1
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Klug YA, Ferreira JV, Carvalho P. A unifying mechanism for seipin-mediated lipid droplet formation. FEBS Lett 2024; 598:1116-1126. [PMID: 38785192 PMCID: PMC11421547 DOI: 10.1002/1873-3468.14825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 05/25/2024]
Abstract
Lipid droplets (LDs) are dynamic organelles essential for cellular lipid homeostasis. Assembly of LDs occurs in the endoplasmic reticulum (ER), and the conserved ER membrane protein seipin emerged as a key player in this process. Here, we review recent advances provided by structural, biochemical, and in silico analysis that revealed mechanistic insights into the molecular role of the seipin complexes and led to an updated model for LD biogenesis. We further discuss how other ER components cooperate with seipin during LD biogenesis. Understanding the molecular mechanisms underlying seipin-mediated LD assembly is important to uncover the fundamental aspects of lipid homeostasis and organelle biogenesis and to provide hints on the pathogenesis of lipid storage disorders.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
3
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Mohammad Dezashibi H, Farzad-Mohajeri S, Bandehpour M, Shabani A, Kazemi B. Ectopic expression of insulin in a type 1 diabetic rat model by injection of manipulated mesenchymal stem cells with an insulin construct driven by a glucose-sensitive promoter in the port vein. Cell Biochem Funct 2023; 41:1412-1421. [PMID: 37877623 DOI: 10.1002/cbf.3876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
The treatment of type 1 diabetes through islet cell transplantation is a complex process, facing challenges such as allograft rejections and a limited supply of donors. One potential solution is to utilize the liver as an alternative for natural insulin production, as hepatocytes can secrete proteins and respond to glucose levels. Recent research has shown promising results in using mesenchymal stem cells as a potential cure for diabetes. The study utilized a diabetic rat model, confirmed through blood sugar measurement. A plasmid vector was designed with specific genetic components, synthesized by biotech company, and then Inserted vector into a plasmid with resistance genes and bacterial origin. Bone marrow-derived mesenchymal stem cells (BM-MSCs) were cultured and transfected with the plasmid using Lipofectamine 3000. Polymerase chain reaction was employed to confirm successful transfection using specific primers. For the animal study, 30 male Wistar rats were divided into six groups, each comprising five rats. The control group did not receive any treatment, while the second group received MSCs via Portal Vein Injection. The third group received MSCs transfected with a specific construct via Portal Vein Injection. The fourth group was induced to develop diabetes through streptozotocin (STZ) injection, the fifth group developed diabetes and received untransfected MSCs via Portal Vein Injection, and the sixth group received MSCs transfected with the specific construct via Portal Vein Injection. To manage Pain, appropriate pain control was administered to the rats for 3 days after the surgery. Fixed liver tissues obtained from the euthanized rats were utilized for immunohistochemistry. In this study, immunohistochemical techniques were used to examine insulin expression in different groups of rats. The control groups showed high levels of insulin expression, while the diabetic groups exhibited lower expression. However, there was a significant difference between the diabetic groups treated with MSC and transgenic MSC cells. All groups had similar baseline glucose levels, but the diabetic groups showed a significant increase after STZ injection, whereas the control and MSC groups did not. Postintervention, both the control and MSC groups had similar glucose levels to the post-STZ levels. However, diabetes-induced groups experienced a significant decrease in glucose levels, with the transfected MSCs showing a greater decrease than the untransfected MSCs. The study suggested that treatment with MSCs, especially transfected ones, can effectively reduce glucose levels in rats with diabetes. In this research, rat BM-MSCs were utilized to create insulin-producing mesenchymal cells with glucose-sensitive insulin expression. The cells were transferred to the liver of diabetic rats via portal vein injection, leading to an increase in insulin expression. This study proposes a novel approach for cell therapy and delivery in the treatment of type 1 diabetes.
Collapse
Affiliation(s)
| | - Saeed Farzad-Mohajeri
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Departnent of Regenerative Medicine, Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliakbar Shabani
- Medical Biotechnology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kumari RM, Khatri A, Chaudhary R, Choudhary V. Concept of lipid droplet biogenesis. Eur J Cell Biol 2023; 102:151362. [PMID: 37742390 PMCID: PMC7615795 DOI: 10.1016/j.ejcb.2023.151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Lipid droplets (LD) are functionally conserved fat storage organelles found in all cell types. LDs have a unique structure comprising of a hydrophobic core of neutral lipids (fat), triacylglycerol (TAG) and cholesterol esters (CE) surrounded by a phospholipid monolayer. LD surface is decorated by a multitude of proteins and enzymes rendering this compartment functional. Accumulating evidence suggests that LDs originate from discrete ER-subdomains, demarcated by the lipodystrophy protein seipin, however, the mechanisms of which are not well understood. LD biogenesis factors together with biophysical properties of the ER membrane orchestrate spatiotemporal regulation of LD nucleation and growth at specific ER subdomains in response to metabolic cues. Defects in LD formation manifests in several human pathologies, including obesity, lipodystrophy, ectopic fat accumulation, and insulin resistance. Here, we review recent advances in understanding the molecular events during initial stages of eukaryotic LD assembly and discuss the critical role of factors that ensure fidelity of this process.
Collapse
Affiliation(s)
- R Mankamna Kumari
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Amit Khatri
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
6
|
Walther TC, Kim S, Arlt H, Voth GA, Farese RV. Structure and function of lipid droplet assembly complexes. Curr Opin Struct Biol 2023; 80:102606. [PMID: 37150040 PMCID: PMC10853036 DOI: 10.1016/j.sbi.2023.102606] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023]
Abstract
Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.
Collapse
Affiliation(s)
- Tobias C Walther
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Siyoung Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Henning Arlt
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, 60637, USA
| | - Robert V Farese
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
7
|
Abstract
Cells store excess energy in the form of lipid droplets (LDs), a specialized sub-compartment of the endoplasmic reticulum (ER) network. The lipodystrophy protein seipin is a key player in LD biogenesis and ER-LD contact site maintenance. Recent structural and in silico studies have started to shed light on the molecular function of seipin as a LD nucleator in early LD biogenesis, whilst new cell biological work implies a role for seipin in ER-mitochondria contact sites and calcium metabolism. In this minireview, I discuss recent insights into the molecular function of seipin.
Collapse
Affiliation(s)
- Veijo T. Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
8
|
Li Y, Yang X, Peng L, Xia Q, Zhang Y, Huang W, Liu T, Jia D. Role of Seipin in Human Diseases and Experimental Animal Models. Biomolecules 2022; 12:biom12060840. [PMID: 35740965 PMCID: PMC9221541 DOI: 10.3390/biom12060840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/05/2023] Open
Abstract
Seipin, a protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene, is famous for its key role in the biogenesis of lipid droplets and type 2 congenital generalised lipodystrophy (CGL2). BSCL2 gene mutations result in genetic diseases including CGL2, progressive encephalopathy with or without lipodystrophy (also called Celia’s encephalopathy), and BSCL2-associated motor neuron diseases. Abnormal expression of seipin has also been found in hepatic steatosis, neurodegenerative diseases, glioblastoma stroke, cardiac hypertrophy, and other diseases. In the current study, we comprehensively summarise phenotypes, underlying mechanisms, and treatment of human diseases caused by BSCL2 gene mutations, paralleled by animal studies including systemic or specific Bscl2 gene knockout, or Bscl2 gene overexpression. In various animal models representing diseases that are not related to Bscl2 mutations, differential expression patterns and functional roles of seipin are also described. Furthermore, we highlight the potential therapeutic approaches by targeting seipin or its upstream and downstream signalling pathways. Taken together, restoring adipose tissue function and targeting seipin-related pathways are effective strategies for CGL2 treatment. Meanwhile, seipin-related pathways are also considered to have potential therapeutic value in diseases that are not caused by BSCL2 gene mutations.
Collapse
Affiliation(s)
- Yuying Li
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Xinmin Yang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Linrui Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Qing Xia
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu 610041, China; (L.P.); (Y.Z.)
| | - Wei Huang
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Institutes for Systems Genetics & Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (W.H.); (T.L.)
| | - Tingting Liu
- West China Pancreatitis Centre, Centre for Integrated Traditional Chinese Medicine and Western Medicine, West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.L.); (X.Y.); (Q.X.)
- Correspondence: (W.H.); (T.L.)
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
9
|
Zhou H, Li J, Su H, Li J, Lydic TA, Young ME, Chen W. BSCL2/Seipin deficiency in hearts causes cardiac energy deficit and dysfunction via inducing excessive lipid catabolism. Clin Transl Med 2022; 12:e736. [PMID: 35384404 PMCID: PMC8982503 DOI: 10.1002/ctm2.736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Heart failure (HF) is one of the leading causes of death worldwide and is associated with cardiac metabolic perturbations. Human Type 2 Berardinelli-Seip Congenital Lipodystrophy (BSCL2) disease is caused by mutations in the BSCL2 gene. Global lipodystrophic Bscl2-/- mice exhibit hypertrophic cardiomyopathy with reduced cardiac steatosis. Whether BSCL2 plays a direct role in regulating cardiac substrate metabolism and/or contractile function remains unknown. METHODS We generated mice with cardiomyocyte-specific deletion of Bscl2 (Bscl2cKO ) and studied their cardiac substrate utilisation, bioenergetics, lipidomics and contractile function under baseline or after either a treatment regimen using fatty acid oxidation (FAO) inhibitor trimetazidine (TMZ) or a prevention regimen with high-fat diet (HFD) feeding. Mice with partial ATGL deletion and cardiac-specific deletion of Bscl2 were also generated followed by cardiac phenotyping. RESULTS Different from hypertrophic cardiomyopathy in Bscl2-/- mice, mice with cardiac-specific deletion of Bscl2 developed systolic dysfunction with dilation. Myocardial BSCL2 deletion led to elevated ATGL expression and FAO along with reduced cardiac lipid contents. Cardiac dysfunction in Bscl2cKO mice was independent of mitochondrial dysfunction and oxidative stress, but associated with decreased metabolic reserve and ATP levels. Importantly, cardiac dysfunction in Bscl2cKO mice could be partially reversed by FAO inhibitor TMZ, or prevented by genetic abolishment of one ATGL allele or HFD feeding. Lipidomic analysis further identified markedly reduced glycerolipids, glycerophospholipids, NEFA and acylcarnitines in Bscl2cKO hearts, which were partially normalised by TMZ or HFD. CONCLUSIONS We identified a new form of cardiac dysfunction with excessive lipid utilisation which ultimately causes cardiac substrate depletion and bioenergetics failure. Our findings also uncover a crucial role of BSCL2 in controlling cardiac lipid catabolism and contractile function and provide novel insights into metabolically treating energy-starved HF using FAO inhibitor or HFD.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of PhysiologyMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Jie Li
- Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Huabo Su
- Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| | - Ji Li
- Department of SurgeryMorsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Todd A. Lydic
- Department of PhysiologyMichigan State UniversityEast LansingMichiganUSA
| | - Martin E Young
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Weiqin Chen
- Department of PhysiologyMedical College of Georgia at Augusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
10
|
Rochford JJ. When Adipose Tissue Lets You Down: Understanding the Functions of Genes Disrupted in Lipodystrophy. Diabetes 2022; 71:589-598. [PMID: 35316838 DOI: 10.2337/dbi21-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Lipodystrophy syndromes are conditions in which the adipose tissue mass of an individual is altered inappropriately. The change in adipose mass can range from a relatively modest and subtle redistribution in some individuals with partial lipodystrophy to a near-complete absence of adipose tissue in the most severe forms of generalized lipodystrophy. The common feature is a disconnection between the need of the individual for a safe, healthy lipid storage capacity and the available adipose mass to perform this critical role. The inability to partition lipids for storage in appropriately functioning adipocytes leads to lipid accumulation in other tissues, which typically results in conditions such as diabetes, dyslipidemia, fatty liver, and cardiovascular disease. Several genes have been identified whose disruption leads to inherited forms of lipodystrophy. There is a link between some of these genes and adipose dysfunction, so the molecular basis of disease pathophysiology appears clear. However, for other lipodystrophy genes, it is not evident why their disruption should affect adipose development or function or, in the case of partial lipodystrophy, why only some adipose depots should be affected. Elucidating the molecular functions of these genes and their cellular and physiological effects has the capacity to uncover fundamental new insights regarding the development and functions of adipose tissue. This information is also likely to inform better management of lipodystrophy and improved treatments for patients. In addition, the findings will often be relevant to other conditions featuring adipose tissue dysfunction, including the more common metabolic disease associated with obesity.
Collapse
|
11
|
Schneiter R, Choudhary V. Seipin collaborates with the ER membrane to control the sites of lipid droplet formation. Curr Opin Cell Biol 2022; 75:102070. [PMID: 35306312 PMCID: PMC7615794 DOI: 10.1016/j.ceb.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.
Collapse
Affiliation(s)
- Roger Schneiter
- University of Fribourg, Department of Biology, 1700, Fribourg, Switzerland.
| | - Vineet Choudhary
- All India Institute of Medical Sciences (AIIMS), Department of Biotechnology, New Delhi, 110029, India.
| |
Collapse
|
12
|
Magré J, Prieur X. Seipin Deficiency as a Model of Severe Adipocyte Dysfunction: Lessons from Rodent Models and Teaching for Human Disease. Int J Mol Sci 2022; 23:740. [PMID: 35054926 PMCID: PMC8775404 DOI: 10.3390/ijms23020740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity prevalence is increasing worldwide, leading to cardiometabolic morbidities. Adipocyte dysfunction, impairing white adipose tissue (WAT) expandability and metabolic flexibility, is central in the development of obesity-related metabolic complications. Rare syndromes of lipodystrophy characterized by an extreme paucity of functional adipose tissue should be considered as primary adipocyte dysfunction diseases. Berardinelli-Seip congenital lipodystrophy (BSCL) is the most severe form with a near absence of WAT associated with cardiometabolic complications such as insulin resistance, liver steatosis, dyslipidemia, and cardiomyopathy. Twenty years ago, mutations in the BSCL2 gene have been identified as the cause of BSCL in human. BSCL2 encodes seipin, an endoplasmic reticulum (ER) anchored protein whose function was unknown back then. Studies of seipin knockout mice or rats demonstrated how seipin deficiency leads to severe lipodystrophy and to cardiometabolic complications. At the cellular levels, seipin is organized in multimers that are particularly enriched at ER/lipid droplet and ER/mitochondria contact sites. Seipin deficiency impairs both adipocyte differentiation and mature adipocyte maintenance. Experiments using adipose tissue transplantation in seipin knockout mice and tissue-specific deletion of seipin have provided a large body of evidence that liver steatosis, cardiomyopathy, and renal injury, classical diabetic complications, are all consequences of lipodystrophy. Rare adipocyte dysfunctions such as in BSCL are the key paradigm to unravel the pathways that control adipocyte homeostasis. The knowledge gathered through the study of these pathologies may bring new strategies to maintain and improve adipose tissue expandability.
Collapse
Affiliation(s)
| | - Xavier Prieur
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, L’institut du Thorax, Université de Nantes, F-44000 Nantes, France;
| |
Collapse
|
13
|
Seipin localizes at endoplasmic-reticulum-mitochondria contact sites to control mitochondrial calcium import and metabolism in adipocytes. Cell Rep 2022; 38:110213. [PMID: 35021082 DOI: 10.1016/j.celrep.2021.110213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Deficiency of the endoplasmic reticulum (ER) protein seipin results in generalized lipodystrophy by incompletely understood mechanisms. Here, we report mitochondrial abnormalities in seipin-deficient patient cells. A subset of seipin is enriched at ER-mitochondria contact sites (MAMs) in human and mouse cells and localizes in the vicinity of calcium regulators SERCA2, IP3R, and VDAC. Seipin association with MAM calcium regulators is stimulated by fasting-like stimuli, while seipin association with lipid droplets is promoted by lipid loading. Acute seipin removal does not alter ER calcium stores but leads to defective mitochondrial calcium import accompanied by a widespread reduction in Krebs cycle metabolites and ATP levels. In mice, inducible seipin deletion leads to mitochondrial dysfunctions preceding the development of metabolic complications. Together, these data suggest that seipin controls mitochondrial energy metabolism by regulating mitochondrial calcium influx at MAMs. In seipin-deficient adipose tissue, reduced ATP production compromises adipocyte properties, contributing to lipodystrophy pathogenesis.
Collapse
|
14
|
Lipid Droplet-a New Target in Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:730-739. [PMID: 34984637 DOI: 10.1007/s12265-021-10204-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Lipid droplet (LD) is a kind of subcellular organelle, which originates from the endoplasmic reticulum (ER). LDs can move flexibly between other organelles and store energy in the cells. In recent years, LDs and lipid droplet-associated proteins have attracted added attention at home and abroad, especially in cardiovascular diseases. Cardiovascular diseases, especially ischemic heart disease (IHD), have always been the focus of attention because of their high morbidity and mortality. Atherosclerosis and myocardial remodeling are two important pathologic processes of IHD, and LDs and other organelles are involved in the development of the disease. The interaction between LDs and ER is involved in the formation of foam cells in atherosclerosis. And LDs, mitochondria, and lysosomes also affect the remodeling of cardiomyocytes by affecting ROS production and regulating PI3K/AKT pathways. In this article, we will review the role of LDs in IHD.
Collapse
|
15
|
Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res 2021; 85:101141. [PMID: 34793861 DOI: 10.1016/j.plipres.2021.101141] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that play crucial roles in response to physiological and environmental cues. The identification of several neutral lipid synthesizing and regulatory protein complexes have propelled significant advance on the mechanisms of LD biogenesis in the endoplasmic reticulum (ER). Increasing evidence suggests that distinct proteins and regulatory factors, which localize to membrane contact sites (MCS), are involved not only in interorganellar lipid exchange and transport, but also function in other important cellular processes, including autophagy, mitochondrial dynamics and inheritance, ion signaling and inter-regulation of these MCS. More and more tethers and molecular determinants are associated to MCS and to a diversity of cellular and pathophysiological processes, demonstrating the dynamics and importance of these junctions in health and disease. The conjugation of lipids with proteins in supramolecular complexes is known to be paramount for many biological processes, namely membrane biosynthesis, cell homeostasis, regulation of organelle division and biogenesis, and cell growth. Ultimately, this physical organization allows the contact sites to function as crucial metabolic hubs that control the occurrence of chemical reactions. This leads to biochemical and metabolite compartmentalization for the purposes of energetic efficiency and cellular homeostasis. In this review, we will focus on the structural and functional aspects of LD-organelle interactions and how they ensure signaling exchange and metabolites transfer between organelles.
Collapse
|
16
|
Angelidi AM, Filippaios A, Mantzoros CS. Severe insulin resistance syndromes. J Clin Invest 2021; 131:142245. [PMID: 33586681 DOI: 10.1172/jci142245] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
Collapse
Affiliation(s)
- Angeliki M Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Filippaios
- Department of Medicine, Lowell General Hospital, Lowell, Massachusetts, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.,Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Rao MJ, Goodman JM. Seipin: harvesting fat and keeping adipocytes healthy. Trends Cell Biol 2021; 31:912-923. [PMID: 34215489 DOI: 10.1016/j.tcb.2021.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
Seipin is a key protein in the assembly of cytoplasmic lipid droplets (cLDs) and their maintenance at endoplasmic reticulum (ER)-LD junctions; the absence of seipin results in generalized lipodystrophy. How seipin mediates LD dynamics and prevents lipodystrophy are not well understood. New evidence suggests that seipin attracts triglyceride monomers from the ER to sites of droplet formation. By contrast, seipin may not be directly involved in the assembly of nuclear LDs and may actually suppress their formation at a distance. Seipin promotes adipogenesis, but lipodystrophy may also involve postadipogenic effects. We hypothesize that among these are a cycle of runaway lipolysis and lipotoxicity caused by aberrant LDs, resulting in a depletion of fat stores and a failure of adipose and other cells to thrive.
Collapse
Affiliation(s)
- Monala Jayaprakash Rao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX 75390-9041, USA.
| |
Collapse
|
18
|
Guéguen N, Le Moigne D, Amato A, Salvaing J, Maréchal E. Lipid Droplets in Unicellular Photosynthetic Stramenopiles. FRONTIERS IN PLANT SCIENCE 2021; 12:639276. [PMID: 33968100 PMCID: PMC8100218 DOI: 10.3389/fpls.2021.639276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid deriving from a secondary endosymbiosis, limited by four membranes, the outermost one being connected to the endomembrane system. Recent cell imaging and proteomic studies suggest that at least some cytosolic LDs might be associated to the surface of the complex plastid, via still uncharacterized contact sites. The carbon length and number of double bonds of the acyl groups contained in the TAG molecules depend on their origin. De novo synthesis produces long-chain saturated or monounsaturated fatty acids (SFA, MUFA), whereas subsequent maturation processes lead to very long-chain polyunsaturated FA (VLC-PUFA). TAG composition in SFA, MUFA, and VLC-PUFA reflects therefore the metabolic context that gave rise to the formation of the LD, either via an early partitioning of carbon following FA de novo synthesis and/or a recycling of FA from membrane lipids, e.g., plastid galactolipids or endomembrane phosphor- or betaine lipids. In this review, we address the relationship between cytosolic LDs and the complex membrane compartmentalization within stramenopile cells, the metabolic routes leading to TAG accumulation, and the physiological conditions that trigger LD production, in response to various environmental factors.
Collapse
|
19
|
Choudhary V, Schneiter R. A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Front Cell Dev Biol 2021; 9:650186. [PMID: 33898445 PMCID: PMC8060488 DOI: 10.3389/fcell.2021.650186] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
20
|
Celia's Encephalopathy ( BSCL2-Gene-Related): Current Understanding. J Clin Med 2021; 10:jcm10071435. [PMID: 33916074 PMCID: PMC8037292 DOI: 10.3390/jcm10071435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Seipin, encoded by the BSCL2 gene, is a protein that in humans is expressed mainly in the central nervous system. Uniquely, certain variants in BSCL2 can cause both generalized congenital lipodystrophy type 2, upper and/or lower motor neuron diseases, or progressive encephalopathy, with a poor prognosis during childhood. The latter, Celia's encephalopathy, which may or may not be associated with generalized lipodystrophy, is caused by the c.985C >T variant. This cytosine to thymine transition creates a cryptic splicing zone that leads to intronization of exon 7, resulting in an aberrant form of seipin, Celia seipin. It has been proposed that the accumulation of this protein, both in the endoplasmic reticulum and in the nucleus of neurons, might be the pathogenetic mechanism of this neurodegenerative condition. In recent years, other variants in BSCL2 associated with generalized lipodystrophy and progressive epileptic encephalopathy have been reported. Interestingly, most of these variants could also lead to the loss of exon 7. In this review, we analyzed the molecular bases of Celia's encephalopathy and its pathogenic mechanisms, the clinical features of the different variants, and a therapeutic approach in order to slow down the progression of this fatal neurological disorder.
Collapse
|
21
|
Bscl2 Deficiency Does Not Directly Impair the Innate Immune Response in a Murine Model of Generalized Lipodystrophy. J Clin Med 2021; 10:jcm10030441. [PMID: 33498782 PMCID: PMC7865406 DOI: 10.3390/jcm10030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022] Open
Abstract
Congenital Generalized Lipodystrophy type 2 (CGL2) is the most severe form of lipodystrophy and is caused by mutations in the BSCL2 gene. Affected patients exhibit a near complete lack of adipose tissue and suffer severe metabolic disease. A recent study identified infection as a major cause of death in CGL2 patients, leading us to examine whether Bscl2 loss could directly affect the innate immune response. We generated a novel mouse model selectively lacking Bscl2 in the myeloid lineage (LysM-B2KO) and also examined the function of bone-marrow-derived macrophages (BMDM) isolated from global Bscl2 knockout (SKO) mice. LysM-B2KO mice failed to develop lipodystrophy and metabolic disease, providing a model to study the direct role of Bscl2 in myeloid lineage cells. Lipopolysaccharide-mediated stimulation of inflammatory cytokines was not impaired in LysM-B2KO mice or in BMDM isolated from either LysM-B2KO or SKO mice. Additionally, intracellular fate and clearance of bacteria in SKO BMDM challenged with Staphylococcus aureus was indistinguishable from that in BMDM isolated from littermate controls. Overall, our findings reveal that selective Bscl2 deficiency in macrophages does not critically impact the innate immune response to infection. Instead, an increased susceptibility to infection in CGL2 patients is likely to result from severe metabolic disease.
Collapse
|
22
|
Thiam AR, Ikonen E. Lipid Droplet Nucleation. Trends Cell Biol 2020; 31:108-118. [PMID: 33293168 DOI: 10.1016/j.tcb.2020.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
All living organisms can make lipid droplets (LDs), intracellular oil-in-water droplets, surrounded by a phospholipid and protein monolayer. LDs are at the nexus of cellular lipid metabolism and function in diverse biological processes. During the past decade, multidisciplinary approaches have shed light on LD assembly steps from the endoplasmic reticulum (ER): nucleation, growth, budding, and formation of a separate organelle. However, the molecular mechanisms underpinning these steps remain elusive. In this review, we focus on the nucleation step, defining where and how LD assembly is initiated. We present how membrane biophysical and physicochemical properties control this step and how proteins act on it to orchestrate LD biogenesis.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
23
|
New friends for seipin — Implications of seipin partner proteins in the life cycle of lipid droplets. Semin Cell Dev Biol 2020; 108:24-32. [DOI: 10.1016/j.semcdb.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/20/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022]
|
24
|
Jin Y, Tan Y, Zhao P, Ren Z. SEIPIN: A Key Factor for Nuclear Lipid Droplet Generation and Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21218208. [PMID: 33147895 PMCID: PMC7663086 DOI: 10.3390/ijms21218208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence:
| |
Collapse
|
25
|
Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158820. [PMID: 33010453 DOI: 10.1016/j.bbalip.2020.158820] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
Lipid droplets (LDs) are ubiquitous fat storage organelles composed of a neutral lipid core, comprising triacylglycerols (TAG) and sterol esters (SEs), surrounded by a phospholipid monolayer membrane with several decorating proteins. Recently, LD biology has come to the foreground of research due to their importance for energy homeostasis and cellular stress response. As aberrant LD accumulation and lipid depletion are hallmarks of numerous diseases, addressing LD biogenesis and turnover provides a new framework for understanding disease-related mechanisms. Here we discuss the potential role of LDs in neurodegeneration, while making some predictions on how LD imbalance can contribute to pathophysiology in the brain.
Collapse
Affiliation(s)
- Vitor Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Salo VT, Hölttä-Vuori M, Ikonen E. Seipin-Mediated Contacts as Gatekeepers of Lipid Flux at the Endoplasmic Reticulum–Lipid Droplet Nexus. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420945820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lipid droplets (LDs) are dynamic cellular hubs of lipid metabolism. While LDs contact a plethora of organelles, they have the most intimate relationship with the endoplasmic reticulum (ER). Indeed, LDs are initially assembled at specialized ER subdomains, and recent work has unraveled an increasing array of proteins regulating ER-LD contacts. Among these, seipin, a highly conserved lipodystrophy protein critical for LD growth and adipogenesis, deserves special attention. Here, we review recent insights into the role of seipin in LD biogenesis and as a regulator of ER-LD contacts. These studies have also highlighted the evolving concept of ER and LDs as a functional continuum for lipid partitioning and pinpointed a role for seipin at the ER-LD nexus in controlling lipid flux between these compartments.
Collapse
Affiliation(s)
- Veijo T. Salo
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
27
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
29
|
Zhou H, Xu C, Lee H, Yoon Y, Chen W. Berardinelli-Seip congenital lipodystrophy 2/SEIPIN determines brown adipose tissue maintenance and thermogenic programing. Mol Metab 2020; 36:100971. [PMID: 32246911 PMCID: PMC7136632 DOI: 10.1016/j.molmet.2020.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Objective Understanding the mechanisms that control brown adipose tissue (BAT) mass and functionality is crucial for our understanding of how the disruption of energy homeostasis leads to obesity. Bernerdinali Seip Congenital Lipodystrophy (BSCL) type 2 (BSCL2, a.k.a. SEIPIN), a lipodystrophy-associated protein, has been shown to not be required for brown adipogenesis, but it has been shown to be essential for perinatal BAT development. However, its role in mature BAT maintenance and thermogenic programing remains poorly understood. Methods We subjected Bscl2f/f and Bscl2UCP1-BKO (BKO) mice with a brown adipose-specific loss of BSCL2 through UCP1 promoter-driven Cre to environmental, pharmacological and diet interventions to challenge BAT functionality and reprogramming. We carried out physiological, molecular and transcriptomic analyses of BAT. Results The deletion of BSCL2 in mature brown adipocytes increased sympathetic nervous system-independent cAMP/protein kinase A (PKA) signaling in BAT. Such activation reduced BAT triglyceride content and mass and was sufficient to reduce plasma triglyceride, but not enough to combat thermoneutral and high fat diet-induced obesity. Surprisingly, BKO mice displayed an impaired response to acute and chronic cold challenges despite cAMP/PKA activation. When subjected to chronic cold exposure or the administration of a β3-adrenergic agonist, CL 316,243, BKO mice failed to induce BAT recruitment and underwent dramatic brown adipocyte loss. Transcriptomic analysis revealed pathological BAT remodeling with inflammation and fibrosis, which was further exacerbated by a chronic thermogenic challenge in BKO mice. Mechanistically, we found abnormal mitochondrial shapes and function in BAT of BKO mice housed at 21 °C; as well as mitochondrial DNA depletion and necroptotic-mediated brown adipocyte death after chronic thermogenic insult. Conclusion BSCL2-mediated lipid catabolism within BAT is crucial for mature brown adipocyte function and survival both during times of activation and quiescence. BSCL2 is an important regulator of mature brown adipocyte mitochondrial metabolism, necroptosis and thus adaptive thermogenesis. Mature BAT-specific loss of BSCL2 (Bscl2UCP1-BKO) activates SNS-independent cAMP/PKA signaling. Bscl2UCP1-BKO increases BAT mitochondrial fission and uncoupling. Bscl2UCP1-BKO reduces plasma triglyceride but not adiposity under thermoneutrality or high fat diet. Bscl2UCP1-BKO blunts BAT reprograming and causes cold intolerance. BSCL2 deletion exposes brown adipocyte to necroptosis under chronic thermogenic stress.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Cheng Xu
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hakjoo Lee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Sim MFM, Persiani E, Talukder MMU, Mcilroy GD, Roumane A, Edwardson JM, Rochford JJ. Oligomers of the lipodystrophy protein seipin may co-ordinate GPAT3 and AGPAT2 enzymes to facilitate adipocyte differentiation. Sci Rep 2020; 10:3259. [PMID: 32094408 PMCID: PMC7039881 DOI: 10.1038/s41598-020-59982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Seipin deficiency causes severe congenital generalized lipodystrophy (CGL) and metabolic disease. However, how seipin regulates adipocyte development and function remains incompletely understood. We previously showed that seipin acts as a scaffold protein for AGPAT2, whose disruption also causes CGL. More recently, seipin has been reported to promote adipogenesis by directly inhibiting GPAT3, leading to the suggestion that GPAT inhibitors could offer novel treatments for CGL. Here we investigated the interactions between seipin, GPAT3 and AGPAT2. We reveal that seipin and GPAT3 associate via direct interaction and that seipin can simultaneously bind GPAT3 and AGPAT2. Inhibiting the expression of seipin, AGPAT2 or GPAT3 led to impaired induction of early markers of adipocyte differentiation in cultured cells. However, consistent with normal adipose mass in GPAT3-null mice, GPAT3 inhibition did not prevent the formation of mature adipocytes. Nonetheless, loss of GPAT3 in seipin-deficient preadipocytes exacerbated the failure of adipogenesis in these cells. Thus, our data indicate that GPAT3 plays a modest positive role in adipogenesis and argue against the potential of GPAT inhibitors to rescue white adipose tissue mass in CGL2. Overall, our study reveals novel mechanistic insights regarding the molecular pathogenesis of severe lipodystrophy caused by mutations in either seipin or AGPAT2.
Collapse
Affiliation(s)
- M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Elisa Persiani
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - George D Mcilroy
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ahlima Roumane
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - Justin J Rochford
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. .,Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
31
|
Hugenroth M, Bohnert M. Come a little bit closer! Lipid droplet-ER contact sites are getting crowded. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118603. [PMID: 31733263 DOI: 10.1016/j.bbamcr.2019.118603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Not so long ago, contact sites between the endoplasmic reticulum (ER) and lipid droplets (LDs) were largely unexplored on a molecular level. In recent years however, numerous proteins have been identified that are enriched or exclusively located at the interfaces between LDs and the ER. These comprise members of protein classes typically found in diverse types of contacts, such as organelle tethers and lipid transfer proteins, but also proteins that have no similarities to known contact site machineries. This structurally heterogeneous group of contact site residents might be required to fulfill unique aspects of LD-ER contact biology, such as de novo LD biogenesis, and maintenance of lipidic connections between LDs and ER. Here, we summarize the current knowledge on the molecular components of this special organelle contact site, and discuss their features and functions.
Collapse
Affiliation(s)
- Marie Hugenroth
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany.
| |
Collapse
|
32
|
The biogenesis of lipid droplets: Lipids take center stage. Prog Lipid Res 2019; 75:100989. [PMID: 31351098 DOI: 10.1016/j.plipres.2019.100989] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Lipid droplets (LDs) are multi-functional cellular organelles that store energy, and regulate many aspects of cell physiology. However, our understanding of the biogenesis of LDs remains very limited. Originating from the endoplasmic reticulum (ER), LDs are highly unique organelles in that each LD is bounded by a monolayer of amphipathic lipids. Recent progress has unveiled critical roles of non-bilayer lipids in LD formation. For instance, non-bilayer lipids such as lysophospholipids, diacylglycerol and phosphatidic acid (PA) can impact the curvature, surface and line tension of the ER, thereby impacting LD biogenesis. Two well-known regulators of LD formation, FIT2/FITM2 and seipin, have both been implicated in controlling the metabolism and/or distribution of non-bilayer lipids. We summarize and integrate these recent advances and propose that non-bilayer lipids may play a critical role in each step of LD biogenesis.
Collapse
|
33
|
Mechanisms of lipid droplet biogenesis. Biochem J 2019; 476:1929-1942. [DOI: 10.1042/bcj20180021] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022]
Abstract
Abstract
Lipid droplets (LDs) are organelles that compartmentalize nonbilayer-forming lipids in the aqueous cytoplasm of cells. They are ubiquitous in most organisms, including in animals, protists, plants and microorganisms. In eukaryotes, LDs are believed to be derived by a budding and scission process from the surface of the endoplasmic reticulum, and this occurs concomitantly with the accumulation of neutral lipids, most often triacylglycerols and steryl esters. Overall, the mechanisms underlying LD biogenesis are difficult to generalize, in part because of the involvement of different sets of both evolutionarily conserved and organism-specific LD-packaging proteins. Here, we briefly compare and contrast these proteins and the allied processes responsible for LD biogenesis in cells of animals, yeasts and plants.
Collapse
|
34
|
Zhou H, Lei X, Yan Y, Lydic T, Li J, Weintraub NL, Su H, Chen W. Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCI Insight 2019; 5:129781. [PMID: 31185001 DOI: 10.1172/jci.insight.129781] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in BSCL2 gene underlie human type 2 Berardinelli-Seip Congenital Lipodystrophy (BSCL2) disease. Global Bscl2-/- mice recapitulate human BSCL2 lipodystrophy and develop insulin resistance and hypertrophic cardiomyopathy. The pathological mechanisms underlying the development of lipodystrophy and cardiomyopathy in BSCL2 are controversial. Here we report that Bscl2-/- mice develop cardiac hypertrophy due to increased basal IGF1 receptor (IGF1R)-mediated PI3K/AKT signaling. Bscl2-/- hearts exhibited increased adipose triglyceride lipase (ATGL) protein stability and expression causing drastic reduction of glycerolipids. Excessive fatty acid oxidation was overt in Bscl2-/- hearts, partially attributing to the hyperacetylation of cardiac mitochondrial proteins. Intriguingly, pharmacological inhibition or genetic inactivation of ATGL could rescue adipocyte differentiation and lipodystrophy in Bscl2-/- cells and mice. Restoring a small portion of fat mass by ATGL partial deletion in Bscl2-/- mice not only reversed the systemic insulin resistance, but also ameliorated cardiac protein hyperacetylation, normalized cardiac substrate metabolism and improved contractile function. Collectively, our study uncovers novel pathways underlying lipodystrophy-induced cardiac hypertrophy and metabolic remodeling and pinpoints ATGL as a downstream target of BSCL2 in regulating the development of lipodystrophy and its associated cardiomyopathy.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xinnuo Lei
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yun Yan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
35
|
Salo VT, Li S, Vihinen H, Hölttä-Vuori M, Szkalisity A, Horvath P, Belevich I, Peränen J, Thiele C, Somerharju P, Zhao H, Santinho A, Thiam AR, Jokitalo E, Ikonen E. Seipin Facilitates Triglyceride Flow to Lipid Droplet and Counteracts Droplet Ripening via Endoplasmic Reticulum Contact. Dev Cell 2019; 50:478-493.e9. [PMID: 31178403 DOI: 10.1016/j.devcel.2019.05.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 01/02/2023]
Abstract
Seipin is an oligomeric integral endoplasmic reticulum (ER) protein involved in lipid droplet (LD) biogenesis. To study the role of seipin in LD formation, we relocalized it to the nuclear envelope and found that LDs formed at these new seipin-defined sites. The sites were characterized by uniform seipin-mediated ER-LD necks. At low seipin content, LDs only grew at seipin sites, and tiny, growth-incompetent LDs appeared in a Rab18-dependent manner. When seipin was removed from ER-LD contacts within 1 h, no lipid metabolic defects were observed, but LDs became heterogeneous in size. Studies in seipin-ablated cells and model membranes revealed that this heterogeneity arises via a biophysical ripening process, with triglycerides partitioning from smaller to larger LDs through droplet-bilayer contacts. These results suggest that seipin supports the formation of structurally uniform ER-LD contacts and facilitates the delivery of triglycerides from ER to LDs. This counteracts ripening-induced shrinkage of small LDs.
Collapse
Affiliation(s)
- Veijo T Salo
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Shiqian Li
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Helena Vihinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maarit Hölttä-Vuori
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Pentti Somerharju
- Department of Biochemistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alexandre Santinho
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Universite de Paris, Paris, France.
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland.
| |
Collapse
|
36
|
Nettebrock NT, Bohnert M. Born this way - Biogenesis of lipid droplets from specialized ER subdomains. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158448. [PMID: 31028912 DOI: 10.1016/j.bbalip.2019.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 01/21/2023]
Abstract
Both the endoplasmic reticulum (ER) and lipid droplets (LDs) are key players in lipid handling. In addition to this functional connection, the two organelles are also tightly linked due to the fact that the ER is the birthplace of LDs. LDs have an atypical architecture, consisting of a neutral lipid core that is covered by a phospholipid monolayer. LD biogenesis starts with neutral lipid synthesis in the ER membrane and formation of small neutral lipid lenses between its leaflets, followed by budding of mature LDs toward the cytosol. Several ER proteins have been identified that are required for efficient LD formation, among them seipin, Pex30, and FIT2. Recent evidence indicates that these LD biogenesis factors might cooperate with specific lipids, thus generating ER subdomains optimized for LD assembly. Intriguingly, LD biogenesis reacts dynamically to nutrient stress, resulting in a spatial reorganization of LD formation in the ER.
Collapse
Affiliation(s)
- Niclas T Nettebrock
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany
| | - Maria Bohnert
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Germany.
| |
Collapse
|
37
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
38
|
Craveiro Sarmento AS, Ferreira LC, Lima JG, de Azevedo Medeiros LB, Barbosa Cunha PT, Agnez-Lima LF, Galvão Ururahy MA, de Melo Campos JTA. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:30-52. [PMID: 31416577 DOI: 10.1016/j.mrrev.2019.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/26/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare disease characterized by the near total absence of body fat at birth. BSCL etiology involves genetic variations in four different genes: AGPAT2, BSCL2, CAV1, and CAVIN1. The four different biochemical subtypes of the disease are distinguished depending on which gene is mutated. The diagnosis of lipodystrophy can be based on clinical criteria, but the gold standard remains genetic testing. Since many different mutations have already been correlated with the onset of the disease, the most indicative method is DNA sequencing. However, not all laboratories have the resources to perform sequencing. Thus, less expensive techniques that include narrow gene regions may be applied. In such cases, the target mutations to be tested must be carefully determined taking into account the frequency of the description of the mutations in the literature, the nationality of the patient, as well as their phenotype. This review considers the molecular basis of BSCL, including the manual count of the majority of mutations reported in the literature up to the year 2018. Ninety different genetic mutations in 332 cases were reported at different frequencies. Some mutations were distributed homogeneously and others were specific to geographic regions. Type 2 BSCL was mentioned most often in the literature (50.3% of the cases), followed by Type 1 (38.0%), Type 4 (10.2%), and Type 3 (1.5%). The mutations comprised frameshifts (34.4%), nonsense (26.6%), and missense (21.1%). The c.517dupA in the BSCL2 gene was the most frequent (13.3%), followed by c.589-2A>G in the AGPAT2 gene (11.5%), c.507_511delGTATC in the BSCL2 gene (9.7%), c.317-588del in the AGPAT2 gene (7.3%), and c.202C>T in the AGPAT2 gene (4.5%). This information should prove valuable for analysts in making decisions regarding the best therapeutic targets in a population-specific context, which will benefit patients and enable faster and less expensive treatment.
Collapse
Affiliation(s)
- Aquiles Sales Craveiro Sarmento
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Leonardo Capistrano Ferreira
- Instituto de Medicina Tropical, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Lázaro Batista de Azevedo Medeiros
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcela Abbott Galvão Ururahy
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
39
|
Castro IG, Eisenberg-Bord M, Persiani E, Rochford JJ, Schuldiner M, Bohnert M. Promethin Is a Conserved Seipin Partner Protein. Cells 2019; 8:E268. [PMID: 30901948 PMCID: PMC6468817 DOI: 10.3390/cells8030268] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022] Open
Abstract
Seipin (BSCL2/SPG17) is a key factor in lipid droplet (LD) biology, and its dysfunction results in severe pathologies, including the fat storage disease Berardinelli-Seip congenital lipodystrophy type 2, as well as several neurological seipinopathies. Despite its importance for human health, the molecular role of seipin is still enigmatic. Seipin is evolutionarily conserved from yeast to humans. In yeast, seipin was recently found to cooperate with the lipid droplet organization (LDO) proteins, Ldo16 and Ldo45, two structurally-related proteins involved in LD function and identity that display remote homology to the human protein promethin/TMEM159. In this study, we show that promethin is indeed an LD-associated protein that forms a complex with seipin, and its localization to the LD surface can be modulated by seipin expression levels. We thus identify promethin as a novel seipin partner protein.
Collapse
Affiliation(s)
- Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Elisa Persiani
- Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Justin J Rochford
- Rowett Institute and Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Maria Bohnert
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
- Institute of Cell Dynamics and Imaging, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany.
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany.
| |
Collapse
|
40
|
Jiao Y, Ahmed U, Sim MFM, Bejar A, Zhang X, Talukder MMU, Rice R, Flannick J, Podgornaia AI, Reilly DF, Engreitz JM, Kost-Alimova M, Hartland K, Mercader JM, Georges S, Wagh V, Tadin-Strapps M, Doench JG, Edwardson JM, Rochford JJ, Rosen ED, Majithia AR. Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Mol Metab 2019; 24:108-119. [PMID: 30940487 PMCID: PMC6531784 DOI: 10.1016/j.molmet.2019.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Objective Impaired expansion of peripheral fat contributes to the pathogenesis of insulin resistance and Type 2 Diabetes (T2D). We aimed to identify novel disease–gene interactions during adipocyte differentiation. Methods Genes in disease-associated loci for T2D, adiposity and insulin resistance were ranked according to expression in human adipocytes. The top 125 genes were ablated in human pre-adipocytes via CRISPR/CAS9 and the resulting cellular phenotypes quantified during adipocyte differentiation with high-content microscopy and automated image analysis. Morphometric measurements were extracted from all images and used to construct morphologic profiles for each gene. Results Over 107 morphometric measurements were obtained. Clustering of the morphologic profiles accross all genes revealed a group of 14 genes characterized by decreased lipid accumulation, and enriched for known lipodystrophy genes. For two lipodystrophy genes, BSCL2 and AGPAT2, sub-clusters with PLIN1 and CEBPA identifed by morphological similarity were validated by independent experiments as novel protein–protein and gene regulatory interactions. Conclusions A morphometric approach in adipocytes can resolve multiple cellular mechanisms for metabolic disease loci; this approach enables mechanistic interrogation of the hundreds of metabolic disease loci whose function still remains unknown. Loss-of-function genetic screen in human adipocytes for 125 genes selected from metabolic disease-associated loci. Genetic screen read out by cellular morphometry— 77,000 images taken with 400 morphological features extracted per image. Pairwise mechanistic interactions between genes identified by correlations of cellular morphometry—two interactions validated. Novel interaction between BSCL2 and PLIN1 from biophysical association of proteins at lipid droplet surface. Novel interaction between CEBPA and AGPAT2 from CEBPA dependent transcription of AGPAT2.
Collapse
Affiliation(s)
- Yang Jiao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Umer Ahmed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrea Bejar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xiaolan Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Robert Rice
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna I Podgornaia
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Dermot F Reilly
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | | | - Kate Hartland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Sara Georges
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | - Vilas Wagh
- Genetics and Pharmacogenomics, Merck & Co., Inc., Boston, MA 02115, USA
| | | | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Justin J Rochford
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK; Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Evan D Rosen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Harvard Medical School, Department of Genetics, Boston, MA 02215, USA
| | - Amit R Majithia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Endocrinology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Female adipose tissue-specific Bscl2 knockout mice develop only moderate metabolic dysfunction when housed at thermoneutrality and fed a high-fat diet. Sci Rep 2018; 8:17863. [PMID: 30552349 PMCID: PMC6294754 DOI: 10.1038/s41598-018-36078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/12/2018] [Indexed: 02/04/2023] Open
Abstract
Mutations affecting the BSCL2 gene cause the most severe form of congenital generalised lipodystrophy. Affected individuals almost completely lack adipose tissue and suffer from severe diabetes and metabolic complications. Likewise, mice lacking Bscl2 in all tissues have dramatically reduced adipose mass, glucose intolerance and hyperinsulinaemia. However, male adipose tissue-specific Bscl2 knockout mice fail to develop the metabolic dysfunction observed in Bscl2 null mice and BSCL2 deficient patients, despite a similar generalised lack of adipose tissues. Clinical reports indicate gender differences frequently exist in cases of lipodystrophy, with female patients more adversely affected than male patients. We therefore generated and characterised female mice lacking Bscl2 specifically in adipose tissue (Ad-B2(−/−)). We show that female Ad-B2(−/−) mice also develop early-onset lipodystrophy when fed a chow diet and are maintained under standard housing conditions (21 °C) or thermoneutrality (30 °C). Despite this, female Ad-B2(−/−) mice fail to develop severe metabolic dysfunction. Only when female Ad-B2(−/−) mice are maintained at thermoneutrality and fed a high-fat diet do subtle alterations to metabolic homeostasis manifest. This is despite a striking inability to expand adipose mass. Our findings provide further evidence that loss of Bscl2 in non-adipose tissues may contribute to the severity of metabolic dysfunction in this condition.
Collapse
|
42
|
Sui X, Arlt H, Brock KP, Lai ZW, DiMaio F, Marks DS, Liao M, Farese RV, Walther TC. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J Cell Biol 2018; 217:4080-4091. [PMID: 30327422 PMCID: PMC6279392 DOI: 10.1083/jcb.201809067] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023] Open
Abstract
Metabolic energy is stored in cells primarily as triacylglycerols in lipid droplets (LDs), and LD dysregulation leads to metabolic diseases. The formation of monolayer-bound LDs from the endoplasmic reticulum (ER) bilayer is poorly understood, but the ER protein seipin is essential to this process. In this study, we report a cryo-electron microscopy structure and functional characterization of Drosophila melanogaster seipin. The structure reveals a ring-shaped dodecamer with the luminal domain of each monomer resolved at ∼4.0 Å. Each luminal domain monomer exhibits two distinctive features: a hydrophobic helix (HH) positioned toward the ER bilayer and a β-sandwich domain with structural similarity to lipid-binding proteins. This structure and our functional testing in cells suggest a model in which seipin oligomers initially detect forming LDs in the ER via HHs and subsequently act as membrane anchors to enable lipid transfer and LD growth.
Collapse
Affiliation(s)
- Xuewu Sui
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Henning Arlt
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kelly P Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Zon Weng Lai
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank DiMaio
- Department of Biochemistry and Institute of Protein Design, University of Washington, Seattle, WA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Robert V Farese
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
| | - Tobias C Walther
- Department of Cell Biology, Harvard Medical School, Boston, MA
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
43
|
Salo VT, Ikonen E. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol 2018; 57:64-70. [PMID: 30476754 DOI: 10.1016/j.ceb.2018.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
The formation of neutral lipid filled and phospholipid monolayer engulfed lipid droplets (LDs) from the bilayer of the endoplasmic reticulum (ER) is an active area of investigation. This process harnesses the biophysical properties of the lipids involved and necessitates cooperation of protein machineries in both organelle membranes. Increasing evidence suggests that once formed, LDs keep close contact to the mother organelle and that this may be achieved via several, morphologically distinct and potentially functionally specialized connections. These may help LDs to dynamically respond to changes in lipid metabolic status sensed by the ER. In this review, we will discuss recent progress in understanding how LDs interact with the ER.
Collapse
Affiliation(s)
- Veijo T Salo
- Faculty of Medicine, Dept. of Anatomy and HiLIFE, Univ. of Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Faculty of Medicine, Dept. of Anatomy and HiLIFE, Univ. of Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
44
|
Exploring Seipin: From Biochemistry to Bioinformatics Predictions. Int J Cell Biol 2018; 2018:5207608. [PMID: 30402103 PMCID: PMC6192094 DOI: 10.1155/2018/5207608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/12/2018] [Accepted: 09/03/2018] [Indexed: 01/30/2023] Open
Abstract
Seipin is a nonenzymatic protein encoded by the BSCL2 gene. It is involved in lipodystrophy and seipinopathy diseases. Named in 2001, all seipin functions are still far from being understood. Therefore, we reviewed much of the research, trying to find a pattern that could explain commonly observed features of seipin expression disorders. Likewise, this review shows how this protein seems to have tissue-specific functions. In an integrative view, we conclude by proposing a theoretical model to explain how seipin might be involved in the triacylglycerol synthesis pathway.
Collapse
|
45
|
Ding L, Yang X, Tian H, Liang J, Zhang F, Wang G, Wang Y, Ding M, Shui G, Huang X. Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. EMBO J 2018; 37:embj.201797572. [PMID: 30049710 DOI: 10.15252/embj.201797572] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
Seipin, the gene that causes Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), is important for adipocyte differentiation and lipid homeostasis. Previous studies in Drosophila revealed that Seipin promotes ER calcium homeostasis through the Ca2+-ATPase SERCA, but little is known about the events downstream of perturbed ER calcium homeostasis that lead to decreased lipid storage in Drosophila dSeipin mutants. Here, we show that glycolytic metabolites accumulate and the downstream mitochondrial TCA cycle is impaired in dSeipin mutants. The impaired TCA cycle further leads to a decreased level of citrate, a critical component of lipogenesis. Mechanistically, Seipin/SERCA-mediated ER calcium homeostasis is important for maintaining mitochondrial calcium homeostasis. Reduced mitochondrial calcium in dSeipin mutants affects the TCA cycle and mitochondrial function. The lipid storage defects in dSeipin mutant fat cells can be rescued by replenishing mitochondrial calcium or by restoring the level of citrate through genetic manipulations or supplementation with exogenous metabolites. Together, our results reveal that Seipin promotes adipose tissue lipid storage via calcium-dependent mitochondrial metabolism.
Collapse
Affiliation(s)
- Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Taurino M, Costantini S, De Domenico S, Stefanelli F, Ruano G, Delgadillo MO, Sánchez-Serrano JJ, Sanmartín M, Santino A, Rojo E. SEIPIN Proteins Mediate Lipid Droplet Biogenesis to Promote Pollen Transmission and Reduce Seed Dormancy. PLANT PHYSIOLOGY 2018; 176:1531-1546. [PMID: 29203558 PMCID: PMC5813562 DOI: 10.1104/pp.17.01430] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/30/2017] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) are ubiquitous organelles in plant cells, but their physiological roles are largely unknown. To gain insight into the function of LDs in plants, we have characterized the Arabidopsis homologs of SEIPIN proteins, which are crucial factors for LD biogenesis in yeast and animals. SEIPIN1 is expressed almost exclusively in embryos, while SEIPIN2 and SEIPIN3 have broader expression profiles with maximal levels in embryos and pollen, where LDs accumulate most abundantly. Genetic analysis demonstrates that all three SEIPINs contribute to proper LD biogenesis in embryos, whereas in pollen, only SEIPIN2 and SEIPIN3 play a significant role. The double seipin2 seipin3 and triple seipin mutants accumulate extremely enlarged LDs in seeds and pollen, which hinders their subsequent mobilization during germination. Interestingly, electron microscopy analysis reveals the presence of nuclear LDs attached to type I nucleoplasmic reticulum in triple seipin mutant embryos, supporting that SEIPINs are essential for maintaining the correct polarity of LD budding at the nuclear envelope, restricting it to the outer membrane. In pollen, the perturbations in LD biogenesis and turnover are coupled to reduced germination in vitro and with lower fertilization efficiency in vivo. In seeds, germination per se is not affected in seipin2 seipin3 and triple seipin mutants, but there is a striking increase in seed dormancy levels. Our findings reveal the relevance of SEIPIN-dependent LD biogenesis in pollen transmission and in adjusting the timing of seed germination, two key adaptive traits of great importance in agriculture.
Collapse
Affiliation(s)
- Marco Taurino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Sara Costantini
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Stefania De Domenico
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | - Francesco Stefanelli
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Guillermo Ruano
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
- Universidad Politécnica de Madrid, E-28223 Madrid, Spain
| | | | | | - Maite Sanmartín
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R. Unit of Lecce, via Monteroni, 73100 Lecce, Italy
- Address correspondence to or
| | - Enrique Rojo
- Centro Nacional de Biotecnología-CSIC, Cantoblanco, E-28049 Madrid, Spain
- Address correspondence to or
| |
Collapse
|
47
|
Mcilroy GD, Suchacki K, Roelofs AJ, Yang W, Fu Y, Bai B, Wallace RJ, De Bari C, Cawthorn WP, Han W, Delibegović M, Rochford JJ. Adipose specific disruption of seipin causes early-onset generalised lipodystrophy and altered fuel utilisation without severe metabolic disease. Mol Metab 2018; 10:55-65. [PMID: 29459250 PMCID: PMC5985228 DOI: 10.1016/j.molmet.2018.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 11/29/2022] Open
Abstract
Objective Mutations to the BSCL2 gene disrupt the protein seipin and cause the most severe form of congenital generalised lipodystrophy (CGL). Affected individuals exhibit a near complete loss of white adipose tissue (WAT) and suffer from metabolic disease. Seipin is critical for adipocyte development in culture and mice with germline disruption to Bscl2 recapitulate the effects of BSCL2 disruption in humans. Here we examined whether loss of Bscl2 specifically in developing adipocytes in vivo is sufficient to prevent adipose tissue development and cause all features observed with congenital BSCL2 disruption. Methods We generated and characterised a novel mouse model of Bscl2 deficiency in developing adipocytes (Ad-B2(−/−)) using the adipose-specific Adiponectin-Cre line. Results We demonstrate that Ad-B2(−/−) mice display early onset lipodystrophy, in common with congenital Bscl2 null mice and CGL2 patients. However, glucose intolerance, insulin resistance, and severe hepatic steatosis are not apparent. Food intake and energy expenditure are unchanged, but Ad-B2(−/−) mice exhibit significantly altered substrate utilisation. We also find differential effects of seipin loss between specific adipose depots revealing new insights regarding their varied characteristics. When fed a high-fat diet, Ad-B2(−/−) mice entirely fail to expand adipose mass but remain glucose tolerant. Conclusions Our findings demonstrate that disruption of Bscl2 specifically in developing adipocytes is sufficient to cause the early-onset generalised lipodystrophy observed in patients with mutations in BSCL2. However, this significant reduction in adipose mass does not cause the overt metabolic dysfunction seen in Bscl2 knockout mice, even following a high-fat diet challenge. Seipin loss only in developing adipocytes drives severe early-onset lipodystrophy. This leads to significantly altered use of metabolic substrates. We uncover developmental differences between poorly characterised adipose depots. Despite severely reduced adipose mass mice do not show overt metabolic disease.
Collapse
Affiliation(s)
| | - Karla Suchacki
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Anke J Roelofs
- Institute of Medical Sciences, University of Aberdeen, UK
| | - Wulin Yang
- Cancer Hospital and Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Anhui, China
| | - Yanyun Fu
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Bo Bai
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Robert J Wallace
- Department of Orthopaedics, University of Edinburgh, Edinburgh, UK
| | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, UK
| | - William P Cawthorn
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | | |
Collapse
|
48
|
Defining the expression and metabolic regulation of alternative isoforms of the lipodystrophy protein seipin in developing adipocytes. Proc Nutr Soc 2018. [DOI: 10.1017/s002966511700427x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Gao J, Tian G, Han X, Zhu Q. Twenty‑four signature genes predict the prognosis of oral squamous cell carcinoma with high accuracy and repeatability. Mol Med Rep 2017; 17:2982-2990. [PMID: 29257303 PMCID: PMC5783517 DOI: 10.3892/mmr.2017.8256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common type cancer worldwide, with poor prognosis. The present study aimed to identify gene signatures that could classify OSCC and predict prognosis in different stages. A training data set (GSE41613) and two validation data sets (GSE42743 and GSE26549) were acquired from the online Gene Expression Omnibus database. In the training data set, patients were classified based on the tumor‑node‑metastasis staging system, and subsequently grouped into low stage (L) or high stage (H). Signature genes between L and H stages were selected by disparity index analysis, and classification was performed by the expression of these signature genes. The established classification was compared with the L and H classification, and fivefold cross validation was used to evaluate the stability. Enrichment analysis for the signature genes was implemented by the Database for Annotation, Visualization and Integration Discovery. Two validation data sets were used to determine the precise of classification. Survival analysis was conducted followed each classification using the package 'survival' in R software. A set of 24 signature genes was identified based on the classification model with the Fi value of 0.47, which was used to distinguish OSCC samples in two different stages. Overall survival of patients in the H stage was higher than those in the L stage. Signature genes were primarily enriched in 'ether lipid metabolism' pathway and biological processes such as 'positive regulation of adaptive immune response' and 'apoptotic cell clearance'. The results provided a novel 24‑gene set that may be used as biomarkers to predict OSCC prognosis with high accuracy, which may be used to determine an appropriate treatment program for patients with OSCC in addition to the traditional evaluation index.
Collapse
Affiliation(s)
- Jianyong Gao
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Gang Tian
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xu Han
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qiang Zhu
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
50
|
Pyc M, Cai Y, Gidda SK, Yurchenko O, Park S, Kretzschmar FK, Ischebeck T, Valerius O, Braus GH, Chapman KD, Dyer JM, Mullen RT. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1182-1201. [PMID: 29083105 DOI: 10.1111/tpj.13754] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cytoplasmic lipid droplets (LDs) are found in all types of plant cells; they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation, steady-state maintenance and turnover of plant LDs, particularly in non-seed tissues, are relatively unknown. Previously, we showed that the LD-associated proteins (LDAPs) are a family of plant-specific, LD surface-associated coat proteins that are required for proper biogenesis of LDs and neutral lipid homeostasis in vegetative tissues. Here, we screened a yeast two-hybrid library using the Arabidopsis LDAP3 isoform as 'bait' in an effort to identify other novel LD protein constituents. One of the candidate LDAP3-interacting proteins was Arabidopsis At5g16550, which is a plant-specific protein of unknown function that we termed LDIP (LDAP-interacting protein). Using a combination of biochemical and cellular approaches, we show that LDIP targets specifically to the LD surface, contains a discrete amphipathic α-helical targeting sequence, and participates in both homotypic and heterotypic associations with itself and LDAP3, respectively. Analysis of LDIP T-DNA knockdown and knockout mutants showed a decrease in LD abundance and an increase in variability of LD size in leaves, with concomitant increases in total neutral lipid content. Similar phenotypes were observed in plant seeds, which showed enlarged LDs and increases in total amounts of seed oil. Collectively, these data identify LDIP as a new player in LD biology that modulates both LD size and cellular neutral lipid homeostasis in both leaves and seeds.
Collapse
Affiliation(s)
- Michal Pyc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yingqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, 76203, USA
| | - Satinder K Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Olga Yurchenko
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Sunjung Park
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Franziska K Kretzschmar
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37007, Goettingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37007, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, 76203, USA
| | - John M Dyer
- US Department of Agriculture, Agricultural Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|