1
|
Guo J, Jin X, Zhou Y, Gao B, Li Y, Zhou Y. Microplastic and antibiotics in waters: Interactions and environmental risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123125. [PMID: 39488185 DOI: 10.1016/j.jenvman.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Antibiotics (ATs) are ubiquitously detected in natural waters worldwide, and their tendency to co-migrate with microplastics (MPs) post-adsorption leads to heightened environmental risk. Research on the adsorption of ATs on MPs and their subsequent effects on the environmental risks is gaining significant attention globally. This adsorption process predominantly occurs through hydrophobic forces, hydrogen bonds, and electrostatic interactions and is influenced by various environmental factors. The interaction between MPs and ATs exhibited varying degrees of efficiency across different pH levels and ionic strengths. Furthermore, this paper outlines the environmental risks associated with the co-presence of MPs and ATs in aquatic environments, emphasizing the potential effect of MPs on the distribution of antibiotic resistance genes (ARGs) and related environmental risks. The potential hazards posed by MPs and ATs in aquatic systems warrant serious consideration. Future research should concentrate on the adsorption of ATs/ARGs on MPs under real environmental conditions, horizontal gene transfer on MPs, as well as biofilm formation and agglomeration behavior on MPs that needs to be emphasized.
Collapse
Affiliation(s)
- Jiayi Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xinbai Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, Shanghai, 200237, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; School of Life Sciences, Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
2
|
Kolda A, Mucko M, Rapljenović A, Ljubešić Z, Pikelj K, Kwokal Ž, Fajković H, Cuculić V. Beach wracks microbiome and its putative function in plastic polluted Mediterranean marine ecosystem. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106769. [PMID: 39369653 DOI: 10.1016/j.marenvres.2024.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/18/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
The coasts of the world's oceans and seas accumulate various types of floating debris, commonly known as beach wracks, including organic seaweeds, seagrass, and ubiquitous anthropogenic waste, mainly plastic. Beach wrack microbiome (MB), surviving in the form of a biofilm, ensures decomposition and remineralization of wracks, but can also serve as a vector of potential pathogens in the environment. Through the interdisciplinary approach and comprehensive sampling design that includes geological analysis of the sediment, plastic debris composition analysis (ATR-FTIR) and application of 16S rRNA gene metabarcoding of beach wrack MBs, this study aims to describe MB in relation to beach exposure, sediment type and plastic pollution. Major contributors in beach wrack MB were Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Verrucomicrobia and Firmicutes and there was significant dissimilarity between sample groups with Vibrio, Cobetia and Planococcus shaping the Exposed beach sample group and Cyclobacteriaceae and Flavobacterium shaping the Sheltered beach sample group. Our results suggest plastisphere MB is mostly shaped by beach exposure, type of seagrass, sediment type and probably beach naturalness with heavy influence of seawater MB and shows no significant dissimilarity between MBs from a variety of microplastics (MP). Putative functional analysis of MB detected plastic degradation and potential human pathogen bacteria in both beach wrack and seawater MB. The research provides the next crucial step in beach wrack MP accumulation research, MB composition and functional investigation with focus on beach exposure as an important variable.
Collapse
Affiliation(s)
- Anamarija Kolda
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Maja Mucko
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia.
| | - Ana Rapljenović
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Zrinka Ljubešić
- University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia
| | - Kristina Pikelj
- University of Zagreb, Faculty of Science, Department of Geology, Zagreb, Croatia
| | - Željko Kwokal
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Hana Fajković
- University of Zagreb, Faculty of Science, Department of Geology, Zagreb, Croatia
| | - Vlado Cuculić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| |
Collapse
|
3
|
Li W, Zeng J, Zheng N, Ge C, Li Y, Yao H. Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134817. [PMID: 38878444 DOI: 10.1016/j.jhazmat.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Jieyi Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China.
| |
Collapse
|
4
|
Espinoza JL, Phillips A, Prentice MB, Tan GS, Kamath PL, Lloyd KG, Dupont CL. Unveiling the microbial realm with VEBA 2.0: a modular bioinformatics suite for end-to-end genome-resolved prokaryotic, (micro)eukaryotic and viral multi-omics from either short- or long-read sequencing. Nucleic Acids Res 2024; 52:e63. [PMID: 38909293 DOI: 10.1093/nar/gkae528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
The microbiome is a complex community of microorganisms, encompassing prokaryotic (bacterial and archaeal), eukaryotic, and viral entities. This microbial ensemble plays a pivotal role in influencing the health and productivity of diverse ecosystems while shaping the web of life. However, many software suites developed to study microbiomes analyze only the prokaryotic community and provide limited to no support for viruses and microeukaryotes. Previously, we introduced the Viral Eukaryotic Bacterial Archaeal (VEBA) open-source software suite to address this critical gap in microbiome research by extending genome-resolved analysis beyond prokaryotes to encompass the understudied realms of eukaryotes and viruses. Here we present VEBA 2.0 with key updates including a comprehensive clustered microeukaryotic protein database, rapid genome/protein-level clustering, bioprospecting, non-coding/organelle gene modeling, genome-resolved taxonomic/pathway profiling, long-read support, and containerization. We demonstrate VEBA's versatile application through the analysis of diverse case studies including marine water, Siberian permafrost, and white-tailed deer lung tissues with the latter showcasing how to identify integrated viruses. VEBA represents a crucial advancement in microbiome research, offering a powerful and accessible software suite that bridges the gap between genomics and biotechnological solutions.
Collapse
Affiliation(s)
- Josh L Espinoza
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Allan Phillips
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Melanie B Prentice
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Gene S Tan
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME 04469, USA
| | - Karen G Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN 37917, USA
| | - Chris L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Yan X, Chio C, Li H, Zhu Y, Chen X, Qin W. Colonization characteristics and surface effects of microplastic biofilms: Implications for environmental behavior of typical pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173141. [PMID: 38761927 DOI: 10.1016/j.scitotenv.2024.173141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
This paper summarizes the colonization dynamics of biofilms on microplastics (MPs) surfaces in aquatic environments, encompassing bacterial characteristics, environmental factors affecting biofilm formation, and matrix types and characteristics. The interaction between biofilm and MPs was also discussed. Through summarizing recent literatures, it was found that MPs surfaces offer numerous benefits to microorganisms, including nutrient enrichment and enhanced resistance to environmental stress. Biofilm colonization changes the surface physical and chemical properties as well as the transport behavior of MPs. At the same time, biofilms also play an important role in the fragmentation and degradation of MPs. In addition, we also investigated the coexistence level, adsorption mechanism, enrichment, and transformation of MPs by environmental pollutants mediated by biofilms. Moreover, an interesting aspect about the colonization of biofilms was discussed. Biofilm colonization not only had a great effect on the accumulation of heavy metals by MPs, but also affects the interaction between particles and environmental pollutants, thereby changing their toxic effects and increasing the difficulty of MPs treatment. Consequently, further attention and research are warranted to delve into the internal mechanisms, environmental risks, and the control of the coexistence of MPs and biofilms.
Collapse
Affiliation(s)
- Xiurong Yan
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Hua Li
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China
| | - Yuen Zhu
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, Shanxi Province, China; Shanxi Laboratory for Yellow River, Taiyuan 030006, Shanxi Province, China; Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Xuantong Chen
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
6
|
Hahladakis JN. A meta-research analysis on the biological impact of plastic litter in the marine biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172504. [PMID: 38636865 DOI: 10.1016/j.scitotenv.2024.172504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Marine litter and more specifically plastic marine litter is nowadays considered a global issue with unprecedented impact and consequences to the entire marine ecosystem and biota. The current situation that has been created worldwide due to the abundance of plastic litter in the Earth's Seas has been characterized as alarming, necessitating the immediate action for an overall reduction of plastic waste, better collection and recycling schemes and beach-shoreline clean-ups. In this article we attempt to delve into the details of the magnitude of the impact that plastic litter have caused to marine biota via a meta-research analysis, by compiling, combining, analysing and presenting data from various relative works, using primarily scientific and, secondarily, grey literature. Apart from the threats that plastic marine litter pose to the marine ecosystem, they present potential threats to humans, as well, via food chain. Aside from understating the risks and uncertainties contained in the hereby collected and presenting information, this study can provide an evidence base for decision and policy makers into implementing the appropriate action plans for reducing and, in time, mitigating this immense problem.
Collapse
Affiliation(s)
- John N Hahladakis
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
7
|
Smith CE, Gilby BL, van de Merwe J, Jones J, Tait H, Townsend KA. Predictive modelling reveals Australian continental risk hotspots for marine debris interactions with key threatened species. GLOBAL CHANGE BIOLOGY 2024; 30:e17313. [PMID: 38837834 DOI: 10.1111/gcb.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 06/07/2024]
Abstract
Anthropogenic debris is a global threat that impacts threatened species through various lethal and sub-lethal consequences, as well as overall ecosystem health. This study used a database of over 24,000 beach surveys of marine debris collated by the Australian Marine Debris Initiative from 2012 to 2021, with two key objectives: (1) identify variables that most influence the occurrence of debris hotspots on a continental scale and (2) use these findings to identify likely hotspots of interaction between threatened species and marine debris. The number of particles found in each beach survey was modelled alongside fifteen biological, social, and physical spatial variables including land use, physical oceanography, population, rainfall, distance to waste facilities, ports, and mangroves to identify the significant drivers of debris deposition. The model of best fit for predicting debris particle abundance was calculated using a generalized additive model. Overall, debris was more abundant at sites near catchments with high annual rainfall (mm), intensive land use (km2), and that were nearer to ports (km) and mangroves (km). These results support previous studies which state that mangroves are a significant sink for marine debris, and that large ports and urbanized catchments are significant sources for marine debris. We illustrate the applicability of these models by quantifying significant overlap between debris hotspots and the distributions for four internationally listed threatened species that exhibit debris interactions; green turtle (26,868 km2), dugong (16,164 km2), Australian sea lion (2903 km2) and Flesh-footed Shearwater (2413 km2). This equates to less than 1% (Flesh-footed Shearwater, Australian sea lion), over 2% (green sea turtle) and over 5% (dugong) of their habitat being identified as areas of high risk for marine debris interactions. The results of this study hold practical value, informing decision-making processes, managing debris pollution at continental scales, as well as identifying gaps in species monitoring.
Collapse
Affiliation(s)
- Caitlin E Smith
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland, Australia
| | - Ben L Gilby
- School of Science, Technology and Engineering, University of the Sunshine Coast, Petrie, Queensland, Australia
| | - Jason van de Merwe
- Australian Rivers Institute, Griffith University, Southport, Queensland, Australia
| | - Jodi Jones
- Tangaroa Blue Foundation, Australian Marine Debris Initiative Database, Dunsborough, Western Australia, Australia
| | - Heidi Tait
- Tangaroa Blue Foundation, Australian Marine Debris Initiative Database, Dunsborough, Western Australia, Australia
| | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Hervey Bay, Queensland, Australia
| |
Collapse
|
8
|
Wang T, Lu F, Yang C, Wang C, Liao Y, Mkuye R, Deng Y. Exploring changes in microplastic-associated bacterial communities with time, location, and polymer type in Liusha Bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106525. [PMID: 38657370 DOI: 10.1016/j.marenvres.2024.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Microplastics have become a widespread concern within marine environments and are particularly evident in aquaculture regions that are characterized by plastic accumulation. This study employed 16 S rDNA sequencing to investigate the dynamic succession of microbial communities colonizing polyvinyl chloride (PVC), polystyrene (PS), and polyamide (PA) microplastics in seawater, when subjected to varying exposure durations in the Liusha Bay aquaculture region. Results revealed that the composition of microplastics microbial communities varied remarkably across geographical locations and exposure times. With an increase in exposure duration, both the diversity and richness of bacterial communities colonizing microplastics significantly increased, microbial communities show adaptations to the plastisphere. The type of microplastics had a significant effect on the community structure characteristicsof bacteria attached to their surfaces, with inconsistent trends in the relative abundance of different genera on different substrates. Notably, microplastic surfaces harbored a significant abundance of hydrocarbon-degrading bacteria, exemplified by Erythrobacter. These findings underscore the potential of microplastics as unique microbial niches. Meanwhile, long-term exposure experiments also offer the possibility of screening for plastic-degrading bacteria. In addition, the presence of the pathogenic bacterium Vibrio was detected in all microplastic samples, implying that microplastics could serve as carriers for pathogenic dissemination. This underscores the urgency of addressing the risk posed by the proliferation of harmful bacteria on microplastic surfaces. Overall, this study enhances our understanding of microbial community dynamics on microplastics under diverse conditions. It contributes to the broader comprehension of plastisphere microbial ecosystems in the marine environment, thereby addressing critical environmental implications.
Collapse
Affiliation(s)
- Ting Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fenglan Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | - Cheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
9
|
Panczyk T, Nieszporek K, Wolski P. Modeling the degradation of polypropylene and polystyrene under shock compression and mechanical cleaving using the ReaxFF force field. CHEMOSPHERE 2024; 357:142056. [PMID: 38641294 DOI: 10.1016/j.chemosphere.2024.142056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Polypropylene (PP) and polystyrene (PS) underwent a comprehensive investigation into their mechanical and chemical degradation through reactive molecular dynamics simulations. The simulations utilized the ReaxFF force field for CHO (carbon-hydrogen-oxygen) systems in the combustion branch. The study included equilibrium simulations to determine densities and melting temperatures, non-equilibrium simulations for stress-strain and Young moduli determination, mechanical cleaving to identify surface species resulting from material fragmentation, and shock compression simulations to elucidate chemical reactions activated by some external energy sources. The results indicate that material properties such as densities, phase transition temperatures, and Young moduli are accurately reproduced by the ReaxFF-CHO force field. The reactive dynamics analysis yielded crucial insights into the surface composition of fragmented polymers. Both polymers exhibited backbone breakage, leaving -CH2· and -CH·- radicals as terminals. PP demonstrated substantial fragmentation, while PS showed a tendency to develop crosslinks. A detailed analysis of chemical reactions resulting from increasing activation due to increasing value of compression pressure is presented and discussed.
Collapse
Affiliation(s)
- Tomasz Panczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences ul. Niezapominajek 8, 30239 Cracow, Poland.
| | - Krzysztof Nieszporek
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin pl. Maria Curie-Sklodowska 3, 20031, Lublin, Poland
| | - Pawel Wolski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences ul. Niezapominajek 8, 30239 Cracow, Poland
| |
Collapse
|
10
|
Jaafarzadeh N, Talepour N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:1-12. [PMID: 38887766 PMCID: PMC11180052 DOI: 10.1007/s40201-023-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Landfill leachate contains antibiotic resistance genes (ARGs) and microplastics (MPs), making it an important reservoir. However, little research has been conducted on how ARGs are enriched on MPs and how the presence of MPs affects pathogens and ARGs in leachates and soil. MPs possess the capacity to establish unique bacterial populations and assimilate contaminants from their immediate surroundings, generating a potential environment conducive to the growth of disease-causing microorganisms and antibiotic resistance genes (ARGs), thereby exerting selection pressure. Through a comprehensive analysis of scientific literature, we have carried out a practical assessment of this topic. The gathering of pollutants and the formation of dense bacterial communities on microplastics create advantageous circumstances for an increased frequency of ARG transfer and evolution. Additional investigations are necessary to acquire a more profound comprehension of how pathogens and ARGs are enriched, transported, and transferred on microplastics. This research is essential for evaluating the health risks associated with human exposure to these pollutants. Graphical Abstract
Collapse
Affiliation(s)
- Neamatollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Talepour
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Ahsan WA, Lin C, Hussain A, Sheraz M. Sustainable struggling: decoding microplastic released from bioplastics-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:554. [PMID: 38760486 DOI: 10.1007/s10661-024-12721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.
Collapse
Affiliation(s)
- Wazir Aitizaz Ahsan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
| | - Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Mahshab Sheraz
- Advanced Textile R&D, Department Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| |
Collapse
|
12
|
Seong T, Onizuka D, Satuito G, Kim HJ. Impact of nano- and micro-sized polystyrene beads on larval survival and growth of the Pacific oyster Crassostrea gigas. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133952. [PMID: 38447367 DOI: 10.1016/j.jhazmat.2024.133952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
This study successionally monitored how nano- and micro-sized polystyrene beads (MNPs) influence larval mortality, growth, and attachment behavior of the Pacific oyster Crassostrea gigas related to MNP diameter and concentration. D-shaped larvae were sequentially exposed to three-diameter MNPs (0.55, 3.00, 6.00 µm) at five concentrations (0, 0.1, 1.0, 10, 20 μg/mL), and their mortality, growth stages and attachment were observed daily until they die. In addition, MNP intake and accumulation in larvae at each growth stage were determined using fluorescent beads. Deterioration in larval growth and survival was observed under all the exposure conditions, while significant negative effects on the growth parameters were defined with smaller MNPs at lower concentrations. Fluorescent signals were detected in larval digestive tracts at all except D-shaped larval stage, and on the mantle and foot in pediveligers. Therefore, MNP intake adversely affects larval physiological conditions by the synchronal effects of MNP size and concentration. Our findings highlight the implications of MNP characteristics on Pacific oyster larvae, emphasizing the interplay between size, concentration, and physiological responses, crucial for mitigating nanoparticle pollution in marine ecosystems.
Collapse
Affiliation(s)
- Taekyoung Seong
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Daiki Onizuka
- Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Glenn Satuito
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Hee-Jin Kim
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan.
| |
Collapse
|
13
|
Motivarash Y, Bhatt A, Kardani H. Microplastic (MP) occurrence in pelagic and demersal fishes of Gujarat, northwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17239-17255. [PMID: 38334930 DOI: 10.1007/s11356-024-32361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Microplastics (MPs) are globally observed in marine as well as freshwater habitats, and laboratory studies have shown that marine organisms can accidentally ingest them. Monitoring the MP ingestion by fish in the environment is very crucial for understanding the risk of consuming MP-contaminated fish for human health. In this study, we investigated MP ingestion in 400 fish individuals from the Veraval Coast, in the state of Gujarat, India. There was 100% MP occurrence in the inedible tissues of fish, and 68% of the analyzed fishes presented MPs in edible tissues. The most dominant MPs based on their size in fishes were 0.05-0.1 mm. One hundred percent presence of only fibres in edible tissue was observed, while in inedible tissue, it was 77%, 20.42% and 2.58% of fibre, fragment and film respectively. The most common MP colour was blue. The predominant polymers were low-density polyethylene (LDPE) followed by polypropylene, high-density polyethylene (HDPE) and polystyrene. This is the first study performed on MPs in marine fishes from this region. Our findings suggest that the abundance of MPs observed in this area is higher than in other states of the country.
Collapse
Affiliation(s)
- Yagnesh Motivarash
- College of Fisheries science, Kamdhenu University, Veraval, Gujarat, India.
| | - Ashishkumar Bhatt
- College of Fisheries science, Kamdhenu University, Veraval, Gujarat, India
| | - Hitesh Kardani
- Fisheries Research Station, Kamdhenu university, Sikka, Gujarat, India
| |
Collapse
|
14
|
Zhou Z, Tang J, Tang K, An M, Liu Z, Wu Z, Cao X, He C. Selective enrichment of bacteria and antibiotic resistance genes in microplastic biofilms and their potential hazards in coral reef ecosystems. CHEMOSPHERE 2024; 352:141309. [PMID: 38281603 DOI: 10.1016/j.chemosphere.2024.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Microplastics become hotspots for bacteria to trigger a series of ecological effects, but few studies have focused on the potential impacts of microplastic biofilms in coral reef ecosystems. Here, we measured the bacterial communities and antibiotic resistance genes (ARGs) in the seawater and microplastic biofilms. Results showed that microbial biofilms were formed on the surface of microplastics. The alpha diversity of the bacterial community in the microplastic biofilms was lower than that in the seawater, and the bacterial communities were distinct between the two. Further analysis revealed that several bacteria in the microplastic biofilms carried ARGs, and the proportion of which was correlated to the concentration of antibiotics in the seawater. Specifically, Vibrio was positively correlated to sul1 in the microplastic biofilms under higher concentrations of sulfonamides. Pathway analysis reflected significant overrepresentation of human disease related pathways in the bacterial community of microplastic biofilms. These results suggest that the microplastic biofilms could selectively enrich bacteria from the reef environments, causing the development of ARGs under antibiotic driving. This may pose a serious threat to coral reef ecosystems and human health. Our study provides new insights into the ecological impacts of microplastic biofilms in coral reef ecosystems.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Kai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mingxun An
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhaoqun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongjie Wu
- Hainan Academy of Ocean and Fisheries Sciences, Haikou 571126, China.
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Chunlong He
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Messer LF, Lee CE, Wattiez R, Matallana-Surget S. Novel functional insights into the microbiome inhabiting marine plastic debris: critical considerations to counteract the challenges of thin biofilms using multi-omics and comparative metaproteomics. MICROBIOME 2024; 12:36. [PMID: 38389111 PMCID: PMC10882806 DOI: 10.1186/s40168-024-01751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Microbial functioning on marine plastic surfaces has been poorly documented, especially within cold climates where temperature likely impacts microbial activity and the presence of hydrocarbonoclastic microorganisms. To date, only two studies have used metaproteomics to unravel microbial genotype-phenotype linkages in the marine 'plastisphere', and these have revealed the dominance of photosynthetic microorganisms within warm climates. Advancing the functional representation of the marine plastisphere is vital for the development of specific databases cataloging the functional diversity of the associated microorganisms and their peptide and protein sequences, to fuel biotechnological discoveries. Here, we provide a comprehensive assessment for plastisphere metaproteomics, using multi-omics and data mining on thin plastic biofilms to provide unique insights into plastisphere metabolism. Our robust experimental design assessed DNA/protein co-extraction and cell lysis strategies, proteomics workflows, and diverse protein search databases, to resolve the active plastisphere taxa and their expressed functions from an understudied cold environment. RESULTS For the first time, we demonstrate the predominance and activity of hydrocarbonoclastic genera (Psychrobacter, Flavobacterium, Pseudomonas) within a primarily heterotrophic plastisphere. Correspondingly, oxidative phosphorylation, the citrate cycle, and carbohydrate metabolism were the dominant pathways expressed. Quorum sensing and toxin-associated proteins of Streptomyces were indicative of inter-community interactions. Stress response proteins expressed by Psychrobacter, Planococcus, and Pseudoalteromonas and proteins mediating xenobiotics degradation in Psychrobacter and Pseudoalteromonas suggested phenotypic adaptations to the toxic chemical microenvironment of the plastisphere. Interestingly, a targeted search strategy identified plastic biodegradation enzymes, including polyamidase, hydrolase, and depolymerase, expressed by rare taxa. The expression of virulence factors and mechanisms of antimicrobial resistance suggested pathogenic genera were active, despite representing a minor component of the plastisphere community. CONCLUSION Our study addresses a critical gap in understanding the functioning of the marine plastisphere, contributing new insights into the function and ecology of an emerging and important microbial niche. Our comprehensive multi-omics and comparative metaproteomics experimental design enhances biological interpretations to provide new perspectives on microorganisms of potential biotechnological significance beyond biodegradation and to improve the assessment of the risks associated with microorganisms colonizing marine plastic pollution. Video Abstract.
Collapse
Affiliation(s)
- Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Charlotte E Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Mons, 7000, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland.
| |
Collapse
|
16
|
Veeraraghavan VP, Mony U. Understanding the role of microplastics in oral cancer. Pathol Res Pract 2024; 254:155089. [PMID: 38219496 DOI: 10.1016/j.prp.2023.155089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077,India.
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics ( COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077,India.
| |
Collapse
|
17
|
Corte Pause F, Urli S, Crociati M, Stradaioli G, Baufeld A. Connecting the Dots: Livestock Animals as Missing Links in the Chain of Microplastic Contamination and Human Health. Animals (Basel) 2024; 14:350. [PMID: 38275809 PMCID: PMC10812800 DOI: 10.3390/ani14020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Plastic pollution is a global diffuse threat, especially considering its fragmentation into microplastics (MPs) and nanoplastics (NPs). Since the contamination of the aquatic environment is already well studied, most studies have now focused on the soil. Moreover, the number of studies on the exposure routes and toxic effects of MNPs in humans is continuously increasing. Although MNPs can cause inflammation, cytotoxicity, genotoxicity and immune toxicity in livestock animals, which can accumulate ingested/inhaled plastic particles and transfer them to humans through the food chain, research on this topic is still lacking. In considering farm animals as the missing link between soil/plant contamination and human health effects, this paper aims to describe their importance as carriers and vectors of MNP contamination. As research on this topic is in its early stages, there is no standard method to quantify the amount and the characteristics of MNPs in different matrices. Therefore, the creation of a common database where researchers can report data on MNP characteristics and quantification methods could be helpful for both method standardization and the future training of an AI tool for predicting the most abundant/dangerous polymer(s), thus supporting policy decisions to reduce plastic pollution and perfectly fitting with One Health principles.
Collapse
Affiliation(s)
- Francesca Corte Pause
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Susy Urli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy;
- Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy
| | - Giuseppe Stradaioli
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 33100 Udine, Italy; (F.C.P.); (S.U.)
| | - Anja Baufeld
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
18
|
Metcalf R, Messer LF, White HL, Ormsby MJ, Matallana-Surget S, Quilliam RS. Evidence of interspecific plasmid uptake by pathogenic strains of Klebsiella isolated from microplastic pollution on public beaches. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132567. [PMID: 37741206 DOI: 10.1016/j.jhazmat.2023.132567] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Microplastic beads are becoming a common feature on beaches, and there is increasing evidence that such microplastics can become colonised by potential human pathogens. However, whether the concentrations and pathogenicity of these pathogens pose a public health risk are still unclear. Therefore, the aim of this study was to determine realistic environmental concentrations of potential pathogens colonising microplastic beads, and quantify the expression of virulence and antimicrobial resistance genes (ARGs). Microplastic beads were collected from beaches and a culture-dependent approach was used to determine the concentrations of seven target bacteria (Campylobacter spp.; E. coli; intestinal enterococci; Klebsiella spp.; Pseudomonas aeruginosa; Salmonella spp.; Vibrio spp.). All seven target bacteria were detected without the need for a pre-enrichment step; urban sites had higher bacterial concentrations, whilst polymer type had no influence on bacterial concentrations. Klebsiella was the most abundant target bacteria and possessed virulence and ARGs, some of which were present on plasmids from other species, and showed pathogenicity in a Galleria melonella infection model. Our findings demonstrate how pathogen colonised microplastic beads can pose a heightened public health risk at the beach, and highlights the urgency for improved monitoring and enforcement of regulations on the release of microplastics into the environment.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| | - Lauren F Messer
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sabine Matallana-Surget
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
19
|
Silva V, Pérez V, Gillanders BM. Short-term plastisphere colonization dynamics across six plastic types. Environ Microbiol 2023; 25:2732-2745. [PMID: 37341062 DOI: 10.1111/1462-2920.16445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Marine plastic pollution is a major concern worldwide, but the understanding of plastisphere dynamics remains limited in the southern hemisphere. To address this knowledge gap, we conducted a study in South Australia to investigate the prokaryotic community of the plastisphere and its temporal changes over 4 weeks. We submerged six plastic types (i.e., High-Density Polyethylene [HDPE], Polyvinyl chloride [PVC], Low-Density Polyethylene [LDPE], Polypropylene [PP], Polystyrene [PS] and the understudied textile, polyester [PET]) and wood in seawater and sampled them weekly to characterize the prokaryotic community using 16S rRNA gene metabarcoding. Our results showed that the plastisphere composition shifted significantly over short time scales (i.e., 4 weeks), and each plastic type had distinct groups of unique genera. In particular, the PVC plastisphere was dominated by Cellvibrionaceae taxa, distinguishing it from other plastics. Additionally, the textile polyester, which is rarely studied in plastisphere research, supported the growth of a unique group of 25 prokaryotic genera (which included the potential pathogenic Legionella genus). Overall, this study provides valuable insights into the colonization dynamics of the plastisphere over short time scales and contributes to narrowing the research gap on the southern hemisphere plastisphere.
Collapse
Affiliation(s)
- Vinuri Silva
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Vilma Pérez
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Australian Centre for Ancient DNA (ACAD), University of Adelaide, Adelaide, South Australia, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Pop V, Ozunu A, Petrescu DC, Stan AD, Petrescu-Mag RM. The influence of media narratives on microplastics risk perception. PeerJ 2023; 11:e16338. [PMID: 37933256 PMCID: PMC10625762 DOI: 10.7717/peerj.16338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Background Media are the interface between scientists and citizens, communicating and interpreting the risk message and powerfully influencing individual awareness, public debate, and, hence, people's behavior. Pollution by microplastics (MPs), a threat to public health and terrestrial and marine ecosystems, has received research, media, and public interest. However, how MPs environmental and health risks are reflected in the media and assessed in the scientific literature does not find consensus over time. To date, few studies have examined social aspects around MPs, such as, for example, factors that influence awareness and perception of the risk of MPs. In this context, the objective of this study is twofold. First, we determined if media narratives influenced Romanians' awareness of MPs, and second, we investigated if media narratives influenced Romanians' perceptions of MPs health and environmental risk. Method An online survey was conducted among 417 Romanian respondents. The questionnaire had 21 questions. The questions were related to the awareness of MPs, the perceived health risk of MPs, the perceived environmental risk of MPs, the intensity of exposure to media narratives about the MPs impact on health and the environment, and the demographics. Binary logistic regression was run to identify what media narratives influenced MPs awareness and risk perception. In recent times, mass media has shaped perceptions of health and environmental risks, driven by events like COVID-19 and global climate change. Our study relies on media narratives as its foundation. Results Binary logistic regression showed that the awareness of MPs is influenced by the media narrative "Microplastics in the sea threaten fish stocks" (p = 0.001). When the frequency of exposure to this media narrative increases, the probability of reporting awareness of MPs increases. Likewise, an increase in age represents a higher probability of reporting awareness of MPs. The perceived health risk of MPs, with the highest weighting, was related to the dependent variable "Leakage of harmful chemicals from MPs affects the soil" (p = 0.014). Conclusions Media narratives about plastic and MPs pollution have increased over time, influencing the perception of this risk. The study argues the need for accurate and balanced media reporting on MPs to prevent the spread of misinformation and ensure that people clearly understand MPs risks. Furthermore, a closer examination of people's perceptions supports the design of appropriate interventions to reduce plastic consumption, thereby decreasing the risks of MPs pollution with benefits for human health and the environment.
Collapse
Affiliation(s)
- Valeria Pop
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alexandru Ozunu
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Disaster Management Training and Education Centre for Africa (DiMTEC), University of the Free State, Bloemfontein, South Africa
| | - Dacinia Crina Petrescu
- Department of Hospitality Services, Faculty of Business, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Adrian-Daniel Stan
- Department of International Studies and Contemporary History, Faculty of History and Philosophy, Babes-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Ruxandra Malina Petrescu-Mag
- Research Institute for Sustainability and Disaster Management Based on High-Performance Computing, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
- Department of Economy and Rural Development, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
- Doctoral School “International Relations and Security Studies”, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
21
|
Zadjelovic V, Wright RJ, Borsetto C, Quartey J, Cairns TN, Langille MGI, Wellington EMH, Christie-Oleza JA. Microbial hitchhikers harbouring antimicrobial-resistance genes in the riverine plastisphere. MICROBIOME 2023; 11:225. [PMID: 37908022 PMCID: PMC10619285 DOI: 10.1186/s40168-023-01662-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The widespread nature of plastic pollution has given rise to wide scientific and social concern regarding the capacity of these materials to serve as vectors for pathogenic bacteria and reservoirs for Antimicrobial Resistance Genes (ARG). In- and ex-situ incubations were used to characterise the riverine plastisphere taxonomically and functionally in order to determine whether antibiotics within the water influenced the ARG profiles in these microbiomes and how these compared to those on natural surfaces such as wood and their planktonic counterparts. RESULTS We show that plastics support a taxonomically distinct microbiome containing potential pathogens and ARGs. While the plastisphere was similar to those biofilms that grew on wood, they were distinct from the surrounding water microbiome. Hence, whilst potential opportunistic pathogens (i.e. Pseudomonas aeruginosa, Acinetobacter and Aeromonas) and ARG subtypes (i.e. those that confer resistance to macrolides/lincosamides, rifamycin, sulfonamides, disinfecting agents and glycopeptides) were predominant in all surface-related microbiomes, especially on weathered plastics, a completely different set of potential pathogens (i.e. Escherichia, Salmonella, Klebsiella and Streptococcus) and ARGs (i.e. aminoglycosides, tetracycline, aminocoumarin, fluoroquinolones, nitroimidazole, oxazolidinone and fosfomycin) dominated in the planktonic compartment. Our genome-centric analysis allowed the assembly of 215 Metagenome Assembled Genomes (MAGs), linking ARGs and other virulence-related genes to their host. Interestingly, a MAG belonging to Escherichia -that clearly predominated in water- harboured more ARGs and virulence factors than any other MAG, emphasising the potential virulent nature of these pathogenic-related groups. Finally, ex-situ incubations using environmentally-relevant concentrations of antibiotics increased the prevalence of their corresponding ARGs, but different riverine compartments -including plastispheres- were affected differently by each antibiotic. CONCLUSIONS Our results provide insights into the capacity of the riverine plastisphere to harbour a distinct set of potentially pathogenic bacteria and function as a reservoir of ARGs. The environmental impact that plastics pose if they act as a reservoir for either pathogenic bacteria or ARGs is aggravated by the persistence of plastics in the environment due to their recalcitrance and buoyancy. Nevertheless, the high similarities with microbiomes growing on natural co-occurring materials and even more worrisome microbiome observed in the surrounding water highlights the urgent need to integrate the analysis of all environmental compartments when assessing risks and exposure to pathogens and ARGs in anthropogenically-impacted ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Present address: Centro de Bioinnovación de Antofagasta (CBIA), Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, 1271155, Antofagasta, Chile.
| | - Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jeannelle Quartey
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tyler N Cairns
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Morgan G I Langille
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Biology, University of the Balearic Islands, 07122, Palma, Spain.
| |
Collapse
|
22
|
Leighton RE, Xiong L, Anderson GK, Astarita GM, Cai G, Norman RS, Decho AW. Vibrio parahaemolyticus and Vibrio vulnificus in vitro biofilm dispersal from microplastics influenced by simulated human environment. Front Microbiol 2023; 14:1236471. [PMID: 37854331 PMCID: PMC10579612 DOI: 10.3389/fmicb.2023.1236471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
Growing concerns exist regarding human ingestion of contaminated seafood that contains Vibrio biofilms on microplastics (MPs). One of the mechanisms enhancing biofilm related infections in humans is due to biofilm dispersion, a process that triggers release of bacteria from biofilms into the surrounding environment, such as the gastrointestinal tract of human hosts. Dispersal of cells from biofilms can occur in response to environmental conditions such as sudden changes in temperature, pH and nutrient conditions, as the bacteria leave the biofilm to find a more stable environment to colonize. This study evaluated how brief exposures to nutrient starvation, elevated temperature, different pH levels and simulated human media affect Vibrio parahaemolyticus and Vibrio vulnificus biofilm dispersal and processes on and from low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS) MPs. Both species were able to adequately disperse from all types of plastics under most exposure conditions. V. parahaemolyticus was able to tolerate and survive the low pH that resembles the gastric environment compared to V. vulnificus. pH had a significantly (p ≤ 0.05) positive effect on overall V. parahaemolyticus biofilm biomass in microplates and cell colonization from PP and PS. pH also had a positive effect on V. vulnificus cell colonization from LDPE and PP. However, most biofilm biomass, biofilm cell and dispersal cell densities of both species greatly varied after exposure to elevated temperature, pH, and nutrient starvation. It was also found that certain exposures to simulated human media affected both V. parahaemolyticus and V. vulnificus biofilm biomass and biofilm cell densities on LDPE, PP and PS compared to exposure to traditional media of similar pH. Cyclic-di-GMP was higher in biofilm cells compared to dispersal cells, but exposure to more stressful conditions significantly increased signal concentrations in both biofilm and dispersal states. Taken together, this study suggests that human pathogenic strains of V. parahaemolyticus and V. vulnificus can rapidly disperse with high cell densities from different plastic types in vitro. However, the biofilm dispersal process is highly variable, species specific and dependent on plastic type, especially under different human body related environmental exposures.
Collapse
Affiliation(s)
- Ryan E. Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Liyan Xiong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Gracie K. Anderson
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Grace M. Astarita
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Guoshuai Cai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Robert Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
- Department of Environmental Health Sciences, NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
23
|
Gupta S, Kumar R, Rajput A, Gorka R, Gupta A, Bhasin N, Yadav S, Verma A, Ram K, Bhagat M. Atmospheric Microplastics: Perspectives on Origin, Abundances, Ecological and Health Risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107435-107464. [PMID: 37452254 DOI: 10.1007/s11356-023-28422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Microplastic (MP) pollution has aroused a tremendous amount of public and scientific interest worldwide. MPs are found widely ranging from terrestrial to aquatic ecosystems primarily due to the over-exploitation of plastic products and unscientific disposal of plastic waste. There is a large availability of scientific literature on MP pollution in the terrestrial and aquatic ecosystems, especially the marine environments; however, only recently has greater scientific attention been focused on the presence of MPs in the air and its retrospective health implications. Besides, atmospheric transport has been reported to be an important pathway of transport of MPs to the pristine regions of the world. From a health perspective, existing studies suggest that airborne MPs are priority pollutant vectors, that may penetrate deep into the body through inhalation leading to adverse health impacts such as neurotoxicity, cancer, respiratory problems, cytotoxicity, and many more. However, their effects on indoor and outdoor air quality, and on human health are not yet clearly understood due to the lack of enough research studies on that and the non-availability of established scientific protocols for their characterization. This scientific review entails important information concerning the abundance of atmospheric MPs worldwide within the existing literature. A thorough comparison of existing sampling and analytical protocols has been presented. Besides, this review has unveiled the areas of scientific concern especially air quality monitoring which requires immediate attention, with the information gaps to be filled have been addressed.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Rakesh Kumar
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006.
| | - Akanksha Rajput
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Ruby Gorka
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Antima Gupta
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
| | - Nazuk Bhasin
- Department of Environmental Sciences, University of Jammu (J&K), Jammu, India, 180006
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Sudesh Yadav
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Anju Verma
- Jawaharlal Nehru University, New Delhi, India, 110067
| | - Kirpa Ram
- IESD, Banaras Hindu University, Varanasi, India, 221005
| | - Madulika Bhagat
- Department of Biotechnology, University of Jammu (J&K), Jammu, India, 180006
| |
Collapse
|
24
|
Ben-Haddad M, Charroud I, Mghili B, Abelouah MR, Hajji S, Aragaw TA, Rangel-Buitrago N, Alla AA. Examining the influence of COVID-19 lockdowns on coastal water quality: A study on fecal bacteria levels in Moroccan seawaters. MARINE POLLUTION BULLETIN 2023; 195:115476. [PMID: 37677975 DOI: 10.1016/j.marpolbul.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fecal bacteria in bathing seawater pose a substantial public health risk and require rigorous monitoring. The unexpected beach closures during the COVID-19 lockdowns have afforded unique opportunities to evaluate the impact of human activities on bathing water quality (BWQ). This study examined the temporal changes in fecal coliforms (FC) and streptococci (FS) within bathing seawater across a popular coastal region in Morocco during two lockdown periods (2020 L and 2021 L), comparing these data with observations from pre-lockdown years (2018, 2019) and post-lockdown periods (2020, 2021, 2022). Our findings illuminate the influential role the hiatus periods played in enhancing bathing water quality, attaining an "excellent" status with marked reductions in fecal coliform and streptococci levels. Consequently, the FC/FS analysis exposed a clear preponderance of humans as the primary sources of fecal contamination, a trend that aligns with the burgeoning coastal tourism and the escalating numbers of beach visitors. Additionally, the presence of domestic animals like camels and horses used for tourist rides, coupled with an increase in wild animals such as dogs during the lockdown periods, compounded the potential sources of fecal bacteria in the study area. Furthermore, occasional sewage discharge from tourist accommodations and wastewater treatment plants may also contribute to fecal contamination. To effectively mitigate these concerns and bolster public health, a commitment to relentless surveillance efforts, leveraging novel and innovative tools, is essential. These findings underline the crucial interplay between human activities and the health of our coastal ecosystems, emphasizing the need for sustainable practices for a safer and healthier future.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Imane Charroud
- Laboratory of Biotechnologies and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Biology and Ecology of Deep Marine Ecosystems (BEEP), UMR 6197 (UBO, CNRS, Ifremer), Plouzané, France.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
25
|
Khaleel R, Valsan G, Rangel-Buitrago N, Warrier AK. Microplastics in the marine environment of St. Mary's Island: implications for human health and conservation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1034. [PMID: 37568065 PMCID: PMC10421776 DOI: 10.1007/s10661-023-11651-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Microplastics have now been identified as a class of emerging pollutants and is considered as a threat to aquatic organisms. This baseline paper investigated the distribution, composition, and potential ecological risks of microplastic (MP) pollution on St. Mary's Island, revealing an average abundance of 0.218 particles/L in water samples. Blue fibres and white foams were the primary MPs identified, and fishing activities and packaging were the main sources of pollution. Six types of polymers were identified: low-density polyethylene (LDPE), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), and high-density polyethylene (HDPE). The Polymer Hazard Index (PHI) and Potential Ecological Risk Index (PERI) indicated a medium environmental risk for the island. Additionally, it was discovered that MPs' surfaces contained dangerous substances that could endanger aquatic life. The research emphasizes the significance of implementing measures such as responsible disposal, management, elimination, regulatory policies, and local administration techniques to mitigate the impact of MP pollution on the island's shores and marine biota. This research provides a baseline for monitoring MP contamination and underscores the need for continuous investigation to assess their impacts on marine life.
Collapse
Affiliation(s)
- Rizwan Khaleel
- Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| | - Anish Kumar Warrier
- Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
26
|
Kumar M, Chaudhary DR, Jha B. Surface-associated bacterial assemblages on marine anthropogenic litter in the intertidal zone of the Arabian Sea, India. MARINE POLLUTION BULLETIN 2023; 193:115211. [PMID: 37392592 DOI: 10.1016/j.marpolbul.2023.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Anthropogenic marine litter (mainly plastic pollution) is a serious concern globally. The interactions between terrestrial and marine ecosystems lead to the accumulation of marine litter in the intertidal zone. The biofilm-forming bacteria tend to colonize on surfaces of marine litter which are composed of diverse bacteria and are less studied. The present study investigated the bacterial community composition using both culturable and non-culturable (Next-generation sequencing (NGS)) approaches associated with the marine litter (polyethylene (PE), styrofoam (SF) and fabric (FB)) at three distinct locations (Alang, Diu and Sikka) of the Arabian Sea, Gujarat, India. Predominant bacteria observed using culturable and NGS techniques belonged to Proteobacteria phyla. Alphaproteobacteria class dominated on polyethylene and styrofoam surfaces in the culturable fraction among the sites while the Bacillus dominated fabric surfaces. In the metagenomics fraction, Gammaproteobacteria dominated the surfaces except for PE and SF surfaces from Sikka and Diu, respectively. The PE surface at Sikka was dominated by Fusobacteriia while SF surface from Diu was dominated by Alphaproteobacteria. Both culture-dependent and NGS approaches identified hydrocarbon-degrading bacteria as well as pathogenic bacteria on the surfaces. The outcome of the present study illustrates diverse bacterial assemblages which occur on marine litter and increases our understanding of the plastisphere community.
Collapse
Affiliation(s)
- Madhav Kumar
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Doongar R Chaudhary
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Bhavanath Jha
- CSIR - Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat 364002, India.
| |
Collapse
|
27
|
Zhang Y, Gao J, Wang Z, Zhao Y, Liu Y, Zhang H, Zhao M. The responses of microbial metabolic activity, bacterial community and resistance genes under the coexistence of nanoplastics and quaternary ammonium compounds in the sewage environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163064. [PMID: 36966828 DOI: 10.1016/j.scitotenv.2023.163064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Nanoplastics (NPs) and quaternary ammonium compounds (QACs) are frequently detected in sewage. However, little is known about the risks of coexistence of NPs and QACs. In this study, the responses of microbial metabolic activity, bacterial community and resistance genes (RGs) to the exposure of polyethylene (PE), polylactic acid (PLA), silicon dioxide (SiO2) and dodecyl dimethyl benzyl ammonium chloride (DDBAC) were focused on 2nd and 30th day of incubation in sewer environment. Bacterial community contributed 25.01 % to shape RGs and mobile genetic elements (MGEs) after two days of incubation in sewage and plastisphere. After 30 days of incubation, the most important individual factor (35.82 %) was turned to microbial metabolic activity. The metabolic capacity of the microbial communities in plastisphere was stronger than that from SiO2 samples. Moreover, DDBAC inhibited the metabolic capacity of microorganisms in sewage samples, and increased the absolute abundances of 16S rRNA in plastisphere and sewage samples which might be similar to the hormesis effect. After 30 days of incubation, Aquabacterium was the predominant genus in plastisphere. As for SiO2 samples, Brevundimonas was the predominant genus. QACs RGs (qacEdelta1-01, qacEdelta1-02) and antibiotic RGs (ARGs) (aac(6')-Ib, tetG-1) significantly enriched in plastisphere. There was also co-selection among qacEdelta1-01, qacEdelta1-02 and ARGs. In addition, VadinBC27 which enriched in plastisphere of PLA NPs was positively correlated with the potentially disease-causing genus Pseudomonas. It showed that after 30 days of incubation, plastisphere had an important effect on distribution and transfer of pathogenic bacteria and RGs. Plastisphere of PLA NPs also carried the risk of spreading disease.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
28
|
Wang T, Yang C, Wang C, Liao Y, Mkuye R, Deng Y. Bacterial community profiling associated with pearl culture facilities of Liusha Bay, the largest marine pearl culture base on the western Guangdong coast, South China. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106063. [PMID: 37385086 DOI: 10.1016/j.marenvres.2023.106063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
A large number of aquaculture facilities produced during the farming process are made of plastics. These plastics can be a distinct habitat for bacteria due to their unique materials. Therefore, this paper focuses on plastic aquaculture facilities and investigates the impact of bacterial accumulation on plastic surfaces. In this study, the high-throughput sequencing of 16S rRNA was conducted to investigate bacterial community profiling associated with the pearl culture facilities (cultured net cages and foam buoys) and surrounding water of Liusha Bay. Alpha diversity analysis showed that the richness and diversity indexes of bacterial communities in pearl culture facilities were higher than those in the aquatic environment. The richness and diversity indexes of bacterial communities were different between cultured net cages and foam buoys. Spatially influenced bacterial communities attached to pearl culture facilities varied between aquaculture areas. Thus, plastic has become a habitat for bacteria, floating in the marine environment and providing a favorable living environment for marine microorganisms and specific preferences for different substrate types. The relative abundance of certain functions on the attached bacterial community of the culture facility was high, which suggested that plastics did not only alter community structure but also influenced bacterial function. In addition, we detected small amounts of pathogenic bacteria, such as Vibrio and Bruegeria, in pearl culture facilities and surrounding seawater, suggesting that plastics can act as vectors for potentially pathogenic bacteria that may have an impact on the development of aquaculture. Our understanding of plastic ecology has been enriched by the discovery of the various microbial assemblages that can occur in aquaculture facilities.
Collapse
Affiliation(s)
- Ting Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Cheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
29
|
Jeong G, Kim HJ, Kim KE, Kim YJ, Lee TK, Shim WJ, Jung SW. Selective attachment of prokaryotes and emergence of potentially pathogenic prokaryotes on four plastic surfaces: Adhesion study in a natural marine environment. MARINE POLLUTION BULLETIN 2023; 193:115149. [PMID: 37336046 DOI: 10.1016/j.marpolbul.2023.115149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
This study employed 16S rRNA metabarcoding to establish the diversity of prokaryotic communities and specific characteristics of potentially pathogenic prokaryotic primary colonizers of four plastic materials (EPS, expanded polystyrene; PE, polyethylene; PP, polypropylene; and PET, polyethylene terephthalate). Bacteria inhabiting plastic and seawater differ; thus, distinct changes in the attached prokaryotic community were observed over an exposure time of 21 days, specifically on Days 3, 6, 9, and 12-21. Frist colonizers were Gammaproteobacteria and Alphaproteobacteria; Bacilli and Clostridia represented secondary colonizers. On Day 3, Pseudoalteromonas had a relative abundance >80 %; whereas, the prevalence of Vibrio spp. (potentially pathogenic prokaryotes) increased rapidly on Days 6 and 9. However, after Day 12, the prevalence of other potential pathogens, namely, Clostridium spp., steadily increased. Despite the diversity of the plastic surfaces, attached prokaryotes changed over time instead of showing similar adherent diversity in all plastic materials.
Collapse
Affiliation(s)
- Gaeul Jeong
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Kang Eun Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yu Jin Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Taek-Kyun Lee
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Risk Assessment Research Centre, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea; Risk Assessment Research Centre, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
30
|
Li YQ, Zhang CM, Yuan QQ, Wu K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. CHEMOSPHERE 2023:139151. [PMID: 37290506 DOI: 10.1016/j.chemosphere.2023.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) could serve as substrates for microbial colonization and biofilm formation. However, research on the effects of different types of microplastics and natural substrates on biofilm formation and community structure in the presence of antibiotic-resistant bacteria (ARB) is limited. In this study, we employed by means of microcosm experiments to analyze the situation of biofilms conditions, bacterial resistance patterns, antibiotic resistance genes (ARGs) distribution, and bacterial community on different substrates using microbial cultivation, high throughtput sequencing and PCR. The result showed that biofilms on different substrates markedly increased with time, with MPs surfaces formed more biofilm than stone. Analyses of antibiotic resistant showed negligible differences in the resistance rate to the same antibiotic at 30 d, but tetB would be selectively enriched on PP and PET. The microbial communities associated with biofilms on MPs and stones exhibited variations during different stages of formation. Notably, phylum WPS-2 and Epsilonbacteraeota were identified as the dominant microbiomes of biofilms on MPs and stones at 30 d, respectively. Correlation analysis suggested that WPS-2 could potentially be a tetracycline-resistant bacterium, while Epsilonbacteraeota did not correlate with any detected ARB. Our results emphasized the potential threat posed by MPs as attachment carriers for bacteria, particularly ARB, in aquatic environments.
Collapse
Affiliation(s)
- Yong-Qiang Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Qiao-Qiao Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
31
|
Ormsby MJ, White HL, Metcalf R, Oliver DM, Quilliam RS. Clinically important E. coli strains can persist, and retain their pathogenicity, on environmental plastic and fabric waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121466. [PMID: 36958655 DOI: 10.1016/j.envpol.2023.121466] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Plastic waste is ubiquitous in the environment and there are increasing reports of such waste being colonised by human pathogens. However, the ability of pathogens to persist on plastics for long periods, and the risk that they pose to human health, is unknown. Here, under simulated environmental conditions, we aimed to determine if pathogenic bacteria can retain their virulence following a prolonged period on plastic. Using antibiotic selection and luciferase expression for quantification, we show that clinically important strains of E. coli can survive on plastic for at least 28-days. Importantly, these pathogens also retained their virulence (determined by using a Galleria mellonella model as a surrogate for human infection) and in some cases, had enhanced virulence following their recovery from the plastisphere. This indicates that plastics in the environment can act as reservoirs for human pathogens and could facilitate their persistence for extended periods of time. Most importantly human pathogens in the plastisphere are capable of retaining their pathogenicity. Pathogens colonising environmental plastic waste therefore pose a heightened public health risk, particularly in areas where people are exposed to pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
32
|
Wang Z, Li Q, Huang H, Liu J, Wang J, Chen Y, Huang S, Luo X, Zheng Z. Distribution and potential ecological risks of microplastics in Zhushan Bay, China. CHEMOSPHERE 2023:139024. [PMID: 37247671 DOI: 10.1016/j.chemosphere.2023.139024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The interaction between microplastics (MPs) and microorganisms may alter the distribution of antibiotic resistance genes (ARGs) in water and increase the ecological risk of drinking water sources. To investigate the characteristics of MPs geographical distribution and its potential ecological risk in typical urban water, this study was conducted in Zhushan Bay, and we carried out a combination of tests to analyze the distribution of MPs and the migration changes of their surface microbial community composition and ARGs in different media by 16S rRNA gene high-throughput sequencing, non-targeted metabolomics and qPCR genomics in the near-shore (I), middle area (Ⅱ) and near-lake (Ⅲ) of Zhushan Bay. The results showed that MPs in fibrous form were dominant in the aquatic environment of Zhushan Bay; Polyurethane (PU) and Silicone were the main MPs types in Zhushan Bay. The abundance of MPs in the water of Zhushan Bay was winter > summer > autumn > spring; and in the sediment was winter > summer > autumn > spring, respectively. The distribution results of MPs in geographical location are as follows: In the water I > Ⅱ > Ⅲ, sediment exhibited Ⅱ > Ⅲ > I. The results indicate that physicochemical factors will affect the geographical distribution of MPs and their surface microbial community composition in the aquatic environment of Zhushan Bay. More cooperative behaviors and increased metabolically important pathways occurred in the microbial network on water-MPs compared to sediment-MPs. However, the microbial community in the sediment-MPs was more stable and had higher abundance of mobile genetic elements (MGEs). A total of 362 differential metabolites were detected, of which 193 were up-regulated and 19 down-regulated differential metabolites. blaTEM, Sul, and inti1 were prevalent in both the water and sediments of Zhushan Bay. Sul1 was most contaminated in ARGs. This study provides the latest field data and insights into MPs pollution in key aquatic environments.
Collapse
Affiliation(s)
- Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Qihui Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; School of Ecological and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jing Liu
- School of Ecological and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Jie Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Yican Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Tumwesigye E, Felicitas Nnadozie C, C Akamagwuna F, Siwe Noundou X, William Nyakairu G, Odume ON. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121829. [PMID: 37196837 DOI: 10.1016/j.envpol.2023.121829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/26/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Microplastics (MPs) are becoming ubiquitous, and their environmental fate is becoming an issue of concern. Our review aims to synthesize current knowledge status and provide future perspectives regarding the vector effect of MPs for chemical contaminants and biological agents. The evidence in the literature indicates that MPs are a vector for persistent organic pollutants (POPs), metals and pharmaceuticals. Concentrations of chemical contaminant in orders of six-fold higher on MPs surfaces than in the surrounding environmental waters have been reported. Chemical pollutants such as perfluoroalkyl substances (PAFSs), hexachlorocyclohexane (HCHs) and polycyclic aromatic hydrocarbons (PAHs), exhibiting polarities in the range of 3.3-9 are the commonest chemicals reported on MP surfaces. Regarding metals on MPs including chromium (Cr), lead (Pb), cobalt (Co), the presence of C-O and N-H in MPs promote a relatively high adsorption of these metals onto MP surfaces. Regarding pharmaceuticals, not much has been done, but a few studies indicate that commonly used drugs such as ibuprofen, ibuprofen, diclofenac, and naproxen have been associated with MPs. There is sufficient evidence supporting the claim that MPs can act as vectors for viruses, bacterial and antibiotic-resistant bacteria and genes, and MPs act to accelerate horizontal and vertical gene transfer. An area that deserves urgent attention is whether MPs can act as vectors for invertebrates and vertebrates, mainly non-native, invasive freshwater species. Despite the ecological significance of invasive biology, little research has been done in this regard. Overall, our review summarises the state of the current knowledge, identifies critical research gaps and provides perspectives for future research.
Collapse
Affiliation(s)
- Edgar Tumwesigye
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | - Chika Felicitas Nnadozie
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | - Frank C Akamagwuna
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa
| | | | | | - Oghenekaro Nelson Odume
- Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Makhanda, South Africa.
| |
Collapse
|
34
|
Shen M, Liu S, Hu T, Zheng K, Wang Y, Long H. Recent advances in the research on effects of micro/nanoplastics on carbon conversion and carbon cycle: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117529. [PMID: 36801693 DOI: 10.1016/j.jenvman.2023.117529] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Massive production and spread application of plastics have led to the accumulation of numerous plastics in the global environment so that the proportion of carbon storage in these polymers also increases. Carbon cycle is of fundamental significance to global climate change and human survival and development. With the continuous increase of microplastics, undoubtedly, there carbons will continue to be introduced into the global carbon cycle. In this paper, the impact of microplastics on microorganisms involved in carbon transformation is reviewed. Micro/nanoplastics affect carbon conversion and carbon cycle by interfering with biological fixation of CO2, microbial structure and community, functional enzymes activity, the expression of related genes, and the change of local environment. Micro/nanoplastic abundance, concentration and size could significantly lead to difference in carbon conversion. In addition, plastic pollution can further affect the blue carbon ecosystem reduce its ability to store CO2 and marine carbon fixation capacity. Nevertheless, problematically, limited information is seriously insufficient in understanding the relevant mechanisms. Accordingly, it is required to further explore the effect of micro/nanoplastics and derived organic carbon on carbon cycle under multiple impacts. Under the influence of global change, migration and transformation of these carbon substances may cause new ecological and environmental problems. Additionally, the relationship between plastic pollution and blue carbon ecosystem and global climate change should be timely established. This work provides a better perspective for the follow-up study of the impact of micro/nanoplastics on carbon cycle.
Collapse
Affiliation(s)
- Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Tong Hu
- Department of Environment Science, Zhejiang University, Hangzhou, 310058, China
| | - Kaixuan Zheng
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Hongming Long
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|
35
|
Wang S, Shi Y, Wang H, Li Z, Zhao M. Succession of Bacteria Attached to Microplastics After Transferring from a Mariculture Area to a Seagrass Meadow. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:69. [PMID: 36943489 DOI: 10.1007/s00128-023-03700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been recognized as a novel niche for bacteria. However, studies have characterized the plastisphere microbial community in situ without exploring the microbial changes after transferring to other ecosystems. Here we focus on bacterial succession on typical microplastics (polypropylene and expanded polystyrene) and natural substrates (wood) after transferring from mariculture area to seagrass meadows system. Using high-throughput sequencing of 16 S rRNA, we found that alpha diversity significantly reduced after transferring and microplastics especially PP had significant separations on PCoA plots at different succession stages. The abundance and metabolic pathways of potential pathogen-associated microorganisms are significantly decreased. The relative abundance of xenobiotics biodegradation pathways was significantly lower and of energy metabolism pathways was significantly higher by comparing before and after transferring. Main environmental factors affecting microbial communities changed from nutrient characteristics to basic physicochemical properties after transferring. The succession times of the microbial communities of the three materials were different.
Collapse
Affiliation(s)
- Shuai Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yunfeng Shi
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hui Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhaoyang Li
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Muqiu Zhao
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
36
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
37
|
Xianbiao J, Baohong C, Kang W, Conghui P, Yahui G, Hui L. A new microalgae community — Epimicroplastic microalgae (EMP-MA). ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
38
|
Metcalf R, White HL, Ormsby MJ, Oliver DM, Quilliam RS. From wastewater discharge to the beach: Survival of human pathogens bound to microplastics during transfer through the freshwater-marine continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120955. [PMID: 36581243 DOI: 10.1016/j.envpol.2022.120955] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Large quantities of microplastics are regularly discharged from wastewater treatment plants (WWTPs) into the aquatic environment. Once released, these plastics can rapidly become colonised by microbial biofilm, forming distinct plastisphere communities which may include potential pathogens. We hypothesised that the protective environment afforded by the plastisphere would facilitate the survival of potential pathogens during transitions between downstream environmental matrices and thus increase persistence and the potential for environmental dissemination of pathogens. The survival of Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa colonising polyethylene or glass particles has been quantified in mesocosm incubation experiments designed to simulate, (1) the direct release of microplastics from WWTPs into freshwater and seawater environments; and (2) the movement of microplastics downstream following discharge from the WWTP through the river-estuary-marine-beach continuum. Culturable E. coli, E. faecalis and P. aeruginosa were successfully able to survive and persist on particles whether they remained in one environmental matrix or transitioned between different environmental matrices. All three bacteria were still detectable on both microplastic and glass particles after 25 days, with higher concentrations on microplastic compared to glass particles; however, there were no differences in bacterial die-off rates between the two materials. This potential for environmental survival of pathogens in the plastisphere could facilitate their transition into places where human exposure is greater (e.g., bathing waters and beach environments). Therefore, risks associated with pathogen-microplastic co-pollutants in the environment, emphasises the urgency for updated regulations on wastewater discharge and the management of microplastic generation and release.
Collapse
Affiliation(s)
- Rebecca Metcalf
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - David M Oliver
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
39
|
Anand U, Dey S, Bontempi E, Ducoli S, Vethaak AD, Dey A, Federici S. Biotechnological methods to remove microplastics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1787-1810. [PMID: 36785620 PMCID: PMC9907217 DOI: 10.1007/s10311-022-01552-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/25/2022] [Indexed: 05/14/2023]
Abstract
Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.
Collapse
Affiliation(s)
- Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8499000 Midreshet Ben Gurion, Israel
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, University of Calcutta, Ajodhya, Shyampur, Howrah, 711312 India
| | - Elza Bontempi
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - A. Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, INSTM Unit of Brescia, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
40
|
Martínez-Campos S, González-Pleiter M, Rico A, Schell T, Vighi M, Fernández-Piñas F, Rosal R, Leganés F. Time-course biofilm formation and presence of antibiotic resistance genes on everyday plastic items deployed in river waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130271. [PMID: 36351347 DOI: 10.1016/j.jhazmat.2022.130271] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The plastisphere has been widely studied in the oceans; however, there is little information on how living organisms interact with the plastisphere in freshwater ecosystems, and particularly on how this interaction changes over time. We have characterized, over one year, the evolution of the eukaryotic and bacterial communities colonizing four everyday plastic items deployed in two sites of the same river with different anthropogenic impact. α-diversity analyses showed that site had a significant role in bacterial and eukaryotic diversity, with the most impacted site having higher values of the Shannon diversity index. β-diversity analyses showed that site explained most of the sample variation followed by substrate type (i.e., plastic item) and time since first colonization. In this regard, core microbiomes/biomes in each plastic at 1, 3, 6 and 12 months could be identified at genus level, giving a global overview of the evolution of the plastisphere over time. The measured concentration of antibiotics in the river water positively correlated with the abundance of antibiotic resistance genes (ARGs) on the plastics. These results provide relevant information on the temporal dynamics of the plastisphere in freshwater ecosystems and emphasize the potential contribution of plastic items to the global spread of antibiotic resistance.
Collapse
Affiliation(s)
- Sergio Martínez-Campos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, Universidad de Valencia, c/ Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Theresa Schell
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Marco Vighi
- IMDEA Water Institute, Science and Technology Campus of the Universidad de Alcalá, Av. Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain; Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
41
|
Okeke ES, Chukwudozie KI, Addey CI, Okoro JO, Chidike Ezeorba TP, Atakpa EO, Okoye CO, Nwuche CO. Micro and nanoplastics ravaging our agroecosystem: A review of occurrence, fate, ecological impacts, detection, remediation, and prospects. Heliyon 2023; 9:e13296. [PMID: 36816258 PMCID: PMC9929314 DOI: 10.1016/j.heliyon.2023.e13296] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Micro-and nanoplastics (MNPs) are particles that are smaller than a millimeter in size and have infiltrated both terrestrial and aquatic ecosystems. MNPs pollution have become a widespread problem causing severe adverse effects on human health and the environment worldwide. Once in the environment, these polymers are not easily degradable due to their recalcitrant nature and small size and are easily consumed by aquatic organisms and transported through the food chain, at great risk to human health. Substantial evidence demonstrates the negative effects of MNPs residues on aquatic organisms' reproductive and developmental defects. Similarly, soil flora, soil quality, and plant height have been severely impacted by their presence in the agroecosystem. This is evident in the inhibition of water absorption by blocked seed pores, delayed germination, and the dramatic decline in transpiration rates and growth of plant roots, inevitably leading to drop in biomass and crop production, posing an overall threat to global food security. In this review, we present the impact of MNPs in agroecosystems around the globe, including their sources, occurrence, distribution, transport, and ultimate fate. We recommend using bio-based plastics, eco-friendly remediation strategies, reformed agricultural practices, non-single-use synthetic plastic legislation, and increased plastic waste disposal awareness campaigns as effective tools to mitigate this problem.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 41000, Enugu State, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Kingsley Ikechukwu Chukwudozie
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
- Department of Clinical Medicine, School of Medicine, Jiangsu University, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Izuma Addey
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, USA
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Joseph Onyekwere Okoro
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | | - Edidiong Okokon Atakpa
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, China
- Department of Animal & Environmental Biology, University of Uyo, Akwa Ibom State, 1017, Nigeria
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | - Charles Obinwanne Okoye
- Department of Zoology & Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, Nairobi Kenya. China
| | | |
Collapse
|
42
|
Liu X, Wang X, Wang R, Guo S, Ahmad S, Song Y, Gao P, Chen J, Liu C, Ding N. Effects comparison between the secondary nanoplastics released from biodegradable and conventional plastics on the transfer of antibiotic resistance genes between bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120680. [PMID: 36414161 DOI: 10.1016/j.envpol.2022.120680] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) have caused widespread concern because of their potential harm to environmental safety and human health. As substitutes for conventional plastics, the toxic effects of short-term degradation products of biodegradable plastics (polylactic acid (PLA) and polyhydroxyalkanoates (PHA)) on bacteria and their impact on ARGs transfer were the focus of this study. After 60 days of degradation, more secondary nanoplastics were released from the biodegradable plastics PLA and PHA than that from the conventional plastics polystyrene (PS). All kinds of nanoplastics, no matter released from biodegradable plastics or conventional plastics, had no significant toxicity to bacteria. Nanoplastic particles from biodegradable plastics could significantly increase the transfer efficiency of ARGs. Although the amount of secondary nanoplastics produced by PHA microplastics was much higher than that of PLA, the transfer frequency after exposure to PLA was much higher, which may be due to the agglomeration of PHA nanoplastics caused by plastic instability in solution. After exposure to the 60 d PLA nanoplastics, the transfer frequency was the highest, which was approximately 28 times higher than that of control. The biodegradable nanoplastics significantly enhanced the expression of the outer membrane pore protein genes ompA and ompC, which could increase cell membrane permeability. The expression levels of trfAp and trbBp were increased by repressed major global regulatory genes korA, korB, and trbA, which eventually led to an increase in conjugative transfer frequency. This study provides important insights into the evaluation of the environmental and health risks caused by secondary nanoplastics released from biodegradable plastics.
Collapse
Affiliation(s)
- Xiaomei Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China.
| | - Xiaolong Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - RenJun Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Saisai Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shakeel Ahmad
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhao Song
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Peike Gao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Chunchen Liu
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Ning Ding
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, China
| |
Collapse
|
43
|
Leighton RE, Correa Vélez KE, Xiong L, Creech AG, Amirichetty KP, Anderson GK, Cai G, Norman RS, Decho AW. Vibrio parahaemolyticus and Vibrio vulnificus in vitro colonization on plastics influenced by temperature and strain variability. Front Microbiol 2023; 13:1099502. [PMID: 36704570 PMCID: PMC9871911 DOI: 10.3389/fmicb.2022.1099502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Marine bacteria often exist in biofilms as communities attached to surfaces, like plastic. Growing concerns exist regarding marine plastics acting as potential vectors of pathogenic Vibrio, especially in a changing climate. It has been generalized that Vibrio vulnificus and Vibrio parahaemolyticus often attach to plastic surfaces. Different strains of these Vibrios exist having different growth and biofilm-forming properties. This study evaluated how temperature and strain variability affect V. parahaemolyticus and V. vulnificus biofilm formation and characteristics on glass (GL), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). All strains of both species attached to GL and all plastics at 25, 30, and 35°C. As a species, V. vulnificus produced more biofilm on PS (p ≤ 0.05) compared to GL, and biofilm biomass was enhanced at 25°C compared to 30° (p ≤ 0.01) and 35°C (p ≤ 0.01). However, all individual strains' biofilm biomass and cell densities varied greatly at all temperatures tested. Comparisons of biofilm-forming strains for each species revealed a positive correlation (r = 0.58) between their dry biomass weight and OD570 values from crystal violet staining, and total dry biofilm biomass for both species was greater (p ≤ 0.01) on plastics compared to GL. It was also found that extracellular polymeric substance (EPS) chemical characteristics were similar on all plastics of both species, with extracellular proteins mainly contributing to the composition of EPS. All strains were hydrophobic at 25, 30, and 35°C, further illustrating both species' affinity for potential attachment to plastics. Taken together, this study suggests that different strains of V. parahaemolyticus and V. vulnificus can rapidly form biofilms with high cell densities on different plastic types in vitro. However, the biofilm process is highly variable and is species-, strain-specific, and dependent on plastic type, especially under different temperatures.
Collapse
Affiliation(s)
- Ryan E. Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Karlen Enid Correa Vélez
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Liyan Xiong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Addison G. Creech
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Karishma P. Amirichetty
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Gracie K. Anderson
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - Guoshuai Cai
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States
| | - R. Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, United States,NIEHS Center for Oceans and Human Health and Climate Change Interactions, University of South Carolina, Columbia, SC, United States,*Correspondence: Alan W. Decho,
| |
Collapse
|
44
|
Ma J, Chen F, Zhang Z, Li Y, Liu J, Chen CC, Pan K. Eukaryotic community succession on discarded face masks in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158552. [PMID: 36087664 PMCID: PMC9448716 DOI: 10.1016/j.scitotenv.2022.158552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
Wearing facemasks remains an essential strategy for combating the COVID-19 pandemic. However, used masks are becoming plastic wastes that are widespread in the oceans, which is raising concerns about the potential impacts of these novel plastic niches on marine organisms. To delve into this issue, we exposed surgical masks to coastal waters for 30 days. Valuable information was recorded weekly in regard to the succession of the eukaryotic community inhabiting the masks via high-throughput 18S rRNA gene sequencing. Generally, the community on masks was significantly distinct from that in the surrounding seawater. With 1150 different eukaryotic taxa identified, the diversity of the vigorous colonizers of masks peaked at the beginning and decreased over time. A hallmark of initial colonization was the aggregation of diatoms, which formed biofilms on masks, followed by dinoflagellates that acted as a turning point for subsequent development of calcified species and other predators. This study provides insight into the eukaryotic community dynamics on discarded masks in the marine environment and highlights that the potential mask-mediated harmful species clustering may threaten the marine ecosystem.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ciara Chun Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
45
|
Cesarano C, Aulicino G, Cerrano C, Ponti M, Puce S. Marine beach litter monitoring strategies along Mediterranean coasts. A methodological review. MARINE POLLUTION BULLETIN 2023; 186:114401. [PMID: 36462417 DOI: 10.1016/j.marpolbul.2022.114401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Marine beach litter (MBL) represents a serious issue for marine life, coastal ecosystems, human health and several economical activities. The Mediterranean Sea is a semi enclosed basin particularly vulnerable to this problem. Its coasts are threatened by critical anthropogenic pressures that sum up with intensive fishing and shipping, and the slow turnover of its waters. In the last decades, several scientific and participative initiatives have been conducted to study, monitor and clean-up shorelines. These studies were generally characterized by differences in timing and frequency of the surveys, as well as in litter sampling, classification and analysis. This paper presents a systematic review of current literature concerning MBL monitoring strategies along the Mediterranean coasts. Scopus indexed studies are analysed to identify discrepancies and similarities among the applied protocols, understand where current gaps lie, and point out what would be needed to develop a basin-scale efficient monitoring for the Mediterranean Sea.
Collapse
Affiliation(s)
- Cinzia Cesarano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe Aulicino
- Dipartimento di Scienze e Tecnologie, Università degli studi di Napoli Parthenope, Napoli, Italy.
| | - Carlo Cerrano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; Reef Check Italia onlus, Ancona, Italy; Fano Marine Center, Fano, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Massimo Ponti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Ravenna, Italy; Reef Check Italia onlus, Ancona, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Stefania Puce
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
46
|
Qiao R, Mortimer M, Richter J, Rani-Borges B, Yu Z, Heinlaan M, Lin S, Ivask A. Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158560. [PMID: 36087672 DOI: 10.1016/j.scitotenv.2022.158560] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.
Collapse
Affiliation(s)
- Ruxia Qiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jelizaveta Richter
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, UNESP, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia.
| | - Sijie Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
47
|
Pedrotti ML, de Figueiredo Lacerda AL, Petit S, Ghiglione JF, Gorsky G. Vibrio spp and other potential pathogenic bacteria associated to microfibers in the North-Western Mediterranean Sea. PLoS One 2022; 17:e0275284. [PMID: 36449472 PMCID: PMC9710791 DOI: 10.1371/journal.pone.0275284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Microfibers, whether synthetic or natural, have increased dramatically in the environment, becoming the most common type of particles in the ocean, and exposing aquatic organisms to multiple negative impacts. Using an approach combining morphology (scanning electron microscopy-SEM) and molecular taxonomy (High-Throughput DNA Sequencing- HTS), we investigated the bacterial composition from floating microfibers (MFs) collected in the northwestern Mediterranean Sea. The average number of bacteria in 100 μm2 on the surface of a fiber is 8 ± 5.9 cells; by extrapolating it to a whole fiber, this represents 2663 ± 1981 bacteria/fiber. Attached bacterial communities were dominated by Alteromonadales, Rhodobacterales, and Vibrionales, including the potentially human/animal pathogen Vibrio parahaemolyticus. This study reveals a high rate of bacterial colonization on MFs, and shows that these particles can host numerous bacterial species, including putative pathogens. Even if we cannot confirm its pathogenicity based only on the taxonomy, this is the first description of such pathogenic Vibrio living attached to MFs in the Mediterranean Sea. The identification of MFs colonizers is valuable in assessing health risks, as their presence can be a threat to bathing and seafood consumption. Considering that MFs can serve as vector for potentially pathogenic microorganisms and other pollutants throughout the ocean, this type of pollution can have both ecological and economic consequences.
Collapse
Affiliation(s)
- Maria Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
- * E-mail:
| | - Ana Luzia de Figueiredo Lacerda
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| | - Stephanie Petit
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| | - Jean François Ghiglione
- Laboratoire d’Océanographie Microbienne, UMR 7621, Observatoire Océanologique de Banyuls, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Gabriel Gorsky
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), UPMC Université Paris 06, CNRS UMR 7093, Sorbonne Université, Villefranche sur Mer, France
| |
Collapse
|
48
|
Yang Y, Liu J, Xue T, Hanamoto S, Wang H, Sun P, Zhao L. Complex behavior between microplastic and antibiotic and their effect on phosphorus-removing Shewanella strain during wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157260. [PMID: 35820524 DOI: 10.1016/j.scitotenv.2022.157260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Owing to their widespread application and use, microplastics (MPs) and antibiotics coexist in the sewage treatment systems. In this study, the effects and mechanisms of the combined stress of MPs and ciprofloxacin (CIP) on phosphorus removal by phosphorus-accumulating organisms (PAOs) were investigated. This study found that the four types of MPs and CIP exhibited different antagonistic effects on the inhibition of phosphorus removal by PAO. MPs reduced the effective concentration of CIP through adsorption and thus reduced its toxicity, which was affected by the biofilms on MPs. In addition, CIP may cause PAO to produce more extracellular polymeric substances, which reduces the physical and oxidative stress of MPs on PAO. Our results are helpful as they increase the understanding of the effects of complex emerging pollutants in sewage systems and propose measures to strengthen the biological phosphorus removal in sewage treatment processes.
Collapse
Affiliation(s)
- Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jinyi Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tongyu Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
49
|
Kim L, Cui R, Il Kwak J, An YJ. Trophic transfer of nanoplastics through a microalgae-crustacean-small yellow croaker food chain: Inhibition of digestive enzyme activity in fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129715. [PMID: 35986943 DOI: 10.1016/j.jhazmat.2022.129715] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of nanoplastics on marine organisms via trophic transfer in the food chain. We designed a three-step food chain comprising microalga (Dunaliella salina), small crustaceans (Artemia franciscana), and fish (small yellow croakers; Larimichthys polyactis) and evaluated the effects of trophic transfer in marine organisms, as well as verified the possibility of nanoplastic transfer to humans via trophic transfer. Using amine-modified nanopolystyrene (nPS-NH2) as a pollutant, we conducted both direct-exposure and trophic transfer experiments to determine how pollutants move through the food chain (D. salina → A. franciscana). Exposure of D. salina to nPS-NH2, which was adsorbed on its cell wall, resulted in transfer to A. franciscana with alteration of gut permeability. Additionally, assessment of the adverse effects of nPS-NH2 via a dietary pathway (three-step food chain) on the L. polyactis digestive system revealed that nanoplastics adsorbed to the cell wall of microalgae are gradually transferred to higher trophic level organisms, such as via food resources consumed by humans, inducing the inhibition of digestive enzyme activity (α-amylase). It indicates that human could eventually be exposed to nanoplastics and experience toxicity.
Collapse
Affiliation(s)
- Lia Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rongxue Cui
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
50
|
Xu C, Lu J, Shen C, Wang J, Li F. Deciphering the mechanisms shaping the plastisphere antibiotic resistome on riverine microplastics. WATER RESEARCH 2022; 225:119192. [PMID: 36206680 DOI: 10.1016/j.watres.2022.119192] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Microplastics in urban rivers provide bacterial niches and serve as dispersal vectors for antibiotic resistant genes (ARGs) dissemination, which may exacerbate risks in the aquatic systems. However, whether MPs in the river would also selectively enrich ARGs and the underlying mechanisms shaping the resistome on MPs remains largely unknown. In this study, we explored the occurrence of ARGs, bacterial communities, and mobile genetic elements (MGEs) on MPs and in waters from the Huangpu River in China. Microplastics were widely distributed in the river (1.78 ± 0.84 items/L), with overwhelming percentages of polyethylene terephthalate fibers. Although reduced ARG abundances were observed on MPs than in waters, MPs selectively enriched the ARGs resistant to Rifamycin and Vancomycin. A clear variation for ARG profiles was elucidated between water and MPs samples. Network analysis suggested that MPs created a unique niche for the genus Afipia to colonize, potentially contributing to the vertical dissemination of ARGs. Additionally, the co-occurrence between ARGs and MGEs revealed that the MPs favor the propagation of some plasmid-associated ARGs mediated by horizontal gene transfer. The null model-based stochasticity ratio and the neutral community model suggested that the ARG assembly on MPs was dominantly driven by stochastic process. The results further indicated that microbial communities and MGEs played significant roles in shaping ARG profiles and dynamics on MPs. Our findings provided new insights into the ecological processes of antibiotic resistome of the aquatic plastisphere.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Lu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|