasui
- Department of Analytical and Bioinorganic Chemistry, Division of Analytical and Physical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Gandhi D, Bhandari S, Mishra S, Rudrashetti AP, Vetrivel U, Thimmulappa RK, Rajasekaran S. Forced expression of microRNA-221-3p exerts protective effects against manganese-induced cytotoxicity in human lung epithelial cells. Toxicol Appl Pharmacol 2024; 485:116904. [PMID: 38503349 DOI: 10.1016/j.taap.2024.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Manganese (Mn)-induced pulmonary toxicity and the underlying molecular mechanisms remain largely enigmatic. Further, in recent years, microRNAs (miRNAs) have emerged as regulators of several pollutants-mediated toxicity. In this context, our study aimed at elucidating whether miRNAs are involved in manganese (II) chloride (MnCl2) (Mn2+)-induced cytotoxicity in lung epithelial cells. Growth inhibition of Mn2+ towards normal human bronchial epithelial (BEAS-2B) and adenocarcinomic human alveolar basal epithelial (A549) cells was analyzed by MTT assay following 24 or 48 h treatment. Reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), cell cycle arrest, and apoptosis were evaluated by flow cytometry. RT-qPCR and Western blot were performed to analyze the expression of cyclins, anti-oxidant genes, and miRNAs. We used small RNA sequencing to investigate Mn2+-induced changes in miRNA expression patterns. In both cell lines, Mn2+ treatment inhibited growth in a dose-dependent manner. Further, compared with vehicle-treated cells, Mn2+ (250 μM) treatment induced ROS generation, cell cycle arrest, apoptosis, and decreased ΔΨm as well as altered the expression of cyclins and anti-oxidant genes. Sequencing data revealed that totally 296 miRNAs were differentially expressed in Mn2+-treated cells. Among them, miR-221-3p was one of the topmost down-regulated miRNAs in Mn2+-treated cells. We further confirmed this association in A549 cells. In addition, transient transfection was performed to study gain-of-function experiments. Forced expression of miR-221-3p significantly improved cell viability and reduced Mn2+-induced cell cycle arrest and apoptosis in BEAS-2B cells. In conclusion, miR-221-3p may be the most likely target that accounts for the cytotoxicity of Mn2+-exposed lung epithelial cells.
Collapse
Affiliation(s)
- Deepa Gandhi
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sneha Bhandari
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sehal Mishra
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Umashankar Vetrivel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, India
| | - Rajesh K Thimmulappa
- Centre for Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education, Mysuru, India
| | - Subbiah Rajasekaran
- Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
13
|
Chen N, Ren Y, Xing L, Liu Z, Chen L, Liu S, Zhou X. In situ Raman spectral observation of succinimide intermediates in amyloid fibrillation kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123867. [PMID: 38198993 DOI: 10.1016/j.saa.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Succinimide intermediates play the crucial role in the nucleation process for protein amyloid fibril formation, as they can usually induce a non-native conformation in a fraction of soluble proteins to render amyloidogenicity and neurotoxicity. Thus, in situ detection of succinimide intermediates during amyloid fibrillation kinetics is of considerable importance, albeit challenging, because these succinimides are generally unstable in physiological conditions. Here, we found an in situ Raman spectral fingerprint to trace the succinimide intermediates in amyloid fibril formation, wherein the carbonyl symmetric stretching of cyclic imide in the succinimide derivative is located at ca. 1790 cm-1. Using its intensity as an indicator of succinimide intermediates, we have in situ detected and unravelled the role of succinimide intermediates during the oligomer formation from the Bz-Asp-Gly-NH2 dipeptide or the amyloid fibrillation kinetics of lysozyme with thermal/acid treatment.
Collapse
Affiliation(s)
- Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Ren
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhongqiang Liu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Lin Chen
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
14
|
Latronico T, Rossano R, Miniero DV, Casalino E, Liuzzi GM. Neuroprotective Effect of Resveratrol against Manganese-Induced Oxidative Stress and Matrix Metalloproteinase-9 in an "In Vivo" Model of Neurotoxicity. Int J Mol Sci 2024; 25:2142. [PMID: 38396818 PMCID: PMC10888573 DOI: 10.3390/ijms25042142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic exposure to manganese (Mn) leads to its accumulation in the central nervous system (CNS) and neurotoxicity with not well-known mechanisms. We investigated the involvement of matrix metalloproteinase (MMP)-2 and -9 in Mn neurotoxicity in an in vivo model of rats treated through an intraperitoneal injection, for 4 weeks, with 50 mg/kg of MnCl2 in the presence or in the absence of 30 mg/kg of resveratrol (RSV). A loss of weight was observed in Mn-treated rats compared with untreated and RSV-treated rats. A progressive recovery of body weight was detected in rats co-treated with Mn and RSV. The analysis of brain homogenates indicated that RSV counteracted the Mn-induced increase in MMP-9 levels and reactive oxygen species production as well as the Mn-induced decrease in superoxide dismutase activity and glutathione content. In conclusion, Mn exposure, resulting in MMP-9 induction with mechanisms related to oxidative stress, represents a risk factor for the development of CNS diseases.
Collapse
Affiliation(s)
- Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “A. Moro”, 70126 Bari, Italy; (D.V.M.); (G.M.L.)
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy;
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari “A. Moro”, 70126 Bari, Italy; (D.V.M.); (G.M.L.)
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari “A. Moro”, 70010 Bari, Italy;
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “A. Moro”, 70126 Bari, Italy; (D.V.M.); (G.M.L.)
| |
Collapse
|
15
|
Ng MG, Chan BJL, Koh RY, Ng KY, Chye SM. Prevention of Parkinson's Disease: From Risk Factors to Early Interventions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:746-760. [PMID: 37326115 DOI: 10.2174/1871527322666230616092054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by progressively worsening motor dysfunction. Currently, available therapies merely alleviate symptoms, and there are no cures. Consequently, some researchers have now shifted their attention to identifying the modifiable risk factors of PD, with the intention of possibly implementing early interventions to prevent the development of PD. Four primary risk factors for PD are discussed including environmental factors (pesticides and heavy metals), lifestyle (physical activity and dietary intake), drug abuse, and individual comorbidities. Additionally, clinical biomarkers, neuroimaging, biochemical biomarkers, and genetic biomarkers could also help to detect prodromal PD. This review compiled available evidence that illustrates the relationship between modifiable risk factors, biomarkers, and PD. In summary, we raise the distinct possibility of preventing PD via early interventions of the modifiable risk factors and early diagnosis.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Brendan Jun Lam Chan
- School of Health Science, International Medical University, 57000 Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University, 47500 Selangor, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Alsohaimi IH. Quantitative determination of trace elements in frozen and chilled chicken using ICP OES and related health risk assessment. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Del Rio Naiz SC, Varela KG, de Carvalho D, Remor AP. Probucol neuroprotection against manganese-induced damage in adult Wistar rat brain slices. Toxicol Ind Health 2023; 39:638-650. [PMID: 37705340 DOI: 10.1177/07482337231201565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Manganese (Mn) is an abundant element used for commercial purposes and is essential for the proper function of biological systems. Chronic exposure to high Mn concentrations causes Manganism, a Parkinson's-like neurological disorder. The pathophysiological mechanism of Manganism remains unknown; however, it involves mitochondrial dysfunction and oxidative stress. This study assessed the neuroprotective effect of probucol, a hypolipidemic agent with anti-inflammatory and antioxidant properties, on cell viability and oxidative stress in slices of the cerebral cortex and striatum from adult male Wistar rats. Brain structure slices were kept separately and incubated with manganese chloride (MnCl2) and probucol to evaluate the cell viability and oxidative parameters. Probucol prevented Mn toxicity in the cerebral cortex and striatum, as evidenced by the preservation of cell viability observed with probucol (10 and 30 μM) pre-treatment, as well as the prevention of mitochondrial complex I inhibition in the striatum (30 μM). These findings support the protective antioxidant action of probucol, attributed to its ability to prevent cell death and mitigate Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Karina Giacomini Varela
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Diego de Carvalho
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| | - Aline Pertile Remor
- Programa de Pós-Graduação em Biociências e Saúde (PPGBS), Área de Ciências da Vida e Saúde, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, Brazil
| |
Collapse
|
18
|
Gordanić SV, Kostić AŽ, Krstić Đ, Vuković S, Kilibarda S, Marković T, Moravčević Đ. A detailed survey of agroecological status of Allium ursinum across the republic of Serbia: Mineral composition and bioaccumulation potential. Heliyon 2023; 9:e22134. [PMID: 38034710 PMCID: PMC10685369 DOI: 10.1016/j.heliyon.2023.e22134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
The purpose of this study was to determine the content of twenty-two biogenic elements (BEs) and potentially toxic elements (PTEs) in the soil and fresh Allium ursinum leaves from 43 different locations, in order to examine their bioaccumulation potential. Analyses of soil and plant material were carried out by using Inductively Coupled Plasma coupled with Optical Emission Spectroscopy (ICP-OES), a mercury analyzer (Hg), liquid chromatography (Cr), and AAS hybrid technique (As). The obtained results of the investigated elements were compared with the proposed limit values. The soil contamination factor (CF) as well as plant bioaccumulation factor (BAF) were calculated and the correlation analysis was performed. The results showed that the content of some BEs/PTEs in the soil were above the limit values, with two locations highly contaminated (CF > 6) with five (Cr(VI), Cu, Mn, Ni, V) and four (As, Co, Pb, V) elements. The content of As, Cd, Cr, and Pb in the leaves was higher than the permitted levels at some locations. The BAF was high (K, Ca, Zn, As), medium (Mg, Cu, B, Ni, Na, Pb), and low (Fe, Mn, Cr). The correlation between BEs/PTEs content in the leaves and soil was not significant, except for the following elements: Cd (0.37), Ca (0.34), As (0.36), Pb (0.30), and Na (0.25). The observed medium correlation suggested that the detected elements originated both from the atmosphere and the soil. Although A. ursinum at examined locations seemed to be mostly safe for consumption, a selective mechanism of adoption of certain BEs/PTEs requires continuous monitoring of their content in the future, to avoid quantities that can jeopardize human health through its consumption.
Collapse
Affiliation(s)
- Stefan V. Gordanić
- Institute for Medicinal Plant Research „dr J. Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Aleksandar Ž. Kostić
- University of Belgrade, Faculty of Agriculture, Chair of Chemistry and Biochemistry, Nemanjina 6, 11080, Belgrade, Serbia
| | - Đurđa Krstić
- University of Belgrade, Faculty of Chemistry, Chair of Analytical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Sandra Vuković
- University of Belgrade, Faculty of Agriculture, Department for Crop and Vegetable Production, Nemanjina 6, 11080 Belgrade, Serbia
| | - Sofija Kilibarda
- University of Belgrade, Faculty of Agriculture, Department for Crop and Vegetable Production, Nemanjina 6, 11080 Belgrade, Serbia
| | - Tatjana Marković
- Institute for Medicinal Plant Research „dr J. Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Đorđe Moravčević
- University of Belgrade, Faculty of Agriculture, Department for Crop and Vegetable Production, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
19
|
Khan H, Verma Y, Rana SVS. Combined Effects of Fluoride and Arsenic on Mitochondrial Function in the Liver of Rat. Appl Biochem Biotechnol 2023; 195:6856-6866. [PMID: 36947368 DOI: 10.1007/s12010-023-04401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Biochemical and/or molecular mechanisms of arsenic or fluoride toxicity in experimental animals have been widely investigated in the recent past. However, their combined effects on target cells/organelle are poorly understood. The present study was executed to delineate their combined effects on mitochondrial function in the liver of rat. Female Wistar rats (140 ± 20 g) were force fed individually or in combination with sodium arsenate (4 mg/kg body weight) and sodium fluoride (4 mg/kg body weight) for 90 days. Thereafter, established markers of mitochondrial function viz. mitochondrial lipid peroxidation, oxidative phosphorylation, ATPase, succinic dehydrogenase, and caspase-3 activity were determined. Cytochrome C release and oxidative DNA damage were also estimated in the liver of respective groups of rats. The study showed significant differences in these results amongst the three groups. Observations on parameters viz. LPO, cytochrome-C, caspase-3, and 8-OHdG suggested an antagonistic relationship between these two elements. Results on ATPase, SDH, and ADP:O ratio indicated synergism. It is concluded that AsIII + F in combination may express differential effects on signalling pathways and proapoptotic/antiapoptotic proteins/genes that contribute to liver cell death. Interaction of As and F with mitochondria.
Collapse
Affiliation(s)
- Huma Khan
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
20
|
Kumar R, Vincy A, Rani K, Jain N, Singh S, Agarwal A, Vankayala R. Facile Synthesis of Multifunctional Carbon Dots Derived from Camel Milk for Mn 7+ Sensing and Antiamyloid and Anticancer Activities. ACS OMEGA 2023; 8:36521-36533. [PMID: 37810638 PMCID: PMC10552091 DOI: 10.1021/acsomega.3c05485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Carbon dots (CDs) are promising biocompatible fluorescent nanoparticles mainly used in bioimaging, drug delivery, sensing, therapeutics, and various other applications. The utilization of natural sources and green synthetic approaches is resulting in highly biocompatible and nontoxic nanoparticles. Herein, we report an unprecedented facile and green synthesis of highly luminescent carbon dots derived from camel milk (CM) for sensing manganese (Mn7+) ions and for identifying the anticancer potential and antiamyloid activity against α-synuclein amyloids. α-Synuclein amyloid formation due to protein misfolding (genetic and environmental factors) has gained significant attention due to its association with Parkinson's disease and other synucleinopathies. The as-synthesized CM-CDs possess an average hydrodynamic diameter ranging from 3 to 15 nm and also exhibit strong photoluminescence (PL) emission in the blue region. The CM-CDs possess good water dispersibility, stable fluorescence under different physical states, and outstanding photostability. Moreover, the CM-CDs are validated as an efficient sensor for the detection of Mn7+ ions in DI water and in metal ion-polluted tap water. In addition, the CM-CDs have demonstrated a very good quantum yield (QY) of 24.6% and a limit of detection (LOD) of 0.58 μM for Mn7+ ions with no incubation time. Consequently, the exceptional properties of CM-CDs make them highly suitable for a diverse array of biomedical applications.
Collapse
Affiliation(s)
- Rahul Kumar
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Karwar 342030, India
| | - Antony Vincy
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Karwar 342030, India
| | - Khushboo Rani
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Karwar 342030, India
| | - Neha Jain
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Karwar 342030, India
- Centre
for Emerging Technologies for Sustainable Development (CETSD), Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Sarvar Singh
- Department
of Electrical Engineering, Indian Institute
of Technology Jodhpur, Karwar 342030, India
| | - Ajay Agarwal
- Interdisciplinary
Research Platform Smart Healthcare, Indian
Institute of Technology Jodhpur, Karwar 342030, India
- Department
of Electrical Engineering, Indian Institute
of Technology Jodhpur, Karwar 342030, India
| | - Raviraj Vankayala
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Jodhpur, Karwar 342030, India
- Interdisciplinary
Research Platform Smart Healthcare, Indian
Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
21
|
Solovyev N, Lucio M, Mandrioli J, Forcisi S, Kanawati B, Uhl J, Vinceti M, Schmitt-Kopplin P, Michalke B. Interplay of Metallome and Metabolome in Amyotrophic Lateral Sclerosis: A Study on Cerebrospinal Fluid of Patients Carrying Disease-Related Gene Mutations. ACS Chem Neurosci 2023; 14:3035-3046. [PMID: 37608584 PMCID: PMC10485893 DOI: 10.1021/acschemneuro.3c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal progressive neurodegenerative disease, characterized by a loss of function of upper and lower motor neurons. This study aimed to explore probable pathological alterations occurring in individuals with ALS compared to neurologically healthy controls through the analysis of cerebrospinal fluid (CSF), a medium, which directly interacts with brain parenchyma. A total of 7 ALS patients with disease-associated mutations (ATXN2, C9ORF72, FUS, SOD1, and TARDBP) and 13 controls were included in the study. Multiple analytical approaches were employed, including metabolomic and metallomics profiling, as well as genetic screening, using CSF samples obtained from the brain compartment. Data analysis involved the application of multivariate statistical methods. Advanced hyphenated selenium and redox metal (iron, copper, and manganese) speciation techniques and nontargeted Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics were used for data acquisition. Nontargeted metabolomics showed reduced steroids, including sex hormones; additionally, copper and manganese species were found to be the most relevant features for ALS patients. This indicates a potential alteration of sex hormone pathways in the ALS-affected brain, as reflected in the CSF.
Collapse
Affiliation(s)
- Nikolay Solovyev
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marianna Lucio
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jessica Mandrioli
- Department
of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department
of Neurosciences, Azienda Ospedaliero Universitaria
di Modena, 41126 Modena, Italy
| | - Sara Forcisi
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Basem Kanawati
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Jenny Uhl
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Marco Vinceti
- CREAGEN
Research Center of Environmental, Genetic and Nutritional Epidemiology,
Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Philippe Schmitt-Kopplin
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Analytical
BioGeoChemistry Research Unit, Helmholtz
Center Munich—German Research Center for Environmental Health
GmbH, Ingolstädter
Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
22
|
Ma Y, Fei Y, Ding S, Jiang H, Fang J, Liu G. Trace metal elements: a bridge between host and intestinal microorganisms. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1976-1993. [PMID: 37528296 DOI: 10.1007/s11427-022-2359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/23/2023] [Indexed: 08/03/2023]
Abstract
Trace metal elements, such as iron, copper, manganese, and zinc, are essential nutrients for biological processes. Although their intake demand is low, they play a crucial role in cell homeostasis as the cofactors of various enzymes. Symbiotic intestinal microorganisms compete with their host for the use of trace metal elements. Moreover, the metabolic processes of trace metal elements in the host and microorganisms affect the organism's health. Supplementation or the lack of trace metal elements in the host can change the intestinal microbial community structure and function. Functional changes in symbiotic microorganisms can affect the host's metabolism of trace metal elements. In this review, we discuss the absorption and transport processes of trace metal elements in the host and symbiotic microorganisms and the effects of dynamic changes in the levels of trace metal elements on the intestinal microbial community structure. We also highlight the participation of trace metal elements as enzyme cofactors in the host immune process. Our findings indicate that the host uses metal nutrition immunity or metal poisoning to resist pathogens and improve immunity.
Collapse
Affiliation(s)
- Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yanquan Fei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China.
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
23
|
Gomes-Silva AP, Cunha de Medeiros PD, Silva LN, Da Silva Araújo Santiago M, Perobelli JE. Exposure to manganese during sertoli cell formation and proliferation disturbs early testicular development in rats. Reprod Toxicol 2023; 120:108447. [PMID: 37499885 DOI: 10.1016/j.reprotox.2023.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Manganese (Mn) is a metal and important micronutrient. However, exposure to supraphysiological levels of Mn, which occur through fungicides, atmospheric emissions, drainages, and spills, has been related to health risks, including morphometric changes in the male reproductive organs and impairment on gametogenesis and sperm quality, impacting the fertile ability of adult animals. Despite the relevance of the fetal/perinatal period for toxicological studies on Mn, previous data only deal with the physical and neurological development of the offspring, without mentioning their reproductive development. The present study investigated whether exposure to Mn during fetal/perinatal phase, specifically during the period of formation and proliferation of Sertoli cells, impairs the reproductive development of male offspring in early postnatal life. Therefore, pregnant Wistar rats were randomly distributed into 3 experimental groups: Ctl (received saline solution), Mn-9 (received 9 mg/kg of MnCl2), and Mn-90 (received 90 mg/kg of MnCl2). The female rats received the experimental treatment by gavage from gestational day 13 to lactational day 15, i.e., postnatal day (PND) 15 of the pups. Oxidative damage to the genetic material of germ and Sertoli cells, together with a decrease in connexin 43 immunolabeling were observed in the testis of male pups evaluated at PND 15. In addition, an increase in the seminiferous tubules presenting slight epithelium vacuolization and cells with eosinophilic cytoplasm were observed, without apparent epididymal changes. In conclusion, it was demonstrated that Mn perturbed the initial testicular development by altering Sertoli cell integrity through oxidative insult, which may compromise the spermatogenesis in the long-term.
Collapse
Affiliation(s)
- Ana Priscila Gomes-Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Paloma da Cunha de Medeiros
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Laís Nogueira Silva
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Marcella Da Silva Araújo Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil
| | - Juliana Elaine Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, 11070-100 Santos, SP, Brazil.
| |
Collapse
|
24
|
Li WH, Xiang ZTY, Lu AX, Wang SS, Yan CH. Manganese-induced apoptosis through the ROS-activated JNK/FOXO3a signaling pathway in CTX cells, a model of rat astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115326. [PMID: 37556958 DOI: 10.1016/j.ecoenv.2023.115326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Manganese (Mn) is an essential trace element that maintains many normal physiological functions. However, multi-system disorders would occur once overexposure to Mn, especially neurotoxicity. Despite evidence demonstrating the critical role of ROS-activated JNK/FOXO3a signaling pathway in neuronal survival, the specific mechanisms by which it contributes to Mn-induced neurotoxicity are still unclear. The objectives of this study was to examine the modulation of the JNK/FOXO3a signaling pathway, which is activated by ROS, in Mn-induced apoptosis, using a rat brain astrocyte cell line (CTX cells). This study found that a dose-dependent decrease in cell viability of CTX cells was observed with 150, 200, 250, 300 μmol/L Mn. The results of apoptosis-related protein assay showed that Mn decreased the expression of anti-apoptotic protein Bcl-2 and enhanced the expression of apoptosis-related proteins like Bax and Cleaved-Caspase3. In addition, treatment with Mn resulted in elevated ROS levels and increased phosphorylation levels of JNK. Conversely, phosphorylation of nuclear transcription factors FOXO3a, which regulates expression of transcription factors including Bim and PUMA, was decreased. Depletion of ROS by N-acetyl-L-cysteine (NAC) and inhibition of the JNK pathway by SP600125 prevented Mn-induced JNK/FOXO3a pathway activation and, more importantly, the level of apoptosis was also significantly reduced. Confirmation of Mn-induced apoptosis in CTX cells through ROS generation and activation of the JNK/FOXO3a signaling pathway was the outcome of this study. These findings offer fresh insights into the neurotoxic mechanisms of Mn and therapeutic targets following Mn exposure.
Collapse
Affiliation(s)
- Wan-He Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ting-Yan Xiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An-Xin Lu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Su Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chong-Huai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Pubilc Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Mogi M. Manganese exposure is a risk for brain atrophy. Hypertens Res 2023; 46:1883-1885. [PMID: 37296312 DOI: 10.1038/s41440-023-01339-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Affiliation(s)
- Masaki Mogi
- Department of Pharmacology, Ehime University, Graduate School of Medicine, Shitsukawa, Tohon, Ehime, 791-0295, Japan.
| |
Collapse
|
26
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
27
|
Cordeiro LM, Soares MV, da Silva AF, Dos Santos LV, de Souza LI, da Silveira TL, Baptista FBO, de Oliveira GV, Pappis C, Dressler VL, Arantes LP, Zheng F, Soares FAA. Toxicity of Copper and Zinc alone and in combination in Caenorhabditis elegans model of Huntington's disease and protective effects of rutin. Neurotoxicology 2023:S0161-813X(23)00085-2. [PMID: 37302585 DOI: 10.1016/j.neuro.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Copper (Cu) and Zinc (Zn) are required in small concentrations for metabolic functions, but are also toxic. There is a great concern about soil pollution by heavy metals, which may exposure the population to these toxicants, either by inhalation of dust or exposure to toxicants through ingestion of food derived from contaminated soils. In addition, the toxicity of metals in combination is questionable, as soil quality guidelines only assess them separately. It is well known that metal accumulation is often found in the pathologically affected regions of many neurodegenerative diseases, including Huntington's disease (HD). HD is caused by an autosomal dominantly inherited CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. This results in the formation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD results in loss of neuronal cells, motor changes, and dementia. Rutin is a flavonoid found in various food sources, and previous studies indicate it has protective effects in HD models and acts as a metal chelator. However, further studies are needed to unravel its effects on metal dyshomeostasis and to discern the underlying mechanisms. In the present study, we investigated the toxic effects of long-term exposure to copper, zinc, and their mixture, and the relationship with the progression of neurotoxicity and neurodegeneration in a C. elegans-based HD model. Furthermore, we investigated the effects of rutin post metal exposure. Overall, we demonstrate that chronic exposure to the metals and their mixture altered body parameters, locomotion, and developmental delay, in addition to increasing polyQ protein aggregates in muscles and neurons causing neurodegeneration. We also propose that rutin has protective effects acting through mechanisms involving antioxidant and chelating properties. Altogether, our data provides new indications about the higher toxicity of metals in combination, the chelating potential of rutin in the C. elegans model of HD and possible strategies for future treatments of neurodegenerative diseases caused by the aggregation of proteins related to metals.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Marcell Valandro Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Luiza Venturini Dos Santos
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Larissa Ilha de Souza
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Tássia Limana da Silveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Obetine Baptista
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Gabriela Vitória de Oliveira
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Pappis
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Valderi Luiz Dressler
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Chemistry, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- State University of Minas Gerais, Department of Biomedical Sciences and Health, Zip code 37900-106, Passos, MG, Brazil
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Felix Alexandre Antunes Soares
- Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Zip code 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
28
|
Briñez-Gallego P, da Costa Silva DG, Cordeiro MF, Horn AP, Hort MA. Experimental models of chemically induced Parkinson's disease in zebrafish at the embryonic larval stage: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:201-237. [PMID: 36859813 DOI: 10.1080/10937404.2023.2182390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra that results in a decrease in dopamine levels, resulting in motor-type disturbances. Different vertebrate models, such as rodents and fish, have been used to study PD. In recent decades, Danio rerio (zebrafish) has emerged as a potential model for the investigation of neurodegenerative diseases due to its homology to the nervous system of humans. In this context, this systematic review aimed to identify publications that reported the utilization of neurotoxins as an experimental model of parkinsonism in zebrafish embryos and larvae. Ultimately, 56 articles were identified by searching three databases (PubMed, Web of Science, and Google Scholar). Seventeen studies using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 4 1-methyl-4-phenylpyridinium (MPP+), 24 6-hydroxydopamine (6-OHDA), 6 paraquat/diquat, 2 rotenone, and 6 articles using other types of unusual neurotoxins to induce PD were selected. Neurobehavioral function, such as motor activity, dopaminergic neuron markers, oxidative stress biomarkers, and other relevant parameters in the zebrafish embryo-larval model were examined. In summary, this review provides information to help researchers determine which chemical model is suitable to study experimental parkinsonism, according to the effects induced by neurotoxins in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Paola Briñez-Gallego
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Dennis Guilherme da Costa Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Marcos Freitas Cordeiro
- Programa de Pós-graduação em Biociências e Saúde, Universidade do Oeste de Santa Catarina - UNOESC, Joaçaba, SC, Brasil
| | - Ana Paula Horn
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| | - Mariana Appel Hort
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brasil
| |
Collapse
|
29
|
Chen X, Xing L, Li X, Chen N, Liu L, Wang J, Zhou X, Liu S. Manganese Ion-Induced Amyloid Fibrillation Kinetics of Hen Egg White-Lysozyme in Thermal and Acidic Conditions. ACS OMEGA 2023; 8:16439-16449. [PMID: 37179629 PMCID: PMC10173442 DOI: 10.1021/acsomega.3c01531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
As manganese ions (Mn2+) are identified as an environmental risk factor for neurodegenerative diseases, uncovering their action mechanism on protein amyloid fibril formation is crucial for related disease treatments. Herein, we performed a combined study of Raman spectroscopy, atomic force microscopy (AFM), thioflavin T (ThT) fluorescence, and UV-vis absorption spectroscopy assays, in which the distinctive effect of Mn2+ on the amyloid fibrillation kinetics of hen egg white-lysozyme (HEWL) was clarified at the molecular level. With thermal and acid treatments, the unfolding of protein tertiary structures is efficiently accelerated by Mn2+ to form oligomers, as indicated by two Raman markers for the Trp residues on protein side chains: the FWHM at 759 cm-1 and the I1340/I1360 ratio. Meanwhile, the inconsistent evolutionary kinetics of the two indicators, as well as AFM images and UV-vis absorption spectroscopy assays, validate the tendency of Mn2+ toward the formation of amorphous aggregates instead of amyloid fibrils. Moreover, Mn2+ plays an accelerator role in the secondary structure transition from α-helix to organized β-sheet structures, as indicated by the N-Cα-C intensity at 933 cm-1 and the amide I position of Raman spectroscopy and ThT fluorescence assays. Notably, the more significant promotion effect of Mn2+ on the formation of amorphous aggregates provides credible clues to understand the fact that excess exposure to manganese is associated with neurological diseases.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Lei Xing
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing
University, Nanjing 210023, China
| | - Xinfei Li
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Ning Chen
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Liming Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Jionghan Wang
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Xiaoguo Zhou
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| | - Shilin Liu
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei 230026, China
| |
Collapse
|
30
|
Kamitsuka PJ, Ghanem MM, Ziar R, McDonald SE, Thomas MG, Kwakye GF. Defective Mitochondrial Dynamics and Protein Degradation Pathways Underlie Cadmium-Induced Neurotoxicity and Cell Death in Huntington's Disease Striatal Cells. Int J Mol Sci 2023; 24:ijms24087178. [PMID: 37108341 PMCID: PMC10139096 DOI: 10.3390/ijms24087178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Exposure to heavy metals, including cadmium (Cd), can induce neurotoxicity and cell death. Cd is abundant in the environment and accumulates in the striatum, the primary brain region selectively affected by Huntington's disease (HD). We have previously reported that mutant huntingtin protein (mHTT) combined with chronic Cd exposure induces oxidative stress and promotes metal dyshomeostasis, resulting in cell death in a striatal cell model of HD. To understand the effect of acute Cd exposure on mitochondrial health and protein degradation pathways, we hypothesized that expression of mHTT coupled with acute Cd exposure would cooperatively alter mitochondrial bioenergetics and protein degradation mechanisms in striatal STHdh cells to reveal novel pathways that augment Cd cytotoxicity and HD pathogenicity. We report that mHTT cells are significantly more susceptible to acute Cd-induced cell death as early as 6 h after 40 µM CdCl2 exposure compared with wild-type (WT). Confocal microscopy, biochemical assays, and immunoblotting analysis revealed that mHTT and acute Cd exposure synergistically impair mitochondrial bioenergetics by reducing mitochondrial potential and cellular ATP levels and down-regulating the essential pro-fusion proteins MFN1 and MFN2. These pathogenic effects triggered cell death. Furthermore, Cd exposure increases the expression of autophagic markers, such as p62, LC3, and ATG5, and reduces the activity of the ubiquitin-proteasome system to promote neurodegeneration in HD striatal cells. Overall, these results reveal a novel mechanism to further establish Cd as a pathogenic neuromodulator in striatal HD cells via Cd-triggered neurotoxicity and cell death mediated by an impairment in mitochondrial bioenergetics and autophagy with subsequent alteration in protein degradation pathways.
Collapse
Affiliation(s)
- Paul J Kamitsuka
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Marwan M Ghanem
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Rania Ziar
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Sarah E McDonald
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Morgan G Thomas
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| | - Gunnar F Kwakye
- Neuroscience Department, Oberlin College, 119 Woodland Street, Oberlin, OH 44074, USA
| |
Collapse
|
31
|
Koski L, Berntsson E, Vikström M, Wärmländer SKTS, Roos PM. Metal ratios as possible biomarkers for amyotrophic lateral sclerosis. J Trace Elem Med Biol 2023; 78:127163. [PMID: 37004478 DOI: 10.1016/j.jtemb.2023.127163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with unknown aetiology. Metals have been suspected to contribute to ALS pathogenesis since mid-19th century, yet studies on measured metal concentrations in ALS patients have often yielded conflicting results, with large individual variation in measured values. Calculating metal concentration ratios can unveil possible synergistic effects of neurotoxic metals in ALS pathogenesis. The aim of this study was to investigate if ratios of different metal concentrations in cerebrospinal fluid (CSF) and blood plasma, respectively, differ between ALS patients and healthy controls. METHODS Cerebrospinal fluid and blood plasma were collected from 17 ALS patients and 10 controls. Samples were analysed for 22 metals by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), and all possible 231 metal ratios calculated in each body fluid. RESULTS Fifty-three metal ratios were significantly elevated in ALS cases as compared to controls (p < 0.05); five in blood plasma, and 48 in CSF. The finding of fewer elevated ratios in blood plasma may indicate specific transport of metals into the central nervous system. The elevated metal ratios in CSF include Cd/Se (p = 0.031), and 16 ratios with magnesium, such as Mn/Mg (p = 0.005) and Al/Mg (p = 0.014). CONCLUSION Metal ratios may be used as biomarkers in ALS diagnosis and as guidelines for preventive measures.
Collapse
Affiliation(s)
- Lassi Koski
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Elina Berntsson
- Chemistry Section, Arrhenius Laboratories, Stockholm University, 106 91 Stockholm, Sweden; Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Max Vikström
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; Department of Clinical Physiology, St. Göran Hospital University Unit, 112 81 Stockholm, Sweden
| |
Collapse
|
32
|
Ademiluyi AO, Ogunsuyi OB, Akinduro JO, Aro OP, Oboh G. Evaluating Water bitter leaf ( Struchium sparganophora) and Scent Leaf ( Ocimum gratissimum) extracts as sources of nutraceuticals against manganese-induced toxicity in fruit fly model. Drug Chem Toxicol 2023; 46:236-246. [PMID: 35315297 DOI: 10.1080/01480545.2021.2021928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tropical vegetables remain one of the major sources of functional foods and nutraceuticals, while their constituent phytochemicals, especially alkaloids, have been reported to exhibit neuroprotective properties. Here, the protective effect of alkaloid extracts from Scent leaf (Ocimum gratissimum) and Water bitter leaf (Struchium sparganophora) on manganese (Mn)- induced toxicity in wild type fruit fly (Drosophila melanogaster) model was investigated. Flies were exposed to 30 mM of Mn, the alkaloid extracts (20 and 200 µg/g) and co-treatment of Mn plus extracts, respectively. The survival rate and locomotor performance of the flies were assessed 7 days post-treatment, after which the flies were homogenized and assayed for activities of acetylcholinesterase (AChE), monoamine oxidase (MAO), glutathione-S transferase (GST), catalase, superoxide dismutase SOD), as well as total thiol, reactive oxygen species (ROS) and neural L-DOPA levels. Results showed that the extract significantly reversed Mn-induced reduction in the survival rate and locomotor performance of the flies. Furthermore, both extracts counteracted the Mn-induced elevation in AChE and MAO activities, as well as reduced antioxidant enzyme activities, with a concomitant mitigation of Mn-induced elevated ROS and neural L-DOPA level. The HPLC characterization of the extracts revealed the presence of N-propylamine, Vernomine and Piperidine as predominant in Water bitter leaf extract, while 2, 6-dimethylpyrazine and sesbanimide were found in scent leaf extract. Therefore, the alkaloid extract of these leaves may thus be sources of useful nutraceuticals for the management of pathological conditions associated with manganese toxicity.
Collapse
Affiliation(s)
- Adedayo Oluwaseun Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Opeyemi Babatunde Ogunsuyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Department of Biomedical Technology, Federal University of Technology, Akure, Nigeria
| | - Josephine Oluwaseun Akinduro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Olayemi Philemon Aro
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
33
|
Saucier D, Registe PPW, Bélanger M, O'Connell C. Urbanization, air pollution, and water pollution: Identification of potential environmental risk factors associated with amyotrophic lateral sclerosis using systematic reviews. Front Neurol 2023; 14:1108383. [PMID: 36970522 PMCID: PMC10030603 DOI: 10.3389/fneur.2023.1108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Despite decades of research, causes of ALS remain unclear. To evaluate recent hypotheses of plausible environmental factors, the aim of this study was to synthesize and appraise literature on the potential associations between the surrounding environment, including urbanization, air pollution and water pollution, and ALS. Methods We conducted a series (n = 3) of systematic reviews in PubMed and Scopus to identify epidemiological studies assessing relationships between urbanization, air pollution and water pollution with the development of ALS. Results The combined search strategy led to the inclusion of 44 articles pertaining to at least one exposure of interest. Of the 25 included urbanization studies, four of nine studies on living in rural areas and three of seven studies on living in more highly urbanized/dense areas found positive associations to ALS. There were also three of five studies for exposure to electromagnetic fields and/or proximity to powerlines that found positive associations to ALS. Three case-control studies for each of diesel exhaust and nitrogen dioxide found positive associations with the development of ALS, with the latter showing a dose-response in one study. Three studies for each of high selenium content in drinking water and proximity to lakes prone to cyanobacterial blooms also found positive associations to ALS. Conclusion Whereas markers of air and water pollution appear as potential risk factors for ALS, results are mixed for the role of urbanization.
Collapse
Affiliation(s)
- Daniel Saucier
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
- *Correspondence: Daniel Saucier
| | - Pierre Philippe Wilson Registe
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Mathieu Bélanger
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center de formation médicale du Nouveau-Brunswick, Moncton, NB, Canada
| | - Colleen O'Connell
- Stan Cassidy Center for Rehabilitation, Fredericton, NB, Canada
- Department of Medicine, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| |
Collapse
|
34
|
Karahan F. Evaluation of Trace Element and Heavy Metal Levels of Some Ethnobotanically Important Medicinal Plants Used as Remedies in Southern Turkey in Terms of Human Health Risk. Biol Trace Elem Res 2023; 201:493-513. [PMID: 35661327 PMCID: PMC9167670 DOI: 10.1007/s12011-022-03299-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Heavy metal accumulation in medicinal plants has increased dramatically in recent years due to agricultural and industrial activities leading to pollution of natural sources. This study is focused on the concentration of trace elements and heavy metals in aboveground parts of 33 medicinal plants from the Eastern Mediterranean of Turkey. Results showed that the Al concentrations varied between 4.368 and 1104.627, the B level varied between 47.850 and 271.479, Ca values ranged between 1971.213 and 22,642.895, Cd concentrations ranged between 0.011 and 0.651, Cr contents varied between 1.371 and 41.692, Cu values varied between 13.278 and 42.586, Fe concentrations varied between 20.705 and 1276.783, K levels ranged between 652.143 and 14,440.946, Mg concentrations varied from 336.871 to 1869.486, Mn contents varied between 46.383 and 849.492, Na concentrations varied between 167.144 and 3401.252, Ni values varied between 0.065 and 9.968, Pb levels ranged between 1.311 and 16.238, and Zn concentrations ranged between 67.250 and 281.954 mg kg-1, respectively. Furthermore, Recommended Dietary Allowance (RDA) values for trace elements and estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) for heavy metals were calculated. The concentrations of heavy metals in some studied plants distributed in industrial and mining regions were found as slightly higher than the acceptable limits determined by WHO. Consequently, in order to prevent this heavy metal accumulation, when collecting medicinal aromatic plants, rural areas, close to clean rivers, or mountainous areas should be preferred, away from highway, mining, and industrial areas.
Collapse
Affiliation(s)
- Faruk Karahan
- Department of Biology, Faculty of Science & Arts, Hatay Mustafa Kemal University, 31060, Hatay, Turkey.
| |
Collapse
|
35
|
Nedjimi B. Trace Element Quantification in Two Algerian Thymes (Thymus algeriensis Boiss & Reut. and Thymus capitatus (L.) Hoffm. & Link) Using EDXRF Spectrometry. Biol Trace Elem Res 2023; 201:455-463. [PMID: 35091882 DOI: 10.1007/s12011-022-03128-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
In an attempt to know the elemental composition of two endemic Algerian thyme species, we analyzed eleven mineral and trace elements (Br, Ca, Cr, Cu, Fe, K, Mn, Rb, Sr, V, and Zn) in Thymus algeriensis Boiss & Reut. and Thymus capitatus (L.) Hoffm. & Link. These species are commonly used in Algeria as aromatic and medicinal shrubs. The total concentrations of chemical elements were determined by EDXRF spectrometry. The instrument calibration was assessed through the analysis of certified reference material CRM-336 (Lichen) from the IAEA, Vienna, Austria. The results show that the highest concentrations of the micronutrients (Br, Cr, Cu, Mn, Sr, V, and Zn) were registered in T. algeriensis, while the maximum concentrations of Ca, Fe, and the non-essential element, Rb, were found in T. capitatus. Potassium contents were similar in the two species. The concentrations of essential chemical elements in T. algeriensis leaves were found in the following order: K > Ca > Mn > Fe > Zn > Cu > Cr. However, the order of these elements in T. capitatus was Ca > K > Fe > Zn > Mn > Cu > Cr. Principal component analysis (PCA) showed that T. algeriensis was highly associated with Br, Cr, Cu, Mn, Sr, V, and Zn, while T. capitatus was correlated with Ca, Fe, K, and Rb. Dietary element intakes through ingestion of 1 teaspoon of dry powder (~ 10 g) were estimated and compared to recommended daily intakes and permissible limits under FAO/WHO guidelines. In all cases, these estimates were below those levels. These findings can enhance the dissemination of these medicinal plants, which have medicinal and organoleptic properties, and provide an experiment-based guidance to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Bouzid Nedjimi
- Laboratory of Exploration and Valorization of Steppe Ecosystem, Faculty of Science of Nature and Life, Ziane Achour University of Djelfa, Cité Aîn Chih, P.O. Box 3117, 17000, Djelfa, Algeria.
| |
Collapse
|
36
|
Brahadeeswaran S, Lateef M, Calivarathan L. An Insight into the Molecular Mechanism of Mitochondrial Toxicant-induced Neuronal Apoptosis in Parkinson's Disease. Curr Mol Med 2023; 23:63-75. [PMID: 35125081 DOI: 10.2174/1566524022666220203163631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative disorders affecting approximately 1% of the world's population at the age of 50 and above. Majority of PD cases are sporadic and show symptoms after the age of 60 and above. At that time, most of the dopaminergic neurons in the region of substantia nigra pars compacta have been degenerated. Although in past decades, discoveries of genetic mutations linked to PD have significantly impacted our current understanding of the pathogenesis of this devastating disorder, it is likely that the environment also plays a critical role in the etiology of sporadic PD. Recent epidemiological and experimental studies indicate that exposure to environmental agents, including a number of agricultural and industrial chemicals, may contribute to the pathogenesis of several neurodegenerative disorders, including PD. Furthermore, there is a strong correlation between mitochondrial dysfunction and several forms of neurodegenerative disorders, including Alzheimer's disease (AD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and PD. Interestingly, substantia nigra of patients with PD has been shown to have a mild deficiency in mitochondrial respiratory electron transport chain NADH dehydrogenase (Complex I) activity. This review discusses the role of mitochondrial toxicants in the selective degeneration of dopaminergic neurons targeting the electron transport system that leads to Parkinsonism.
Collapse
Affiliation(s)
- Subhashini Brahadeeswaran
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| | - Mohammad Lateef
- Department of Animal Sciences, School of Life Sciences, Central University of Kashmir, Nunar Campus, Ganderbal - 191201, Jammu & Kashmir, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur - 610005, India
| |
Collapse
|
37
|
A systematic study on occurrence, risk estimation and health implications of heavy metals in potable water from different sources of Garhwal Himalaya, India. Sci Rep 2022; 12:20419. [PMID: 36443361 PMCID: PMC9705413 DOI: 10.1038/s41598-022-24925-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence of heavy metals (HMs) in drinking water has been a critical water quality concern for a long time and can compromise its aesthetic value to the larger extent. Chronic exposure of human beings to these toxic and non-toxic HMs through water ingestion can result in significant health risks. To assess these associated health risks, the present study was planned, designed and carried out for analyses of nine HMs namely, Al, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb in the potable water samples collected from different sources located across the Mandakini valley of Garhwal Himalaya, India using Inductively Coupled Plasma Mass Spectrometry. The measured values of Al, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found in the range of BDL-27.4 µg l-1, 0.26-4.5 µg l-1, BDL-139 µg l-1, 0.02-0.9 µg l-1, 0.4-5.5 µg l-1, 0.07-9.2 µg l-1, BDL-4164 µg l-1, BDL-0.8 µg l-1, and BDL-11.2 µg l-1, respectively. The observed values of analyzed HMs except Zn and Pb were found below the reference values prescribed by the WHO, USEPA and BIS. In addition, Zn concentration exceeded its maximum permissible limit (4000 µg l-1) recommended by WHO for infants at one station only. The observed indices show that there are no health risks from HMs contamination via drinking water in the region. Moreover, the estimated hazard quotients for children and adults also revealed no potential health risks. The results of present study will be useful as baseline data for state and national regulatory agencies.
Collapse
|
38
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Alhasan KA, Alshuaibi W, Hamad MH, Salim S, Jamjoom DZ, Alhashim AH, AlGhamdi MA, Kentab AY, Bashiri FA. Hypermanganesemia with Dystonia Type 2: A Potentially Treatable Neurodegenerative Disorder: A Case Series in a Tertiary University Hospital. CHILDREN 2022; 9:children9091335. [PMID: 36138644 PMCID: PMC9497897 DOI: 10.3390/children9091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
Abstract
Importance: Hypermanganesemia with dystonia type 2 is a rare autosomal recessive neurodegenerative disorder characterized by the loss of previously acquired milestones, dystonia, parkinsonian features, a high serum manganese level, and characteristic neuroimaging findings such as bilateral and symmetrically increased T1 and decreased T2/fluid-attenuated inversion recovery signal intensity in the basal ganglia. This condition is secondary to a mutation in the SLC39A14 gene. Objective: To present a series of three cases of hypermanganesemia with dystonia type 2, which was genetically confirmed secondary to a mutation in the SLC39A14 gene, and to describe the treatment and clinical course in these cases. Design: A retrospective case series. Setting: University, Tertiary hospital. Participants: Three unrelated pediatric patients with hypermanganesemia with dystonia type 2, genetically confirmed to be secondary to a mutation in the SLC39A14 gene. Exposures: Chelation therapy using calcium disodium edetate. Main outcome(s) and measure(s): The response to chelation therapy based on clinical improvements in motor and cognition developments. Results: All three patients were started on chelation therapy using calcium disodium edetate, and two of them showed an improvement in their clinical course. The chelation therapy could alter the course of the disease and prevent deterioration in the clinical setting. Conclusions and Relevance: Early diagnosis and intervention with chelating agents, such as calcium disodium edetate, will help change the outcome in patients with hypermanganesemia with dystonia type 2. This finding highlights the importance of early diagnosis and treatment in improving the outcomes of patients with treatable neurodegenerative disorders.
Collapse
Affiliation(s)
- Khalid A. Alhasan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Division of Pediatric Nephrology, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Walaa Alshuaibi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Division of Medical Genetics, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Muddathir H. Hamad
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Suha Salim
- Division of Pediatric Nephrology, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Dima Z. Jamjoom
- Department of Radiology and Medical Imaging, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Aqeela H. Alhashim
- Pediatric Neurology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Malak Ali AlGhamdi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Division of Medical Genetics, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Amal Y. Kentab
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
| | - Fahad A. Bashiri
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University Medical City, Riyadh 11461, Saudi Arabia
- Correspondence: ; Tel.: +966-118066331
| |
Collapse
|
40
|
Nicastro R, Gaillard H, Zarzuela L, Péli-Gulli MP, Fernández-García E, Tomé M, García-Rodríguez N, Durán RV, De Virgilio C, Wellinger RE. Manganese is a physiologically relevant TORC1 activator in yeast and mammals. eLife 2022; 11:80497. [PMID: 35904415 PMCID: PMC9337852 DOI: 10.7554/elife.80497] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.
Collapse
Affiliation(s)
- Raffaele Nicastro
- University of Fribourg, Department of Biology, Fribourg, Switzerland
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Elisabet Fernández-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
41
|
Ferreira SA, Loreto JS, Dos Santos MM, Barbosa NV. Environmentally relevant manganese concentrations evoke anxiety phenotypes in adult zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103870. [PMID: 35523392 DOI: 10.1016/j.etap.2022.103870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Manganese (Mn) is an essential metal for living organisms. However, the excess of Mn can be toxic, especially for the central nervous system. Herein, we used adult zebrafish as model organism to investigate the relationship of an environmentally relevant Mn exposure with the onset of neurobehavioral disturbances and brain biochemical alterations. Fish were exposed to MnCl2 at 0.5, 2.0, 7.5 and 15.0 mg/L for 96 h, and after submitted to trials for examining exploratory, locomotor and anxiety-related behaviors. The neurobehavioral parameters were followed by the analyses of cell viability, Mn accumulation and acetylcholinesterase activity in the brain, and whole-body cortisol levels. By Novel tank, Light dark and Social preference test, we found that the exposure to Mn, along with locomotor deficits induced anxiety-like phenotypes in zebrafish. Most of these behavioral changes were evoked by the highest concentrations, which also caused cell viability loss, higher accumulation of Mn and increased AChE activity in the brain, and an increase in the whole-body cortisol content. Our findings demonstrated that zebrafish are quite sensitive to levels of Mn found in the environment, and that the magnitude of the neurotoxic effects may be associated with the levels of manganese accumulated in the brain. Interestingly, we showed that Mn exposure in addition to motor deficits may also cause psychiatric abnormalities, namely anxiety.
Collapse
Affiliation(s)
- Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Julia Sepel Loreto
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Nilda Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Avenida Roraima, 1000, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
42
|
Kim H, Harrison FE, Aschner M, Bowman AB. Exposing the role of metals in neurological disorders: a focus on manganese. Trends Mol Med 2022; 28:555-568. [PMID: 35610122 PMCID: PMC9233117 DOI: 10.1016/j.molmed.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Metals are ubiquitous chemical entities involved in a myriad of biological processes. Despite their integral role in sustaining life, overexposure can lead to deleterious neurological outcomes posing a public health concern. Excess exposure to metals has been associated with aberrant neurodevelopmental and neurodegenerative diseases and prominently contributes to environmental risk for neurological disorders. Here, we use manganese (Mn) to exemplify the gap in our understanding of the mechanisms behind acute metal toxicity and their relationship to chronic toxicity and disease. This challenge frustrates understanding of how individual exposure histories translate into preventing and treating brain diseases from childhood through old age. We discuss ways to enhance the predictive value of preclinical models and define mechanisms of chronic, persistent, and latent neurotoxicity.
Collapse
Affiliation(s)
- Hyunjin Kim
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
43
|
Pankau C, Cooper RL. Molecular physiology of manganese in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100886. [PMID: 35278758 DOI: 10.1016/j.cois.2022.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Manganese is an essential element for maintaining life. Overexposure to the metal, however, can be toxic to organisms. Given the significant function of manganese in insects, agriculture, and human disease, as well as in the healthy ecology of the planet, the biological activities of manganese in insects needs consideration. Because of the role of manganese as a cofactor for essential enzymes present in different organelles, both over and underexposure to manganese has a multifaceted effect on organisms. At the physiological level, the effects of insect exposure to the metal on enzymatic activities and consequent alteration of insect behaviors are best explained through the metal's role in modulating the dopaminergic system. Despite numerous examples that alterations in manganese homeostasis have profound effects on insects, the cellular mechanisms that ensure homeostasis of this essential metal remain presently unknown, calling for further research in this area.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
44
|
Nabi M, Tabassum N. Role of Environmental Toxicants on Neurodegenerative Disorders. FRONTIERS IN TOXICOLOGY 2022; 4:837579. [PMID: 35647576 PMCID: PMC9131020 DOI: 10.3389/ftox.2022.837579] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/22/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegeneration leads to the loss of structural and functioning components of neurons over time. Various studies have related neurodegeneration to a number of degenerative disorders. Neurological repercussions of neurodegeneration can have severe impacts on the physical and mental health of patients. In the recent past, various neurodegenerative ailments such as Alzheimer’s and Parkinson’s illnesses have received global consideration owing to their global occurrence. Environmental attributes have been regarded as the main contributors to neural dysfunction-related disorders. The majority of neurological diseases are mainly related to prenatal and postnatal exposure to industrially produced environmental toxins. Some neurotoxic metals, like lead (Pb), aluminium (Al), Mercury (Hg), manganese (Mn), cadmium (Cd), and arsenic (As), and also pesticides and metal-based nanoparticles, have been implicated in Parkinson’s and Alzheimer’s disease. The contaminants are known for their ability to produce senile or amyloid plaques and neurofibrillary tangles (NFTs), which are the key features of these neurological dysfunctions. Besides, solvent exposure is also a significant contributor to neurological diseases. This study recapitulates the role of environmental neurotoxins on neurodegeneration with special emphasis on major neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Masarat Nabi
- Department of Environmental Science, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
- *Correspondence: Masarat Nabi, , orcid.org/0000-0003-1677-6498; Nahida Tabassum,
| |
Collapse
|
45
|
Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
|
46
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
47
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. Int J Biol Macromol 2022; 200:151-161. [PMID: 34995654 DOI: 10.1016/j.ijbiomac.2021.12.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in various human diseases. However, more and more proteins, whether in human body or in food, have been found to be able to form amyloid fibrils with in-depth researches. As a model protein for amyloid research, lysozyme has always been the focus of research in various fields. Firstly, the formation mechanisms of amyloid fibrils are discussed concisely. Researches on the regulation of lysozyme amyloid fibrils are helpful to find suitable therapeutic drugs and unfriendly substances. And this review article summarizes a number of exogenous substances including small molecules, nanoparticles, macromolecules, and polymers. Small molecules are mainly connected to lysozyme through hydrophobic interaction, electrostatic interaction, π-π interaction, van der Waals force and hydrogen bond. Nanoparticles inhibit the formation of amyloid fibers by stabilizing lysozyme and fixing β-sheet. Besides, the applications of lysozyme amyloid fibrils in food-related fields are considered furtherly due to outstanding physical and mechanical properties. Nevertheless, the potential health threats are still worthy of our attention. Finally, we also give suggestions and opinions on the future research direction of lysozyme amyloid fibrils.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
48
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
49
|
Pankau C, Nadolski J, Tanner H, Cryer C, Di Girolamo J, Haddad C, Lanning M, Miller M, Neely D, Wilson R, Whittinghill B, Cooper RL. Examining the effect of manganese on physiological processes: Invertebrate models. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109209. [PMID: 34628058 PMCID: PMC8922992 DOI: 10.1016/j.cbpc.2021.109209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/24/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
Manganese (Mn2+ as MnSO4 &/or MnCl2) is a common and essential element for maintaining life in plants and animals and is found in soil, fresh waters and marine waters; however, over exposure is toxic to organisms. MnSO4 is added to soil for agricultural purposes and people are exposed to Mn2+ in the mining industry. Hypermanganesemia in mammals is associated with neurological issues mimicking Parkinson's disease (PD) and appears to target dopaminergic neural circuits. However, it also seems that hypermanganesemia can affect many aspects of health besides dopaminergic synapses. We examined the effect on development, behavior, survival, cardiac function, and glutamatergic synaptic transmission in the Drosophila melanogaster. In addition, we examined the effect of Mn2+ on a sensory proprioceptive organ and nerve conduction in a marine crustacean and synaptic transmission at glutamatergic neuromuscular junctions of freshwater crayfish. A dose-response effect of higher Mn2+ retards development, survival and cardiac function in larval Drosophila and survival in larvae and adults. MnSO4 as well as MnCl2 blocks stretch activated responses in primary proprioceptive neurons in a dose-response manner. Mn2+ blocks glutamatergic synaptic transmission in Drosophila as well as crayfish via presynaptic action. This study is relevant in demonstrating the effects of Mn2+ on various physiological functions in order to learn more about acute and long-term consequences Mn2+ exposure.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jeremy Nadolski
- Department of Mathematical and Computational Sciences, Benedictine University, Lisle, IL 60532, USA
| | - Hannah Tanner
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Biology, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Carlie Cryer
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John Di Girolamo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Christine Haddad
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Matthew Lanning
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mason Miller
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Devan Neely
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Reece Wilson
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
50
|
Zhang M, Zhu L, Wang H, Hao Y, Zhang Q, Zhao C, Bao X. A novel homozygous SLC39A14 variant in an infant with hypermanganesemia and a review of the literature. Front Pediatr 2022; 10:949651. [PMID: 36733764 PMCID: PMC9886663 DOI: 10.3389/fped.2022.949651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Manganese (Mn) is an essential trace metal necessary for good health; however, excessive amounts in the body are neurotoxic. To date, three genes (SLC30A10, SLC39A8, and SLC39A14) have been discovered to cause inborn errors in Mn metabolism in humans. As very rare diseases, the clinical features require further clarification. METHODS A male Chinese patient who mainly presented with hypermanganesemia and progressive parkinsonism-dystonia was recruited for this study. We collected and analyzed clinical information, performed whole-exome sequencing (WES), and reviewed the relevant literature. RESULTS The motor-developmental milestones of the patient were delayed at the age of 4 months, followed by rapidly progressive dystonia. The patient displayed elevated Mn concentrations in blood and urine, and brain magnetic resonance imaging (MRI) showed symmetrical hyperintensity on T1-weighted images and hypointensity on T2-weighted images in multiple regions. A novel homozygous variant of the SLC39A14 gene (c.1058T > G, p.L353R) was identified. The patient was treated with disodium calcium edetate chelation (Na2CaEDTA). Three months later, mild improvement in clinical manifestation, blood Mn levels, and brain MRI was observed. To date, 15 patients from 10 families have been reported with homozygous mutations of SLC39A14, with a mean age of onset of 14.9 months. The common initial symptom is motor regression or developmental milestone delay, with a disease course for nearly all patients involving development of progressive generalized dystonia and loss of ambulation before treatment. Additionally, hypermanganesemia manifests as Mn values ranging from 4- to 25-fold higher than normal baseline levels, along with brain MRI results similar to those observed in the recruited patient. Nine SLC39A14 variants have been identified. Seven patients have been treated with Na2CaEDTA, and only one patient achieved obvious clinical improvement. CONCLUSION We identified a novel SLC39A14 mutation related to autosomal recessive hypermanganesemia with dystonia-2, which is a very rare disease. Patients present motor regression or delay of developmental milestones and develop progressive generalized dystonia. Chelation therapy with Na2CaEDTA appears to effectively chelate Mn and increase urinary Mn excretion in some cases; however, clinical response varies. The outcome of the disease was unsatisfactory. This study expands the genetic spectrum of this disease.
Collapse
Affiliation(s)
- Meijiao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Liping Zhu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Huiping Wang
- Department of Neurology, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ying Hao
- Department of Pediatrics, Yuhuangding Hospital, Yantai, China
| | - Qingping Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chunyan Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|