1
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
2
|
Petok JR, Merenstein JL, Bennett IJ. Iron content affects age group differences in associative learning-related fMRI activity. Neuroimage 2024; 285:120478. [PMID: 38036152 DOI: 10.1016/j.neuroimage.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.
Collapse
Affiliation(s)
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside CA, 92521-0426, United States.
| |
Collapse
|
3
|
Gustavsson J, Johansson J, Falahati F, Andersson M, Papenberg G, Avelar-Pereira B, Bäckman L, Kalpouzos G, Salami A. The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan. Neuroimage 2023; 279:120323. [PMID: 37582419 DOI: 10.1016/j.neuroimage.2023.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Jarkko Johansson
- Faculty of Medicine, Department of Radiation Sciences, Umeå University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Department of Psychiatry and Behavioural Sciences, School of Medicine, Stanford University, Stanford, California 94304, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Sweden
| |
Collapse
|
4
|
Association between Heavy Metal Exposure and Parkinson's Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122467. [PMID: 36552676 PMCID: PMC9774122 DOI: 10.3390/antiox11122467] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a gradually progressing neurodegenerative condition that is marked by a loss of motor coordination along with non-motor features. Although the precise cause of PD has not been determined, the disease condition is mostly associated with the exposure to environmental toxins, such as metals, and their abnormal accumulation in the brain. Heavy metals, such as iron (Fe), mercury (Hg), manganese (Mn), copper (Cu), and lead (Pb), have been linked to PD and contribute to its progression. In addition, the interactions among the components of a metal mixture may result in synergistic toxicity. Numerous epidemiological studies have demonstrated a connection between PD and either single or mixed exposure to these heavy metals, which increase the prevalence of PD. Chronic exposure to heavy metals is related to the activation of proinflammatory cytokines resulting in neuronal loss through neuroinflammation. Similarly, metals disrupt redox homeostasis while inducing free radical production and decreasing antioxidant levels in the substantia nigra. Furthermore, these metals alter molecular processes and result in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis, which can potentially trigger dopaminergic neurodegenerative disorders. This review focuses on the roles of Hg, Pb, Mn, Cu, and Fe in the development and progression of PD. Moreover, it explores the plausible roles of heavy metals in neurodegenerative mechanisms that facilitate the development of PD. A better understanding of the mechanisms underlying metal toxicities will enable the establishment of novel therapeutic approaches to prevent or cure PD.
Collapse
|
5
|
Drori E, Berman S, Mezer AA. Mapping microstructural gradients of the human striatum in normal aging and Parkinson's disease. SCIENCE ADVANCES 2022; 8:eabm1971. [PMID: 35857492 PMCID: PMC9286505 DOI: 10.1126/sciadv.abm1971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mapping structural spatial change (i.e., gradients) in the striatum is essential for understanding the function of the basal ganglia in both health and disease. We developed a method to identify and quantify gradients of microstructure in the single human brain in vivo. We found spatial gradients in the putamen and caudate nucleus of the striatum that were robust across individuals, clinical conditions, and datasets. By exploiting multiparametric quantitative MRI, we found distinct, spatially dependent, aging-related alterations in water content and iron concentration. Furthermore, we found cortico-striatal microstructural covariation, showing relations between striatal structural gradients and cortical hierarchy. In Parkinson's disease (PD) patients, we found abnormal gradients in the putamen, revealing changes in the posterior putamen that explain patients' dopaminergic loss and motor dysfunction. Our work provides a noninvasive approach for studying the spatially varying, structure-function relationship in the striatum in vivo, in normal aging and PD.
Collapse
Affiliation(s)
- Elior Drori
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Berman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Ding D, Valdivia AO, Bhattacharya SK. Nuclear prelamin a recognition factor and iron dysregulation in multiple sclerosis. Metab Brain Dis 2020; 35:275-282. [PMID: 31823109 DOI: 10.1007/s11011-019-00515-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Dysregulation of iron metabolism and aberrant iron deposition has been associated with multiple sclerosis. However, the factors that contribute to this pathological state remain to be understood. In this study, human multiple sclerosis and mice brain samples were analyzed through mass spectrometry as well as histological and immunoblot techniques, which demonstrated that iron deposition is associated with increased levels of nuclear prelamin A recognition factor (NARF). NARF is a protein associated with the mitochondria which has also been linked to mitochondrial defects in multiple sclerosis. We report NARF to be associated in multiple sclerosis pathology and aberrant iron deposition.
Collapse
Affiliation(s)
- Di Ding
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, Miami, Florida, USA
| | - Anddre Osmar Valdivia
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, Miami, Florida, USA
- Neuroscience Graduate Program, University of Miami, Miami, Florida, USA
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, 1638 NW 10th Avenue, Miami, Florida, USA.
- Neuroscience Graduate Program, University of Miami, Miami, Florida, USA.
| |
Collapse
|
7
|
Kim S, Lee Y, Jeon CY, Jin YB, Oh S, Lee C. Observation of magnetic susceptibility changes within the thalamus: a comparative study between healthy and Parkinson’s disease afflicted cynomolgus monkeys using 7 T MRI. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Although the thalamus is known to modulate basal ganglia function related to motor control activity, the abnormal changes within the thalamus during distinct medical complications have been scarcely investigated. In order to explore the feasibility of assessing iron accumulation in the thalamus as an informative biomarker for Parkinson’s disease (PD), this study was designed to employ quantitative susceptibility mapping using a 7 T magnetic resonance imaging system in cynomolgus monkeys. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-injected cynomolgus monkey and a healthy control (HC) were examined by 7 T magnetic resonance imaging. Positron emission tomography with 18F-N-(3-fluoro propyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane was also employed to identify the relationship between iron deposits and dopamine depletion. All acquired values were averaged within the volume of interest of the nigrostriatal pathway.
Findings
Compared with the HC, the overall elevation of iron deposition within the thalamus in the Parkinson’s disease model (about 53.81% increase) was similar to that in the substantia nigra (54.81%) region. Substantial susceptibility changes were observed in the intralaminar part of the thalamus (about 70.78% increase). Additionally, we observed that in the Parkinson’s disease model, binding potential values obtained from positron emission tomography were considerably decreased in the thalamus (97.51%) and substantia nigra (92.48%).
Conclusions
The increased iron deposition in the thalamus showed negative correlation with dopaminergic activity in PD, supporting the idea that iron accumulation affects glutaminergic inputs and dopaminergic neurons. This investigation indicates that the remarkable susceptibility changes in the thalamus could be an initial major diagnostic biomarker for Parkinson’s disease-related motor symptoms.
Collapse
|
8
|
Quintero JE, Ai Y, Andersen AH, Hardy P, Grondin R, Guduru Z, Gash DM, Gerhardt GA, Zhang Z. Validations of apomorphine-induced BOLD activation correlations in hemiparkinsonian rhesus macaques. NEUROIMAGE-CLINICAL 2019; 22:101724. [PMID: 30822717 PMCID: PMC6396014 DOI: 10.1016/j.nicl.2019.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 11/27/2022]
Abstract
Identification of Parkinson's disease at the earliest possible stage of the disease may provide the best opportunity for the use of disease modifying treatments. However, diagnosing the disease during the pre-symptomatic period remains an unmet goal. To that end, we used pharmacological MRI (phMRI) to assess the function of the cortico-basal ganglia circuit in a non-human primate model of dopamine deficiency to determine the possible relationships between phMRI signals with behavioral, neurochemical, and histological measurements. Animals with unilateral treatments with the neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that expressed stable, long-term hemiparkinsonism were challenged with the dopaminergic receptor agonist, apomorphine, and structure-specific phMRI blood oxygen level-dependent (BOLD) activation responses were measured. Behavioral, histopathological, and neurochemical measurements were obtained and correlated with phMRI activation of structures of the cortico-basal ganglia system. Greater phMRI activations in the basal ganglia and cortex were associated with slower movement speed, decreased daytime activity, or more pronounced parkinsonian features. Animals showed decreased stimulus-evoked dopamine release in the putamen and substantia nigra pars compacta and lower basal glutamate levels in the motor cortex on the MPTP-lesioned hemisphere compared to the contralateral hemisphere. The altered neurochemistry was significantly correlated with phMRI signals in the motor cortex and putamen. Finally, greater phMRI activations in the caudate nucleus correlated with fewer tyrosine hydroxylase-positive (TH+) nigral cells and decreased TH+ fiber density in the putamen. These results reveal the correlation of phMRI signals with the severity of the motor deficits and pathophysiological changes in the cortico-basal ganglia circuit. Apomorphine in hemiparkinsonian animals can evoke changes in functional MRI signals. Cortico-basal ganglia activation correlates to behavior, neurochemistry, histology Pharmacological MRI has potential to be biomarker for Parkinson's disease.
Collapse
Affiliation(s)
- J E Quintero
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Yi Ai
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - A H Andersen
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - P Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - R Grondin
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Guduru
- Department of Neurology, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - D M Gash
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - G A Gerhardt
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA
| | - Z Zhang
- Department of Neuroscience, University of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA.
| |
Collapse
|
9
|
Daglas M, Adlard PA. The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci 2018; 12:981. [PMID: 30618597 PMCID: PMC6306469 DOI: 10.3389/fnins.2018.00981] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) consists of acute and long-term pathophysiological sequelae that ultimately lead to cognitive and motor function deficits, with age being a critical risk factor for poorer prognosis. TBI has been recently linked to the development of neurodegenerative diseases later in life including Alzheimer’s disease, Parkinson’s disease, chronic traumatic encephalopathy, and multiple sclerosis. The accumulation of iron in the brain has been documented in a number of neurodegenerative diseases, and also in normal aging, and can contribute to neurotoxicity through a variety of mechanisms including the production of free radicals leading to oxidative stress, excitotoxicity and by promoting inflammatory reactions. A growing body of evidence similarly supports a deleterious role of iron in the pathogenesis of TBI. Iron deposition in the injured brain can occur via hemorrhage/microhemorrhages (heme-bound iron) or independently as labile iron (non-heme bound), which is considered to be more damaging to the brain. This review focusses on the role of iron in potentiating neurodegeneration in TBI, with insight into the intersection with neurodegenerative conditions. An important implication of this work is the potential for therapeutic approaches that target iron to attenuate the neuropathology/phenotype related to TBI and to also reduce the associated risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Daglas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Zhu Y, Chen P, Wan H, Wang Y, Hao P, Liu Y, Liu J. Selenium-Chromium(VI) Interaction Regulates the Contents and Correlations of Trace Elements in Chicken Brain and Serum. Biol Trace Elem Res 2018; 181:154-163. [PMID: 28493199 DOI: 10.1007/s12011-017-1038-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the contents of trace elements in the brain and serum of male chickens and the effect of selenium-chromium(VI) interaction. A chronic experimental model was established by supplementing 22.14 mg/kg K2Cr2O7 with 0.00, 0.31, 0.63, 1.25, 2.50, and 5.00 mg/kg Na2SeO3 mg/kg B.W. to water for chicken daily. After 14, 28, and 42 days of exposure to the solution, the brain and serum of chickens from each group were collected to detect the levels of Ca, Cu, Mn, Fe, Zn, and Mg by inductively coupled plasma mass spectrometer (ICP-MS). Cr(VI) time-dependently accumulated in the brain and serum. The contents of Cr increased both in the brain and serum with prolonged exposure. Cr contents in the brain and serum decreased in all Se groups compared with those in only Cr-treated groups. Ca contents decreased with prolonged exposure and increasing Se dosage. The contents of Cu and Mn increased on the 28th day but decreased on the 42nd day in the brain and serum. Fe and Zn contents decreased in the serum under prolonged exposure and increased on the 28th day but decreased on the 42nd day in the brain. Cr exposure did not significantly affect Mg contents in the brain but slightly decreased those in the serum. Therefore, appropriate doses of Se affected Cr accumulation, leading to adjustments in the contents and correlations of trace elements.
Collapse
Affiliation(s)
- Yiran Zhu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Peng Chen
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Huiyu Wan
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yang Wang
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Pan Hao
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering, Shandong Province, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
11
|
Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017; 18:E1456. [PMID: 28684721 PMCID: PMC5535947 DOI: 10.3390/ijms18071456] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster. Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.
Collapse
Affiliation(s)
- Pablo Calap-Quintana
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - Javier González-Fernández
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
| | - Noelia Sebastiá-Ortega
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| | - José Vicente Llorens
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
| | - María Dolores Moltó
- Department of Genetics, University of Valencia, Campus of Burjassot, 46100 Valencia, Spain.
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain.
| |
Collapse
|
12
|
Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging. BMC Biol 2017; 15:9. [PMID: 28193224 PMCID: PMC5304403 DOI: 10.1186/s12915-017-0354-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background A widespread modulation of gene expression occurs in the aging brain, but little is known as to the upstream drivers of these changes. MicroRNAs emerged as fine regulators of gene expression in many biological contexts and they are modulated by age. MicroRNAs may therefore be part of the upstream drivers of the global gene expression modulation correlated with aging and aging-related phenotypes. Results Here, we show that microRNA-29 (miR-29) is induced during aging in short-lived turquoise killifish brain and genetic antagonism of its function induces a gene-expression signature typical of aging. Mechanicistically, we identified Ireb2 (a master gene for intracellular iron delivery that encodes for IRP2 protein), as a novel miR-29 target. MiR-29 is induced by iron loading and, in turn, it reduces IRP2 expression in vivo, therefore limiting intracellular iron delivery in neurons. Genetically modified fish with neuro-specific miR-29 deficiency exhibit increased levels of IRP2 and transferrin receptor, increased iron content, and oxidative stress. Conclusions Our results demonstrate that age-dependent miR-29 upregulation is an adaptive mechanism that counteracts the expression of some aging-related phenotypes and its anti-aging activity is primarily exerted by regulating intracellular iron homeostasis limiting excessive iron-exposure in neurons. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0354-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberto Ripa
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Dolfi
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Terrigno
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Luca Pandolfini
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Valeria Arcucci
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Eva Terzibasi Tozzini
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy
| | - Mario Baumgart
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany
| | - Alessandro Cellerino
- Scuola Normale Superiore, Laboratory of Biology (Bio@SNS), c/o Istituto di Biofisica del CNR, via 17 Moruzzi 1, 56124, Pisa, Italy. .,Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745, Jena, Germany.
| |
Collapse
|
13
|
Wu HB, Xiao DS. Regulation of trace elements and redox status in striatum of adult rats by long-term aerobic exercise depends on iron uptakes. Neurosci Lett 2017; 642:66-70. [PMID: 28163077 DOI: 10.1016/j.neulet.2017.01.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/28/2017] [Accepted: 01/31/2017] [Indexed: 01/30/2023]
Abstract
We investigated the effects of aerobic exercise (AE) on trace element contents and redox status in the striatum of rats with different diet iron. Weaned female rats were randomly fed with iron-adequate diet (IAD), iron-deficient diet (IDD), and iron-overloaded diet (IOD). After feeding their respective diet for 1 month, the rats fed with same diet were divided into swimming and maintaining sedentary (S) group. After 3 months, the non-heme iron (NHI), Mn, Cu, and Zn in the striatum were measured. Meanwhile, malonaldehyde acid (MDA), total superoxide dismutase activity, hydroxyl radical scavenging activity, and total antioxidant capacity were also analyzed. As compared with respective S rats, Mn, Cu, and Zn contents were significantly decreased in IDDE, but no significantly changes could be seen in IADE or IODE. A negative correlation of NHI with Cu contents in IDDE and positive correlations of NHI with Cu, or Zn contents in IADE, or with Mn or Cu contents in IODE were observed. In addition, striatum MDA was significantly decreased and anti-oxidative variables were increased in IODE compared to IODS. Our results suggest that the modification of trace elements and redox status in the striatum of rats caused by AE depends on dietary iron contents and that AE may also regulate the metabolic relationship of iron storage with other trace elements.
Collapse
Affiliation(s)
- Hua-Bo Wu
- Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - De-Sheng Xiao
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Walker T, Michaelides C, Ekonomou A, Geraki K, Parkes HG, Suessmilch M, Herlihy AH, Crum WR, So PW. Dissociation between iron accumulation and ferritin upregulation in the aged substantia nigra: attenuation by dietary restriction. Aging (Albany NY) 2016; 8:2488-2508. [PMID: 27743512 PMCID: PMC5115902 DOI: 10.18632/aging.101069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Despite regulation, brain iron increases with aging and may enhance aging processes including neuroinflammation. Increases in magnetic resonance imaging transverse relaxation rates, R2 and R2*, in the brain have been observed during aging. We show R2 and R2* correlate well with iron content via direct correlation to semi-quantitative synchrotron-based X-ray fluorescence iron mapping, with age-associated R2 and R2* increases reflecting iron accumulation. Iron accumulation was concomitant with increased ferritin immunoreactivity in basal ganglia regions except in the substantia nigra (SN). The unexpected dissociation of iron accumulation from ferritin-upregulation in the SN suggests iron dyshomeostasis in the SN. Occurring alongside microgliosis and astrogliosis, iron dyshomeotasis may contribute to the particular vulnerability of the SN. Dietary restriction (DR) has long been touted to ameliorate brain aging and we show DR attenuated age-related in vivo R2 increases in the SN over ages 7 - 19 months, concomitant with normal iron-induction of ferritin expression and decreased microgliosis. Iron is known to induce microgliosis and conversely, microgliosis can induce iron accumulation, which of these may be the initial pathological aging event warrants further investigation. We suggest iron chelation therapies and anti-inflammatory treatments may be putative 'anti-brain aging' therapies and combining these strategies may be synergistic.
Collapse
Affiliation(s)
- Thomas Walker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Christos Michaelides
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antigoni Ekonomou
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom
| | - Harold G Parkes
- CR-UK Clinical MR Research Group, Institute of Cancer Research, London, United Kingdom
| | - Maria Suessmilch
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | | | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Po-Wah So
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Expression of Iron Transporters and Pathological Hallmarks of Parkinson’s and Alzheimer’s Diseases in the Brain of Young, Adult, and Aged Rats. Mol Neurobiol 2016; 54:5213-5224. [DOI: 10.1007/s12035-016-0067-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022]
|
16
|
Betts MJ, Acosta-Cabronero J, Cardenas-Blanco A, Nestor PJ, Düzel E. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T. Neuroimage 2016; 138:43-63. [PMID: 27181761 DOI: 10.1016/j.neuroimage.2016.05.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 12/12/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) has recently emerged as a novel magnetic resonance imaging (MRI) method to detect non-haem iron deposition, calcifications, demyelination and vascular lesions in the brain. It has been suggested that QSM is more sensitive than the more conventional quantifiable MRI measure, namely the transverse relaxation rate, R2*. Here, we conducted the first high-resolution, whole-brain, simultaneously acquired, comparative study of the two techniques using 7Tesla MRI. We asked which of the two techniques would be more sensitive to explore global differences in tissue composition in elderly adults relative to young subjects. Both QSM and R2* revealed strong age-related differences in subcortical regions, hippocampus and cortical grey matter, particularly in superior frontal regions, motor/premotor cortices, insula and cerebellar regions. Within the basal ganglia system-but also hippocampus and cerebellar dentate nucleus-, QSM was largely in agreement with R2* with the exception of the globus pallidus. QSM, however, provided superior anatomical contrast and revealed age-related differences in the thalamus and in white matter, which were otherwise largely undetected by R2* measurements. In contrast, in occipital cortex, age-related differences were much greater with R2* compared to QSM. The present study, therefore, demonstrated that in vivo QSM using ultra-high field MRI provides a novel means to characterise age-related differences in the human brain, but also combining QSM and R2* using multi-gradient recalled echo imaging can potentially provide a more complete picture of mineralisation, demyelination and/or vascular alterations in aging and disease.
Collapse
Affiliation(s)
- Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.
| | | | - Arturo Cardenas-Blanco
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Peter J Nestor
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
17
|
Gong J, Du F, Qian ZM, Luo QQ, Sheng Y, Yung WH, Xu YX, Ke Y. Pre-treatment of rats with ad-hepcidin prevents iron-induced oxidative stress in the brain. Free Radic Biol Med 2016; 90:126-32. [PMID: 26582371 DOI: 10.1016/j.freeradbiomed.2015.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/09/2015] [Accepted: 11/10/2015] [Indexed: 01/18/2023]
Abstract
Our recent investigation showed that hepcidin can reduce iron in the brain of iron-overloaded rat by down-regulating iron-transport proteins. It has also been demonstrated that iron is a major generator of reactive oxygen species. We therefore hypothesized that hepcidin could prevent iron accumulation and thus reduce iron-mediated oxidative stress in iron-overloaded rats. To test this hypothesis, we investigated the effects of pre-treatment of rats with recombinant-hepcidin-adenovirus (ad-hepcidin) on the contents of iron, dichlorofluorescein and 8-isoprostane in the brain. Hepcidin expression was detected by real-time PCR and immunofluorescence analysis. Iron contents were measured using Perl's staining as well as graphite furnace atomic absorption spectrophotometry. Dichlorofluorescein and 8-isoprostane were determined using a fluorescence spectrophotometer and an ELISA kit, respectively. We found that hepcidin contents in the cortex, hippocampus, striatum and substantia nigra of rats treated with ad-hepcidin are 3.50, 2.98, 2.93 and 4.07 fold of those of the control rats respectively. Also, we demonstrated that the increased iron as well as dichlorofluorescein and 8-isoprostane levels in all four brain regions, induced by injection of iron dextran, could be effectively prevented by pre-treatment of the rats with ad-hepcidin. We concluded that pre-treatment with ad-hepcidin could increase hepcidin expression and prevent the increase in iron and reduce reactive oxygen species in the brain of iron-overloaded rats.
Collapse
Affiliation(s)
- Jing Gong
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, PR China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, PR China
| | - Fang Du
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, PR China
| | - Zhong Ming Qian
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, PR China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, PR China.
| | - Qian Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, PR China
| | - Yuan Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, PR China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yan Xin Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, PR China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| |
Collapse
|
18
|
Effect of dietary iron loading on recognition memory in growing rats. PLoS One 2015; 10:e0120609. [PMID: 25746420 PMCID: PMC4352024 DOI: 10.1371/journal.pone.0120609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory.
Collapse
|
19
|
Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG. Decreased mitochondrial bioenergetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging 2015; 36:1903-13. [PMID: 25726361 DOI: 10.1016/j.neurobiolaging.2015.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/24/2014] [Accepted: 01/23/2015] [Indexed: 01/02/2023]
Abstract
Altered mitochondrial function in the basal ganglia has been hypothesized to underlie cellular senescence and promote age-related motor decline. We tested this hypothesis in a nonhuman primate model of human aging. Six young (6-8 years old) and 6 aged (20-25 years old) female Rhesus monkeys (Macaca mulatta) were behaviorally characterized from standardized video records. Additionally, we measured mitochondrial bioenergetics along with calcium buffering capacity in the substantia nigra and putamen (PUT) from both age groups. Our results demonstrate that the aged animals had significantly reduced locomotor activity and movement speed compared with younger animals. Moreover, aged monkeys had significantly reduced ATP synthesis capacity (in substantia nigra and PUT), reduced pyruvate dehydrogenase activity (in PUT), and reduced calcium buffering capacity (in PUT) compared with younger animals. Furthermore, this age-related decline in mitochondrial function in the basal ganglia correlated with decline in motor function. Overall, our results suggest that drug therapies designed to enhance altered mitochondrial function may help improve motor deficits in the elderly.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Richard Grondin
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Heather M Yonutas
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Hamed Haghnazar
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Don M Gash
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Zhiming Zhang
- Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA
| | - Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA; Department of Anatomy and Neurobiology, The University of Kentucky Chandler College of Medicine, Lexington, KY, USA.
| |
Collapse
|
20
|
Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function. Neurobiol Aging 2014; 36:1174-82. [PMID: 25443764 DOI: 10.1016/j.neurobiolaging.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/27/2014] [Accepted: 10/12/2014] [Indexed: 12/24/2022]
Abstract
The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain.
Collapse
|
21
|
Du F, Qian ZM, Luo Q, Yung WH, Ke Y. Hepcidin Suppresses Brain Iron Accumulation by Downregulating Iron Transport Proteins in Iron-Overloaded Rats. Mol Neurobiol 2014; 52:101-14. [PMID: 25115800 DOI: 10.1007/s12035-014-8847-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
Abstract
Iron accumulates progressively in the brain with age, and iron-induced oxidative stress has been considered as one of the initial causes for Alzheimer's disease (AD) and Parkinson's disease (PD). Based on the role of hepcidin in peripheral organs and its expression in the brain, we hypothesized that this peptide has a role to reduce iron in the brain and hence has the potential to prevent or delay brain iron accumulation in iron-associated neurodegenerative disorders. Here, we investigated the effects of hepcidin expression adenovirus (ad-hepcidin) and hepcidin peptide on brain iron contents, iron transport across the brain-blood barrier, iron uptake and release, and also the expression of transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin 1 (Fpn1) in cultured microvascular endothelial cells and neurons. We demonstrated that hepcidin significantly reduced brain iron in iron-overloaded rats and suppressed transport of transferrin-bound iron (Tf-Fe) from the periphery into the brain. Also, the peptide significantly inhibited expression of TfR1, DMT1, and Fpn1 as well as reduced Tf-Fe and non-transferrin-bound iron uptake and iron release in cultured microvascular endothelial cells and neurons, while downregulation of hepcidin with hepcidin siRNA retrovirus generated opposite results. We concluded that, under iron-overload, hepcidin functions to reduce iron in the brain by downregulating iron transport proteins. Upregulation of brain hepcidin by ad-hepcidin emerges as a new pharmacological treatment and prevention for iron-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Fang Du
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Hair trace elementary profiles in aging rodents and primates: links to altered cell homeodynamics and disease. Biogerontology 2013; 14:557-67. [PMID: 24057279 DOI: 10.1007/s10522-013-9464-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022]
Abstract
Aging is associated with an increased incidence of pathological conditions such as neurodegeneration, cardiovascular and renal disease, and cancer. These conditions are believed to be linked to a disruption in cell homeodynamics, which is regulated by essential trace elements. In this study we used hair elementary analysis by inductively coupled plasma mass spectrometry (ICPMS) to examine age-related profiles of 47 elements in both rats and common marmoset monkeys. Hair was collected from young adult (6 months) and aged (18 months) Long-Evans male rats, and young adult (2 years), middle-aged (4 years) and aged (>8 years) marmosets. The results revealed that aging reduces content levels of cobalt, potassium and selenium while content levels of aluminium, arsenic, boron, mercury, molybdenum, and titanium were elevated in aged rats. Similarly, aged marmosets showed reduced levels of cobalt and elevated levels of aluminium. Case studies in aged rats revealed that myocardial infarction was associated with elevated levels of sodium, potassium and cadmium and reduced zinc, while renal failure was linked to elevated content of potassium, chloride and boron and reduced contents of manganese. Carcinoma was linked to elevated arsenic and reduced selenium levels. These findings indicate that hair elementary profiles in healthy aging and age-related diseases reflect altered cell and organ metabolic functions. Cobalt and aluminium in particular may serve as biomarkers of aging in animal models. Thus, elementary deposition in hair may have predictive and diagnostic value in age-related pathological conditions, including cardiovascular and kidney disease and cancer.
Collapse
|
23
|
Choi BR, Bang S, Chen Y, Cheah JH, Kim SF. PKA modulates iron trafficking in the striatum via small GTPase, Rhes. Neuroscience 2013; 253:214-20. [PMID: 23999124 DOI: 10.1016/j.neuroscience.2013.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 11/18/2022]
Abstract
Ras homolog enriched in striatum (Rhes), is a highly conserved small guanosine-5'-triphosphate (GTP) binding protein belonging to the Ras superfamily. Rhes is involved in the dopamine receptor-mediated signaling and behavior though adenylyl cyclase. The striatum-specific GTPase share a close homology with Dexras1, which regulates iron trafficking in the neurons when activated though the post-translational modification called s-nitrosylation by nitric oxide (NO). We report that Rhes physiologically interacted with Peripheral benzodiazepine receptor-associated protein7 and participated in iron uptake via divalent metal transporter 1 similar to Dexras1. Interestingly, Rhes is not S-nitrosylated by NO-treatment, however phosphorylated by protein kinase A at the site of serine-239. Two Rhes mutants - the phosphomimetic form (serine 239 to aspartic acid) and constitutively active form (alanine 173 to valine) - displayed an increase in iron uptake compared to the wild-type Rhes. These findings suggest that Rhes may play a crucial role in striatal iron homeostasis.
Collapse
Affiliation(s)
- Bo-Ran Choi
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Sookhee Bang
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Yong Chen
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Jaime H Cheah
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| | - Sangwon F Kim
- Department of Psychiatry and Pharmacology, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31 St. TRL Rm 2207, Philadelphia, PA 19104
| |
Collapse
|
24
|
Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci 2013; 5:34. [PMID: 23874300 PMCID: PMC3715022 DOI: 10.3389/fnagi.2013.00034] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/25/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal within the brain, and is vital for a number of cellular processes including neurotransmitter synthesis, myelination of neurons, and mitochondrial function. Redox cycling between ferrous and ferric iron is utilized in biology for various electron transfer reactions essential to life, yet this same chemistry mediates deleterious reactions with oxygen that induce oxidative stress. Consequently, there is a precise and tightly controlled mechanism to regulate iron in the brain. When iron is dysregulated, both conditions of iron overload and iron deficiencies are harmful to the brain. This review focuses on how iron metabolism is maintained in the brain, and how an alteration to iron and iron metabolism adversely affects neurological function.
Collapse
Affiliation(s)
- Dominic Hare
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
- Elemental Bio-imaging Facility, University of TechnologySydney, NSW, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Ashley Bush
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| | - Peng Lei
- The Florey Institute of Neuroscience and Mental Health, University of MelbourneVIC, Australia
| |
Collapse
|
25
|
Tohno Y, Tohno S, Azuma C, Ongkana N, Mahakkanukrauh P, Minami T, Suwannahoy P, Viwatpinyo K, Ke L. Age-related differences and relationships between elements in human amygdala and other limbic system or basal ganglia. Biol Trace Elem Res 2013; 152:161-73. [PMID: 23354542 DOI: 10.1007/s12011-013-9607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
Abstract
To elucidate the compositional changes of the amygdala with aging, the authors investigated age-related differences of elements in human amygdalae. In addition, the relationships between the amygdala and other brain regions were investigated from a viewpoint of elements. After ordinary dissections at Nara Medical University were finished, the amygdalae were removed from the cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years. In addition, the hippocampus, dentate gyrus, mammillary body of the limbic system and the caudate nucleus, putamen, and globus pallidus of the basal ganglia were also removed from the identical cerebra. After the brain samples were incinerated with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that both the Ca and Mg contents increased significantly in the amygdalae with aging, but the other five element contents (P, S, Zn, Fe, and Na) did not change significantly in the amygdalae with aging. Regarding the relationships among elements, very significant or significant direct correlations were found among the Ca, P, and Mg contents in the amygdalae. To explore the relationships between the amygdala and either other limbic system or basal ganglia, the correlations between seven elements of the amygdala and hippocampus, dentate gyrus, or mammillary body, and between those of the amygdala and caudate nucleus, putamen, or globus pallidus which derived from the identical cerebra, were analyzed with Pearson's correlation. It was found that regarding the four elements of Ca, P, Mg, and Fe, a close relationship existed between the amygdala and hippocampus, globus pallidus, or mammillary body.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|
27
|
Tohno Y, Tohno S, Azuma C, Minami T, Ke L, Ongkana N, Sinthubua A, Mahakkanukrauh P. Mineral composition of and the relationships between them of human basal ganglia in very old age. Biol Trace Elem Res 2013; 151:18-29. [PMID: 23111949 DOI: 10.1007/s12011-012-9535-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/18/2012] [Indexed: 12/29/2022]
Abstract
Trace elements and the relationships among them were investigated by direct chemical analysis in three basal ganglia regions in very old age individuals and age- and gender-related differences were assessed. After ordinary dissections at Nara Medical University were finished, the caudate nucleus, putamen, and globus pallidus belonging to the basal ganglia were removed from the identical cerebra of the subjects who consisted of 22 men and 23 women, ranging in age from 70 to 101 years (average age = 83.3 ± 7.5 years). After incineration with nitric acid and perchloric acid, the element contents were determined by inductively coupled plasma-atomic emission spectrometry. It was found that the Ca, P, and Mg contents increased significantly in the putamen with aging and the Mg content increased significantly in the globus pallidus with aging, but no elements increased significantly in the caudate nucleus with aging. Regarding the relationships among elements in the basal ganglia, extremely significant direct correlations were found among the Ca, P, and Mg contents in the putamen. These results suggested that slight calcification occurred in the putamen in very old age. With regard to seven elements of Ca, P, S, Mg, Zn, Fe, and Na, it was examined whether there were significant correlations among the caudate nucleus, putamen, and globus pallidus. It was found that there were extremely significant direct correlations among all of the three basal ganglia in the P content. Likewise, with regard to the Fe content, there were extremely or very significant direct correlations among all of the three basal ganglia. Regarding the gender difference in elements, it was found that the Ca content of the caudate nucleus was significantly higher in women than in men.
Collapse
Affiliation(s)
- Yoshiyuki Tohno
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 2012; 32:11897-904. [PMID: 23082321 DOI: 10.1523/jneurosci.2553-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Caloric restriction (CR) reduces the pathological effects of aging and extends the lifespan in many species, including nonhuman primates, although the effect on the brain is less well characterized. We used two common indicators of aging, motor performance speed and brain iron deposition measured in vivo using magnetic resonance imaging, to determine the potential effect of CR on elderly rhesus macaques eating restricted (n=24, 13 males, 11 females) and standard (n=17, 8 males, 9 females) diets. Both the CR and control monkeys showed age-related increases in iron concentrations in globus pallidus (GP) and substantia nigra (SN), although the CR group had significantly less iron deposition in the GP, SN, red nucleus, and temporal cortex. A Diet X Age interaction revealed that CR modified age-related brain changes, evidenced as attenuation in the rate of iron accumulation in basal ganglia and parietal, temporal, and perirhinal cortex. Additionally, control monkeys had significantly slower fine motor performance on the Movement Assessment Panel, which was negatively correlated with iron accumulation in left SN and parietal lobe, although CR animals did not show this relationship. Our observations suggest that the CR-induced benefit of reduced iron deposition and preserved motor function may indicate neural protection similar to effects described previously in aging rodent and primate species.
Collapse
|
29
|
Shively CA, Willard SL, Register TC, Bennett AJ, Pierre PJ, Laudenslager ML, Kitzman DW, Childers MK, Grange RW, Kritchevsky SB. Aging and physical mobility in group-housed Old World monkeys. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1123-1131. [PMID: 22203457 PMCID: PMC3448999 DOI: 10.1007/s11357-011-9350-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
While indices of physical mobility such as gait speed are significant predictors of future morbidity/mortality in the elderly, mechanisms of these relationships are not understood. Relevant animal models of aging and physical mobility are needed to study these relationships. The goal of this study was to develop measures of physical mobility including activity levels and gait speed in Old World monkeys which vary with age in adults. Locomotor behaviors of 21 old ([Formula: see text] = 20 yoa) and 24 young ([Formula: see text] = 9 yoa) socially housed adult females of three species were recorded using focal sample and ad libitum behavior observation methods. Self-motivated walking speed was 17% slower in older than younger adults. Likewise, young adults climbed more frequently than older adults. Leaping and jumping were more common, on average, in young adults, but this difference did not reach significance. Overall activity levels did not vary significantly by age, and there were no significant age by species interactions in any of these behaviors. Of all the behaviors evaluated, walking speed measured in a simple and inexpensive manner appeared most sensitive to age and has the added feature of being least affected by differences in housing characteristics. Thus, walking speed may be a useful indicator of decline in physical mobility in nonhuman primate models of aging.
Collapse
Affiliation(s)
- Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157-1040, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Copper, zinc and iron in neurodegenerative diseases (Alzheimer's, Parkinson's and prion diseases). Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.013] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Szczerbowska-Boruchowska M, Krygowska-Wajs A, Ziomber A, Thor P, Wrobel P, Bukowczan M, Zizak I. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats. Neurochem Int 2012; 61:156-65. [DOI: 10.1016/j.neuint.2012.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022]
|
32
|
Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, Butman JA, Chen L, Bayat E, Russell J, Siddique T, Duyn JH, Rouault TA, Floeter MK. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One 2012; 7:e35241. [PMID: 22529995 PMCID: PMC3328441 DOI: 10.1371/journal.pone.0035241] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/11/2012] [Indexed: 11/21/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI) studies have previously shown hypointense signal in the motor cortex on T2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T2*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.
Collapse
Affiliation(s)
- Justin Y Kwan
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: a model to study Parkinsonism. Biometals 2011; 24:1045-57. [DOI: 10.1007/s10534-011-9463-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/10/2011] [Indexed: 12/15/2022]
|
35
|
Marchand WR, Lee JN, Suchy Y, Garn C, Johnson S, Wood N, Chelune G. Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. Neuroimage 2011; 55:194-203. [DOI: 10.1016/j.neuroimage.2010.12.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022] Open
|
36
|
Sian-Hülsmann J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem 2011; 118:939-57. [DOI: 10.1111/j.1471-4159.2010.07132.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2010; 2011:720658. [PMID: 21234369 PMCID: PMC3014724 DOI: 10.4061/2011/720658] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/10/2010] [Indexed: 01/21/2023] Open
Abstract
The accumulation of transition metals (e.g., copper, zinc, and iron) and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD) and Parkinson's (PD) diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas Bahía Blanca, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
38
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
39
|
A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci 2010; 30:7940-7. [PMID: 20534842 DOI: 10.1523/jneurosci.0835-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Caloric restriction (CR) reduces the pathological effects of aging and extends the lifespan in many species, including nonhuman primates, although the effect on the brain is less well characterized. We used two common indicators of aging, motor performance speed and brain iron deposition measured in vivo using MRI, to determine the potential effect of CR on elderly rhesus macaques eating restricted (n = 24; 13 males, 11 females) and standard diets (n = 17; 8 males, 9 females). Both the CR and control monkeys showed age-related increases in iron concentrations in globus pallidus (GP) and substantia nigra (SN), although the CR group had significantly less iron deposition in the GP, SN, red nucleus, and temporal cortex. A diet x age interaction revealed that CR modified age-related brain changes, evidenced as attenuation in the rate of iron accumulation in basal ganglia and parietal, temporal, and perirhinal cortex. Additionally, control monkeys had significantly slower fine motor performance on the Movement Assessment Panel, which was negatively correlated with iron accumulation in left SN and parietal lobe, although CR animals did not show this relationship. Our observations suggest that the CR-induced benefit of reduced iron deposition and preserved motor function may indicate neural protection similar to effects described previously in aging rodent and primate species.
Collapse
|
40
|
Zhao F, Fan X, Grondin R, Edwards R, Forman E, Moorehead J, Gerhardt G, Wang X, Zhang Z. Improved methods for electroacupuncture and electromyographic recordings in normal and parkinsonian rhesus monkeys. J Neurosci Methods 2010; 192:199-206. [PMID: 20654649 DOI: 10.1016/j.jneumeth.2010.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 12/22/2022]
Abstract
Although acupuncture has been widely and routinely used in healthcare in the USA, its use has been based more on empirical observation than on scientific knowledge. Therefore, there is a great need for better understanding the underlying mechanism(s) of action. A great body of evidence supports that nonhuman primates are a candidate for studying human diseases. However, the use of nonhuman primates in neurophysiological, neuroimaging and neurochemical studies is extremely challenging, especially under fully conscious, alert conditions. In the present study, we developed a protocol for safely performing acupuncture, electroacupuncture (EA) and electromyography (EMG) in both normal nonhuman primates and animals with parkinsonian-like symptoms. Four normal and four hemiparkinsonian middle-aged rhesus monkeys were extensively trained, behaviorally monitored, and received both EA and EMG for several months. The results demonstrated that (1) all rhesus monkeys used in the study could be trained for procedures including EA and EMG; (2) all animals tolerated the procedures involving needle/electrode insertion; (3) EA procedures used in the study did not adversely alter the animal's locomotor activities; rather, MPTP-treated animals showed a significant improvement in movement speed; and (4) EMG detected significant differences in muscle activity between the arms with and without MPTP-induced rigidity. Our results support that rhesus monkeys can be used as an experimental animal model to study EA and that EMG has the potential to be used to objectively assess the effects of antiparkinsonian therapies. The results also indicate that animals, especially those with parkinsonian-like symptoms, could benefit from long-term EA stimulations.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry Education, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bahadorani S, Mukai S, Egli D, Hilliker AJ. Overexpression of metal-responsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiol Aging 2010; 31:1215-26. [PMID: 18775584 DOI: 10.1016/j.neurobiolaging.2008.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 07/12/2008] [Accepted: 08/01/2008] [Indexed: 11/24/2022]
Abstract
Heavy metals are essential components of many biological processes but are toxic at high concentrations. Our results illustrate that when metal homeostasis is compromised by a mutation in the metal-responsive transcription factor (MTF-1), the life-span is shortened. In contrast, MTF-1 overexpression results in resistant flies with prolonged longevity on iron or cadmium-supplemented media but shortened life-span on zinc-supplemented medium. This effect was mediated by the overexpression of MTF-1 in specific tissues, such as the gut, hemocytes and in particular in neurons, indicating that these tissues are particularly sensitive to the perturbance of metal homeostasis. Further, MTF-1 overexpression in a neuron-specific manner protects flies against hyperoxia and prolongs the life-span of Cu/Zn superoxide dismutase-deficient flies, suggesting the presence of a common mechanism for protection against both oxidative stress and metal toxicity. Finally, normal life-span is extended up to 40% upon MTF-1 overexpression in either the peripheral nervous system or motorneurons. These results document the tissue-specific import of heavy metal toxicity and oxidative damage in aging and life-span determination.
Collapse
Affiliation(s)
- Sepehr Bahadorani
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | |
Collapse
|
42
|
Rivera-Mancía S, Pérez-Neri I, Ríos C, Tristán-López L, Rivera-Espinosa L, Montes S. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 2010; 186:184-99. [DOI: 10.1016/j.cbi.2010.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/22/2010] [Accepted: 04/08/2010] [Indexed: 12/14/2022]
|
43
|
Beste C, Willemssen R, Saft C, Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects. Neuropsychologia 2010; 48:366-73. [DOI: 10.1016/j.neuropsychologia.2009.09.023] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/21/2009] [Accepted: 09/21/2009] [Indexed: 12/01/2022]
|
44
|
Emborg ME, Moirano J, Raschke J, Bondarenko V, Zufferey R, Peng S, Ebert AD, Joers V, Roitberg B, Holden JE, Koprich J, Lipton J, Kordower JH, Aebischer P. Response of aged parkinsonian monkeys to in vivo gene transfer of GDNF. Neurobiol Dis 2009; 36:303-11. [PMID: 19660547 PMCID: PMC2989601 DOI: 10.1016/j.nbd.2009.07.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/22/2023] Open
Abstract
This study assessed the potential for functional and anatomical recovery of the diseased aged primate nigrostriatal system, in response to trophic factor gene transfer. Aged rhesus monkeys received a single intracarotid infusion of MPTP, followed one week later by MRI-guided stereotaxic intrastriatal and intranigral injections of lentiviral vectors encoding for glial derived neurotrophic factor (lenti-GDNF) or beta-galactosidase (lenti-LacZ). Functional analysis revealed that the lenti-GDNF, but not lenti-LacZ treated monkeys displayed behavioral improvements that were associated with increased fluorodopa uptake in the striatum ipsilateral to lenti-GDNF treatment. GDNF ELISA of striatal brain samples confirmed increased GDNF expression in lenti-GDNF treated aged animals that correlated with functional improvements and preserved nigrostriatal dopaminergic markers. Our results indicate that the aged primate brain challenged by MPTP administration has the potential to respond to trophic factor delivery and that the degree of neuroprotection depends on GDNF levels.
Collapse
Affiliation(s)
- M E Emborg
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin - Madison, 1223 Capitol Court, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Péran P, Cherubini A, Luccichenti G, Hagberg G, Démonet JF, Rascol O, Celsis P, Caltagirone C, Spalletta G, Sabatini U. Volume and iron content in basal ganglia and thalamus. Hum Brain Mapp 2009; 30:2667-75. [PMID: 19172651 DOI: 10.1002/hbm.20698] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Magnetic resonance imaging (MRI) studies have highlighted the possibility to investigate brain iron content in vivo. In this study, we combined T2* relaxometry and automatic segmentation of basal ganglia based on T1-weighted images in healthy subjects, with the aim of characterizing age related changes in volume and iron-related relaxivity values (R2*) of these structures. Thirty healthy subjects underwent MR imaging at 3 Tesla. Mean R2* values and volumes were calculated for the selected subcortical structures (pallidum, putamen, thalamus and caudate nucleus). Our results showed a correlation between R2* values and iron concentration as calculated from published post-mortem data. Furthermore, we observed a shrinkage/iron increase with a different pattern in the anatomical regions selected in this work, suggesting that the age-related changes on these MR parameters are specific to the subcortical structure considered. In particular, the putamen demonstrated a decrease of volume and an increase of iron level, with the posterior region of this structure appearing more disposed to iron deposition. Our work suggests that combining volumetry and iron estimation in MRI permits to investigate in vivo neurophysiological and neuropathological changes of basal ganglia.
Collapse
Affiliation(s)
- Patrice Péran
- Department of Radiology, IRCCS Foundation Santa Lucia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Images reconstructed from multielement, phased array coils and presented as the square root of the sum of the squares of the signals received by the individual elements have a distribution of signal and noise that distorts the relationship between the image intensity and the underlying signal. The distortion is accentuated for long echo times for which the signal-to-noise ratio (SNR) may be low. When measuring T(2) or T(2)* this signal distortion leads to biased estimates of these parameters. We demonstrate this effect and its dependence on the image SNR and the number of elements in a phased array coil. We evaluated the effects of four techniques for calculating T(2) from data acquired in phased array coils (log transform, least squares, lookup table correction, and maximum likelihood [ML] estimation). The ML estimation gave the most accurate T(2) in the presence of this bias.
Collapse
Affiliation(s)
- Peter A Hardy
- Center for Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536-0098, USA.
| | | |
Collapse
|
47
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
48
|
Current world literature. Ageing: biology and nutrition. Curr Opin Clin Nutr Metab Care 2009; 12:95-100. [PMID: 19057195 DOI: 10.1097/mco.0b013e32831fd97a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Abstract
PURPOSE OF REVIEW To explore the role of iron physiology in the brain of healthy adults and review how increased brain iron deposition has been associated with common neurodegenerative diseases that affect the elderly. RECENT FINDINGS Because iron plays a role in oxygen transportation, myelin synthesis, neurotransmitter production, and electron transfers, it serves as a crucial cofactor in normal central nervous metabolism. However, an increased level of brain iron may promote neurotoxicity due to free radical formation, lipid peroxidation, and ultimately, cellular death. Advanced neuroimaging techniques and pathological studies have demonstrated increased brain iron with aging, and increased iron deposition has also been observed in patients with a constellation of neurological diseases, including Alzheimer's disease, Parkinson's disease, and stroke. SUMMARY Pathologic and neurologic imaging coupled with experimentation have increased our understanding of the link between iron and neurodegeneration. A potential implication is that disease-modifying therapies aimed at removing excess iron may one day be part of the armamentarium employed by clinicians to decrease the burden of neurodegenerative diseases in the elderly.
Collapse
Affiliation(s)
- James M Stankiewicz
- Partners MS center, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02445, USA.
| | | |
Collapse
|
50
|
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:997-1030. [PMID: 18327971 PMCID: PMC2932529 DOI: 10.1089/ars.2007.1893] [Citation(s) in RCA: 373] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/21/2022]
Abstract
Maintenance of proper "labile iron" levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess "labile iron" is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation-reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
- Elizabeth L MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|