1
|
Dik I, Dik B, Tufan Ö, Er A. Evaluation of potential antiviral activities of antimicrobial peptides in fish mucus. Fundam Clin Pharmacol 2024; 38:695-702. [PMID: 38378226 DOI: 10.1111/fcp.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Fish skin mucus contains innate immune factors and acts as the first line of physical or chemical defense against pathogens. OBJECTIVE The primary aim of this study was to determine the antiviral activity of sea bream (SBr), rainbow trout (RT), and sea bass (SBa) fish skin mucus against herpes simplex virus (HSV)-1. In addition, it was aimed to associate possible antiviral activity with antimicrobial peptides (AMPs) such as cathelicidin, hepcidin, galectin 2, and C10ORF99, whose levels were determined in the mucus. METHODS The antiviral activity and oxidative/antioxidant status of mucus against HSV-1 virus was evaluated. In addition, AMPs, SOD, and CAT activities, and immunoglobulin M levels were also analyzed in mucus of fish. RESULTS Antiviral activity mucus of SBr, RT, and SBa against HSV-1 were determined as 2-4, 2-5, and 2-2, respectively. The higher antiviral activity of SBr and RT mucus compared to the mucus of SBa can be associated with higher AMP levels in them. CONCLUSION The skin mucus of SBr and RT may be nutritional supplement, adjuvant, and a new agent that can potentiate the effects of antimicrobial/antiviral agents.
Collapse
Affiliation(s)
- Irmak Dik
- Department of Virology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Burak Dik
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Öznur Tufan
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| | - Ayşe Er
- Department of Pharmacology and Toxicology, Faculty of Veterinary, Selcuk University, Konya, Turkey
| |
Collapse
|
2
|
Nastri BM, Chianese A, Giugliano R, Di Clemente L, Capasso C, Monti A, Doti N, Iovane V, Montagnaro S, Pagnini U, Iovane G, Zannella C, De Filippis A, Galdiero M. Oreoch-1: A broad-spectrum virus and host-targeting peptide against animal infections. J Pept Sci 2024; 30:e3593. [PMID: 38471710 DOI: 10.1002/psc.3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
In recent decades, the global rise of viral emerging infectious diseases has posed a substantial threat to both human and animal health worldwide. The rapid spread and accumulation of mutations into viruses, and the limited availability of antiviral drugs and vaccines, stress the urgent need for alternative therapeutic strategies. Antimicrobial peptides (AMPs) derived from natural sources present a promising avenue due to their specificity and effectiveness against a broad spectrum of pathogens. The present study focuses on investigating the antiviral potential of oreochromicin-1 (oreoch-1), a fish-derived AMP obtained from Nile tilapia, against a wide panel of animal viruses including canine distemper virus (CDV), Schmallenberg virus (SBV), caprine herpesvirus 1 (CpHV-1), and bovine herpesvirus 1 (BoHV-1). Oreoch-1 exhibited a strong antiviral effect, demonstrating an inhibition of infection at concentrations in the micromolar range. The mechanism of action involves the interference with viral entry into host cells and a direct interaction between oreoch-1 and the viral envelope. In addition, we observed that the peptide could also interact with the cell during the CDV infection. These findings not only highlight the efficacy of oreoch-1 in inhibiting viral infection but also emphasize the potential of fish-derived peptides, specifically oreoch-1, as effective antiviral agents against viral infections affecting animals, whose potential to spill into humans is high. This research contributes valuable insights to the ongoing quest for novel antiviral drugs with the potential to mitigate the impact of infectious diseases on a global scale.
Collapse
Affiliation(s)
- Bianca M Nastri
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Giugliano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Laura Di Clemente
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carla Capasso
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- UOC of Virology and Microbiology, University Hospital of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Bakry KA, Nasr M, Al-Amgad Z, Kondos E, Kondos MKN, Mehanny PE, Alghamdi AAA, Khormi MA, Abd-ElHafeez HH, Emeish WFA. Resistance of Nile tilapia fed with Padina boergesenii extract to Pseudomonas putida infection. BMC Vet Res 2024; 20:281. [PMID: 38951863 PMCID: PMC11218147 DOI: 10.1186/s12917-024-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
The aim of this research was to estimate the immunopotentiation effect of brown algae Padina boergesenii water extract on Nile tilapia, Oreochromis niloticus through resistance to Pseudomonas putida infection. Gas Chromatography Mass Spectrometry was utilized to characterize the seaweed phytoconstituents. One hundred and twenty-six fish were divided in triplicates into two equal groups corresponding to two diet variants that used to feed Nile tilapia for 20 successive days: a basal (control), and P. boergesenii water extract supplemented group. Fish samples were collected at 10-days intervals throughout the experiment. Serum biochemical constituents, total antioxidant capacity (TAC), and some immune related genes expression of the spleen and intestinal tissues of experimental fish were studied, as well as histological examination of fish immune tissues. Moreover, following 20 days of feeding, the susceptibility of Nile tilapia to P. putida infection was evaluated to assess the protective effect of the used extract. The findings indicated that the studied parameters were significantly increased, and the best immune response profiles were observed in fish fed P. boergesenii water extract for 20 successive days. A bacterial challenge experiment using P. putida resulted in higher survival within the supplemented fish group than the control. Thus, the lowered post-challenge mortality of the fish may be related to the protection provided by the stimulation of the innate immune system, reduced oxidative stress by higher activity of TAC, and elevated levels of expression of iterleukin-1beta (IL-1β), beta-defensin (β-defensin), and natural killer-lysin (NKl). Moreover, the constituents of the extract used showed potential protective activity for histological features of the supplemented fish group when compared to the control. Collectively, this study presents a great insight on the protective role of P. boergesenii water extract as an additive in Nile tilapia feed which suggests its potential for improving the immune response against P. putida infection.
Collapse
Affiliation(s)
- Karima A Bakry
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Mahmoud Nasr
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, Egypt
| | - Ereen Kondos
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Malak K N Kondos
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Pierre E Mehanny
- Department of Biochemistry, Toxicology and Feed Deficiency, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Giza, 12618, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohsen A Khormi
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Hanan H Abd-ElHafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Walaa F A Emeish
- Department of Fish Diseases, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
4
|
Cervera L, Chaves-Pozo E, Cuesta A. Synthetic Antimicrobial Peptides Fail to Induce Leucocyte Innate Immune Functions but Elicit Opposing Transcriptomic Profiles in European Sea Bass and Gilthead Seabream. Mar Drugs 2024; 22:86. [PMID: 38393057 PMCID: PMC10889969 DOI: 10.3390/md22020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial peptides (AMPs) are promising molecules in diverse fields, including aquaculture. AMPs possess lytic effects on a wide range of pathogens, resulting in a potential replacement for traditional antimicrobials in aquaculture. In addition, they also have modulatory effects on host immune responses. Thus, the objective of this work was to evaluate the immunomodulatory capability of three known synthetic AMPs derived from European sea bass, NK-lysin (Nkl), hepcidin (Hamp), and dicentracin (Dic), in head-kidney cell suspensions from European sea bass and gilthead seabream. The tested peptides were neither cytotoxic for European sea bass nor gilthead seabream cells and failed to modulate the respiratory burst and phagocytosis activities. However, they modified the pattern of transcription of immune-related genes differently in both species. Peptides were able to promote the expression of marker genes for anti-inflammatory (il10), antiviral (mx, irf3), cell-mediated cytotoxicity (nccrp1, gzmb), and antibody responses (ighm) in European sea bass, with the Nkl peptide being the most effective. Contrary to this, the effects of those peptides on gilthead seabream mainly resulted in the suppression of immune responses. To conclude, European sea bass-derived peptides can be postulated as potential tools for immunostimulation in European sea bass fish farms, but more efforts are required for their universal use in other species.
Collapse
Affiliation(s)
- Laura Cervera
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia (COMU-IEO), CSIC, Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (L.C.); (A.C.)
| |
Collapse
|
5
|
Li X, Chi H, Dalmo RA, Tang X, Xing J, Sheng X, Zhan W. Anti-microbial activity and immunomodulation of recombinant hepcidin 2 and NK-lysin from flounder (Paralichthys olivaceus). Int J Biol Macromol 2023; 253:127590. [PMID: 37871716 DOI: 10.1016/j.ijbiomac.2023.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Infections due to pathogens impact global aquaculture economy, where diseases caused by bacteria should be in particular focus due to antibiotic resistance. Hepcidin and NK-lysin are important innate immune factors having potential to be exploited as alternatives to antibiotics due to their antimicrobial activity and immunomodulatory capacity. In this study, the recombinant proteins of hepcidin 2 and NK-lysin (rPoHep2 and rPoNKL) from flounder (Paralichthys olivaceus) were obtained via a prokaryotic expression system. The results exhibited that rPoHep2 and rPoNKL killed both gram-negative and gram-positive bacteria mainly via attachment and disruption of the membrane. Interestingly, both peptides could bind to bacterial DNA. The antiviral assay showed that both peptides have antiviral activity against hirame nonvirhabdovirus. They exhibited no cytotoxicity to the mammalian and fish cell lines. PoHep2 was found localized in G-CSFR-positive peritoneal cells. Moreover, rPoHep2 significantly enhanced the phagocytosis of flounder leukocytes in vitro. These findings suggested that neutrophils contained rPoHep2 and may respond to the immunoreaction of neutrophils. In summary, both rPoHep2 and rPoNKL possess antimicrobial activities and may be exploited to replace traditional antibiotics. rPoHep2 possess immune regulatory functions, that can be further investigated as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Xinyu Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - the Arctic University of Norway, Tromsø, Norway
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar Drugs 2023; 21:505. [PMID: 37888440 PMCID: PMC10608450 DOI: 10.3390/md21100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
7
|
Díaz-Puertas R, Adamek M, Mallavia R, Falco A. Fish Skin Mucus Extracts: An Underexplored Source of Antimicrobial Agents. Mar Drugs 2023; 21:350. [PMID: 37367675 DOI: 10.3390/md21060350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
The slow discovery of new antibiotics combined with the alarming emergence of antibiotic-resistant bacteria underscores the need for alternative treatments. In this regard, fish skin mucus has been demonstrated to contain a diverse array of bioactive molecules with antimicrobial properties, including peptides, proteins, and other metabolites. This review aims to provide an overview of the antimicrobial molecules found in fish skin mucus and its reported in vitro antimicrobial capacity against bacteria, fungi, and viruses. Additionally, the different methods of mucus extraction, which can be grouped as aqueous, organic, and acidic extractions, are presented. Finally, omic techniques (genomics, transcriptomics, proteomics, metabolomics, and multiomics) are described as key tools for the identification and isolation of new antimicrobial compounds. Overall, this study provides valuable insight into the potential of fish skin mucus as a promising source for the discovery of new antimicrobial agents.
Collapse
Affiliation(s)
- Rocío Díaz-Puertas
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| | - Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain
| |
Collapse
|
8
|
Feng J, Jia Z, Yuan G, Zhu X, Liu Q, Wu K, Wang J, Zou J. Expression and functional characterization of three β-defensins in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 140:104616. [PMID: 36565823 DOI: 10.1016/j.dci.2022.104616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
β-defensins (BDs) are a group of cysteine-rich cationic antimicrobial peptides and play important roles in the first line of defense against infection. In this study, the expression and antibacterial activities of three grass carp (Ctenopharyngodon idella) (Ci) β-defensin (BD) peptides were comparatively investigated. Expression analysis reveals that CiBD1-3 were constitutively expressed in tissues, with the highest expression detected in the skin. The CiBD-1 transcripts were more abundant than CiBD-2 and CiBD-3. In the primary head kidney leukocytes, CiBDs were induced by PHA, LPS, poly(I:C) and cytokines such as IL-1β and IFN-γ. In vivo challenge of fish with Aeromonas hydrophila resulted in the up-regulation of CiBDs in the head kidney and hindgut. To determine the biological activities, recombinant CiBD proteins were produced in the HEK293-F cells and purified for the minimum inhibitory concentration assay. It was found that all three recombinant CiBD proteins were effective to inhibit the growth of Gram-negative fish bacterial pathogens including Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare and Klebsiella pneumoniae and Gram-positive Staphylococcus aureus. CiBD-2 and CiBD-3 were more effective than CiBD-1. Our results demonstrate that all the three CiBDs have broad antibacterial activity against fish bacterial pathogens.
Collapse
Affiliation(s)
- Jianhua Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaozhen Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qin Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kaizheng Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, China.
| |
Collapse
|
9
|
Falco A, Adamek M, Pereiro P, Hoole D, Encinar JA, Novoa B, Mallavia R. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Mar Drugs 2022; 20:md20060363. [PMID: 35736166 PMCID: PMC9230875 DOI: 10.3390/md20060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal “The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases”.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
- Correspondence: (A.F.); (M.A.)
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (A.F.); (M.A.)
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - David Hoole
- School of Life Sciences, Keele University, Keele ST5 5BG, UK;
| | - José Antonio Encinar
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - Ricardo Mallavia
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| |
Collapse
|
10
|
Das S, Pradhan C, Pillai D. β-Defensin: An adroit saviour in teleosts. FISH & SHELLFISH IMMUNOLOGY 2022; 123:417-430. [PMID: 35331882 DOI: 10.1016/j.fsi.2022.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
β-Defensin (BD) is an important first line innate defense molecule with potent antimicrobial and immunomodulatory activities in fish. The signatures of β-defensins are the presence of a net cationic charge and three intramolecular disulfide bonds mediated by six conserved cysteines. It consists of three exons and two introns. The signal peptide is usually conserved and sequence divergence is mostly seen in mature peptide region. The diverse amino acid sequences of matured peptide contribute to a strong positive selection and broad-spectrum antimicrobial activity. It is constitutively expressed in both mucosal as well as systemic sites. Increased expression of β-defensin was mostly reported in bacterial and viral infections in fish. Its role during parasitic and fungal infections is yet to be investigated. β-Defensin isoforms such as BD-1, BD-2, BD-3, BD-4 and BD-5 can be witnessed even in early developmental days to different pathogenic exposure in fish. β-Defensins possess adjuvant properties to enhance antigen-specific immunity promoting both cellular and humoral immune response. It significantly reduces/increases bacterial colonization or viral copy numbers when overexpressed/knockdown. Based on its chemotactic and activating potentials, it can contribute to both innate and adaptive immune responses. With mediated expression, it can also control inflammation. It is potent governing resistance in early developmental days as well. Its expression in pituitary and testis suggests its participation in reproduction and endocrine regulation in fish. Overall, β-defensins is an important member of antimicrobial peptides (AMPs) with multifunctional role in general homeostasis and to pathogen exposure possessing tremendous therapeutic approaches.
Collapse
Affiliation(s)
- Sweta Das
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.
| | - Chiranjiv Pradhan
- Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health & Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
11
|
Xing L, Wang Z, Hao Y, Zhang W. Marine Products As a Promising Resource of Bioactive Peptides: Update of Extraction Strategies and Their Physiological Regulatory Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3081-3095. [PMID: 35235313 DOI: 10.1021/acs.jafc.1c07868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine products are a rich source of nutritional components and play important roles in promoting human health. Fish, mollusks, shellfish, as well as seaweeds are the major components of marine products with high-quality proteins. During the last several decades, bioactive peptides from marine products have gained much attention due to their diverse biological properties including antioxidant, antihypertensive, antimicrobial, antidiabetic, immunoregulation, and antifatigue. The structural characteristics of marine bioactive peptides largely determine the differences in signaling pathways that can be involved, which is also an internal mechanism to exert various physiological regulatory activities. In addition, the marine bioactive peptides may be used as ingredients in food or nutritional supplements with the function of treating or alleviating chronic diseases. This review presents an update of marine bioactive peptides with the highlights on the novel producing technologies, the physiological effects, as well as their regulation mechanisms. Challenges and problems are also discussed in this review to provide some potential directions for future research.
Collapse
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Zixu Wang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yuejing Hao
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
12
|
Falco A, Bello-Perez M, Díaz-Puertas R, Mold M, Adamek M. Update on the Inactivation Procedures for the Vaccine Development Prospects of a New Highly Virulent RGNNV Isolate. Vaccines (Basel) 2021; 9:vaccines9121441. [PMID: 34960187 PMCID: PMC8705346 DOI: 10.3390/vaccines9121441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Viral nervous necrosis (VNN) caused by the nervous necrosis virus (NNV) affects a broad range of primarily marine fish species, with mass mortality rates often seen among larvae and juveniles. Its genetic diversification may hinder the effective implementation of preventive measures such as vaccines. The present study describes different inactivation procedures for developing an inactivated vaccine against a new NNV isolate confirmed to possess deadly effects upon the European seabass (Dicentrarchus labrax), an important Mediterranean farmed fish species that is highly susceptible to this disease. First, an NNV isolate from seabass adults diagnosed with VNN was rescued and the sequences of its two genome segments (RNA1 and RNA2) were classified into the red-spotted grouper NNV (RGNNV) genotype, closely clustering to the highly pathogenic 283.2009 isolate. The testing of different inactivation procedures revealed that the virus particles of this isolate showed a marked resistance to heat (for at least 60 °C for 120 min with and without 1% BSA) but that they were fully inactivated by 3 mJ/cm2 UV-C irradiation and 24 h 0.2% formalin treatment, which stood out as promising NNV-inactivation procedures for potential vaccine candidates. Therefore, these procedures are feasible, effective, and rapid response strategies for VNN control in aquaculture.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
- Correspondence:
| | - Melissa Bello-Perez
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
| | - Rocío Díaz-Puertas
- Institute of Research, Development and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University, 03202 Elche, Spain; (M.B.-P.); (R.D.-P.)
| | - Matthew Mold
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK;
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany;
| |
Collapse
|
13
|
Veedu AM, Prahaladhan AP, Vadakkeveettil AV, Krishnakumar A, Surendran N, Philip R. An Antimicrobial peptide hepcidin, St-hep from tuberculated flathead, Sorsogona tuberculata (Cuvier, 1829): Molecular and functional characterization. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
15
|
Sumon TA, Hussain MA, Hasan M, Rashid A, Abualreesh MH, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Antiviral peptides from aquatic organisms: Functionality and potential inhibitory effect on SARS-CoV-2. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 541:736783. [PMID: 33883784 PMCID: PMC8049179 DOI: 10.1016/j.aquaculture.2021.736783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/26/2021] [Accepted: 04/14/2021] [Indexed: 05/06/2023]
Abstract
Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.
Collapse
Affiliation(s)
- Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muyassar Hamid Abualreesh
- Department of Marine Biology, Faculty of Marine Science, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - S M Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher Lyon Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md Tawheed Hasan
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
16
|
Dhanya Lenin KL, Iyer RV, Raveendran A, Anju MV, Philip R, Antony SP. β-Defensins from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus): Molecular characterization and phylogenetic analysis. Mol Biol Rep 2021; 48:4943-4951. [PMID: 34061328 DOI: 10.1007/s11033-021-06435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/26/2021] [Indexed: 11/27/2022]
Abstract
Antimicrobial peptides (AMPs) are biologically active molecules involved in host defense present in a variety of organisms. They are an integral component of innate immunity, forming a front line of defense against potential pathogens, including antibiotic-resistant ones. Fishes are proven to be a prospective source of AMPs as they are constantly being challenged by a variety of pathogens and the AMPs are reported to play an inevitable role in fish immunity. Among them, β-defensins form one of the most studied multifunctional peptides with early evolutionary history and recently being considered as host defense peptides. The present study highlights the first-ever report on β-defensin AMP sequences from common goby (Pomatoschistus microps) and silver trevally (Pseudocaranx georgianus). A 192 bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) comprising a 20 aa signal peptide region at the N-terminal was obtained from the mRNA of gill tissue of both P. microps and P. georgianus by RT-PCR. These peptide sequences when characterized in silico at the molecular level revealed a 43 aa cationic mature peptide with the signature intra-molecular disulphide bonded cysteine residue pattern ascertaining its β-defensin identity, further confirmed by phylogenetic analysis. The data collected will pave the way for further research on varied facets of the peptide-like, tissue level expressions, antimicrobial activities on commonly encountered pathogens, and its feasibility as a therapeutant in the aquaculture scenario.
Collapse
Affiliation(s)
- K L Dhanya Lenin
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rajeswary Vasu Iyer
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, Kerala, 682016, India.
| |
Collapse
|
17
|
Raveendran A, L DLK, M V A, S N, V V A, P AP, K A, Philip R, Antony SP. β-Defensin from the Asian Sea Bass, Lates calcarifer: Molecular Prediction and Phylogenetic Analysis. Probiotics Antimicrob Proteins 2021; 13:1798-1807. [PMID: 34043156 DOI: 10.1007/s12602-021-09804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Antimicrobial peptides (AMPs) are an important element of the innate immune system of all living organisms and serve as a barrier that safeguards the organisms against a wide range of pathogens. Fishes are proven to be a prospective source of AMPs, and β-defensins form an important family of AMPs with potent antimicrobial, chemotactic and immunomodulatory activities. The present study reports a β-defensin AMP sequence (Lc-BD) from the Asian sea bass, Lates calcarifer, a commercially important fish species in tropical and subtropical regions of Asia and the Pacific. A 202-bp cDNA fragment with an open reading frame encoding 63 amino acids (aa) was obtained from the mRNA of gill tissue by RT-PCR. The deduced aa sequence of Lc-BD possessed a signal and a mature peptide region with 20 and 43 aa residues, respectively. Lc-BD was characterized at the molecular level, and a molecular weight of 5.24 kDa and a net charge of +4.5 was predicted for the mature peptide. The molecular characterization of Lc-BD revealed the presence of three intramolecular disulphide bonds involving the six conserved cysteine residues in the sequence, and the phylogenetic analysis of Lc-BD showed a close relationship with β-defensins from fishes like Siniperca chuatsi, Argyrosomus regius, Trachinotus ovatus and Oplegnathus fasciatus.
Collapse
Affiliation(s)
- Athira Raveendran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Dhanya Lenin K L
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anju M V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Neelima S
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Anooja V V
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Athira P P
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Archana K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India
| | - Swapna P Antony
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi-16, 682 016, Kerala, India.
| |
Collapse
|
18
|
Neelima S, Archana K, Athira PP, Anju MV, Anooja VV, Bright Singh IS, Philip R. Molecular characterization of a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger (Ruppel, 1836). J Genet Eng Biotechnol 2021; 19:71. [PMID: 33978838 PMCID: PMC8116387 DOI: 10.1186/s43141-021-00175-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Background The concern regarding a post-antibiotic era with increasing drug resistance by pathogens imposes the need to discover alternatives for existing antibiotics. Antimicrobial peptides (AMPs) with their versatile therapeutic properties are a group of promising molecules with curative potentials. These evolutionarily conserved molecules play important roles in the innate immune system of several organisms. The β-defensins are a group of cysteine rich cationic antimicrobial peptides that play an important role in the innate immune system by their antimicrobial activity against the invading pathogens. The present study deals with a novel β-defensin isoform from the red-toothed trigger fish, Odonus niger. Total RNA was isolated from the gills, cDNA was synthesized and the β-defensin isoform obtained by polymerase chain reaction was cloned and subjected to structural and functional characterization in silico. Results A β-defensin isoform could be detected from the gill mRNA of red-toothed trigger fish, Odonus niger. The cDNA encoded a 63 amino acid peptide, β-defensin, with a 20 amino acid signal sequence followed by 43 amino acid cationic mature peptide (On-Def) having a molecular weight of 5.214 kDa and theoretical pI of 8.89. On-Def possessed six highly conserved cysteine residues forming disulfide bonds between C1–C5, C2–C4, and C3–C6, typical of β-defensins. An anionic pro-region was observed prior to the β-defensin domain within the mature peptide. Clustal alignment and phylogenetic analyses revealed On-Def as a group 2 β-defensin. Furthermore, it shared some structural similarities and functional motifs with β-defensins from other organisms. On-Def was predicted to be non-hemolytic with anti-bacterial, anti-viral, anti-fungal, anti-cancer, and immunomodulatory potential. Conclusion On-Def is the first report of a β-defensin from the red-toothed trigger fish, Odonus niger. The antimicrobial profile showed the potential for further studies as a suitable candidate for antimicrobial peptide therapeutics.
Collapse
Affiliation(s)
- S Neelima
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - K Archana
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - P P Athira
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - M V Anju
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - V V Anooja
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India
| | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 682016, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology & Biochemistry, Cochin University of Science and Technology, Cochin, 682016, India.
| |
Collapse
|
19
|
Li K, Li W, Chen X, Luo T, Mu Y, Chen X. Molecular and functional identification of a β-defensin homolog in large yellow croaker (Larimichthys crocea). JOURNAL OF FISH DISEASES 2021; 44:391-400. [PMID: 33340371 DOI: 10.1111/jfd.13324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
β-defensin (BD) is a cysteine-rich cationic antibacterial peptide that is active against a wide range of bacteria. Here, a β-defensin homolog (LcBD2) was identified in large yellow croaker (Larimichthys crocea). The open reading frame of LcBD2 contains 195 nucleotides, encoding a protein of 64 amino acids that possesses a typical arrangement of six conserved cysteine residues (C31 , C37 , C41 , C53 , C59 and C60 ). LcBD2 transcripts were constitutively expressed in all examined tissues and significantly increased in head kidney, spleen and gills by Vibrio alginolyticus. The synthetic LcBD2 peptide imparted antimicrobial effects on both Gram-negative bacteria (V. campbellii, V. parahaemolyticus, V. alginolyticus, V. harveyi and Pseudomonas plecoglossicida) and Gram-positive bacteria (Bacillus subtilis). We also observed that after treatment with synthetic LcBD2 peptide, numerous blisters appeared on the membrane of P. plecoglossicida, which in turn may result in cell membrane breakage and bacterial death. Moreover, the synthetic LcBD2 peptide significantly upregulated the expression levels of TNF-α2, IL-1β and CXCL8_L1 in monocytes/macrophages, while downregulated expression level of IL-10. The LcBD2 peptide also remarkedly enhanced the phagocytosis of monocytes/macrophages. These results indicate that LcBD2 not only protects large yellow croaker against multiple bacterial pathogens but also plays a role in activation of monocytes/macrophages.
Collapse
Affiliation(s)
- Kexin Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Luo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinnan Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
20
|
Chen Y, Wu J, Cheng H, Dai Y, Wang Y, Yang H, Xiong F, Xu W, Wei L. Anti-infective Effects of a Fish-Derived Antimicrobial Peptide Against Drug-Resistant Bacteria and Its Synergistic Effects With Antibiotic. Front Microbiol 2020; 11:602412. [PMID: 33329494 PMCID: PMC7719739 DOI: 10.3389/fmicb.2020.602412] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) play pivotal roles in protecting against microbial infection in fish. However, AMPs from topmouth culter (Erythroculter ilishaeformis) are rarely known. In our study, we isolated an AMP from the head kidney of topmouth culter, which belonged to liver-expressed antimicrobial peptide 2 (LEAP-2) family. Topmouth culter LEAP-2 showed inhibitory effects on aquatic bacterial growth, including antibiotic-resistant bacteria, with minimal inhibitory concentration values ranging from 18.75 to 150 μg/ml. It was lethal for Aeromonas hydrophila (resistant to ampicillin), and took less than 60 min to kill A. hydrophila at a concentration of 5 × MIC. Scanning electron microscope (SEM) and SYTOX Green uptake assay indicated that it impaired the integrity of bacterial membrane by eliciting pore formation, thereby increasing the permeabilization of bacterial membrane. In addition, it showed none inducible drug resistance to aquatic bacteria. Interestingly, it efficiently delayed ampicillin-induced drug resistance in Vibrio parahaemolyticus (sensitive to ampicillin) and sensitized ampicillin-resistant bacteria to ampicillin. The chequerboard assay indicated that topmouth culter LEAP-2 generated synergistic effects with ampicillin, indicating the combinational usage potential of topmouth culter LEAP-2 with antibiotics. As expected, topmouth culter LEAP-2 significantly alleviated ampicillin-resistant A. hydrophila infection in vivo, and enhanced the therapeutic efficacy of ampicillin against A. hydrophila in vivo. Our findings provide a fish innate immune system-derived peptide candidate for the substitute of antibiotics and highlight its potential for application in antibiotic-resistant bacterial infection in aquaculture industry.
Collapse
Affiliation(s)
- Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Honglan Cheng
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hailong Yang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Xiong
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. BIOLOGY 2020; 9:E233. [PMID: 32824728 PMCID: PMC7464209 DOI: 10.3390/biology9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine.
Collapse
Affiliation(s)
- Sascha R. Brunner
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joseph F. A. Varga
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| |
Collapse
|
22
|
Amparyup P, Charoensapsri W, Samaluka N, Chumtong P, Yocawibun P, Imjongjirak C. Transcriptome analysis identifies immune-related genes and antimicrobial peptides in Siamese fighting fish (Betta splendens). FISH & SHELLFISH IMMUNOLOGY 2020; 99:403-413. [PMID: 32081810 DOI: 10.1016/j.fsi.2020.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Siamese fighting fish (Betta splendens) is one of the most widely cultivated ornamental fish in global trade. However, transcriptomic data, which can reveal valuable genetic data for disease control and prevention, are extremely limited for this species. In this study, whole-body transcriptome sequencing of juvenile betta fish generated 4.457 GB of clean data and a total of 71,775 unigenes using the Illumina HiSeq4000 platform. These unigenes were functionally classified using 7 functional databases, yielding 45,316 NR (63.14%), 47,287 NT (65.88%), 39,105 Swiss-Prot (54.48%), 16,492 COG (22.98%), 37,694 KEGG (52.52%), 4,506 GO (6.28%), and 35,374 Interpro (49.28%) annotated unigenes. Furthermore, we also detected 13,834 SSRs distributed on 10,636 unigenes and 49,589 predicted CDSs. Based on KEGG analysis, five innate immune pathways (997 unigenes) were reported, including the NOD-like receptor signaling pathway, complement and coagulation cascades, toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and cytosolic DNA-sensing pathway. Moreover, four antimicrobial peptide (AMP) families (hepcidin, piscidin, LEAP-2, and defensins) from the betta fish transcriptome were also identified. Additionally, cDNA and genomic DNA of two β-defensins was successfully isolated from four betta fish species. RT-PCR analysis showed that BsBD1 transcripts were most abundant in the muscle and kidney and BsBD2 transcripts were most abundant in the gill. The genomic organization showed that the BD1 and BD2 genes consisted of three exons and two introns according to the GT-AG rule. Most importantly, this is the first report of the betta fish whole-body transcriptome obtained by high-throughput sequencing. Our transcriptomic data and the discovery of betta fish AMPs should promote a better understanding of molecular immunology for disease prevention for further ornamental fish aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nusree Samaluka
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Harte A, Tian G, Xu Q, Secombes CJ, Wang T. Five subfamilies of β-defensin genes are present in salmonids: Evolutionary insights and expression analysis in Atlantic salmon Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103560. [PMID: 31758960 DOI: 10.1016/j.dci.2019.103560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
β-defensins (BD) are the largest family of vertebrate defensins with potent antimicrobial, chemotactic and immune-regulatory activities. Four BD genes (BD1-4) have been cloned previously in rainbow trout but none have been reported in other salmonids. In this study seven BD genes (BD1a-b, 2-4, 5a-b) are characterised in Atlantic salmon and additional BD genes (BD1b and BD5) in rainbow trout. Bioinformatic analysis revealed up to seven BD genes in the genomes of other salmonids that belong to five subfamilies (BD1-5) due to whole genome duplications. BD1-2 and BD4-5 are also present in basal teleosts but only BD1 and/or BD5 are present in advanced teleosts due to loss of one chromosomal locus. BD3 is salmonid specific. Fish BD have a unique three-coding exon structure. Fish BD are highly divergent between subfamilies but conserved within each subfamily. Atlantic salmon BD genes are differentially expressed in tissues, often with low level expression in systemic immune organs (head kidney and spleen) yet with at least one BD gene highly expressed in mucosal tissues, heart, blood and liver. This suggests an important role of these BD genes in innate immunity in mucosa, liver and blood in Atlantic salmon.
Collapse
Affiliation(s)
- Anna Harte
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Qiaoqing Xu
- School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Christopher John Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
24
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
25
|
Zhou Y, Zhou QJ, Qiao Y, Chen J, Li MY. The host defense peptide β-defensin confers protection against Vibrio anguillarum in ayu, Plecoglossus altivelis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103511. [PMID: 31580833 DOI: 10.1016/j.dci.2019.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
β-defensin is a cationic host defense peptide actively participating in host innate immune response against pathogens. In teleost fish, β-defensin exhibits a diversity in genotypes and functions. Herein, a β-defensin homolog (PaBD) was identified from ayu, Plecoglossus altivelis, showing multiple tissues' upregulation against Vibrio anguillarum challenge. In vivo experiments revealed that intraperitoneal injection of chemically synthesized mature PaBD (mPaBD) increased the survival rate of V. anguillarum-infected ayu, accompanied by reduced bacterial load and decreased tissue mRNA levels of tumor necrosis factor α (PaTNF-α) and interleukin 1β (PaIL-1β). However, in vitro, mPaBD showed weak bactericidal activity against V. anguillarum. Interestingly, mPaBD enhanced phagocytosis, intracellular bacterial killing, and respiratory burst of ayu monocytes/macrophages (MO/MΦ). Moreover, it inhibited mRNA levels of PaIL-1β and PaTNF-α in MO/MФ upon V. anguillarum infection. In conclusion, PaBD protects ayu against V. anguillarum challenge not only through its direct antibacterial ability, but also through its immunomodulation in MO/MΦ.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
26
|
He J, Liang H, Zhu J, Fang X. Separation, identification and gene expression analysis of PmAMP-1 from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2019; 92:728-735. [PMID: 31279079 DOI: 10.1016/j.fsi.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Antibacterial peptides (AMPs) constitute an important part of the body's innate immune system and are responsible for a wide range of inhibitory effects against pathogens such as bacteria, fungi, and viruses. In this study, multi-step high performance liquid chromatography (HPLC), combined with Mass Spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of Pinctada fucata martensii (P.f. Martensii) and obtain a component named P.f. Martensii antimicrobial peptide-1 (PmAMP-1). PmAMP-1 cDNA was cloned and sequenced by rapid amplification of cDNA ends (RACE) and mRNA expression of was analyzed by quantitative real-time PCR (qRT-PCR). From the results of this study, full-length PmAMP-1 cDNA was shown to be 700 base pairs (bp) long with an open reading frame (ORF) of 294 bp, encoding 97 amino acids with a predicted structure that is mostly α-helices. PmAMP-1 mRNA was constitutively expressed in all tested tissues including the adductor muscle, mantle, hepatopancreas, gill, gonads and hemocytes. The highest level of PmAMP-1 transcription was observed at 8 h and 2 h after bacterial challenge in hemocytes and adductor muscle (p < 0.01), respectively. Furthermore, PmAMP-1 caused significant morphological alterations in E. coli, as shown by transmission electron microscopy (TEM). The results from this study provide a valuable base for further exploration of molluscan innate immunity and immune response.
Collapse
Affiliation(s)
- Junjun He
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Haiying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China.
| | - Jiaping Zhu
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Xiaochen Fang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| |
Collapse
|
27
|
Asencio-Alcudia G, Andree KB, Giraldez I, Tovar-Ramirez D, Alvarez-González A, Herrera M, Gisbert E. Stressors Due to Handling Impair Gut Immunity in Meagre ( Argyrosomus regius): The Compensatory Role of Dietary L-Tryptophan. Front Physiol 2019; 10:547. [PMID: 31133878 PMCID: PMC6523026 DOI: 10.3389/fphys.2019.00547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/17/2019] [Indexed: 01/14/2023] Open
Abstract
In the context of intensive aquaculture, meagre (Argyrosomus regius) is one of the most important new aquaculture species in Southern Europe and several studies are focused on the optimization of its culture. Nevertheless, stressors such as handling during transport or culture maintenance may affect the immune system, thereby impairing some immune responses or provoking cellular damage. One strategy that has been used to avert this type of negative stress response is the supplementation of amino acids to improve resistance to stress. In this experiment, meagre (105.0 ± 2.6 g, mean ± standard deviation) juveniles were fed two diets for a period of 7 days, the first a commercial diet supplemented with 1% tryptophan (Trp) and second, the same commercial diet without tryptophan supplementation (control group). The effects of two types of handling stressors (air exposure and confinement/netting) on fish fed both diets was evaluated in terms of gene expression of the selected gut immunity markers, such as (1) innate immune response processes: c3 complement (c3), lysozyme (lys), and cyclooxygenase (cox2); (2) humoral immune response processes: interferon type 1 (ifn1), mx protein (mxp), interleukin 1b (il-1b), tumor necrosis factor 1a (tnf1a), and interleukin 10 (il-10); (3) antimicrobial peptides: defensin (def), hepcidin (hep), piscidin (pis), and a marker for mitochondrial respiration: glyceraldehyde 3-phosphate dehydrogenase (gapdh). Samples of the anterior intestine were collected at 1 and 6 h post-stress (hps). Results showed that in fish fed 1% Trp, the air exposure resulted in an upregulation of gene expression at 6 hps for c3, lys, cox2, ifn1, mxp, il-10 and gapdh, and il-1b and pis. The confinement/netting test for fish fed 1% Trp resulted in an upregulation of c3 and mxp and a downregulation of cox2, ifn1, il-1b, tnf1a, il-10, def, hep, and gapdh at both post-stress times (1 and 6 hps). According to the present study, dietary supplementation with 1% Trp may be considered as a proper nutritional strategy for improving tolerance and/or alleviating acute response to handling stressors.
Collapse
Affiliation(s)
- Gloria Asencio-Alcudia
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Mexico.,Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (DACBiol-UJAT), Villahermosa, Mexico
| | - Karl B Andree
- Programa de Cultius Aquàtics, IRTA, Centro de San Carlos de la Ràpita (IRTA-SCR), Tarragona, Spain
| | | | | | - Alfonso Alvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (DACBiol-UJAT), Villahermosa, Mexico
| | | | - Enric Gisbert
- Programa de Cultius Aquàtics, IRTA, Centro de San Carlos de la Ràpita (IRTA-SCR), Tarragona, Spain
| |
Collapse
|
28
|
Zhou Y, Lei Y, Cao Z, Chen X, Sun Y, Xu Y, Guo W, Wang S, Liu C. A β-defensin gene of Trachinotus ovatus might be involved in the antimicrobial and antiviral immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:105-115. [PMID: 30448509 DOI: 10.1016/j.dci.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 05/06/2023]
Abstract
Defensins are a group of small cationic and cysteine-rich peptides that are important components of the innate immune system. However, studies on defensins in teleosts are very limited, particularly studies on defensin functions through in vivo assays. In this study, we cloned and identified one β-defensin (TroBD) the golden pompano, Trachinotus ovatus, and analyzed the functions of TroBD in both in vivo and in vitro assays. TroBD is composed of 63 amino acids and shares high sequence identities (27.27-98.41%) with known β-defensins of other teleosts. The protein has a signature motif of six conserved cysteine residues within the mature peptide. The expression of TroBD was most abundant in the head kidney and spleen and was significantly upregulated following infection by Vibrio harveyi and viral nervous necrosis virus (VNNV). Purified recombinant TroBD (rTroBD) inhibited the growth of V. harveyi, and its antimicrobial activity was influenced by salt concentration. TroBD was found to have a chemotactic effect on macrophages in vitro. The results of an in vivo study demonstrated that TroBD overexpression/knockdown in T. ovatus significantly reduced/increased bacterial colonization or viral copy numbers in tissues. Taken together, these results indicate that TroBD plays a significant role in both antibacterial and antiviral immunity and provide new avenues for protection against pathogen infection in the aquaculture industry.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Yue Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China
| | - Shifeng Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| |
Collapse
|
29
|
Falco A, Medina-Gali RM, Poveda JA, Bello-Perez M, Novoa B, Encinar JA. Antiviral Activity of a Turbot ( Scophthalmus maximus) NK-Lysin Peptide by Inhibition of Low-pH Virus-Induced Membrane Fusion. Mar Drugs 2019; 17:md17020087. [PMID: 30717094 PMCID: PMC6410327 DOI: 10.3390/md17020087] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022] Open
Abstract
Global health is under attack by increasingly-frequent pandemics of viral origin. Antimicrobial peptides are a valuable tool to combat pathogenic microorganisms. Previous studies from our group have shown that the membrane-lytic region of turbot (Scophthalmus maximus) NK-lysine short peptide (Nkl71–100) exerts an anti-protozoal activity, probably due to membrane rupture. In addition, NK-lysine protein is highly expressed in zebrafish in response to viral infections. In this work several biophysical methods, such as vesicle aggregation, leakage and fluorescence anisotropy, are employed to investigate the interaction of Nkl71–100 with different glycerophospholipid vesicles. At acidic pH, Nkl71–100 preferably interacts with phosphatidylserine (PS), disrupts PS membranes, and allows the content leakage from vesicles. Furthermore, Nkl71–100 exerts strong antiviral activity against spring viremia of carp virus (SVCV) by inhibiting not only the binding of viral particles to host cells, but also the fusion of virus and cell membranes, which requires a low pH context. Such antiviral activity seems to be related to the important role that PS plays in these steps of the replication cycle of SVCV, a feature that is shared by other families of virus-comprising members with health and veterinary relevance. Consequently, Nkl71–100 is shown as a promising broad-spectrum antiviral candidate.
Collapse
Affiliation(s)
- Alberto Falco
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Regla María Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - José Antonio Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Melissa Bello-Perez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), 36208 Vigo, Spain.
| | - José Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Miguel Hernández University (UMH); 03202 Elche Alicante, Spain.
| |
Collapse
|
30
|
Bello-Pérez M, Falcó A, Galiano V, Coll J, Perez L, Encinar JA. Discovery of nonnucleoside inhibitors of polymerase from infectious pancreatic necrosis virus (IPNV). DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2337-2359. [PMID: 30104863 PMCID: PMC6072831 DOI: 10.2147/dddt.s171087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction Infectious pancreatic necrosis virus (IPNV) causes serious losses in several fish species of commercial interest. IPNV is a non-enveloped double-stranded RNA virus with a genome consisting of two segments A and B. Segment B codes for the VP1 protein, a non-canonical RNA-dependent RNA polymerase that can be found both in its free form and linked to the end of genomic RNA, an essential enzyme for IPNV replication. Materials and methods We take advantage of the knowledge over the allosteric binding site described on the surface of the thumb domain of Hepatitis C virus (HCV) polymerase to design new non-nucleoside inhibitors against the IPNV VP1 polymerase. Results Molecular docking techniques have been used to screen a chemical library of 23,760 compounds over a defined cavity in the surface of the thumb domain. Additional ADMET (absorption, distribution, metabolism, excretion, and toxicity) filter criteria has been applied. Conclusion We select two sets of 9 and 50 inhibitor candidates against the polymerases of HCV and IPNV, respectively. Two non-toxic compounds have been tested in vitro with antiviral capacity against IPNV Sp and LWVRT60 strains in the low µM range with different activity depending on the IPNV strain used.
Collapse
Affiliation(s)
- Melissa Bello-Pérez
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - Alberto Falcó
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - Vicente Galiano
- Department of Physics and Computer Architecture, Miguel Hernández University (UMH), Elche, Spain
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Luis Perez
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| | - José Antonio Encinar
- Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain, ;
| |
Collapse
|
31
|
Furlan M, Rosani U, Gambato S, Irato P, Manfrin A, Mardirossian M, Venier P, Pallavicini A, Scocchi M. Induced expression of cathelicidins in trout (Oncorhynchus mykiss) challenged with four different bacterial pathogens. J Pept Sci 2018; 24:e3089. [PMID: 29808604 DOI: 10.1002/psc.3089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 11/05/2022]
Abstract
Cathelicidins are an important family of antimicrobial peptide effectors of innate immunity in vertebrates. Two members of this group, CATH-1 and CATH-2, have been identified and characterized in teleosts (ray-finned fish). In this study, we investigated the expression of these genes in different tissues of rainbow trout challenged with 4 different inactivated pathogens. By using qPCR, we detected a strong induction of both cath-1 and cath-2 genes within 24 hours after intraperitoneal inoculation with Lactococcus garvieae, Yersinia ruckeri, Aeromonas salmonicida, or Flavobacterium psychrophilum cells. Up to 700-fold induction of cath-2 was observed in the spleen of animals challenged with Y. ruckeri. Moreover, we found differences in the intensity and timing of gene up-regulation in the analyzed tissues. The overall results highlight the importance of cathelicidins in the immune response mechanisms of salmonids.
Collapse
Affiliation(s)
- Michela Furlan
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Irato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Amedeo Manfrin
- Fish Pathology Laboratory, Istituto Zooprofilattico delle Venezie, Via Romea 14/a, 35020 Legnaro, Padova, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| |
Collapse
|
32
|
Liu C, Jiang L, Liu L, Sun L, Zhao W, Chen Y, Qi T, Han Z, Shao Y, Liu S, Ma D. Induction of Avian β-Defensin 2 Is Possibly Mediated by the p38 MAPK Signal Pathway in Chicken Embryo Fibroblasts After Newcastle Disease Virus Infection. Front Microbiol 2018; 9:751. [PMID: 29725321 PMCID: PMC5916956 DOI: 10.3389/fmicb.2018.00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
The study was conducted to evaluate whether avian β-defensins (AvBDs) could be induced by Newcastle disease virus (NDV) infection, and to investigate the potential signaling pathway of AvBD2 induction in response to NDV infection as well. First, mRNA expression of AvBDs (1–14) was evaluated in the chicken embryo fibroblasts (CEFs) infected with NDV strain F48E9 at 6, 12, 24, 36, and 48 h post-inoculation (hpi), respectively. The results demonstrated a significant induction of AvBD2 in CEFs elicited by the NDV strain. Then, we expressed and purified the AvBD2 proteins in both eukaryotic cells and prokaryotic cells. Of the two recombinant AvBD2 proteins, only the protein expressed in eukaryotic cells showed directly antiviral activity against NDV strain F48E9 in vitro. Ligands of toll-like receptors (TLRs) were chosen as alternatives to NDV to further study signaling pathway of AvBD2 induction here, due to insufficient upregulation of AvBD2 expression elicited by NDV. We found that the mRNA expression of AvBD2 was highly upregulated by Pam3CSK4, FLA-ST, and ODN-M362. Then, four inhibitors of signaling pathway, including inhibitors of JNK, ERK1/2, p38 MAPK, and NF-κB, were used in this study. Of the four inhibitors, only inhibition of the p38 MAPK signaling pathway significantly reduced AvBD2 expression after stimulation with Pam3CSK4, FLA-ST and ODN-M362, respectively. Taken together, these results revealed that AvBD2 play a pivotal role in host innate immunity response to NDV infection. The mRNA expression of AvBD2 might be regulated in a p38 MAPK-dependent manner.
Collapse
Affiliation(s)
- Chenggang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liangliang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wenjun Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuqiu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianming Qi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuhao Shao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Deying Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Teleosts Genomics: Progress and Prospects in Disease Prevention and Control. Int J Mol Sci 2018; 19:ijms19041083. [PMID: 29617353 PMCID: PMC5979277 DOI: 10.3390/ijms19041083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/11/2018] [Accepted: 03/29/2018] [Indexed: 12/26/2022] Open
Abstract
Genome wide studies based on conventional molecular tools and upcoming omics technologies are beginning to gain functional applications in the control and prevention of diseases in teleosts fish. Herein, we provide insights into current progress and prospects in the use genomics studies for the control and prevention of fish diseases. Metagenomics has emerged to be an important tool used to identify emerging infectious diseases for the timely design of rational disease control strategies, determining microbial compositions in different aquatic environments used for fish farming and the use of host microbiota to monitor the health status of fish. Expounding the use of antimicrobial peptides (AMPs) as therapeutic agents against different pathogens as well as elucidating their role in tissue regeneration is another vital aspect of genomics studies that had taken precedent in recent years. In vaccine development, prospects made include the identification of highly immunogenic proteins for use in recombinant vaccine designs as well as identifying gene signatures that correlate with protective immunity for use as benchmarks in optimizing vaccine efficacy. Progress in quantitative trait loci (QTL) mapping is beginning to yield considerable success in identifying resistant traits against some of the highly infectious diseases that have previously ravaged the aquaculture industry. Altogether, the synopsis put forth shows that genomics studies are beginning to yield positive contribution in the prevention and control of fish diseases in aquaculture.
Collapse
|
34
|
Antimicrobial Peptides Are Expressed during Early Development of Zebrafish (Danio rerio) and Are Inducible by Immune Challenge. FISHES 2017. [DOI: 10.3390/fishes2040020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Campoverde C, Milne DJ, Estévez A, Duncan N, Secombes CJ, Andree KB. Ontogeny and modulation after PAMPs stimulation of β-defensin, hepcidin, and piscidin antimicrobial peptides in meagre (Argyrosomus regius). FISH & SHELLFISH IMMUNOLOGY 2017; 69:200-210. [PMID: 28842373 DOI: 10.1016/j.fsi.2017.08.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial peptides (AMPs), components of innate immunity, play an important role in protecting fish. In this study we report the molecular cloning of full open reading frames and characterization of expression of three AMP genes (β-defensin (defb), hepcidin (hep2), piscidin (pisc) in meagre (Argyrosomus regius). A phylogenetic analysis of the expressed sequences obtained shows the defensin isoform forms a clade with the other members of the beta class of this family, hepcidin corresponds to hepcidin 2, and piscidin corresponds to class I of its respective family. Gene expression profiles of AMPs was investigated, by means of quantification of mRNA in nine development stages, from 8 days post-hatching (dph) to accomplishment of juvenile form (120 dph). During development it was demonstrated defb, hep2, pisc were expressed in all stages of larval development and in juvenile tissues (kidney, spleen gut and gill). Moreover, expression patterns suggest the expression levels of theses AMPs are influenced by live prey (rotifer, Artemia) and first intake of commercial diet. Induction experiments in vivo (24 h) and in vitro (4, 12, 24 h) with PAMPs (LPS, poly (I:C), β-glucan) revealed significant changes in gene expression of the three AMP genes, in kidney, spleen, gut and gill. However, expression profiles differed in magnitude and time course response. defb expression shows a similar trend in vivo and in vitro in kidney at 24 h after LPS and β-glucan stimulation. The hep2 expression levels were up-regulated upon β-glucan challenge in vivo, more in gut and gills than kidney, while in vitro hep2 expression was up-regulated in kidney cells by LPS, poly (I:C), β-glucan (4 h). pisc expression was up-regulated in kidney cells, splenocytes by β-glucan, but in gill cells by poly (I:C) and β-glucan in vivo. However, pisc expression was upregulated in kidney cells by β-glucan and gill cells by LPS at 4 post-stimulation in vitro. These data suggest that AMPs play an important role in defense against pathogens, with each AMP having differing efficacies against specific types of microorganisms, although follow-up studies focusing on the biological activities in fish are needed.
Collapse
Affiliation(s)
- Cindy Campoverde
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain
| | - Douglas J Milne
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - Alicia Estévez
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain
| | - Neil Duncan
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, UK
| | - Karl B Andree
- IRTA, Centro de San Carlos de la Rápita, San Carlos de la Rápita, 43540 Tarragona, Spain.
| |
Collapse
|
36
|
Bello-Perez M, Falco A, Medina-Gali R, Pereiro P, Encinar JA, Novoa B, Perez L, Coll J. Neutralization of viral infectivity by zebrafish c-reactive protein isoforms. Mol Immunol 2017; 91:145-155. [PMID: 28915434 DOI: 10.1016/j.molimm.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/24/2022]
Abstract
This work explores the unexpected in vivo and in vitro anti-viral functions of the seven c-reactive protein (crp1-7) genes of zebrafish (Danio rerio). First results showed heterogeneous crp1-7 transcript levels in healthy wild-type zebrafish tissues and organs and how those levels heterogeneously changed not only after bacterial but also after viral infections, including those in adaptive immunity-deficient rag1-/- mutants. As shown by microarray hybridization and proteomic techniques, crp2/CRP2 and crp5/CRP5 transcripts/proteins were among the most modulated during in vivo viral infection situations including the highest responses in the absence of adaptive immunity. In contrast crp1/CRP1/and crp7/CRP7 very often remained unmodulated. All evidences suggested that zebrafish crp2-6/CRP2-6 may have in vivo anti-viral activities in addition to their well known anti-bacterial and/or physiological functions in mammalians. Confirming those expectations, in vitro neutralization and in vivo protection against spring viremia carp virus (SVCV) infections were demonstrated by crp2-6/CRP2-6 using crp1-7 transfected and/or CRP1-7-enriched supernatant-treated fish cells and crp2-5-injected one-cell stage embryo eggs, respectively. All these findings discovered a crp1-7/CRP1-7 primitive anti-viral functional diversity.These findings may help to study similar functions on the one-gene-coded human CRP, which is widely used as a clinical biomarker for bacterial infections, tissue inflammation and coronary heart diseases.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Alberto Falco
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Regla Medina-Gali
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | | | - Jose Antonio Encinar
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | | | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH). Elche, Spain.
| | - Julio Coll
- Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, Dpto. Biotecnología. INIA. Madrid, Spain.
| |
Collapse
|
37
|
Zhu J, Wang H, Wang J, Wang X, Peng S, Geng Y, Wang K, Ouyang P, Li Z, Huang X, Chen D. Identification and characterization of a β-defensin gene involved in the immune defense response of channel catfish, Ictalurus punctatus. Mol Immunol 2017; 85:256-264. [DOI: 10.1016/j.molimm.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
|
38
|
Chang CI, Chen LH, Hu YF, Wu CC, Tsai JM. Determining the cleavage site for the mature antimicrobial peptide of Nile tilapia β-defensin using 2D electrophoresis, western blot, and mass spectrometry analysis. FISH & SHELLFISH IMMUNOLOGY 2017; 62:41-46. [PMID: 28089894 DOI: 10.1016/j.fsi.2017.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/30/2016] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Several proteomic techniques were used to determine the cleavage site of the mature antimicrobial peptide of Nile tilapia β-defensin. The computer-predicted Nile tilapia β-defensin (25ASFPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL66) composed of 42 amino acids was chemically synthesized and prepared to produce an antibody for Western blotting. Total proteins from the skin of the Nile tilapia were separated on two-dimensional electrophoresis, and the spot of Nile tilapia β-defensin was recognized using Western blot analysis. It was then excised and extracted from the gel. The precise molecular mass of this spot was determined by LC-MS/MS spectrometry. Four major peptides were discovered, with molecular weights of 4293.2 Da, 4306.5 Da, 4678.9 Da, and 4715.0 Da. The calculated mass of the 40-amino-acid sequence (27FPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL66) of Nile tilapia β-defensin starting from Phe27 and ending with Leu66 was 4293.18 Da, which completely matched the 4293.2 Da peptide that was obtained from the mass spectrometry analysis. This result confirmed that the cleavage site for the mature C-terminal Nile tilapia β-defensin is at residue Ser26-Phe27, not at Ala24-25 as predicted by computer analysis. This study provides a simple but reliable model to determine the cleavage site for a mature antimicrobial peptide.
Collapse
Affiliation(s)
- Chin-I Chang
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan.
| | - Li-Hao Chen
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Yeh-Fang Hu
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Chia-Che Wu
- Aquaculture Division, Fisheries Research Institute, Council of Agriculture, 199 Hou-Ih Road, Keelung 20246, Taiwan
| | - Jyh-Ming Tsai
- Department of Marine Biotechnology, National Kaohsiung Marine University, 142 Hai-Chuan Road, Kaohsiung 81157, Taiwan
| |
Collapse
|
39
|
Chaturvedi P, Dhanik M, Pande A. Molecular Characterization and In Silico Analysis of Defensin From Tor putitora (Hamilton). Probiotics Antimicrob Proteins 2016; 7:207-15. [PMID: 26162426 DOI: 10.1007/s12602-015-9197-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) are vital constituents of innate immune system. In fish, one of the most important AMP is β-defensin that has a potential to activate the adaptive immune system. β-defensin is a cysteine-arginine-rich cationic AMP with broad spectrum activity against microbes. In this study, we identified cloned and characterized β-defensin 1 from Tor putitora, a cold water fish species also known as mahseer. An open reading frame of β-defensin 1 was amplified, cloned and sequenced which encodes a peptide of 67 amino acid residues. The pro-peptide includes a signal peptide comprising 24 amino acids as predicted by Signal P along with a mature peptide of 43 amino acid residues. Tor putitora β-defensin 1 (TP-βdf1) has a molecular weight of 4.6 kDa with a pI of 8.35. Six cysteine residues are present in the mature peptide which is a characteristic feature of defensins. All six cysteine residues are involved in the formation of three intra-molecular disulfide bonds. Three-dimensional modeling of mature peptide of TP-βdf1 was carried out using Modeller 9.10, and validated TP-βdf1 model revealed three β-sheets. The cysteine residues form three disulfide bonds in the pattern of Cys(1)-Cys(5), Cys(2)-Cys(4), Cys(3)-Cys(6) stabilizing the β-sheet. Structural analysis revealed three β-strands and an α-helix at the N terminus. Phylogenetic analysis revealed that the β-defensin 1 of Tor putitora was close to Megalobrama amblycephala which possibly suggests that TP-βdf1 peptide sequence is quite similar to β-defensin peptide sequences of carps and minnows.
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Directorate of Coldwater Fisheries Research, Bhimtal Nainital, Uttarakhand, 263136, India
| | | | | |
Collapse
|
40
|
Quesada-García A, Encinas P, Valdehita A, Baumann L, Segner H, Coll JM, Navas JM. Thyroid active agents T3 and PTU differentially affect immune gene transcripts in the head kidney of rainbow trout (Oncorynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:159-168. [PMID: 26963519 DOI: 10.1016/j.aquatox.2016.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
In mammals, numerous reports describe an immunomodulating effect of thyroid-active compounds. In contrast, only few reports have been published on this subject in fish. We previously demonstrated that immune cells of rainbow trout (Oncorhynchus mykiss) possess thyroid hormone receptors (THRs) and that exposure of trout to the thyroid hormone 3,3',5-triiodo-l-thyronine (T3) or the antithyroid drug propylthiouracil (PTU) alters immune cell transcript levels of THR and several immune genes. The present study aims to further characterize the immunomodulating action of thyroid-active compounds in trout immune cells. We report here the use of a custom-designed 60-mer oligo immune-targeted microarray for rainbow trout to analyze the gene expression profiles induced in the head kidney by T3 and PTU. Morphometric analyses of the thyroid showed that PTU exposure increased the size of the epithelial cells, whereas T3 induced no significant effects. Both T3 and PTU had diverse and partly contrasting effects on immune transcript profiles. The strongest differential effects of T3 and PTU on gene expressions were those targeting the Mitogen Associated Protein Kinase (MAPK), NFkB, Natural Killer (NK) and Toll-Like Receptor (TLR) pathways, a number of multipath genes (MPG) such as those encoding pleiotropic transcription factors (atf1, junb, myc), as well as important pro-inflammatory genes (tnfa, tnf6, il1b) and interferon-related genes (ifng, irf10). With these results we show for the first time in a fish species that the in vivo thyroidal status modulates a diversity of immune genes and pathways. This knowledge provides the basis to investigate both mechanisms and consequences of thyroid hormone- and thyroid disruptor-mediated immunomodulation for the immunocompetence of fish.
Collapse
Affiliation(s)
- Alba Quesada-García
- Instituto Nacional Investigaciones Agrarias y Alimentarias. INIA, Dpto. Medio Ambiente, Ctra. De la Coruña Km 7.5., E-28040 Madrid, Spain
| | - Paloma Encinas
- Instituto Nacional Investigaciones Agrarias y Alimentarias. INIA, Dpto. Biotecnologia, Ctra. De la Coruña Km 7.5., E-28040 Madrid, Spain
| | - Ana Valdehita
- Instituto Nacional Investigaciones Agrarias y Alimentarias. INIA, Dpto. Medio Ambiente, Ctra. De la Coruña Km 7.5., E-28040 Madrid, Spain
| | - Lisa Baumann
- Faculty of Vetsuisse, Centre for Fish and Wildlife Health, University of Bern, Länggasstra. 122, CH-3001 Bern, Switzerland
| | - Helmut Segner
- Faculty of Vetsuisse, Centre for Fish and Wildlife Health, University of Bern, Länggasstra. 122, CH-3001 Bern, Switzerland
| | - Julio M Coll
- Instituto Nacional Investigaciones Agrarias y Alimentarias. INIA, Dpto. Biotecnologia, Ctra. De la Coruña Km 7.5., E-28040 Madrid, Spain
| | - José M Navas
- Instituto Nacional Investigaciones Agrarias y Alimentarias. INIA, Dpto. Medio Ambiente, Ctra. De la Coruña Km 7.5., E-28040 Madrid, Spain.
| |
Collapse
|
41
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
42
|
Schmitt P, Wacyk J, Morales-Lange B, Rojas V, Guzmán F, Dixon B, Mercado L. Immunomodulatory effect of cathelicidins in response to a β-glucan in intestinal epithelial cells from rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:160-169. [PMID: 25818364 DOI: 10.1016/j.dci.2015.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to characterize intestinal immune mechanisms involved in the response to β-glucans in rainbow trout. Among the immune effectors regulated in response to immunostimulants, host defense peptides (HDPs) are abundantly expressed in epithelial linings, suggesting their important role in the mucosal immune response. Therefore, the immunomodulatory properties of expressed HDPs in the epithelial intestinal cells of rainbow trout in response to the β-glucan, zymosan, were assessed. The results showed that zymosan increased the production of the HDP, cathelicidin, and the cytokine, IL-1β, in the intestinal epithelial RTgutGC cell line at the transcript and protein levels. Thus, cathelicidin-2 variants were produced and were shown to (i) induce the production of IL-1β in RTgutGC cells and (ii) display a synergic effect with zymosan in IL-1β upregulation. Importantly, the colocalization of both rtCATH-2 and IL-1β was detected in the intestinal epithelial cells of rainbow trout fed with a 0.3% zymosan-supplemented diet. We propose that trout cathelicidins are expressed by intestinal epithelial cells and exert immunomodulatory effects to improve the local intestinal immune response triggered by immunostimulants.
Collapse
Affiliation(s)
- Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Jurij Wacyk
- Laboratorio de Biotecnología en Acuicultura (LBA), Facultad de Ciencias Agronómicas, Departamento de Producción Animal, Universidad de Chile, Santiago, Chile
| | - Byron Morales-Lange
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Verónica Rojas
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Luis Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
43
|
Conlon JM. Host-defense peptides of the skin with therapeutic potential: From hagfish to human. Peptides 2015; 67:29-38. [PMID: 25794853 DOI: 10.1016/j.peptides.2015.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
It is now well established that peptides that were first identified on the basis of their ability to inhibit growth of bacteria and fungi are multifunctional and so are more informatively described as host-defense peptides. In some cases, their role in protecting the organism against pathogenic microorganisms, although of importance, may be secondary. A previous article in the journal (Peptides 2014; 57:67-77) assessed the potential of peptides present in the skin secretions of frogs for development into anticancer, antiviral, immunomodulatory and antidiabetic drugs. This review aims to extend the scope of this earlier article by focusing upon therapeutic applications of host-defense peptides present in skin secretions and/or skin extracts of species belonging to other vertebrate classes (Agnatha, Elasmobranchii, Teleostei, Reptilia, and Mammalia as represented by the human) that supplement their potential role as anti-infectives for use against multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
44
|
Dong JJ, Wu F, Ye X, Sun CF, Tian YY, Lu MX, Zhang R, Chen ZH. Β-defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides. Gene 2015; 566:23-31. [PMID: 25871516 DOI: 10.1016/j.gene.2015.04.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
Beta-defensins (β-defensins) are small cationic amphiphilic peptides that are widely distributed in plants, insects, and vertebrates, and are important for their antimicrobial properties. In this study, the β-defensin (Onβ-defensin) gene of the Nile tilapia (Oreochromis niloticus) was cloned from spleen tissue. Onβ-defensin has a genomic DNA sequence of 674 bp and produces a cDNA of 454 bp. Sequence alignments showed that Onβ-defensin contains three exons and two introns. Sequence analysis of the cDNA identified an open reading frame of 201 bp, encoding 66 amino acids. Bioinformatic analysis showed that Onβ-defensin encodes a cytoplasmic protein molecule containing a signal peptide. The deduced amino acid sequence of this peptide contains six conserved cysteine residues and two conserved glycine residues, and shows 81.82% and 78.33% sequence similarities with β-defensin-1 of fugu (Takifugu rubripes) and rainbow trout (Oncorhynchus mykiss), respectively. Real-time quantitative PCR showed that the level of Onβ-defensin expression was highest in the skin (307.1-fold), followed by the spleen (77.3-fold), kidney (17.8-fold), and muscle (16.5-fold) compared to controls. By contrast, low levels of expression were found in the liver, heart, intestine, stomach, and gill (<3.0-fold). Artificial infection of tilapia with Streptococcus agalactiae (group B streptococcus [GBS] strain) resulted in a significantly upregulated expression of Onβ-defensin in the skin, muscle, kidney, and gill. In vitro antimicrobial experiments showed that a synthetic Onβ-defensin polypeptide had a certain degree of inhibitory effect on the growth of Escherichia coli DH5α and S. agalactiae. The results indicate that Onβ-defensin plays a role in immune responses that suppress or kill pathogens.
Collapse
Affiliation(s)
- Jun-Jian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fang Wu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Cheng-Fei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yuan-Yuan Tian
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mai-Xin Lu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Rui Zhang
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhi-Hang Chen
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
45
|
Li J, Li T, Jiang Y. Chemical aspects of the preservation and safety control of sea foods. RSC Adv 2015. [DOI: 10.1039/c5ra03054d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interest in biopreservation of food has prompted the quest for new natural antimicrobial compounds from different origins.
Collapse
Affiliation(s)
- Jianrong Li
- Research Institute of Food Science
- Bohai University
- Food Safety Key Lab of Liaoning Province
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
| | - Tingting Li
- College of Life Science
- Dalian Nationalities University
- Dalian 116029
- China
- College of Food Science
| | - Yang Jiang
- Research Institute of Food Science
- Bohai University
- Food Safety Key Lab of Liaoning Province
- National & Local Joint Engineering Research Center of Storage
- Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products
| |
Collapse
|
46
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
47
|
Martinez-Lopez A, Garcia-Valtanen P, Ortega-Villaizan M, Chico V, Gomez-Casado E, Coll JM, Estepa A. VHSV G glycoprotein major determinants implicated in triggering the host type I IFN antiviral response as DNA vaccine molecular adjuvants. Vaccine 2014; 32:6012-9. [PMID: 25203447 DOI: 10.1016/j.vaccine.2014.07.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
Abstract
We have recently identified the two major determinants of the glycoprotein G of the viral hemorrhagic septicaemia rhabdovirus (gpGVHSV), peptides p31 and p33 implicated in triggering the host type I IFN antiviral response associated to these rhabdoviral antigens. With the aim to investigate the properties of these viral glycoprotein regions as DNA molecular adjuvants, their corresponding cDNA sequences were cloned into a plasmid (pMCV1.4) flanked by the signal peptide and transmembrane sequences of gpGVHSV. In addition, a plasmid construct encoding both sequences p31 and p33 (pMCV1.4-p31+p33) was also designed. In vitro transitory cell transfection assays showed that these VHSV gpG regions were able to induce the expression of type I IFN stimulated genes as well as to confer resistance to the infection with a different fish rhabdovirus, the spring viremia of carp virus (SVCV). In vivo, zebrafish intramuscular injection of only 1μg of the construct pMCV1.4-p31+p33 conferred fish protection against SVCV lethal challenge up to 45 days post-immunization. Moreover, pMCV1.4-p31+p33 construct was assayed for molecular adjuvantcity's for a DNA vaccine against SVCV based in the surface antigen of this virus (pAE6-GSVCV). The results showed that the co-injection of the SVCV DNA vaccine and the molecular adjuvant allowed (i) a ten-fold reduction in the dose of pAE6-Gsvcv without compromising its efficacy (ii) an increase in the duration of protection, and (iii) an increase in the survival rate. To our knowledge, this is the first report in which specific IFN-inducing regions from a viral gpG are used to design more-efficient and cost-effective viral vaccines, as well as to improve our knowledge on how to stimulate the innate immune system.
Collapse
Affiliation(s)
| | | | | | - V Chico
- IBMC, Miguel Hernández University, 03202 Elche, Spain
| | | | - J M Coll
- INIA-SIGT - Biotecnología, 28040 Madrid, Spain
| | - A Estepa
- IBMC, Miguel Hernández University, 03202 Elche, Spain.
| |
Collapse
|
48
|
Chaturvedi P, Dhanik M, Pande A. Characterization and structural analysis of hepcidin like antimicrobial peptide from Schizothorax richardsonii (Gray). Protein J 2014; 33:1-10. [PMID: 24293182 DOI: 10.1007/s10930-013-9530-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host's innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5' and 3' UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).
Collapse
Affiliation(s)
- Preeti Chaturvedi
- Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, 263136, Uttarakhand, India
| | | | | |
Collapse
|
49
|
García-Valtanen P, Ortega-Villaizán MDM, Martínez-López A, Medina-Gali R, Pérez L, Mackenzie S, Figueras A, Coll JM, Estepa A. Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy 2014; 10:1666-80. [PMID: 25046110 PMCID: PMC4206542 DOI: 10.4161/auto.29557] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It has not been elucidated whether or not autophagy is induced by rhabdoviral G glycoproteins (G) in vertebrate organisms for which rhabdovirus infection is lethal. Our work provides the first evidence that both mammalian (vesicular stomatitis virus, VSV) and fish (viral hemorrhagic septicemia virus, VHSV, and spring viremia carp virus, SVCV) rhabdoviral Gs induce an autophagic antiviral program in vertebrate cell lines. The transcriptomic profiles obtained from zebrafish genetically immunized with either Gsvcv or Gvhsv suggest that autophagy is induced shortly after immunization and therefore, it may be an important component of the strong antiviral immune responses elicited by these viral proteins. Pepscan mapping of autophagy-inducing linear determinants of Gvhsv and Gvsv showed that peptides located in their fusion domains induce autophagy. Altogether these results suggest that strategies aimed at modulating autophagy could be used for the prevention and treatment of rhabdoviral infections such as rabies, which causes thousands of human deaths every year.
Collapse
Affiliation(s)
| | | | | | | | - Luis Pérez
- IBMC; Miguel Hernández University; Elche, Spain
| | - Simon Mackenzie
- Institute of Aquaculture; University of Stirling; Stirling, UK
| | | | | | | |
Collapse
|
50
|
Collet B. Innate immune responses of salmonid fish to viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:160-73. [PMID: 23981327 DOI: 10.1016/j.dci.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 05/07/2023]
Abstract
Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.
Collapse
|