1
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
Wang X, Zhou L, Qi L, Zhang Y, Yin H, Gan Y, Gao X, Cai Y. High GLUT1 membrane expression and low PSMA membrane expression in Ductal Adenocarcinoma and Intraductal Carcinoma of the prostate. Prostate Cancer Prostatic Dis 2024; 27:720-727. [PMID: 38007533 DOI: 10.1038/s41391-023-00759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Both Ductal Adenocarcinoma (DAC) and Intraductal Carcinoma (IDC) of the prostate are generally associated with aggressive clinical behavior and poor prognosis, which were linked with discordant FDG positivity and low Prostate-Specific Membrane Antigen (PSMA) expression. A recent study only cited a DAC patient with low 68Ga-PSMA-11 PET/CT uptake but high 18F-FDG PET/CT uptake, however, there is lack of directly compared articles nor large data sets. Hence, the objective of this study was to investigate the expression of PSMA and GLUT1 in DAC and IDC-P patients. METHODS The study was conducted on 87 DAC or/and IDC-P patients without any treatment and 97 PAC patients with a Gleason score ≥8 of prostate biopsies and prostatectomy samples between August 2017 and August 2022. We performed immunohistochemical staining and scoring of various cancer component samples from the patients to reflect the protein expression levels of PSMA and GLUT1. RESULTS PSMA expression in PAC was significantly higher than in DAC/IDC-P (141.2 vs 78.6, p < 0.001). There was no significant difference in PSMA expression between DAC/IDC-P and adjacent PAC (78.6 vs 93.4, p = 0.166). GLUT1 expression was higher in DAC/IDC-P than in adjacent PAC (68.6 vs 51.3, p = 0.007), but was still lower than that in pure PAC (68.6 vs 93.1, p = 0.0014). It is worth noting that GLUT1 membrane expression in DAC/IDC-P was significantly increased than in pure PAC (13.0 vs 6.6, p = 0.025), and in PAC adjacent to DAC/IDC-P (13.0 vs 2.0, p < 0.001). CONCLUSIONS In DAC/IDC-P tissues, PSMA expression is low, while GLUT1 expression, especially GLUT1 membrane expression is high. These findings imply that DAC/IDC-P may have higher glucose metabolic and raise interest in targeting membrane GLUT1 as a novel anticancer strategy for DAC/IDC-P and other prostate cancer with high glucose metabolism.
Collapse
Affiliation(s)
- Xingming Wang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Li Zhou
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongling Yin
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Xiaomei Gao
- Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Shahpar A, Sofiani VH, Nezhad NZ, Charostad M, Ghaderi R, Farsiu N, Kiskani AK, Pezeshki S, Nakhaie M. A narrative review: exploring viral-induced malignancies through the lens of dysregulated cellular metabolism and glucose transporters. BMC Cancer 2024; 24:1329. [PMID: 39472817 PMCID: PMC11520837 DOI: 10.1186/s12885-024-13013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION In this narrative review, we unravel the complex interplay between oncogenic viruses, cellular metabolism, and glucose transporter (GLUT) dysregulation in viral-induced malignancies. METHODS By explaining the diverse mechanisms through which seven major oncoviruses manipulate metabolic pathways and GLUT expression, particularly GLUT1, we provide novel insights into the critical role of metabolic reprogramming in viral replication and oncogenesis. RESULTS Our exploration of the molecular pathways targeted by viral oncoproteins reveals a similarity between the metabolic alterations induced by viral infections and those observed in neoplastic transformation. A key finding of our review is the overexpression of GLUTs, particularly GLUT1, as a hallmark of both viral infections and many cancers. CONCLUSIONS By elucidating the complex interplay between viral oncoproteins, oncogene activation, tumor suppressor gene loss, and GLUT overexpression, we highlight the potential of GLUTs as novel targets for diagnosis, prognosis, and therapy of viral-induced malignancies.
Collapse
Affiliation(s)
- Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Nazanin Zeinali Nezhad
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Charostad
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Reza Ghaderi
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Niloofar Farsiu
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Amin Karimzadeh Kiskani
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Pezeshki
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Henrique RBL, Santos ALF, Pereira MIA, Santos NRM, Pereira G, Cabral Filho PE, Fontes A. Emerging trends on the uptake of fluorescent probes based on glucose analogs by cancer cells: From basic studies to therapeutics. Life Sci 2024; 355:122978. [PMID: 39147317 DOI: 10.1016/j.lfs.2024.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The cancer cell metabolism, notably characterized by the Warburg effect, has been the focus of intense investigation regarding the mechanisms of the uptake of glucose analogs, opening up perspectives for diagnosis and treatment of cancer disease. In this review, we delve into the ever-evolving landscape of cancer research, centering on fluorescent probes based on glucose analogs. These analogs, resulting from modifications in the carbohydrate structure with functional groups, have stood out as versatile molecules in applications ranging from disease comprehension to therapeutic innovation, especially when combined with fluorescent compounds. Fluorescence-based assays have provided valuable contributions to the revelation of complex biological mechanisms in life sciences. This review presents selected studies from about the past six years up to 2024 related to the use of glucose-based fluorescent probes, for the investigation of their uptake profile as well as for therapeutic purposes. We believe that these investigations offer insights into the intricate interaction between glucose analogs and cancer cell metabolism, guiding future research and clinical applications in this field.
Collapse
Affiliation(s)
- Rafaella B L Henrique
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| | - Ana L F Santos
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Maria I A Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Natália R M Santos
- Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-560, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro, 3810-193, Portugal
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-901, Brazil.
| |
Collapse
|
5
|
Xu Y, Han X, You S, Zhu W, Zhang M, Lu C, He J, Yao Q. SLC45A4 is involved in malignant progression of ovarian cancer through glycolytic metabolic reprogramming. Sci Rep 2024; 14:23031. [PMID: 39363015 PMCID: PMC11450204 DOI: 10.1038/s41598-024-74249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Tumor cells promote malignant behaviors such as proliferation, invasion, and metastasis of cancer cells through glucose metabolic reprogramming, but the role of the H-dependent sugar cotransporter SLC45A4 in regulating metabolic reprogramming in ovarian cancer (OC) remains largely unknown. This study aimed to investigate the effects of SLC45A4 silencing on the transcriptome spectrum of ovarian cancer cells (OCC), glucose uptake, lactic acid production, intracellular ATP levels, and the expression and activity of HIF-α glycolysis signaling pathway. The results showed that SLC45A4 is overexpressed in OC and its elevated expression correlates with adverse clinical outcomes in OC patients. Silencing of SLC45A4 significantly inhibited the proliferation, invasion, and metastasis of OCC by suppressing glucose uptake and glycolysis, and it also reduced the expression of HIF-α glycolysis signaling pathway in OC tissues. In vivo experiments using shRNA to knock down SLC45A4 in xenograft models in nude mice demonstrated a significant inhibition of tumor growth. These findings suggest that SLC45A4 silencing can restrain the malignant progression of OC by inhibiting glucose uptake in OCC and affecting the reprogramming of glycolytic energy metabolism, indicating that SLC45A4 may serve as a potential therapeutic target for OC intervention.
Collapse
Affiliation(s)
- Yuance Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiahui Han
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shijing You
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Wei Zhu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Mingyun Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Changyu Lu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Junqi He
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
6
|
Zhang H, Chen C, Han J, Wang S, Jia Q, Ling P, Li S, Fang J. Hyaluronan and Glucose Dual-targeting Probe: Synthesis and Application. Bioorg Chem 2024; 153:107816. [PMID: 39276493 DOI: 10.1016/j.bioorg.2024.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In this work, we developed a dual-targeting probe consisted of well-defined hyaluronan (HA) oligosaccharide and glucose (Glc) labeled with Rhodamine B (HGR). The probe was designed to enhance tumor targeting both in vitro and in vivo, by simultaneously targeting CD44 and Glc transporter 1 (GLUT1). The HA oligosaccharide component was crucial for accurately assessing the impact of sugar chain structure on targeting efficacy, while its unoccupied carboxyl groups could minimize interference with HA's binding affinity to CD44. In vitro studies demonstrated that HGR possessed remarkable cytocompatibility and superior targeting abilities compared to single-targeting probes. It displayed a marked preference for CD44high/GLUT1high cells rather than CD44low/GLUT1low cells. In vivo studies using murine models further confirmed the significantly enhanced targeting efficacy and excellent biocompatibility of HGR. Therefore, this designed dual-targeting probe holds potential for clinical tumor detection.
Collapse
Affiliation(s)
- Henan Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Changsheng Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jingjun Han
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Shuaishuai Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Qingwen Jia
- Shandong Freda Pharmaceutical Group Co. Ltd, Jinan, Shandong 250101, China
| | - Peixue Ling
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Shuang Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
8
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
9
|
Li PC, Dai SY, Lin YS, Chang YT, Liu CC, Wang IC, Lee MF. Forkhead box M1 mediates metabolic reprogramming in human colorectal cancer cells. Am J Physiol Gastrointest Liver Physiol 2024; 327:G284-G294. [PMID: 38953837 DOI: 10.1152/ajpgi.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer, enabling cancer cells to acquire essential biomolecules for cell growth, often characterized by upregulated glycolysis and/or fatty acid synthesis-related genes. The transcription factor forkhead box M1 (FOXM1) has been implicated in various cancers, contributing significantly to their development, including colorectal cancer (CRC), a major global health concern. Despite FOXM1's established role in cancer, its specific involvement in the Warburg effect and fatty acid biosynthesis in CRC remains unclear. We analyzed The Cancer Genome Atlas (TCGA) Colonic Adenocarcinoma and Rectal Adenocarcinoma (COADREAD) datasets to derive the correlation of the expression levels between FOXM1 and multiple genes and the survival prognosis based on FOXM1 expression. Using two human CRC cell lines, HT29 and HCT116, we conducted RNAi or plasmid transfection procedures, followed by a series of assays, including RNA extraction, quantitative real-time polymerase chain reaction, Western blot analysis, cell metabolic assay, glucose uptake assay, Oil Red O staining, cell viability assay, and immunofluorescence analysis. Higher expression levels of FOXM1 correlated with a poorer survival prognosis, and the expression of FOXM1 was positively correlated with glycolysis-related genes SLC2A1 and LDHA, de novo lipogenesis-related genes ACACA and FASN, and MYC. FOXM1 appeared to modulate AKT/mammalian target of rapamycin (mTOR) signaling, the expression of c-Myc, proteins related to glycolysis and fatty acid biosynthesis, and glucose uptake, as well as extracellular acidification rate in HT29 and HCT116 cells. In summary, FOXM1 plays a regulatory role in glycolysis, fatty acid biosynthesis, and cellular energy consumption, thereby influencing CRC cell growth and patient prognosis.NEW & NOTEWORTHY Transcription factor forkhead box M1 (FOXM1) regulates glycolysis, fatty acid biosynthesis, and cellular energy consumption, which, together, controls cell growth and patient prognosis in colorectal cancer (CRC).
Collapse
Affiliation(s)
- Po-Chen Li
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Sheng-Yu Dai
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Shun Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yu-Tsen Chang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chen-Chia Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Fen Lee
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Golovina E, Heizer T, Daumova L, Bajecny M, Fontana S, Griggio V, Jones R, Coscia M, Riganti C, Savvulidi Vargova K. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int 2024; 24:251. [PMID: 39020347 PMCID: PMC11256420 DOI: 10.1186/s12935-024-03437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
Hypoxia represents one of the key factors that stimulates the growth of leukemic cells in their niche. Leukemic cells in hypoxic conditions are forced to reprogram their original transcriptome, miRNome, and metabolome. How the coupling of microRNAs (miRNAs)/mRNAs helps to maintain or progress the leukemic status is still not fully described. MiRNAs regulate practically all biological processes within cells and play a crucial role in the development/progression of leukemia. In the present study, we aimed to uncover the impact of hsa-miR-155-5p (miR-155, MIR155HG) on the metabolism, proliferation, and mRNA/miRNA network of human chronic lymphocytic leukemia cells (CLL) in hypoxic conditions. As a model of CLL, we used the human MEC-1 cell line where we deleted mature miR-155 with CRISPR/Cas9. We determined that miR-155 deficiency in leukemic MEC-1 cells results in lower proliferation even in hypoxic conditions in comparison to MEC-1 control cells. Additionally, in MEC-1 miR-155 deficient cells we observed decreased number of populations of cells in S phase. The miR-155 deficiency under hypoxic conditions was accompanied by an increased apoptosis. We detected a stimulatory effect of miR-155 deficiency and hypoxia at the level of gene expression, seen in significant overexpression of EGLN1, GLUT1, GLUT3 in MEC-1 miR-155 deficient cells. MiR-155 deficiency and hypoxia resulted in increase of glucose and lactate uptake. Pyruvate, ETC and ATP were reduced. To conclude, miR-155 deficiency and hypoxia affects glucose and lactate metabolism by stimulating the expression of glucose transporters as GLUT1, GLUT3, and EGLN1 [Hypoxia-inducible factor prolyl hydroxylase 2 (HIF-PH2)] genes in the MEC-1 cells.
Collapse
Affiliation(s)
- Elena Golovina
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Daumova
- Institute Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Martin Bajecny
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Simona Fontana
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Valentina Griggio
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Rebecca Jones
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Marta Coscia
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Division of Hematology, A.O.U. Città Della Salute E Della Scienza Di Torino, Torino, Italy
| | - Chiara Riganti
- Oncological Pharmacology Laboratory, Department of Oncology, University of Torino, Torino, Italy
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
11
|
Qiao Q, Hu S, Wang X. The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond) 2024; 44:761-786. [PMID: 38851859 PMCID: PMC11260772 DOI: 10.1002/cac2.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 06/10/2024] Open
Abstract
Metabolic reprogramming has been demonstrated to have a significant impact on the biological behaviors of tumor cells, among which glycolysis is an important form. Recent research has revealed that the heightened glycolysis levels, the abnormal expression of glycolytic enzymes, and the accumulation of glycolytic products could regulate the growth, proliferation, invasion, and metastasis of tumor cells and provide a favorable microenvironment for tumor development and progression. Based on the distinctive glycolytic characteristics of tumor cells, novel imaging tests have been developed to evaluate tumor proliferation and metastasis. In addition, glycolytic enzymes have been found to serve as promising biomarkers in tumor, which could provide assistance in the early diagnosis and prognostic assessment of tumor patients. Numerous glycolytic enzymes have been identified as potential therapeutic targets for tumor treatment, and various small molecule inhibitors targeting glycolytic enzymes have been developed to inhibit tumor development and some of them are already applied in the clinic. In this review, we systematically summarized recent advances of the regulatory roles of glycolysis in tumor progression and highlighted the potential clinical significance of glycolytic enzymes and products as novel biomarkers and therapeutic targets in tumor treatment.
Collapse
Affiliation(s)
- Qiqi Qiao
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
12
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
13
|
Xu K, Zhang K, Wang Y, Gu Y. Comprehensive review of histone lactylation: Structure, function, and therapeutic targets. Biochem Pharmacol 2024; 225:116331. [PMID: 38821374 DOI: 10.1016/j.bcp.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Histone lysine lactylation (Kla) has emerged as a distinct epigenetic modification that differs markedly from established acylation modifications through the unique addition of a lactyl group to a lysine residue. Such modifications not only alter nucleosome structure but also significantly impact chromatin dynamics and gene expression, thus playing a crucial role in cellular metabolism, inflammatory responses, and embryonic development. The association of histone Kla with various metabolic processes, particularly glycolysis and glutamine metabolism, underscores its pivotal role in metabolic reprogramming, including in cancerous tissues, where it contributes to tumorigenesis, immune evasion, and angiogenesis. In addition, histone Kla is involved in the pathogenesis of various diseases, particularly several cancers and neurodegenerative diseases. The identification of histone Kla opens new avenues for therapeutic interventions targeting specific Kla sites. In this review, we summarize the differences between histone Kla modifications and other acylation modifications, discuss the mechanisms and roles of histone Kla in disease, and conclude by describing existing drugs and potential targets. This study provides new insights into the mechanisms linking histone Kla to diseases and into the discovery of new drugs and targets.
Collapse
Affiliation(s)
- Kaiwen Xu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yanshuang Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
14
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Dong H, Jia W, Meng W, Zhang R, Qi Z, Chen Z, Xie S, Min J, Liu L, Shen J. DAB2IP inhibits glucose uptake by modulating HIF-1α ubiquitination under hypoxia in breast cancer. Oncogenesis 2024; 13:20. [PMID: 38862467 PMCID: PMC11166643 DOI: 10.1038/s41389-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.
Collapse
Affiliation(s)
- Hongliang Dong
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiyi Jia
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Science & Education, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Weijian Meng
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Zhang
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihong Qi
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhuo Chen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sophia Xie
- Wuhan Britain-China School, Wuhan, 430030, China
| | - Jiang Min
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 40000, China
| | - Liang Liu
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jie Shen
- Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- GI Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
17
|
Yoshino S, Ishida E, Horiguchi K, Matsumoto S, Nakajima Y, Ozawa A, Yamada M, Yamada E. Mixed-Lineage Leukaemia Gene Regulates Glucose-Sensitive Gene Expression and Insulin Secretion in Pancreatic Beta Cells. Int J Mol Sci 2024; 25:4704. [PMID: 38731926 PMCID: PMC11082990 DOI: 10.3390/ijms25094704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The escalating prevalence of diabetes mellitus underscores the need for a comprehensive understanding of pancreatic beta cell function. Interest in glucose effectiveness has prompted the exploration of novel regulatory factors. The myeloid/lymphoid or mixed-lineage leukaemia gene (MLL) is widely recognised for its role in leukemogenesis and nuclear regulatory mechanisms through its histone methyltransferase activity in active chromatin. However, its function within pancreatic endocrine tissues remains elusive. Herein, we unveil a novel role of MLL in glucose metabolism and insulin secretion. MLL knockdown in βHC-9 pancreatic beta cells diminished insulin secretion in response to glucose loading, paralleled by the downregulation of the glucose-sensitive genes SLC2a1 and SLC2a2. Similar observations were made in MLL heterozygous knockout mice (MLL+/-), which exhibited impaired glucose tolerance and reduced insulin secretion without morphological anomalies in pancreatic endocrine cells. The reduction in insulin secretion was independent of changes in beta cell mass or insulin granule morphology, suggesting the regulatory role of MLL in glucose-sensitive gene expression. The current results suggest that MLL interacts with circadian-related complexes to modulate the expression of glucose transporter genes, thereby regulating glucose sensing and insulin secretion. Our findings shed light on insulin secretion control, providing potential avenues for therapeutics against diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.Y.); (K.H.); (S.M.); (Y.N.); (A.O.); (M.Y.)
| |
Collapse
|
18
|
Ben Ali F, Qmichou Z, Oukabli M, Dakka N, Bakri Y, Eddouks M, Ameziane El Hassani R. Alteration of glucose metabolism and expression of glucose transporters in ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:384-399. [PMID: 38745772 PMCID: PMC11090687 DOI: 10.37349/etat.2024.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 05/16/2024] Open
Abstract
Aerobic glycolysis also known as the Warburg effect, remains a hallmark of various cancers, including ovarian cancer. Cancer cells undergo metabolic changes to sustain their tumorigenic properties and adapt to environmental conditions, such as hypoxia and nutrient starvation. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, develop resistance to chemotherapy, maintain cancer stem cell phenotype, and escape anti-tumor immune responses. Glucose transporters (GLUTs), which play a pivotal role as the rate-limiting step in glycolysis, are frequently overexpressed in a variety of tumors, including ovarian cancer. Multiple oncoproteins can regulate GLUT proteins, promoting tumor proliferation, migration, and metastasis, either dependent or independent of glycolysis. This review examines the alteration of GLUT proteins, particularly GLUT1, in ovarian cancer and its impact on cancer initiation, progression, and resistance to treatment. Additionally, it highlights the role of these proteins as biomarkers for diagnosis and prognosis in ovarian cancer, and delves into novel therapeutic strategies currently under development that target GLUT isoforms.
Collapse
Affiliation(s)
- Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat 10001, Morocco
| | - Mohamed Oukabli
- Department of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Mohammed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia BP 509, Morocco
| | - Rabii Ameziane El Hassani
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| |
Collapse
|
19
|
Wu Z, Chen S, Chen Z, Dong G, Xu D, Sheng C. Design of Evodiamine-Glucose Conjugates with Improved In Vivo Antitumor Activity. J Med Chem 2024. [PMID: 38646851 DOI: 10.1021/acs.jmedchem.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Natural product evodiamine is a multitargeting antitumor lead compound. However, clinical development of evodiamine derivatives was hampered by poor water solubility and limited in vivo antitumor potency. Herein, a series of evodiamine-glucose conjugates were designed by additional targeting glucose transporter-1 (GLUT1). Compared with the lead compound, conjugate 8 exhibited obvious enhancement in water solubility and in vivo antitumor efficacy. Furthermore, the effect of GLUT1 targeting also led to lower cytotoxicity to normal cells. Antitumor mechanism studies manifested that conjugate 8 acted by Top1/Top2 dual inhibition, apoptosis induction, and G2/M cell cycle arrest, which selectively targeted tumor cells with a high expression level of GLUT1. Thus, evodiamine-glucose conjugates showed promising features as potential antitumor agents.
Collapse
Affiliation(s)
- Zhe Wu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Shuqiang Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Zhipeng Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| | - Defeng Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, People's Republic of China
| |
Collapse
|
20
|
Uritu CM, Al-Matarneh CM, Bostiog DI, Coroaba A, Ghizdovat V, Filipiuc SI, Simionescu N, Stefanescu C, Jalloul W, Nastasa V, Tamba BI, Maier SS, Pinteala M. Radiolabeled multi-layered coated gold nanoparticles as potential biocompatible PET/SPECT tracers. J Mater Chem B 2024; 12:3659-3675. [PMID: 38530751 DOI: 10.1039/d3tb02654j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The demand for tailored, disease-adapted, and easily accessible radiopharmaceuticals is one of the most persistent challenges in nuclear imaging precision medicine. The aim of this work was to develop two multimodal radiotracers applicable for both SPECT and PET techniques, which consist of a gold nanoparticle core, a shell involved in radioisotope entrapment, peripherally placed targeting molecules, and biocompatibilizing polymeric sequences. Shell decoration with glucosamine units located in sterically hindered molecular environments is expected to result in nanoparticle accumulation in high-glucose-consuming areas. Gold cores were synthesized using the Turkevich method, followed by citrate substitution with linear PEG α,ω-functionalized with thiol and amine groups. The free amine groups facilitated the binding of branched polyethyleneimine through an epoxy ring-opening reaction by using PEG α,ω-diglycidyl ether as a linker. Afterwards, the glucose-PEG-epoxy prepolymer has been grafted onto the surface of AuPEG-PEI conjugates. Finally, the AuPEG-PEI-GA conjugates were radiolabeled with 99mTc or 68Ga. Instant thin-layer chromatography was used to evaluate the radiolabeling yield. The biocompatibility of non-labeled and 99mTc or 68Ga labeled nanoparticles was assessed on normal fibroblasts. The 99mTc complexes remained stable for over 22 hours, while the 68Ga containing ones revealed a slight decrease in stability after 1 hour.
Collapse
Affiliation(s)
- Cristina M Uritu
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Cristina M Al-Matarneh
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Denisse I Bostiog
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Silviu I Filipiuc
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Wael Jalloul
- Department of Biophysics and Medical Physics, Nuclear medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Valentin Nastasa
- Faculty of Veterinary Medicine, "Ion Ionescu de la Brad" Iasi University of Life Science, Iasi, Romania.
| | - Bogdan I Tamba
- Advanced Center for Research and Development in Experimental Medicine "Prof. Ostin C. Mungiu", "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Stelian S Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
- Polymers Research Center, "Gheorghe Asachi" Technical University of Iasi, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, Romania.
| |
Collapse
|
21
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
22
|
Zou J, Mai C, Lin Z, Zhou J, Lai G. Targeting metabolism of breast cancer and its implications in T cell immunotherapy. Front Immunol 2024; 15:1381970. [PMID: 38680483 PMCID: PMC11045902 DOI: 10.3389/fimmu.2024.1381970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer is a prominent health issue amongst women around the world. Immunotherapies including tumor targeted antibodies, adoptive T cell therapy, vaccines, and immune checkpoint blockers have rejuvenated the clinical management of breast cancer, but the prognosis of patients remains dismal. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. The deprivation uptake of nutrients (such as glucose, amino acid, and lipid) by breast cancer cells has a significant impact on tumor growth and microenvironment remodeling. In recent years, in-depth researches on the mechanism of metabolic reprogramming and immune escape have been extensively conducted, and targeting metabolic reprogramming has been proposed as a new therapeutic strategy for breast cancer. This article reviews the abnormal metabolism of breast cancer cells and its impact on the anti-tumor activity of T cells, and further explores the possibility of targeting metabolism as a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Jialuo Zou
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cunjun Mai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiqin Lin
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Guie Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
23
|
Otvagin VF, Krylova LV, Peskova NN, Kuzmina NS, Fedotova EA, Nyuchev AV, Romanenko YV, Koifman OI, Vatsadze SZ, Schmalz HG, Balalaeva IV, Fedorov AY. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder cancer. Eur J Med Chem 2024; 269:116283. [PMID: 38461680 DOI: 10.1016/j.ejmech.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a β-glucuronidase-responsive linker. Upon activation by β-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Nina N Peskova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Oscar I Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, 119991, Russian Federation
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
24
|
Sun M, Sun J, Sun W, Li X, Wang Z, Sun L, Wang Y. Unveiling the anticancer effects of SGLT-2i: mechanisms and therapeutic potential. Front Pharmacol 2024; 15:1369352. [PMID: 38595915 PMCID: PMC11002155 DOI: 10.3389/fphar.2024.1369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer and diabetes are significant diseases that pose a threat to human health. Their interconnection is complex, particularly when they coexist, often necessitating multiple therapeutic approaches to attain remission. Sodium-glucose cotransporter protein two inhibitors (SGLT-2i) emerged as a treatment for hyperglycemia, but subsequently exhibited noteworthy extra-glycemic properties, such as being registered for the treatment of heart failure and chronic kidney disease, especially with co-existing albuminuria, prompting its assessment as a potential treatment for various non-metabolic diseases. Considering its overall tolerability and established use in diabetes management, SGLT-2i may be a promising candidate for cancer therapy and as a supplementary component to conventional treatments. This narrative review aimed to examine the potential roles and mechanisms of SGLT-2i in the management of diverse types of cancer. Future investigations should focus on elucidating the antitumor efficacy of individual SGLT-2i in different cancer types and exploring the underlying mechanisms. Additionally, clinical trials to evaluate the safety and feasibility of incorporating SGLT-2i into the treatment regimen of specific cancer patients and determining appropriate dosage combinations with established antitumor agents would be of significant interest.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Jilei Sun
- Changchun Traditional Chinese Medicine Hospital, Changchun, China
| | - Wei Sun
- First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaonan Li
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Zhe Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Geng H, Chen L, Lv S, Li M, Huang X, Li M, Liu C, Liu C. Photochemically Controlled Release of the Glucose Transporter 1 Inhibitor for Glucose Deprivation Responses and Cancer Suppression Research. J Proteome Res 2024; 23:653-662. [PMID: 38170682 DOI: 10.1021/acs.jproteome.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer cells need a greater supply of glucose mainly due to their aerobic glycolysis, known as the Warburg effect. Glucose transport by glucose transporter 1 (GLUT1) is the rate-limiting step for glucose uptake, making it a potential cancer therapeutic target. However, GLUT1 is widely expressed and performs crucial functions in a variety of cells, and its indiscriminate inhibition will cause serious side effects. In this study, we designed and synthesized a photocaged GLUT1 inhibitor WZB117-PPG to suppress the growth of cancer cells in a spatiotemporally controllable manner. WZB117-PPG exhibited remarkable photolysis efficiency and substantial cytotoxicity toward cancer cells under visible light illumination with minimal side effects, ensuring its safety as a potential cancer therapy. Furthermore, our quantitative proteomics data delineated a comprehensive portrait of responses in cancer cells under glucose deprivation, underlining the mechanism of cell death via necrosis rather than apoptosis. We reason that our study provides a potentially reliable cancer treatment strategy and can be used as a spatiotemporally controllable trigger for studying nutrient deprivation-related stress responses.
Collapse
Affiliation(s)
- Hongen Geng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - ShuWen Lv
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaoping Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Man Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Changlin Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
26
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Gu W, Chai Y, Huang Y, Cai Z, Li R, Chen R, Liu C, Sun Q. Desipramine ameliorates fine particulate matter-induced hepatic insulin resistance by modulating the ceramide metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115849. [PMID: 38134639 DOI: 10.1016/j.ecoenv.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Recent research has highlighted a correlation between exposure to ambient fine particulate matter (PM2.5) and the development of systemic insulin resistance (IR) along with an elevated risk of diabetes. Ceramide has emerged as one of the pathogenic mechanisms contributing to IR. The inhibition of acid sphingomyelinase (ASMase) activity by desipramine (DES) has been shown to effectively reduce ceramide levels. In the present study, 24 female C57BL/6 N mice were randomized into one of the four groups: the filtered air exposure (FA) group, the concentrated PM2.5 exposure (PM) group, the concentrated PM2.5 treated with low-dose DES (DL) group, and the concentrated PM2.5 treated with high-dose DES (DH) group. The PM, DL and DH groups were exposed to PM2.5 for an 8-week period within a whole-body exposure system. The study encompassed extensive examinations of glucose homeostasis, liver lipid profile, ceramide pathway, and insulin signaling pathway. Our results demonstrated that PM2.5 exposure caused impaired glucose tolerance, elevated ceramide levels, increased phosphorylation PP2A, reduced Akt phosphorylation, and hindered GLUT2 expression. Remarkably, DES administration mitigated PM2.5-induced IR by effectively lowering ceramide levels. In conclusion, the reduction of ceramide levels by DES may be a promising therapeutic strategy for coping PM2.5-induced IR.
Collapse
Affiliation(s)
- Weijia Gu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Yanxi Chai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuxin Huang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziwei Cai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ran Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base of Air Pollution and Health, Hangzhou, China.
| |
Collapse
|
28
|
Omokawa M, Kimura H, Arimitsu K, Yagi Y, Hattori Y, Kawashima H, Naito Y, Yasui H. Synthesis and Biological Evaluation of a Novel Sugar-Conjugated Platinum(II) Complex Having a Tumor-Targeting Effect. ACS OMEGA 2024; 9:879-886. [PMID: 38222559 PMCID: PMC10785272 DOI: 10.1021/acsomega.3c06922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
We designed and synthesized a novel platinum complex conjugated with 2-fluorinated 2-deoxyglucoside, named FGC-Pt, to capitalize on the Warburg effect and metabolic trapping properties of [18F]2-deoxy-2-fluoro-d-glucose ([18F]FDG). Then, we conducted comprehensive in vitro and in vivo studies to evaluate the effects of FGC-Pt. In vitro cytotoxicity assays using HeLa cells revealed that FGC-Pt exhibited concentration-dependent cytotoxicity, even though its cytotoxic effect was less pronounced than that of cisplatin. In the evaluation of in vivo biodistribution in mice, platinum concentration in tumors and major organs (muscle, bone, blood, liver, and kidney) and the ratio of platinum concentration in tumors to major organs following the tail vein injection of FGC-Pt and cisplatin suggest that FGC-Pt is more retained in tumors than in other organs and tends to accumulate in tumors more than cisplatin. Furthermore, an in vivo assessment of the antitumor effect conducted in A549 cell-bearing mice demonstrated that FGC-Pt possesses substantial potential as an antitumor agent. It exhibited a tumor growth-inhibitory effect comparable to that of cisplatin while inducing lower toxicity, as evidenced by lower weight loss after administration. Herein, we successfully produced a novel compound with a tumor-growth-inhibitory effect comparable to that of cisplatin and low toxicity.
Collapse
Affiliation(s)
- Marina Omokawa
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Kimura
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Division
of Probe Chemistry for Disease Analysis/Central Institute for Radioisotope
Science, Research Center for Experimental Modeling of Human Disease, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Kenji Arimitsu
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Yusuke Yagi
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
- Department
of Radiological Technology, Faculty of Medicinal Science, Kyoto College of Medical Science, 1-3 Imakita, Oyama-higashi, Sonobe, Nantan 622-0041, Kyoto, Japan
| | - Yasunao Hattori
- Center
for Instrumental Analysis, Kyoto Pharmaceutical
University, 1 Shichono-cho,
Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hidekazu Kawashima
- Radioisotope
Research Center, Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yuki Naito
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hiroyuki Yasui
- Laboratory
of Analytical and Bioinorganic Chemistry, Division of Analytical and
Physical Sciences, Kyoto Pharmaceutical
University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
29
|
Cheng Q, Shi X, Li Q, Wang L, Wang Z. Current Advances on Nanomaterials Interfering with Lactate Metabolism for Tumor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305662. [PMID: 37941489 PMCID: PMC10797484 DOI: 10.1002/advs.202305662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Increasing numbers of studies have shown that tumor cells prefer fermentative glycolysis over oxidative phosphorylation to provide a vast amount of energy for fast proliferation even under oxygen-sufficient conditions. This metabolic alteration not only favors tumor cell progression and metastasis but also increases lactate accumulation in solid tumors. In addition to serving as a byproduct of glycolytic tumor cells, lactate also plays a central role in the construction of acidic and immunosuppressive tumor microenvironment, resulting in therapeutic tolerance. Recently, targeted drug delivery and inherent therapeutic properties of nanomaterials have attracted great attention, and research on modulating lactate metabolism based on nanomaterials to enhance antitumor therapy has exploded. In this review, the advanced tumor therapy strategies based on nanomaterials that interfere with lactate metabolism are discussed, including inhibiting lactate anabolism, promoting lactate catabolism, and disrupting the "lactate shuttle". Furthermore, recent advances in combining lactate metabolism modulation with other therapies, including chemotherapy, immunotherapy, photothermal therapy, and reactive oxygen species-related therapies, etc., which have achieved cooperatively enhanced therapeutic outcomes, are summarized. Finally, foreseeable challenges and prospective developments are also reviewed for the future development of this field.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Xiao‐Lei Shi
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Qi‐Lin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Research Center for Tissue Engineering and Regenerative MedicineUnion HospitalHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| | - Zheng Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhongUniversity of Science and TechnologyWuhan430022China
| |
Collapse
|
30
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
31
|
Bae HL, Jeong K, Yang S, Jun H, Kim K, Chai YJ. Expression Profiles of Hypoxia-Related Genes of Cancers Originating from Anatomically Similar Locations Using TCGA Database Analysis. MEDICINES (BASEL, SWITZERLAND) 2023; 11:2. [PMID: 38248716 PMCID: PMC10819830 DOI: 10.3390/medicines11010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Background: Hypoxia is a well-recognized characteristic of the tumor microenvironment of solid cancers. This study aimed to analyze hypoxia-related genes shared by groups based on tumor location. Methods: A total of 9 hypoxia-related pathways from the Kyoto Encyclopedia of Genes and Genomes database or the Reactome database were selected, and 850 hypoxia-related genes were analyzed. Based on their anatomical locations, 14 tumor types were categorized into 6 groups. The group-specific genetic risk score was classified as high- or low-risk based on mRNA expression, and survival outcomes were evaluated. Results: The risk scores in the Female Reproductive group and the Lung group were internally and externally validated. In the Female Reproductive group, CDKN2A, FN1, and ITGA5 were identified as hub genes associated with poor prognosis, while IL2RB and LEF1 were associated with favorable prognosis. In the Lung group, ITGB1 and LDHA were associated with poor prognosis, and GLS2 was associated with favorable prognosis. Functional enrichment analysis showed that the Female Reproductive group was enriched in relation to cilia and skin, while the Lung group was enriched in relation to cytokines and defense. Conclusions: This analysis may lead to better understanding of the mechanisms of cancer progression and facilitate establishing new biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Hye Lim Bae
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Kyeonghun Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Suna Yang
- Department of Clinical Medical Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyeji Jun
- Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Republic of Korea;
| | - Kwangsoo Kim
- Department of Transdisciplinary Department of Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Jun Chai
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
- Department of Transdisciplinary Department of Medicine, Institute of Convergence Medicine with Innovative Technology, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Surgery, Seoul Metropolitan Government—Seoul National University Boramae Medical Center, Seoul 07061, Republic of Korea
| |
Collapse
|
32
|
Zarzuela L, Durán RV, Tomé M. Metabolism and signaling crosstalk in glioblastoma progression and therapy resistance. Mol Oncol 2023. [PMID: 38105543 DOI: 10.1002/1878-0261.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023] Open
Abstract
Glioblastoma is the most common form of primary malignant brain tumor in adults and one of the most lethal human cancers, with high recurrence and therapy resistance. Glioblastoma cells display extensive genetic and cellular heterogeneity, which precludes a unique and common therapeutic approach. The standard of care in glioblastoma patients includes surgery followed by radiotherapy plus concomitant temozolomide. As in many other cancers, cell signaling is deeply affected due to mutations or alterations in the so-called molecular drivers. Moreover, glioblastoma cells undergo metabolic adaptations to meet the new demands in terms of energy and building blocks, with an increasing amount of evidence connecting metabolic transformation and cell signaling deregulation in this type of aggressive brain tumor. In this review, we summarize some of the most common alterations both in cell signaling and metabolism in glioblastoma, presenting an integrative discussion about how they contribute to therapy resistance. Furthermore, this review aims at providing a comprehensive overview of the state-of-the-art of therapeutic approaches and clinical trials exploiting signaling and metabolism in glioblastoma.
Collapse
Affiliation(s)
- Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
33
|
Tang H, Chen Z, Gan S, Liang Y, Zhang H, Yang C, Lin L, Guo Y, Li S, Li J, Yao L. GLUT1 contributes to impaired epithelial tight junction in the late phase of acute lung injury. Eur J Pharmacol 2023; 961:176185. [PMID: 37944848 DOI: 10.1016/j.ejphar.2023.176185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Dysfunction of epithelial barrier is crucial for the development of acute lung injury (ALI). This study was aimed to evaluate the role of glucose transporter 1 (GLUT1) in dysregulation of epithelial tight junction in ALI. GLUT1 was inhibited with specific antagonists WZB117 or BAY876 to see the effects on epithelial tight junction in a well-established LPS-induced mouse ALI model as well as in vitro cultured epithelial cells. Pharmacological inhibition of GLUT1 with WZB117 at either a low or high dose had no effects on lung injury and inflammation 24 h after LPS challenge, but significantly decreased the pulmonary inflammatory responses induced by LPS at 72 h with a high dose, which was verified by treatment with BAY876. WZB117 or BAY876 also recovered the expression of epithelial tight junction proteins ZO-1 and occludin. In cultured BEAS-2B and A549 cells, LPS induced increased GLUT1 expression, accompanied by decreased expression of tight junction protein ZO-1 and occludin. Blockade of GLUT1 restored LPS-induced disruption of ZO-1 and occludin in BEAS-2B rather than A549. Taken together, our results showed that GLUT1 is responsible for dysfunction of epithelial tight junctions in the late phase of LPS-induced ALI.
Collapse
Affiliation(s)
- Haixiong Tang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zemin Chen
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sudan Gan
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hailing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changyun Yang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqin Lin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lihong Yao
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Tracz-Gaszewska Z, Sowka A, Dobrzyn P. Stearoyl-CoA desaturase 1 inhibition impairs triacylglycerol accumulation and lipid droplet formation in colorectal cancer cells. J Cell Physiol 2023; 238:2888-2903. [PMID: 37814830 DOI: 10.1002/jcp.31137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
35
|
Henrique RBL, Santos ALF, Pereira MIA, Oliveira WF, Santos BS, Pereira G, Fontes A, Cabral Filho PE. A fluorescent glyconanoprobe based on quantum dots and thiolated glucose: Applications in monolayers and spheroids of cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130474. [PMID: 37778449 DOI: 10.1016/j.bbagen.2023.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The differential energy metabolism of cancer cells has stimulated the development of tools that can be applied to better understand the complex biological interaction involved in the uptake of glucose analogs at the cellular level in this disease. Herein, we explored the outstanding optical properties of quantum dots (QDs) to develop a new fluorescent glyconanoprobe using the 1-thio-β-d-glucose (Glc). Then, monolayers and spheroids of HeLa cells were applied to probe the biological interaction with the conjugate through fluorescence techniques. Spheroids have been gaining prominence for better mimicking the tumor microenvironment. The Glc-QDs conjugate was prepared by a facile and direct procedure based on the affinity of the Glc thiol group by the QD semiconductor surface. The conjugation was evaluated and confirmed by Zeta potential (ζ) measurements, FTIR spectroscopy, and fluorescence correlation spectroscopy (FCS). Moreover, a biological assay using Candida albicans yeasts coated with concanavalin A, by exploring the lectin-carbohydrate affinity, was also developed to further confirm the conjugation, which corroborated the previous analyses. The hanging drop method was used to prepare the spheroids. The fluorescence microscopy analyses indicated an intracellular labeling by the glyconanoprobe, in both cell culture models. Flow cytometry assays revealed effective uptake of the conjugate (above ca. 76%), even by cells cultivated as spheroids, applying short incubation time. Therefore, a new fluorescent glyconanoprobe was developed, which showed potential to be applied for investigating mechanisms involved in the uptake of glucose analogs, both by simpler and complex cancer biological models, as monolayers and spheroids.
Collapse
Affiliation(s)
- Rafaella B L Henrique
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Ana L F Santos
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Maria I A Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Weslley F Oliveira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-520, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-560, Brazil; Departamento de Química & CESAM, Universidade de Aveiro, Aveiro 3810-193, Portugal
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| |
Collapse
|
36
|
Cai J, Yi L, Xia Z, Huang X, Yang M, Zhao Z, Gao C, Yang H, Zhang J, Peng Z, Qiu D. Design, Synthesis, and Evaluation of 18F-Labeling CYP1B1 PET Tracer Based on 2-Phenylquinazolin. Bioorg Med Chem Lett 2023; 96:129533. [PMID: 37865282 DOI: 10.1016/j.bmcl.2023.129533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Cytochrome P450 (CYP)1B1 has been identified to be specifically overexpressed in several solid tumors, thus it's a potential target for the detection of tumors. Based on the 2-Phenylquinazolin CYP1B1 inhibitors, we designed and synthesized several positron emission computed tomography (PET) imaging probes targeting CYP1B1. Through IC50 determinations, most of these probes exhibited good affinity and selectivity to CYP1B1. Considering their affinity, solubility, and their 18F labeling methods, we chose compound 5c as the best candidate. The 18F radiolabeling of [18F] 5c was easy to handle with good radiolabeling yield and radiochemical purity. In vitro and in vivo stability study indicated that probe [18F]5c has good stability. In cell binding assay, [18F]5c could be specifically taken up by tumor cells, especially HCT-116 cells. Although the tumor-blood (T/B) and tumor-muscle (T/M) values and PET imaging results were unsatisfied, it is still possible to develop PET probes targeting CYP1B1 by structural modification on the basis of 5c in the future.
Collapse
Affiliation(s)
- Jiajing Cai
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lan Yi
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyue Huang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Meixian Yang
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhenghuan Zhao
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chenyang Gao
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Hengyi Yang
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Jiayuan Zhang
- Chongqing Yucai Secondary School, Chongqing 400050, China
| | - Zhiping Peng
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dachuan Qiu
- Department of Radiation Medicine, College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Cimmino TP, Pagano E, Stornaiuolo M, Esposito G, Ammendola R, Cattaneo F. Formyl-peptide receptor 2 signalling triggers aerobic metabolism of glucose through Nox2-dependent modulation of pyruvate dehydrogenase activity. Open Biol 2023; 13:230336. [PMID: 37875162 PMCID: PMC10597678 DOI: 10.1098/rsob.230336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
The human formyl-peptide receptor 2 (FPR2) is activated by an array of ligands. By phospho-proteomic analysis we proved that FPR2 stimulation induces redox-regulated phosphorylation of many proteins involved in cellular metabolic processes. In this study, we investigated metabolic pathways activated in FPR2-stimulated CaLu-6 cells. The results showed an increased concentration of metabolites involved in glucose metabolism, and an enhanced uptake of glucose mediated by GLUT4, the insulin-regulated member of GLUT family. Accordingly, we observed that FPR2 transactivated IGF-IRβ/IRβ through a molecular mechanism that requires Nox2 activity. Since cancer cells support their metabolism via glycolysis, we analysed glucose oxidation and proved that FPR2 signalling promoted kinase activity of the bifunctional enzyme PFKFB2 through FGFR1/FRS2- and Akt-dependent phosphorylation. Furthermore, FPR2 stimulation induced IGF-IRβ/IRβ-, PI3K/Akt- and Nox-dependent inhibition of pyruvate dehydrogenase activity, thus preventing the entry of pyruvate in the tricarboxylic acid cycle. Consequently, we observed an enhanced FGFR-dependent lactate dehydrogenase (LDH) activity and lactate production in FPR2-stimulated cells. As LDH expression is transcriptionally regulated by c-Myc and HIF-1, we demonstrated that FPR2 signalling promoted c-Myc phosphorylation and Nox-dependent HIF-1α stabilization. These results strongly indicate that FPR2-dependent signalling can be explored as a new therapeutic target in treatment of human cancers.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ester Pagano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
38
|
Su WY, Tian LY, Guo LP, Huang LQ, Gao WY. PI3K signaling-regulated metabolic reprogramming: From mechanism to application. Biochim Biophys Acta Rev Cancer 2023; 1878:188952. [PMID: 37499988 DOI: 10.1016/j.bbcan.2023.188952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
Oncogenic signaling involved in tumor metabolic reprogramming. Tumorigenesis was not only determined by the mutations or deletion of oncogenes but also accompanied by the reprogramming of cellular metabolism. Metabolic alterations play a crucial regulatory role in the development and progression of tumors. Oncogenic PI3K/AKT signaling mediates the metabolic switch in cancer cells and immune cells in the tumor microenvironment. PI3K/AKT and its downstream effector branch off and connect to multiple steps of metabolism, such as glucose, lipids, and amino acids. Thus, PI3K inhibitor could effectively regulate metabolic pathway and impede the oncogenic process and some key metabolic proteins or critical enzymes also constitute biomarkers for tumor diagnosis and treatment. In the current review, we summarize the significant effect of PI3K/AKT signaling toward tumor metabolism, it enables us to obtain the better understanding for this interaction and develop more effective therapeutic strategies targeting cancer cell metabolism.
Collapse
Affiliation(s)
- Wen Ya Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lan Pin Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Qi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Wen Yuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
39
|
Chen X, Ruan M, Wu J, Zhu T, Wen Y, Li X, Yang C, Zong X, Yuan P, Li Y, Yan X, Xue W, Dai J. Constructing Spatiotemporally Controllable Biocatalytic Cascade in RBC Nanovesicles for Precise Tumor Therapy Based on Reversibly Induced Glucose Oxidase-Magnetoferritin Dimers. Adv Healthc Mater 2023; 12:e2300205. [PMID: 37052368 DOI: 10.1002/adhm.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/26/2023] [Indexed: 04/14/2023]
Abstract
Chemodynamic therapy is a promising tumor treatment strategy. However, it remains a great challenge to overcome the unavoidable off-target damage to normal tissues. In this work, it is discovered that magnetoferritin (M-HFn, biomimic peroxidase) can form nanocomplexes with glucose oxidase (GOD) in the presence of glucose, thus inhibiting the enzyme activity of GOD. Interestingly, GOD&M-HFn (G-M) nanocomplexes can dissociate under near-infrared (NIR) laser, reactivating the enzyme cascade. Based on this new finding, a spatiotemporally controllable biocatalytic cascade in red blood cell (RBC) nanovesicles (G-M@RBC-A) is fabricated for precise tumor therapy, which in situ inhibits enzyme cascade between GOD and M-HFn during blood circulation and reactivates the cascade activity in tumor site by NIR laser irradiation. In RBC nanovesicles, GOD is grabbed by M-HFn to form G-M nanocomplexes in the presence of glucose, thus inhibiting the Fenton reaction and reducing side effects. However, after NIR laser irradiation, G-M nanocomplexes are spatiotemporally dissociated and the cascade activity is reactivated in the tumor site, initiating reactive oxygen species damage to cancer cells in vivo. Therefore, this work provides new insight into the fabrication of spatiotemporally controllable biocatalytic cascade for precise cancer therapy in the future.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Miaoliang Ruan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Tianci Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yaoqi Wen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodie Yan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
40
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Suades A, Qureshi A, McComas SE, Coinçon M, Rudling A, Chatzikyriakidou Y, Landreh M, Carlsson J, Drew D. Establishing mammalian GLUT kinetics and lipid composition influences in a reconstituted-liposome system. Nat Commun 2023; 14:4070. [PMID: 37429918 DOI: 10.1038/s41467-023-39711-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.
Collapse
Affiliation(s)
- Albert Suades
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Aziz Qureshi
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Sarah E McComas
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Mathieu Coinçon
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Axel Rudling
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Yurie Chatzikyriakidou
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Solna, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius v. 16c, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
42
|
Chiu PF, Chang CK, Huang PS, Lin YY, Lin CS, Yang HY, Hsu LC, Yu LCH, Liang PH. Design, Synthesis, and Evaluation of Glucose Transporter Inhibitor-SN38 Conjugates for Targeting Colorectal Cancer. J Med Chem 2023. [PMID: 37413981 DOI: 10.1021/acs.jmedchem.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Irinotecan (1), a prodrug of SN38 (2) approved by the US Food and Drug Administration for treating colorectal cancer, lacks specificity and causes many side effects. To increase the selectivity and therapeutic efficacy of this drug, we designed and synthesized conjugates of SN38 and glucose transporter inhibitors (phlorizin (5) or phloretin (6)), which could be hydrolyzed by glutathione or cathepsin to release SN38 in the tumor microenvironment, as a proof of concept. These conjugates (8, 9, and 10) displayed better antitumor efficacy with lower systemic exposure to SN38 in an orthotopic colorectal cancer mouse model compared with irinotecan at the same dosage. Further, no major adverse effects of the conjugates were observed during treatment. Biodistribution studies showed that conjugate 10 could induce higher concentrations of free SN38 in tumor tissues than irinotecan at the same dosage. Thus, the developed conjugates exhibit potential for treating colorectal cancer.
Collapse
Affiliation(s)
- Pei-Fang Chiu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Kai Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pin-Shuo Huang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - You-Yu Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Shun Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hui-Yi Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- The Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
43
|
Rebane-Klemm E, Reinsalu L, Puurand M, Shevchuk I, Bogovskaja J, Suurmaa K, Valvere V, Moreno-Sanchez R, Kaambre T. Colorectal polyps increase the glycolytic activity. Front Oncol 2023; 13:1171887. [PMID: 37342183 PMCID: PMC10277630 DOI: 10.3389/fonc.2023.1171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jelena Bogovskaja
- Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia
| | - Kulliki Suurmaa
- Department of Gastroenterology, West Tallinn Central Hospital, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
44
|
Chang YC, Chan MH, Yang YF, Li CH, Hsiao M. Glucose transporter 4: Insulin response mastermind, glycolysis catalyst and treatment direction for cancer progression. Cancer Lett 2023; 563:216179. [PMID: 37061122 DOI: 10.1016/j.canlet.2023.216179] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
The glucose transporter family (GLUT) consists of fourteen members. It is responsible for glucose homeostasis and glucose transport from the extracellular space to the cell cytoplasm to further cascade catalysis. GLUT proteins are encoded by the solute carrier family 2 (SLC2) genes and are members of the major facilitator superfamily of membrane transporters. Moreover, different GLUTs also have their transporter kinetics and distribution, so each GLUT member has its uniqueness and importance to play essential roles in human physiology. Evidence from many studies in the field of diabetes showed that GLUT4 travels between the plasma membrane and intracellular vesicles (GLUT4-storage vesicles, GSVs) and that the PI3K/Akt pathway regulates this activity in an insulin-dependent manner or by the AMPK pathway in response to muscle contraction. Moreover, some published results also pointed out that GLUT4 mediates insulin-dependent glucose uptake. Thus, dysfunction of GLUT4 can induce insulin resistance, metabolic reprogramming in diverse chronic diseases, inflammation, and cancer. In addition to the relationship between GLUT4 and insulin response, recent studies also referred to the potential upstream transcription factors that can bind to the promoter region of GLUT4 to regulating downstream signals. Combined all of the evidence, we conclude that GLUT4 has shown valuable unknown functions and is of clinical significance in cancers, which deserves our in-depth discussion and design compounds by structure basis to achieve therapeutic effects. Thus, we intend to write up a most updated review manuscript to include the most recent and critical research findings elucidating how and why GLUT4 plays an essential role in carcinogenesis, which may have broad interests and impacts on this field.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Wang K, Li Q, Fan Y, Fang P, Zhou H, Huang J. OBHS Drives Abnormal Glycometabolis Reprogramming via GLUT1 in Breast Cancer. Int J Mol Sci 2023; 24:ijms24087136. [PMID: 37108300 PMCID: PMC10138908 DOI: 10.3390/ijms24087136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Due to the poor metabolic conditions fomenting the emergence of the Warburg effect (WE) phenotype, abnormal glycometabolism has become a unique and fundamental research topic in the field of tumor biology. Moreover, hyperglycemia and hyperinsulinism are associated with poor outcomes in patients with breast cancer. However, there are a few studies on anticancer drugs targeting glycometabolism in breast cancer. We hypothesized that Oxabicycloheptene sulfonate (OBHS), a class of compounds that function as selective estrogen receptor modulators, may hold potential in a therapy for breast cancer glycometabolism. Here, we evaluated concentrations of glucose, glucose transporters, lactate, 40 metabolic intermediates, and glycolytic enzymes using an enzyme-linked immunosorbent assay, Western blotting, and targeted metabolomic analysis in, in vitro and in vivo breast cancer models. OBHS significantly inhibited the expression of glucose transporter 1 (GLUT1) via PI3K/Akt signaling pathway to suppress breast cancer progression and proliferation. Following an investigation of the modulatory effect of OBHS on breast cancer cells, we found that OBHS suppressed the glucose phosphorylation and oxidative phosphorylation of glycolytic enzymes, leading to the decreased biological synthesis of ATP. This study was novel in highlighting the role of OBHS in the remodeling of tumor glycometabolism in breast cancer, and this is worth further investigation of breast cancer in clinical trials.
Collapse
Affiliation(s)
- Kexin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Qiuzi Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Yufeng Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| | - Pingping Fang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Haibing Zhou
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Donghu Road, Wuhan 430071, China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Bayi Road, Wuhan 430072, China
| |
Collapse
|
46
|
Carbó R, Rodríguez E. Relevance of Sugar Transport across the Cell Membrane. Int J Mol Sci 2023; 24:ijms24076085. [PMID: 37047055 PMCID: PMC10094530 DOI: 10.3390/ijms24076085] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sugar transport through the plasma membrane is one of the most critical events in the cellular transport of nutrients; for example, glucose has a central role in cellular metabolism and homeostasis. The way sugars enter the cell involves complex systems. Diverse protein systems participate in the membrane traffic of the sugars from the extracellular side to the cytoplasmic side. This diversity makes the phenomenon highly regulated and modulated to satisfy the different needs of each cell line. The beautiful thing about this process is how evolutionary processes have diversified a single function: to move glucose into the cell. The deregulation of these entrance systems causes some diseases. Hence, it is necessary to study them and search for a way to correct the alterations and utilize these mechanisms to promote health. This review will highlight the various mechanisms for importing the valuable sugars needed to create cellular homeostasis and survival in all kinds of cells.
Collapse
Affiliation(s)
- Roxana Carbó
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
- Correspondence: ; Tel.: +52-55557-32911 (ext. 25704)
| | - Emma Rodríguez
- Cardiology Laboratory at Translational Research Unit UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano #1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| |
Collapse
|
47
|
Kado T, Kusakari N, Tamaki T, Murota K, Tsujiuchi T, Fukushima N. Oleic acid stimulates cell proliferation and BRD4-L-MYC-dependent glucose transporter transcription through PPARα activation in ovarian cancer cells. Biochem Biophys Res Commun 2023; 657:24-34. [PMID: 36965420 DOI: 10.1016/j.bbrc.2023.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Fatty acids (FAs) play important roles in cell membrane structure maintenance, energy production via β-oxidation, and as extracellular signaling molecules. Prior studies have demonstrated that exposure of cancer cells to FAs affects cell survival, cell proliferation, and cell motility. Oleic acid (OA) has somewhat controversial effects in cancer cells, with both pro- and anti-cancer effects, depending on cell type. Our prior findings suggested that OA enhances cell survival in serum starved HNOA ovarian cancer cells by activating glycolysis, but not β-oxidation. Here, we pharmacologically examined the cellular mechanisms by which OA stimulates glycolysis in HNOA cells. OA induced cell cycle progression, leading to increase in cell number through peroxisome proliferator activated receptor (PPAR) α activation. OA-induced glycolysis was mediated by increased GLUT expression, and increases in GLUT expression were mediated by increased L-MYC expression. Furthermore, L-MYC expression was due to BRD4 activation. These findings suggested involvement of the BRD4-L-MYC-GLUT axis in OA-stimulated glycolysis. These results suggested that OA could activate PPARα to stimulate two pathways: glycolysis and cell cycle progression, and provided insight into the role of OA in ovarian cancer cell growth.
Collapse
Affiliation(s)
- Tsuyoshi Kado
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Naoki Kusakari
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Takeru Tamaki
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Kaeko Murota
- Division of Food and Nutritional Chemistry, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Toshifumi Tsujiuchi
- Division of Molecular Oncology, Department of Life Science, Kindai University, Higashiosaka, Japan
| | - Nobuyuki Fukushima
- Division of Molecular Neurobiology, Department of Life Science, Kindai University, Higashiosaka, Japan.
| |
Collapse
|
48
|
Pastuch-Gawołek G, Szreder J, Domińska M, Pielok M, Cichy P, Grymel M. A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics 2023; 15:913. [PMID: 36986774 PMCID: PMC10056414 DOI: 10.3390/pharmaceutics15030913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The number of cancer-related diseases is still growing. Despite the availability of a large number of anticancer drugs, the ideal drug is still being sought that would be effective, selective, and overcome the effect of multidrug resistance. Therefore, researchers are still looking for ways to improve the properties of already-used chemotherapeutics. One of the possibilities is the development of targeted therapies. The use of prodrugs that release the bioactive substance only under the influence of factors characteristic of the tumor microenvironment makes it possible to deliver the drug precisely to the cancer cells. Obtaining such compounds is possible by coupling a therapeutic agent with a ligand targeting receptors, to which the attached ligand shows affinity and is overexpressed in cancer cells. Another way is to encapsulate the drug in a carrier that is stable in physiological conditions and sensitive to conditions of the tumor microenvironment. Such a carrier can be directed by attaching to it a ligand recognized by receptors typical of tumor cells. Sugars seem to be ideal ligands for obtaining prodrugs targeted at receptors overexpressed in cancer cells. They can also be ligands modifying polymers' drug carriers. Furthermore, polysaccharides can act as selective nanocarriers for numerous chemotherapeutics. The proof of this thesis is the huge number of papers devoted to their use for modification or targeted transport of anticancer compounds. In this work, selected examples of broad-defined sugars application for improving the properties of both already-used drugs and substances exhibiting anticancer activity are presented.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Julia Szreder
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Monika Domińska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mateusz Pielok
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Piotr Cichy
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
49
|
Dockx Y, Vangestel C, De Bruycker S, Van den Wyngaert T, Huizing M, Staelens S, Stroobants S. 18F-FDG and 18F-FLT Uptake Profiles for Breast Cancer Cell Lines Treated with Targeted PI3K/Akt/mTOR Therapies. Cancer Biother Radiopharm 2023; 38:51-61. [PMID: 36472460 DOI: 10.1089/cbr.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: To evaluate 18F-fluoro-2-deoxy-glucose (18F-FDG) and 18F-fluorothymidine (18F-FLT) as early-response biomarkers for phosphoinositide-3-kinase/Akt/mammalian-target-of-rapamycin (PI3K/Akt/mTOR) inhibition in breast cancer (BC) models. Materials and Methods: Two human epidermal growth factor receptor 2 (HER2)-positive (trastuzumab-sensitive SKBR3; trastuzumab-resistant JIMT1) and one triple-negative BC cell line (MDA-MB-231, trastuzumab, and everolimus resistant) were treated with trastuzumab (HER2 antagonist), PIK90 (PI3K inhibitor), or everolimus (mTOR inhibitor). Radiotracer uptake was measured before, 24, and 72 h after drug exposure and correlated with changes in cell number, glucose transporter 1 (GLUT1), cell cycle phase, and downstream signaling activation. Results: In responsive cells, cell number correlated with 18F-FLT at 24 h and 18F-FDG at 72 h of drug exposure, except in JIMT1 treated with everolimus, where both radiotracers failed to detect response owing to a temporary increase in tracer uptake. This flare can be caused by reflex activation of Akt combined with a hyperactive insulin-like growth factor I receptor (IGF-1R) signaling, resulting in increased trafficking of GLUTs to the cell membrane (18F-FDG) and enhanced DNA repair (18F-FLT). In resistant cells, no major changes were observed, although a nonsignificant flair for both tracers was observed in JIMT1 treated with trastuzumab. Conclusion: 18F-FLT positron emission tomography (PET) detects response to PI3K-targeting therapy earlier than 18F-FDG PET in BC cells. However, therapy response can be underestimated after trastuzumab and everolimus owing to negative feedback loop and crosstalk between pathways.
Collapse
Affiliation(s)
- Yanina Dockx
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sven De Bruycker
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Science and Technology, AP University of Applied Sciences and Arts Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Manon Huizing
- Department of Medical Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
50
|
Vidoni C, Ferraresi A, Vallino L, Salwa A, Ha JH, Seca C, Garavaglia B, Dhanasekaran DN, Isidoro C. Glycolysis Inhibition of Autophagy Drives Malignancy in Ovarian Cancer: Exacerbation by IL-6 and Attenuation by Resveratrol. Int J Mol Sci 2023; 24:ijms24021723. [PMID: 36675246 PMCID: PMC9866176 DOI: 10.3390/ijms24021723] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer cells drive the glycolytic process towards the fermentation of pyruvate into lactate even in the presence of oxygen and functioning mitochondria, a phenomenon known as the "Warburg effect". Although not energetically efficient, glycolysis allows the cancer cell to synthesize the metabolites needed for cell duplication. Autophagy, a macromolecular degradation process, limits cell mass accumulation and opposes to cell proliferation as well as to cell migration. Cancer cells corrupt cancer-associated fibroblasts to release pro-inflammatory cytokines, which in turn promote glycolysis and support the metastatic dissemination of cancer cells. In mimicking in vitro this condition, we show that IL-6 promotes ovarian cancer cell migration only in the presence of glycolysis. The nutraceutical resveratrol (RV) counteracts glucose uptake and metabolism, reduces the production of reactive oxygen species consequent to excessive glycolysis, rescues the mitochondrial functional activity, and stimulates autophagy. Consistently, the lack of glucose as well as its metabolically inert analogue 2-deoxy-D-glucose (2-DG), which inhibits hexokinase 2 (HK2), trigger autophagy through mTOR inhibition, and prevents IL-6-induced cell migration. Of clinical relevance, bioinformatic analysis of The Cancer Genome Atlas dataset revealed that ovarian cancer patients bearing mutated TP53 with low expression of glycolytic markers and IL-6 receptor, together with markers of active autophagy, display a longer overall survival and are more responsive to platinum therapy. Taken together, our findings demonstrate that RV can counteract IL-6-promoted ovarian cancer progression by rescuing glycolysis-mediated inhibition of autophagy and support the view that targeting Warburg metabolism can be an effective strategy to limit the risk for cancer metastasis.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ji Hee Ha
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Christian Seca
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Beatrice Garavaglia
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-660-507; Fax: +39-0321-620-421
| |
Collapse
|