1
|
Cao HX, Michels D, Vu GTH, Gailing O. Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology. Int J Mol Sci 2024; 25:11792. [PMID: 39519342 PMCID: PMC11547103 DOI: 10.3390/ijms252111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Forests worldwide are under increasing pressure from climate change and emerging diseases, threatening their vital ecological and economic roles. Traditional breeding approaches, while valuable, are inherently slow and limited by the long generation times and existing genetic variation of trees. CRISPR technologies offer a transformative solution, enabling precise and efficient genome editing to accelerate the development of climate-resilient and productive forests. This review provides a comprehensive overview of CRISPR applications in forestry, exploring its potential for enhancing disease resistance, improving abiotic stress tolerance, modifying wood properties, and accelerating growth. We discuss the mechanisms and applications of various CRISPR systems, including base editing, prime editing, and multiplexing strategies. Additionally, we highlight recent advances in overcoming key challenges such as reagent delivery and plant regeneration, which are crucial for successful implementation of CRISPR in trees. We also delve into the potential and ethical considerations of using CRISPR gene drive for population-level genetic alterations, as well as the importance of genetic containment strategies for mitigating risks. This review emphasizes the need for continued research, technological advancements, extensive long-term field trials, public engagement, and responsible innovation to fully harness the power of CRISPR for shaping a sustainable future for forests.
Collapse
Affiliation(s)
- Hieu Xuan Cao
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - David Michels
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
| | - Giang Thi Ha Vu
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077 Göttingen, Germany; (H.X.C.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Mendoza-Maya E, Giles-Pérez GI, Vargas-Hernández JJ, Sáenz-Romero C, Martínez-Trujillo M, de Los Angeles Beltrán-Nambo M, Hernández-Díaz JC, Prieto-Ruíz JÁ, Jaramillo-Correa JP, Wehenkel C. Evolutionary drivers of reproductive fitness in two endangered forest trees. THE NEW PHYTOLOGIST 2024; 244:1086-1100. [PMID: 39187985 DOI: 10.1111/nph.20073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
Population genetics theory predicts a relationship between fitness, genetic diversity (H0) and effective population size (Ne), which is often tested through heterozygosity-fitness correlations (HFCs). We tested whether population and individual fertility and heterozygosity are correlated in two endangered Mexican spruces (Picea martinezii and Picea mexicana) by combining genomic, demographic and reproductive data (seed development and germination traits). For both species, there was a positive correlation between population size and seed development traits, but not germination rate. Individual genome-wide heterozygosity and seed traits were only correlated in P. martinezii (general-effects HFC), and none of the candidate single nucleotide polymorphisms (SNPs) associated with individual fertility showed heterozygote advantage in any species (no local-effects HFC). We observed a single and recent (c. 30 thousand years ago (ka)) population decline for P. martinezii; the collapse of P. mexicana occurred in two phases separated by a long period of stability (c. 800 ka). Recruitment always contributed more to total population census than adult trees in P. mexicana, while this was only the case in the largest populations of P. martinezii. Equating fitness to either H0 or Ne, as traditionally proposed in conservation biology, might not always be adequate, as species-specific evolutionary factors can decouple the expected correlation between these parameters.
Collapse
Affiliation(s)
- Eduardo Mendoza-Maya
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, 34000, Durango, Mexico
| | - Gustavo Ibrahim Giles-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - J Jesús Vargas-Hernández
- Postgrado en Ciencias Forestales, Colegio de Postgraduados, Montecillo, Texcoco, 56264, Estado de México, Mexico
| | - Cuauhtémoc Sáenz-Romero
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58330, Michoacán, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58030, Michoacán, Mexico
| | | | - José Ciro Hernández-Díaz
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| | - José Ángel Prieto-Ruíz
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| | - Juan P Jaramillo-Correa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, 34120, Durango, Mexico
| |
Collapse
|
3
|
Vu GTH, Cao HX, Hofmann M, Steiner W, Gailing O. Uncovering epigenetic and transcriptional regulation of growth in Douglas-fir: identification of differential methylation regions in mega-sized introns. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:863-875. [PMID: 37984804 PMCID: PMC10955500 DOI: 10.1111/pbi.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Tree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long-lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44-year-old Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness-related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega-sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long-terminal repeats of retroelements are involved in growth-associated DNA methylation regulation (both hyper- and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.
Collapse
Affiliation(s)
- Giang Thi Ha Vu
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Hieu Xuan Cao
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| | - Martin Hofmann
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Wilfried Steiner
- Nordwestdeutsche Forstliche VersuchsanstaltAbteilung WaldgenressourcenHann. MündenGermany
| | - Oliver Gailing
- Forest Genetics and Forest Tree BreedingUniversity of GöttingenGöttingenGermany
- Center for Integrated Breeding Research (CiBreed)University of GöttingenGöttingenGermany
| |
Collapse
|
4
|
Schmitt S, Hérault B, Derroire G. High intraspecific growth variability despite strong evolutionary legacy in an Amazonian forest. Ecol Lett 2023; 26:2135-2146. [PMID: 37819108 DOI: 10.1111/ele.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Tree growth is key to species performance. However, individual growth variability within species remains underexplored for a whole community, and the role of species evolutionary legacy and local environments remains unquantified. Based on 36 years of diameter records for 7961 trees from 138 species, we assessed individual growth across an Amazonian forest. We related individual growth to taxonomy, topography and neighbourhood, before exploring species growth link to functional traits and distribution along the phylogeny. We found most variation in growth among individuals within species, even though taxonomy explained a third of the variation. Species growth was phylogenetically conserved up to the genus. Traits of roots, wood and leaves were good predictors of growth, suggesting their joint selection during convergent evolutions. Neighbourhood crowding significantly decreased individual growth, although much of inter-individual variation remains unexplained. The high intraspecific variation observed could allow individuals to respond to the heterogeneous environments of Amazonian forests.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
- CIRAD, UPR Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Bruno Hérault
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
| |
Collapse
|
5
|
Archambeau J, Benito Garzón M, de Miguel M, Brachi B, Barraquand F, González-Martínez SC. Reduced within-population quantitative genetic variation is associated with climate harshness in maritime pine. Heredity (Edinb) 2023; 131:68-78. [PMID: 37221230 PMCID: PMC10313832 DOI: 10.1038/s41437-023-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.
Collapse
Affiliation(s)
- Juliette Archambeau
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France.
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK.
| | | | - Marina de Miguel
- INRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, France
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | | | | | | |
Collapse
|
6
|
Galeano E, Thomas BR. Unraveling genetic variation among white spruce families generated through different breeding strategies: Heritability, growth, physiology, hormones and gene expression. FRONTIERS IN PLANT SCIENCE 2023; 14:1052425. [PMID: 37077625 PMCID: PMC10106773 DOI: 10.3389/fpls.2023.1052425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Tree improvement programs select genotypes for faster growth, at both early and late stages, to increase yields over unimproved material, and the improvement is frequently attributed to genetic control in growth parameters among genotypes. Underutilized genetic variability among genotypes also has the potential to ensure future gains are possible. However, the genetic variation in growth, physiology and hormone control among genotypes generated from different breeding strategies has not been well characterized in conifers. We assessed growth, biomass, gas exchange, gene expression and hormone levels in white spruce seedlings obtained from three different breeding strategies (controlled crosses, polymix pollination, open pollination) using parents grafted into a clonal seed orchard in Alberta, Canada. A pedigree-based best linear unbiased prediction (ABLUP) mixed model was implemented to quantify variability and narrow-sense heritability for target traits. The levels of several hormones and expression of gibberellin-related genes in apical internodes were also determined. Over the first two years of development, the estimated heritabilities for height, volume, total dry biomass, above ground dry biomass, root:shoot ratio and root length, varied between 0.10 and 0.21, with height having the highest value. The ABLUP values showed large genetic variability in growth and physiology traits both between families from different breeding strategies, and within families. The principal component analysis showed that developmental and hormonal traits explained 44.2% and 29.4% of the total phenotypic variation between the three different breeding strategies and two growth groups. In general, controlled crosses from the fast growth group showed the best apical growth, with more accumulation of indole-3-acetic acid, abscisic acid, phaseic acid, and a 4-fold greater gene expression of PgGA3ox1 in genotypes from controlled crosses versus those from open pollination. However, in some cases, open pollination from the fast and slow growth groups showed the best root development, higher water use efficiency (iWUE and δ13C) and more accumulation of zeatin and isopentenyladenosine. In conclusion, tree domestication can lead to trade-offs between growth, carbon allocation, photosynthesis, hormone levels and gene expression, and we encourage the use of this phenotypic variation identified in improved and unimproved trees to advance white spruce tree improvement programs.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Forestry, Mississippi State University, Starkville, MS, United States
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Esteban Galeano,
| | - Barb R. Thomas
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Archambeau J, Garzón MB, Barraquand F, Miguel MD, Plomion C, González-Martínez SC. Combining climatic and genomic data improves range-wide tree height growth prediction in a forest tree. Am Nat 2022; 200:E141-E159. [DOI: 10.1086/720619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Wei S, Yang G, Yang Y, Yin T. Time-sequential detection of quantitative trait loci and candidate genes underlying the dynamic growth of Salix suchowensis. TREE PHYSIOLOGY 2022; 42:877-890. [PMID: 34761273 DOI: 10.1093/treephys/tpab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Elucidating the genetic factors underlying long-term biological processes remains challenging since the relevant genes and their effects may vary across different developmental stages. In this study, we carried out a large-scale field trial of the progeny of an F1 full-sib pedigree of Salix suchowensis and measured plant height and ground diameter periodically over a time course of 240 days. With the obtained data, we characterized plant growth rhythms and performed time-sequential analyses of quantitative trait loci underlying the dynamic growth of the plants. The dynamic mapping of quantitative trait loci revealed that stem height and ground diameter were under the control of four quantitative trait loci, and the effects of these quantitative trait loci varied greatly throughout the growth process, in which two quantitative trait loci were found to exert a pleiotropic effect determining the correlation between stem height and ground diameter. The analysis of candidate genes in the target genetic intervals showed that the pleiotropic effect of the two quantitative trait loci arises from the colocalization of genes with independent effects on stem height and ground diameter. Further examination of the expression patterns of the candidate genes indicated that height and circumference growth involve different activities of leaf and cambium tissues. This study provides unprecedented information to help us understand the dynamic growth of plants and presents an applicable strategy for elucidating the genetic mechanism underlying a long-term biological process by using plant growth as an example.
Collapse
Affiliation(s)
- Suyun Wei
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| | - Guo Yang
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
- School of Life Science, Shaoxing University, 508# Huancheng West Road, Shaoxing 312000, Zhejiang, China
| | - Yonghua Yang
- College of Life Sciences, Nanjing University, 163# Xianlin Road, Nanjing 210093, China
| | - Tongming Yin
- Key Lab of Tree Genetics and Biotechnology of Educational Department of China, Key Lab of Tree Genetics and Sivilcultural Sciences of Jiangsu Province, Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, 159# Longpan Road, Nanjing 210037, China
| |
Collapse
|
9
|
Feng L, Jiang P, Li C, Zhao J, Dong A, Yang D, Wu R. Genetic dissection of growth trajectories in forest trees: From FunMap to FunGraph. FORESTRY RESEARCH 2021; 1:19. [PMID: 39524511 PMCID: PMC11524299 DOI: 10.48130/fr-2021-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2024]
Abstract
Growth is the developmental process involving important genetic components. Functional mapping (FunMap) has been used as an approach to map quantitative trait loci (QTLs) governing growth trajectories by incorporating growth equations. FunMap is based on reductionism thinking, with a power to identify a small set of significant QTLs from the whole pool of genome-wide markers. Yet, increasing evidence shows that a complex trait is controlled by all genes the organism may possibly carry. Here, we describe and demonstrate a different mapping approach that encapsulates all markers into genetic interaction networks. This approach, symbolized as FunGraph, combines functional mapping, evolutionary game theory, and prey-predator theory into mathematical graphs, allowing the observed genetic effect of a locus to be decomposed into its independent component (resulting from this locus' intrinsic capacity) and dependent component (due to extrinsic regulation by other loci). Using FunGraph, we can visualize and trace the roadmap of how each locus interact with every other locus to impact growth. In a population-based association study of Euphrates poplar, we use FunGraph to identify the previously neglected genetic interaction effects that contribute to the genetic architecture of juvenile stem growth. FunGraph could open up a novel gateway to comprehend the global genetic control mechanisms of complex traits.
Collapse
Affiliation(s)
- Li Feng
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peng Jiang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Caifeng Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinshuai Zhao
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ang Dong
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Dengcheng Yang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Statistical Genetics, Departments of Public Health Sciences and Statistics, The Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Santini F, Kefauver SC, Araus JL, Resco de Dios V, Martín García S, Grivet D, Voltas J. Bridging the genotype-phenotype gap for a Mediterranean pine by semi-automatic crown identification and multispectral imagery. THE NEW PHYTOLOGIST 2021; 229:245-258. [PMID: 32893885 DOI: 10.1111/nph.16862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Progress in high-throughput phenotyping and genomics provides the potential to understand the genetic basis of plant functional differentiation. We developed a semi-automatic methodology based on unmanned aerial vehicle (UAV) imagery for deriving tree-level phenotypes followed by genome-wide association study (GWAS). An RGB-based point cloud was used for tree crown identification in a common garden of Pinus halepensis in Spain. Crowns were combined with multispectral and thermal orthomosaics to retrieve growth traits, vegetation indices and canopy temperature. Thereafter, GWAS was performed to analyse the association between phenotypes and genomic variation at 235 single nucleotide polymorphisms (SNPs). Growth traits were associated with 12 SNPs involved in cellulose and carbohydrate metabolism. Indices related to transpiration and leaf water content were associated with six SNPs involved in stomata dynamics. Indices related to leaf pigments and leaf area were associated with 11 SNPs involved in signalling and peroxisome metabolism. About 16-20% of trait variance was explained by combinations of several SNPs, indicating polygenic control of morpho-physiological traits. Despite a limited availability of markers and individuals, this study is provides a successful proof-of-concept for the combination of high-throughput UAV-based phenotyping with cost-effective genotyping to disentangle the genetic architecture of phenotypic variation in a widespread conifer.
Collapse
Affiliation(s)
- Filippo Santini
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
| | - Shawn Carlisle Kefauver
- AGROTECNIO (Center for Research in Agrotechnology), Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, E-08028, Spain
| | - José Luis Araus
- AGROTECNIO (Center for Research in Agrotechnology), Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona, E-08028, Spain
| | - Víctor Resco de Dios
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Ave., Mianyang, 621010, China
| | | | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid, E-28040, Spain
| | - Jordi Voltas
- Joint Research Unit CTFC - AGROTECNIO, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
- Department of Crop and Forest Sciences, University of Lleida, Av. Alcalde Rovira Roure 191, Lleida, E-25198, Spain
| |
Collapse
|
11
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|
12
|
Du Q, Yang X, Xie J, Quan M, Xiao L, Lu W, Tian J, Gong C, Chen J, Li B, Zhang D. Time-specific and pleiotropic quantitative trait loci coordinately modulate stem growth in Populus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:608-624. [PMID: 30133117 PMCID: PMC6381792 DOI: 10.1111/pbi.13002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/05/2018] [Accepted: 08/18/2018] [Indexed: 05/15/2023]
Abstract
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage-linkage disequilibrium (linkage-LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full-sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole-genome re-sequencing of the 435-member association mapping panel, we identified significant SNPs (P ≤ 9.4 × 10-7 ) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time-specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time-specific effects showed species-specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Xiaohui Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jiaxing Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Chenrui Gong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Jinhui Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Bailian Li
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Department of ForestryNorth Carolina State UniversityRaleighNCUSA
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- National Engineering Laboratory for Tree BreedingCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental PlantsMinistry of EducationCollege of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
13
|
Collevatti RG, Novaes E, Silva-Junior OB, Vieira LD, Lima-Ribeiro MS, Grattapaglia D. A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree. Heredity (Edinb) 2019; 123:117-137. [PMID: 30755734 PMCID: PMC6781148 DOI: 10.1038/s41437-019-0188-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/13/2023] Open
Abstract
The role of natural selection in shaping patterns of diversity is still poorly understood in the Neotropics. We carried out the first genome-wide population genomics study in a Neotropical tree, Handroanthus impetiginosus (Bignoniaceae), sampling 75,838 SNPs by sequence capture in 128 individuals across 13 populations. We found evidences for local adaptation using Bayesian correlations of allele frequency and environmental variables (32 loci in 27 genes) complemented by an analysis of selective sweeps and genetic hitchhiking events using SweepFinder2 (81 loci in 47 genes). Fifteen genes were identified by both approaches. By accounting for population genetic structure, we also found 14 loci with selection signal in a STRUCTURE-defined lineage comprising individuals from five populations, using Outflank. All approaches pinpointed highly diverse and structurally conserved genes affecting plant development and primary metabolic processes. Spatial interpolation forecasted differences in the expected allele frequencies at loci under selection over time, suggesting that H. impetiginosus may track its habitat during climate changes. However, local adaptation through natural selection may also take place, allowing species persistence due to niche evolution. A high genetic differentiation was seen among the H. impetiginosus populations, which, together with the limited power of the experiment, constrains the improved detection of other types of soft selective forces, such as background, balanced, and purifying selection. Small differences in allele frequency distribution among widespread populations and the low number of loci with detectable adaptive sweeps advocate for a polygenic model of adaptation involving a potentially large number of small genome-wide effects.
Collapse
Affiliation(s)
- Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74001-970, Brazil.
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Orzenil B Silva-Junior
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia-Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, 70790-160, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, 74001-970, Brazil
| | - Matheus S Lima-Ribeiro
- Laboratório de Macroecologia, Universidade Federal de Goiás (UFG), Campus Jataí, Jataí, GO, 75801-615, Brazil
| | - Dario Grattapaglia
- EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF, 70770-910, Brazil.,Programa de Ciências Genômicas e Biotecnologia-Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
14
|
Avanzi C, Piermattei A, Piotti A, Büntgen U, Heer K, Opgenoorth L, Spanu I, Urbinati C, Vendramin GG, Leonardi S. Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:493-504. [PMID: 30199693 DOI: 10.1016/j.scitotenv.2018.08.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Cambial growth is a phenotypic trait influenced by various physiological processes, numerous biotic and abiotic drivers, as well as by the genetic background. By archiving the outcome of such complex interplay, tree-rings are an exceptional resource for addressing individual long-term growth responses to changing environments and climate. Disentangling the effects of the different drivers of tree growth, however, remains challenging because of the lack of multidisciplinary data. Here, we combine individual dendrochronological, genetic and spatial data to assess the relative importance of genetic similarity and spatial proximity on Norway spruce (Picea abies (L.) Karst.) growth performances. We intensively sampled five plots from two populations in southern and central Europe, characterizing a total of 482 trees. A two-step analytical framework was developed. First, the effects of climate and tree age on tree-ring width (TRW) were estimated for each individual using a random slope linear mixed-effects model. Individual parameters were then tested against genetic and spatial variables by Mantel tests, partial redundancy analyses and variance partitioning. Our modelling approach successfully captured a large fraction of variance in TRW (conditional R2 values up to 0.94) which was largely embedded in inter-individual differences. All statistical approaches consistently showed that genetic similarity was not related to variation in the individual parameters describing growth responses. In contrast, up to 29% of the variance of individual parameters was accounted by spatial variables, revealing that microenvironmental features are more relevant than genetic similarity in determining similar growth patterns. Our study highlights both the advantages of modelling dendrochronological data at the individual level and the relevance of microenvironmental variation on individual growth patterns. These two aspects should be carefully considered in future multidisciplinary studies on growth dynamics in natural populations.
Collapse
Affiliation(s)
- Camilla Avanzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN Cambridge, United Kingdom.
| | - Andrea Piotti
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place, CB2 3EN Cambridge, United Kingdom; Swiss Federal Research Institute, WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Czech Globe, Global Change Research Institute CAS and Masaryk University, Kotlárská 2, 61137 Brno, Czech Republic.
| | - Katrin Heer
- Conservation Biology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Lars Opgenoorth
- Department of Ecology, University of Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany.
| | - Ilaria Spanu
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Carlo Urbinati
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Giovanni Giuseppe Vendramin
- National Research Council, Institute of Biosciences and Bioresources, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| |
Collapse
|
15
|
Müller BSF, de Almeida Filho JE, Lima BM, Garcia CC, Missiaggia A, Aguiar AM, Takahashi E, Kirst M, Gezan SA, Silva-Junior OB, Neves LG, Grattapaglia D. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations. THE NEW PHYTOLOGIST 2019; 221:818-833. [PMID: 30252143 DOI: 10.1111/nph.15449] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/13/2018] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) in plants typically suffer from limited statistical power. An alternative to the logistical and cost challenge of increasing sample sizes is to gain power by meta-analysis using information from independent studies. We carried out GWAS for growth traits with six single-marker models and regional heritability mapping (RHM) in four Eucalyptus breeding populations independently and by Joint-GWAS, using gene and segment-based models, with data for 3373 individuals genotyped with a communal EUChip60KSNP platform. While single-single nucleotide polymorphism (SNP) GWAS hardly detected significant associations at high-stringency in each population, gene-based Joint-GWAS revealed nine genes significantly associated with tree height. Associations detected using single-SNP GWAS, RHM and Joint-GWAS set-based models explained on average 3-20% of the phenotypic variance. Whole-genome regression, conversely, captured 64-89% of the pedigree-based heritability in all populations. Several associations independently detected for the same SNPs in different populations provided unprecedented GWAS validation results in forest trees. Rare and common associations were discovered in eight genes involved in cell wall biosynthesis and lignification. With the increasing adoption of genomic prediction of complex phenotypes using shared SNPs and much larger tree breeding populations, Joint-GWAS approaches should provide increasing power to pinpoint discrete associations potentially useful toward tree breeding and molecular applications.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
| | - Janeo E de Almeida Filho
- Plant Breeding Laboratory, State University of North Fluminense "Darcy Ribeiro", Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Bruno M Lima
- FIBRIA S.A. Technology Center, Jacareí, SP, 12340-010, Brazil
| | - Carla C Garcia
- International Paper of Brazil, Rodovia SP 340 KM 171, Mogi Guaçu, SP, 13840-970, Brazil
| | | | | | - Elizabete Takahashi
- Celulose Nipo-Brasileira (CENIBRA) S.A., Belo Oriente, MG, 35196-000, Brazil
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Salvador A Gezan
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Orzenil B Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| | | | - Dario Grattapaglia
- Molecular Biology Program, Cell Biology Department, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil
- EMBRAPA Genetic Resources and Biotechnology - EPqB, Brasília, DF, 70770-910, Brazil
- Genomic Sciences and Biotechnology Program, SGAN, Catholic University of Brasília, 916 modulo B, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
16
|
Khan AL, Mabood F, Akber F, Ali A, Shahzad R, Al-Harrasi A, Al-Rawahi A, Shinwari ZK, Lee IJ. Endogenous phytohormones of frankincense producing Boswellia sacra tree populations. PLoS One 2018; 13:e0207910. [PMID: 30566477 PMCID: PMC6300221 DOI: 10.1371/journal.pone.0207910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
Boswellia sacra, an endemic tree to Oman, is exposed to man-made incisions for commercial level frankincense production, whereas unsustainable harvesting may lead to population decline. In this case, assessment of endogenous phytohormones (gibberellic acid (GA), indole-acetic acid (IAA), salicylic acid (SA) and kinetin) can help to understand population health and growth dynamics. Hence, it was aimed to devise a robust method using Near-Infrared spectroscopy (NIRS) coupled with multivariate methods for phytohormone analysis of thirteen different populations of B. sacra. NIRS data was recorded in absorption mode (10000-4000 cm-1) to build partial least squares regression model (calibration set 70%). Model was externally cross validated (30%) as a test set to check their prediction ability before the application to quantify the unknown amount of phytohormones in thirteen different populations of B. sacra. The results showed that phytohormonal contents varied significantly, showing a trend of SA>GA/IAA>kinetin across different populations. SA and GA contents were significantly higher in Pop13 (Hasik), followed by Pop2 (Dowkah)-an extreme end of B. sacra tree cover in Dhofar region. A similar trend in the concentration of phytohormones was found when the samples from 13 populations were subjected to advance liquid chromatography mass spectrophotometer and gas chromatograph with selected ion monitor analysis. The current analysis provides alternative tool to assess plant health, which could be important to in situ propagation of tree population as well as monitoring tree population growth dynamics.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- Department of Biological Sciences & Chemistry, University of Nizwa, Nizwa, Oman
| | - Fazal Akber
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Amjad Ali
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Raheem Shahzad
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | | | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Grattapaglia D, Silva-Junior OB, Resende RT, Cappa EP, Müller BSF, Tan B, Isik F, Ratcliffe B, El-Kassaby YA. Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding. FRONTIERS IN PLANT SCIENCE 2018; 9:1693. [PMID: 30524463 PMCID: PMC6262028 DOI: 10.3389/fpls.2018.01693] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/31/2018] [Indexed: 05/18/2023]
Abstract
Forest tree breeding has been successful at delivering genetically improved material for multiple traits based on recurrent cycles of selection, mating, and testing. However, long breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests and diseases, climate, and market changes, all pose formidable challenges. Genetic dissection approaches such as quantitative trait mapping and association genetics have been fruitless to effectively drive operational marker-assisted selection (MAS) in forest trees, largely because of the complex multifactorial inheritance of most, if not all traits of interest. The convergence of high-throughput genomics and quantitative genetics has established two new paradigms that are changing contemporary tree breeding dogmas. Genomic selection (GS) uses large number of genome-wide markers to predict complex phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity and improve the accuracy of breeding values. Realized genomic relationships matrices, on the other hand, provide innovations in genetic parameters' estimation and breeding approaches by tracking the variation arising from random Mendelian segregation in pedigrees. In light of a recent flow of promising experimental results, here we briefly review the main concepts, analytical tools and remaining challenges that currently underlie the application of genomics data to tree breeding. With easy and cost-effective genotyping, we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS research include optimizing strategies for updating prediction models, adding validated functional genomics data to improve prediction accuracy, and integrating genomic and multi-environment data for forecasting the performance of genetic material in untested sites or under changing climate scenarios. The buildup of phenotypic and genome-wide data across large-scale breeding populations and advances in computational prediction of discrete genomic features should also provide opportunities to enhance the application of genomics to tree breeding.
Collapse
Affiliation(s)
- Dario Grattapaglia
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Orzenil B. Silva-Junior
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Programa de Ciências Genômicas e BiotecnologiaUniversidade Católica de Brasília, Brasília, Brazil
| | | | - Eduardo P. Cappa
- Centro de Investigación de Recursos Naturales, Instituto de Recursos BiológicosINTA, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Bárbara S. F. Müller
- EMBRAPA Recursos Genéticos e BiotecnologiaBrasília, Brazil
- Departamento de Biologia CelularUniversidade de Brasília, Brasília, Brazil
| | - Biyue Tan
- Biomaterials DivisionStora Enso AB, Stockholm, Sweden
| | - Fikret Isik
- Department of Forestry and Environmental Resources, North Carolina State UniversityRaleigh, NC, United States
| | - Blaise Ratcliffe
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
18
|
Yang Y, Xuan L, Yu C, Wang Z, Xu J, Fan W, Guo J, Yin Y. High-density genetic map construction and quantitative trait loci identification for growth traits in (Taxodium distichum var. distichum × T. mucronatum) × T. mucronatum. BMC PLANT BIOLOGY 2018; 18:263. [PMID: 30382825 PMCID: PMC6474422 DOI: 10.1186/s12870-018-1493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/19/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND 'Zhongshanshan' is the general designation for the superior interspecific hybrid clones of Taxodium species, which is widely grown for economic and ecological purposes in southern China. Growth is the priority objective in 'Zhongshanshan' tree improvement. A high-density linkage map is vital to efficiently identify key quantitative trait loci (QTLs) that affect growth. RESULTS In total, 403.16 Gb of data, containing 2016,336 paired-end reads, was obtained after preprocessing. The average sequencing depth was 28.49 in T. distichum var. distichum, 25.18 in T. mucronatum, and 11.12 in each progeny. In total, 524,662 high-quality SLAFs were detected, of which 249,619 were polymorphic, and 6166 of the polymorphic markers met the requirements for use in constructing a genetic map. The final map harbored 6156 SLAF markers on 11 linkage groups, and was 1137.86 cM in length, with an average distance of 0.18 cM between adjacent markers. Separate QTL analyses of traits in different years by CIM detected 7 QTLs. While combining multiple-year data, 13 QTLs were detected by ICIM. 5 QTLs were repeatedly detected by the two methods, and among them, 3 significant QTLs (q6-2, q4-2 and q2-1) were detected in at least two traits. Bioinformatic analysis discoveried a gene annotated as a leucine-rich repeat receptor-like kinase gene within q4-2. CONCLUSIONS This map is the most saturated one constructed in a Taxodiaceae species to date, and would provide useful information for future comparative mapping, genome assembly, and marker-assisted selection.
Collapse
Affiliation(s)
- Ying Yang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Lei Xuan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Chaoguang Yu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Ziyang Wang
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jianhua Xu
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Wencai Fan
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jinbo Guo
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Yunlong Yin
- Plant Ecology Research Center, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
19
|
Conson ARO, Taniguti CH, Amadeu RR, Andreotti IAA, de Souza LM, dos Santos LHB, Rosa JRBF, Mantello CC, da Silva CC, José Scaloppi Junior E, Ribeiro RV, Le Guen V, Garcia AAF, Gonçalves PDS, de Souza AP. High-Resolution Genetic Map and QTL Analysis of Growth-Related Traits of Hevea brasiliensis Cultivated Under Suboptimal Temperature and Humidity Conditions. FRONTIERS IN PLANT SCIENCE 2018; 9:1255. [PMID: 30197655 PMCID: PMC6117502 DOI: 10.3389/fpls.2018.01255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/08/2018] [Indexed: 06/02/2023]
Abstract
Rubber tree (Hevea brasiliensis) cultivation is the main source of natural rubber worldwide and has been extended to areas with suboptimal climates and lengthy drought periods; this transition affects growth and latex production. High-density genetic maps with reliable markers support precise mapping of quantitative trait loci (QTL), which can help reveal the complex genome of the species, provide tools to enhance molecular breeding, and shorten the breeding cycle. In this study, QTL mapping of the stem diameter, tree height, and number of whorls was performed for a full-sibling population derived from a GT1 and RRIM701 cross. A total of 225 simple sequence repeats (SSRs) and 186 single-nucleotide polymorphism (SNP) markers were used to construct a base map with 18 linkage groups and to anchor 671 SNPs from genotyping by sequencing (GBS) to produce a very dense linkage map with small intervals between loci. The final map was composed of 1,079 markers, spanned 3,779.7 cM with an average marker density of 3.5 cM, and showed collinearity between markers from previous studies. Significant variation in phenotypic characteristics was found over a 59-month evaluation period with a total of 38 QTLs being identified through a composite interval mapping method. Linkage group 4 showed the greatest number of QTLs (7), with phenotypic explained values varying from 7.67 to 14.07%. Additionally, we estimated segregation patterns, dominance, and additive effects for each QTL. A total of 53 significant effects for stem diameter were observed, and these effects were mostly related to additivity in the GT1 clone. Associating accurate genome assemblies and genetic maps represents a promising strategy for identifying the genetic basis of phenotypic traits in rubber trees. Then, further research can benefit from the QTLs identified herein, providing a better understanding of the key determinant genes associated with growth of Hevea brasiliensis under limiting water conditions.
Collapse
Affiliation(s)
- André R. O. Conson
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
| | - Cristiane H. Taniguti
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Rodrigo R. Amadeu
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Livia M. de Souza
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
| | | | - João R. B. F. Rosa
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
- FTS Sementes S.A., Research and Development Center, Ponta Grossa, Brazil
| | - Camila C. Mantello
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
- National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| | - Carla C. da Silva
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
| | | | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Vincent Le Guen
- French Agricultural Research Centre for International Development (CIRAD), UMR AGAP, Montpellier, France
| | - Antonio A. F. Garcia
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Anete P. de Souza
- Molecular Biology and Genetic Engineering Center, University of Campinas, Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
20
|
Tsai CJ, Harding SA, Cooke JEK. Branching out: a new era of investigating physiological processes in forest trees using genomic tools. TREE PHYSIOLOGY 2018; 38:303-310. [PMID: 29506180 DOI: 10.1093/treephys/tpy026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Scott A Harding
- Warnell School of Forestry and Natural Resources, Department of Genetics and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Janice E K Cooke
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| |
Collapse
|
21
|
Sork VL. Genomic Studies of Local Adaptation in Natural Plant Populations. J Hered 2017; 109:3-15. [DOI: 10.1093/jhered/esx091] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
|
22
|
Hiraoka Y, Iki T, Nose M, Tobita H, Yazaki K, Watanabe A, Fujisawa Y, Kitao M. Species characteristics and intraspecific variation in growth and photosynthesis of Cryptomeria japonica under elevated O3 and CO2. TREE PHYSIOLOGY 2017; 37:733-743. [PMID: 28369644 DOI: 10.1093/treephys/tpx028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
In order to predict the effects of future atmospheric conditions on forest productivity, it is necessary to clarify the physiological responses of major forest tree species to high concentrations of ozone (O3) and carbon dioxide (CO2). Furthermore, intraspecific variation of these responses should also be examined in order to predict productivity gains through tree improvements in the future. We investigated intraspecific variation in growth and photosynthesis of Cryptomeria japonica D. Don, a major silviculture species in Japan, in response to elevated concentrations of O3 (eO3) and CO2 (eCO2), separately and in combination. Cuttings of C. japonica were grown and exposed to two levels of O3 (ambient and twice-ambient levels) in combination with two levels of CO2 (ambient and 550 µmol mol-1 in the daytime) for two growing seasons in a free-air CO2 enrichment experiment. There was no obvious negative effect of eO3 on growth or photosynthetic traits of the C. japonica clones, but a positive effect was observed for annual height increments in the first growing season. Dry mass production and the photosynthetic rate increased under eCO2 conditions, while the maximum carboxylation rate decreased. Significant interaction effects of eO3 and eCO2 on growth and photosynthetic traits were not observed. Clonal effects on growth and photosynthetic traits were significant, but the interactions between clones and O3 and/or CO2 treatments were not. Spearman's rank correlation coefficients between growth traits under ambient conditions and for each treatment were significantly positive, implying that clonal ranking in growth abilities might not be affected by either eO3 or eCO2. The knowledge obtained from this study will be helpful for species selection in afforestation programs, to continue and to improve current programs involving this species, and to accurately predict the CO2 fixation capacity of Japanese forests.
Collapse
Affiliation(s)
- Yuichiro Hiraoka
- Forest Tree Breeding Center (FTBC), Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo-cho, Hitachi, Ibaraki 319-1301, Japan
| | - Taiichi Iki
- Tohoku Regional Breeding Office, FTBC, FFPRI, 95 Osaki, Takizawa, Iwate 020-0621, Japan
| | - Mine Nose
- Forest Tree Breeding Center (FTBC), Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo-cho, Hitachi, Ibaraki 319-1301, Japan
| | | | | | - Atsushi Watanabe
- Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshitake Fujisawa
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, FFPRI, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan
| |
Collapse
|
23
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
24
|
Lenz PRN, Beaulieu J, Mansfield SD, Clément S, Desponts M, Bousquet J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics 2017; 18:335. [PMID: 28454519 PMCID: PMC5410046 DOI: 10.1186/s12864-017-3715-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/21/2017] [Indexed: 11/11/2022] Open
Abstract
Background Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. Results The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range LD in this population. Conclusions This study supports the integration of GS models in advanced-generation tree breeding programs, given that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles, much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable to mass vegetative propagation of selected stock, such as spruces.
Collapse
Affiliation(s)
- Patrick R N Lenz
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Government of Canada, 1055 du PEPS, P.O. Box 10380, Québec, Québec, G1V 4C7, Canada. .,Canada Research Chair in Forest Genomics, Institute of Systems and Integrative Biology and Centre for Forest Research, Université Laval, 1030, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada.
| | - Jean Beaulieu
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Government of Canada, 1055 du PEPS, P.O. Box 10380, Québec, Québec, G1V 4C7, Canada.,Canada Research Chair in Forest Genomics, Institute of Systems and Integrative Biology and Centre for Forest Research, Université Laval, 1030, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Forest Sciences Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Sébastien Clément
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, Government of Canada, 1055 du PEPS, P.O. Box 10380, Québec, Québec, G1V 4C7, Canada
| | - Mireille Desponts
- Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec, Direction de la recherche forestière, 2700 rue Einstein, Québec, Québec, G1P 3W8, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute of Systems and Integrative Biology and Centre for Forest Research, Université Laval, 1030, Avenue de la Médecine, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|
25
|
Bartholomé J, Bink MCAM, van Heerwaarden J, Chancerel E, Boury C, Lesur I, Isik F, Bouffier L, Plomion C. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness. PLoS One 2016; 11:e0165323. [PMID: 27806077 PMCID: PMC5091878 DOI: 10.1371/journal.pone.0165323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/10/2016] [Indexed: 01/26/2023] Open
Abstract
Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.
Collapse
Affiliation(s)
| | - Marco CAM Bink
- Biometris, Wageningen University and Research Centre, NL-6700 AC, Wageningen, Netherlands
| | - Joost van Heerwaarden
- Biometris, Wageningen University and Research Centre, NL-6700 AC, Wageningen, Netherlands
| | | | | | - Isabelle Lesur
- BIOGECO, INRA, Univ. Bordeaux, 33610, Cestas, France
- HelixVenture, Mérignac, France
| | - Fikret Isik
- North Carolina State University, Department of Forestry and Environmental Resources, Raleigh, NC, United States of America
| | | | | |
Collapse
|
26
|
Ainsworth EA. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests. TREE PHYSIOLOGY 2016; 36:679-681. [PMID: 27188497 DOI: 10.1093/treephys/tpw039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. THE NEW PHYTOLOGIST 2016; 209:1067-82. [PMID: 26499329 DOI: 10.1111/nph.13695] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/02/2015] [Indexed: 05/08/2023]
Abstract
Deciphering the genetic architecture underlying polygenic traits in perennial species can inform molecular marker-assisted breeding. Recent advances in high-throughput sequencing have enabled strategies that integrate linkage-linkage disequilibrium (LD) mapping in Populus. We used an integrated method of quantitative trait locus (QTL) dissection with a high-resolution linkage map and multi-gene association mapping to decipher the nature of genetic architecture (additive, dominant, and epistatic effects) of potential QTLs for growth traits in a Populus linkage population (1200 progeny) and a natural population (435 individuals). Seventeen QTLs for tree height, diameter at breast height, and stem volume mapped to 11 linkage groups (logarithm of odds (LOD) ≥ 2.5), and explained 2.7-18.5% of the phenotypic variance. After comparative mapping and transcriptome analysis, 187 expressed genes (10 046 common single nucleotide polymorphisms (SNPs)) were selected from the segmental homology regions (SHRs) of 13 QTLs. Using multi-gene association models, we observed 202 significant SNPs in 63 promising genes from 10 QTLs (P ≤ 0.0001; FDR ≤ 0.10) that exhibited reproducible associations with additive/dominant effects, and further determined 11 top-ranked genes tightly linked to the QTLs. Epistasis analysis uncovered a uniquely interconnected gene-gene network for each trait. This study opens up opportunities to uncover the causal networks of interacting genes in plants using an integrated linkage-LD mapping approach.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Chenrui Gong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Daling Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Haijiao Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Wei Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| | - Bailian Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Department of Forestry, North Carolina State University, Raleigh, NC, 27695-8203, USA
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
28
|
Li F, Zhou C, Weng Q, Li M, Yu X, Guo Y, Wang Y, Zhang X, Gan S. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus. PLoS One 2015; 10:e0145144. [PMID: 26695430 PMCID: PMC4687840 DOI: 10.1371/journal.pone.0145144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/01/2015] [Indexed: 02/06/2023] Open
Abstract
Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.
Collapse
Affiliation(s)
- Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Changpin Zhou
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Qijie Weng
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoli Yu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yong Guo
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yu Wang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaohong Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- * E-mail:
| |
Collapse
|
29
|
Yang X, Wei Z, Du Q, Chen J, Wang Q, Quan M, Song Y, Xie J, Zhang D. The genetic regulatory network centered on Pto-Wuschela and its targets involved in wood formation revealed by association studies. Sci Rep 2015; 5:16507. [PMID: 26549216 PMCID: PMC4637887 DOI: 10.1038/srep16507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.
Collapse
Affiliation(s)
- Xiaohui Yang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Zunzheng Wei
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Key Laboratory of Urban Agriculture (North), Ministry of Agriculture, No. 50, Zhanghua Road, Beijing 10097, China
| | - Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jinhui Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Qingshi Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Mingyang Quan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Jianbo Xie
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
| |
Collapse
|
30
|
Deng J, Huang H, Yu X, Jin J, Lin W, Li F, Song Z, Li M, Gan S. DiSNPindel: improved intra-individual SNP and InDel detection in direct amplicon sequencing of a diploid. BMC Bioinformatics 2015; 16:343. [PMID: 26498606 PMCID: PMC4619477 DOI: 10.1186/s12859-015-0790-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/20/2015] [Indexed: 01/26/2023] Open
Abstract
Background Amplicon re-sequencing based on the automated Sanger method remains popular for detection of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels) for a spectrum of genetics applications. However, existing software tools for detecting intra-individual SNPs and InDels in direct amplicon sequencing of diploid samples are insufficient in analyzing single traces and their accuracy is still limited. Results We developed a novel computation tool, named DiSNPindel, to improve the detection of intra-individual SNPs and InDels in direct amplicon sequencing of a diploid. Neither reference sequence nor additional sample was required. Using two real datasets, we demonstrated the usefulness of DiSNPindel in its ability to improve largely the true SNP and InDel discovery rates and reduce largely the missed and false positive rates as compared with existing detection methods. Conclusions The software DiSNPindel presented here provides an efficient tool for intra-individual SNP and InDel detection in diploid amplicon sequencing. It will also be useful for identification of DNA variations in expressed sequence tag (EST) re-sequencing. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0790-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jizhong Deng
- College of Engineering, South China Agricultural University, Wushan Road, Guangzhou, 510642, China.
| | - Huasheng Huang
- College of Engineering, South China Agricultural University, Wushan Road, Guangzhou, 510642, China. .,Department of Computer Science, Guangdong University of Science and Technology, Xihu Road, Dongguan, 523083, China.
| | - Xiaoli Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China. .,Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Ji Jin
- College of Engineering, South China Agricultural University, Wushan Road, Guangzhou, 510642, China.
| | - Weisen Lin
- College of Engineering, South China Agricultural University, Wushan Road, Guangzhou, 510642, China.
| | - Fagen Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Zhijiao Song
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Mei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China. .,Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
31
|
Pinard D, Mizrachi E, Hefer CA, Kersting AR, Joubert F, Douglas CJ, Mansfield SD, Myburg AA. Comparative analysis of plant carbohydrate active enZymes and their role in xylogenesis. BMC Genomics 2015; 16:402. [PMID: 25994181 PMCID: PMC4440533 DOI: 10.1186/s12864-015-1571-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbohydrate metabolism is a key feature of vascular plant architecture, and is of particular importance in large woody species, where lignocellulosic biomass is responsible for bearing the bulk of the stem and crown. Since Carbohydrate Active enZymes (CAZymes) in plants are responsible for the synthesis, modification and degradation of carbohydrate biopolymers, the differences in gene copy number and regulation between woody and herbaceous species have been highlighted previously. There are still many unanswered questions about the role of CAZymes in land plant evolution and the formation of wood, a strong carbohydrate sink. RESULTS Here, twenty-two publically available plant genomes were used to characterize the frequency, diversity and complexity of CAZymes in plants. We find that a conserved suite of CAZymes is a feature of land plant evolution, with similar diversity and complexity regardless of growth habit and form. In addition, we compared the diversity and levels of CAZyme gene expression during wood formation in trees using mRNA-seq data from two distantly related angiosperm tree species Eucalyptus grandis and Populus trichocarpa, highlighting the major CAZyme classes involved in xylogenesis and lignocellulosic biomass production. CONCLUSIONS CAZyme domain ratio across embryophytes is maintained, and the diversity of CAZyme domains is similar in all land plants, regardless of woody habit. The stoichiometric conservation of gene expression in woody and non-woody tissues of Eucalyptus and Populus are indicative of gene balance preservation.
Collapse
Affiliation(s)
- Desre Pinard
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Charles A Hefer
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Anna R Kersting
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, Hufferstr. 1, Munster, D48149, Germany.
| | - Fourie Joubert
- Centre for Bioinformatics and Computational Biology, Genomics Research Institute (GRI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | - Carl J Douglas
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
32
|
Lepoittevin C, Bodénès C, Chancerel E, Villate L, Lang T, Lesur I, Boury C, Ehrenmann F, Zelenica D, Boland A, Besse C, Garnier-Géré P, Plomion C, Kremer A. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol Ecol Resour 2015; 15:1446-59. [DOI: 10.1111/1755-0998.12407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- C. Lepoittevin
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - C. Bodénès
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - E. Chancerel
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - L. Villate
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - T. Lang
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
- Key Laboratory of Tropical Forest Ecology; Xishuangbanna Tropical Botanical Garden; Chinese Academy of Sciences; Mengla Yunnan 666303 China
| | - I. Lesur
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
- HelixVenture; Mérignac F-33700 France
| | - C. Boury
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - F. Ehrenmann
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - D. Zelenica
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - A. Boland
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - C. Besse
- CEA, Institut de Génomique, Centre National de Génotypage; 2 rue Gaston Crémieux, CP5721 Evry Cedex F-91057 France
| | - P. Garnier-Géré
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - C. Plomion
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| | - A. Kremer
- UMR 1202 BIOGECO; INRA; Cestas F-33610 France
- UMR 1202 BIOGECO; University of Bordeaux; Pessac F-33600 France
| |
Collapse
|
33
|
Näsholm T, Palmroth S, Ganeteg U, Moshelion M, Hurry V, Franklin O. Genetics of superior growth traits in trees are being mapped but will the faster-growing risk-takers make it in the wild? TREE PHYSIOLOGY 2014; 34:1141-1148. [PMID: 25527413 DOI: 10.1093/treephys/tpu112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Sari Palmroth
- Division of Environmental Science & Policy, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Ulrika Ganeteg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vaughan Hurry
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Oskar Franklin
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| |
Collapse
|
34
|
Eucalyptus Breeding for Clonal Forestry. CHALLENGES AND OPPORTUNITIES FOR THE WORLD'S FORESTS IN THE 21ST CENTURY 2014. [DOI: 10.1007/978-94-007-7076-8_16] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
35
|
Mathithumilan B, Kadam NN, Biradar J, Reddy SH, Ankaiah M, Narayanan MJ, Makarla U, Khurana P, Sreeman SM. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC PLANT BIOLOGY 2013; 13:194. [PMID: 24289047 PMCID: PMC3879070 DOI: 10.1186/1471-2229-13-194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 11/13/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. RESULT We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species into distinct clusters. CONCLUSION We report a total of 188 genomic and genic SSR markers in Morus alba L. A large proportion of these markers (164) were polymorphic both among mulberry species and genotypes. A substantial number of these markers (149) were also transferable to other related species like Ficus, Fig and Jackfruit. The extent of polymorphism revealed and the ability to detect heterozygosity among the cross pollinated mulberry species and genotypes render these markers an invaluable genomic resource that can be utilized in assessing molecular diversity as well as in QTL mapping and subsequently mulberry crop improvement through MAS.
Collapse
Affiliation(s)
| | | | - Jyoti Biradar
- Department of Sericulture, University of Agricultural Sciences, Bangalore, India
| | - Sowmya H Reddy
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | - Mahadeva Ankaiah
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | - Madhura J Narayanan
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | - Udayakumar Makarla
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, India
| | | |
Collapse
|
36
|
Iwata H, Hayashi T, Terakami S, Takada N, Saito T, Yamamoto T. Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia). BMC Genet 2013; 14:81. [PMID: 24028660 PMCID: PMC3847345 DOI: 10.1186/1471-2156-14-81] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/05/2013] [Indexed: 12/17/2022] Open
Abstract
Background In cross breeding, it is important to choose a good parental combination that has high probability of generating offspring with desired characteristics. This study examines a method for predicting the segregation of target traits in a progeny population based on genome-wide markers and phenotype data of parental cultivars. Results The proposed method combines segregation simulation and Bayesian modeling for genomic selection. Marker segregation in a progeny population was simulated based on parental genotypes. Posterior marker effects sampled via Markov Chain Monte Carlo were used to predict the segregation pattern of target traits. The posterior distribution of the proportion of progenies that fulfill selection criteria was calculated and used for determining a promising cross and the necessary size of the progeny population. We applied the proposed method to Japanese pear (Pyrus pyrifolia Nakai) data to demonstrate the method and to show how it works in the selection of a promising cross. Verification using an actual breeding population suggests that the segregation of target traits can be predicted with reasonable accuracy, especially in a highly heritable trait. The uncertainty in predictions was reflected on the posterior distribution of the proportion of progenies that fulfill selection criteria. A simulation study based on the real marker data of Japanese pear cultivars also suggests the potential of the method. Conclusions The proposed method is useful to provide objective and quantitative criteria for choosing a parental combination and the breeding population size.
Collapse
Affiliation(s)
- Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Bartholomé J, Salmon F, Vigneron P, Bouvet JM, Plomion C, Gion JM. Plasticity of primary and secondary growth dynamics in Eucalyptus hybrids: a quantitative genetics and QTL mapping perspective. BMC PLANT BIOLOGY 2013; 13:120. [PMID: 23978279 PMCID: PMC3870978 DOI: 10.1186/1471-2229-13-120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/14/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND The genetic basis of growth traits has been widely studied in forest trees. Quantitative trait locus (QTL) studies have highlighted the presence of both stable and unstable genomic regions accounting for biomass production with respect to tree age and genetic background, but results remain scarce regarding the interplay between QTLs and the environment. In this study, our main objective was to dissect the genetic architecture of the growth trajectory with emphasis on genotype x environment interaction by measuring primary and secondary growth covering intervals connected with environmental variations. RESULTS Three different trials with the same family of Eucalyptus urophylla x E. grandis hybrids (with different genotypes) were planted in the Republic of Congo, corresponding to two QTL mapping experiments and one clonal test. Height and radial growths were monitored at regular intervals from the seedling stage to five years old. The correlation between growth increments and an aridity index revealed that growth before two years old (r = 0.5; 0.69) was more responsive to changes in water availability than late growth (r = 0.39; 0.42) for both height and circumference. We found a regular increase in heritability with time for cumulative growth for both height [0.06 - 0.33] and circumference [0.06 - 0.38]. Heritabilities for incremental growth were more heterogeneous over time even if ranges of variation were similar (height [0-0.31]; circumference [0.19 to 0.48]). Within the trials, QTL analysis revealed collocations between primary and secondary growth QTLs as well as between early growth increments and final growth QTLs. Between trials, few common QTLs were detected highlighting a strong environmental effect on the genetic architecture of growth, validated by significant QTL x E interactions. CONCLUSION These results suggest that early growth responses to water availability determine the genetic architecture of total growth at the mature stage and highlight the importance of considering growth as a composite trait (such as yields for annual plants) for a better understanding of its genetic bases.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP, F-33612 Cestas, France
- INRA, UMR BIOGECO, F-33612 Cestas, France
| | | | - Philippe Vigneron
- CIRAD, UMR AGAP, Pointe Noire, Congo
- CRDPI, BP 1291 Pointe Noire, Rep. of Congo
| | | | | | - Jean-Marc Gion
- CIRAD, UMR AGAP, F-33612 Cestas, France
- INRA, UMR BIOGECO, F-33612 Cestas, France
| |
Collapse
|
38
|
Prunier J, Pelgas B, Gagnon F, Desponts M, Isabel N, Beaulieu J, Bousquet J. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics 2013; 14:368. [PMID: 23724860 PMCID: PMC3674900 DOI: 10.1186/1471-2164-14-368] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/24/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The genomic architecture of adaptive traits remains poorly understood in non-model plants. Various approaches can be used to bridge this gap, including the mapping of quantitative trait loci (QTL) in pedigrees, and genetic association studies in non-structured populations. Here we present results on the genomic architecture of adaptive traits in black spruce, which is a widely distributed conifer of the North American boreal forest. As an alternative to the usual candidate gene approach, a candidate SNP approach was developed for association testing. RESULTS A genetic map containing 231 gene loci was used to identify QTL that were related to budset timing and to tree height assessed over multiple years and sites. Twenty-two unique genomic regions were identified, including 20 that were related to budset timing and 6 that were related to tree height. From results of outlier detection and bulk segregant analysis for adaptive traits using DNA pool sequencing of 434 genes, 52 candidate SNPs were identified and subsequently tested in genetic association studies for budset timing and tree height assessed over multiple years and sites. A total of 34 (65%) SNPs were significantly associated with budset timing, or tree height, or both. Although the percentages of explained variance (PVE) by individual SNPs were small, several significant SNPs were shared between sites and among years. CONCLUSIONS The sharing of genomic regions and significant SNPs between budset timing and tree height indicates pleiotropic effects. Significant QTLs and SNPs differed quite greatly among years, suggesting that different sets of genes for the same characters are involved at different stages in the tree's life history. The functional diversity of genes carrying significant SNPs and low observed PVE further indicated that a large number of polymorphisms are involved in adaptive genetic variation. Accordingly, for undomesticated species such as black spruce with natural populations of large effective size and low linkage disequilibrium, efficient marker systems that are predictive of adaptation should require the survey of large numbers of SNPs. Candidate SNP approaches like the one developed in the present study could contribute to reducing these numbers.
Collapse
Affiliation(s)
- Julien Prunier
- Centre for Forest Research, and Institute for Systems and Integrative Biology, Université Laval, Québec, Québec G1V 0A6, Canada.
| | | | | | | | | | | | | |
Collapse
|
39
|
Creux NM, Bossinger G, Myburg AA, Spokevicius AV. Induced somatic sector analysis of cellulose synthase (CesA) promoter regions in woody stem tissues. PLANTA 2013; 237:799-812. [PMID: 23132521 DOI: 10.1007/s00425-012-1792-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/17/2012] [Indexed: 05/20/2023]
Abstract
The increasing focus on plantation forestry as a renewable source of cellulosic biomass has emphasized the need for tools to study the unique biology of woody genera such as Eucalyptus, Populus and Pinus. The domestication of these woody crops is hampered by long generation times, and breeders are now looking to molecular approaches such as marker-assisted breeding and genetic modification to accelerate tree improvement. Much of what is known about genes involved in the growth and development of plants has come from studies of herbaceous models such as Arabidopsis and rice. However, transferring this information to woody plants often proves difficult, especially for genes expressed in woody stems. Here we report the use of induced somatic sector analysis (ISSA) for characterization of promoter expression patterns directly in the stems of Populus and Eucalyptus trees. As a case study, we used previously characterized primary and secondary cell wall-related cellulose synthase (CesA) promoters cloned from Eucalyptus grandis. We show that ISSA can be used to elucidate the phloem and xylem expression patterns of the CesA genes in Eucalyptus and Populus stems and also show that the staining patterns differ in Eucalyptus and Populus stems. These findings show that ISSA is an efficient approach to investigate promoter function in the developmental context of woody plant tissues and raise questions about the suitability of heterologous promoters for genetic manipulation in plant species.
Collapse
Affiliation(s)
- Nicky M Creux
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | | | | | | |
Collapse
|
40
|
Bräutigam K, Vining KJ, Lafon-Placette C, Fossdal CG, Mirouze M, Marcos JG, Fluch S, Fraga MF, Guevara MÁ, Abarca D, Johnsen Ø, Maury S, Strauss SH, Campbell MM, Rohde A, Díaz-Sala C, Cervera MT. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol Evol 2013; 3:399-415. [PMID: 23467802 PMCID: PMC3586649 DOI: 10.1002/ece3.461] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular "memory". Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change.
Collapse
Affiliation(s)
- Katharina Bräutigam
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Kelly J Vining
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Clément Lafon-Placette
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Carl G Fossdal
- Department of Biology and Environment, Norwegian Forest and Landscape InstitutePO Box 115, N-1431, Aas, Norway
| | - Marie Mirouze
- Epigenetic Regulations and Seed Development, Institut de Recherche pour le Développement, UMR232 ERL5300 CNRS-IRD911 Av. Agropolis, 34394, Montpellier, France
| | - José Gutiérrez Marcos
- School of Life Sciences, University of WarwickWellesbourne, Warkwick, CV35 9EF, United Kingdom
| | - Silvia Fluch
- Platform for Integrated Clone Management (PICME), Health & Environment Department, AIT Austrian Institute of Technology GmbHKonrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Mario Fernández Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA–HUCA), University of OviedoSpain
| | - M Ángeles Guevara
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| | - Dolores Abarca
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - Øystein Johnsen
- Department of Plant and Environmental Sciences, Norwegian University of Life SciencesPO Box 5003, N-1432, Ås, Norway
| | - Stéphane Maury
- UFR-Faculté des Sciences, UPRES EA 1207 ‘Laboratoire de Biologie des Ligneux et des Grandes Cultures’ (LBLGC), INRA, USC1328 ‘Arbres et Réponses aux Contraintes Hydrique et Environnementales’ (ARCHE), University of OrléansRue de Chartres, BP 6759, F-45067, Orléans, France
| | - Steven H Strauss
- Department of Forest Ecosystems and Society, Oregon State UniversityCorvallis, OR, 97331-5752, USA
| | - Malcolm M Campbell
- Centre for the Analysis of Genome Evolution and Function, Department of Cell & Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, University of Toronto1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Antje Rohde
- Department Plant Growth & Development, Institute of Agriculture and Fisheries ResearchCaritasstraat 21, 9090, Melle, Belgium
| | - Carmen Díaz-Sala
- Department of Life Sciences, University of AlcaláCtra. Madrid-Barcelona Km. 33,600, 28871, Alcalá de Henares, Madrid, Spain
| | - María-Teresa Cervera
- Dpt. of Forest Ecology and Genetics, Forest Genomics and Ecophysiology group, Forest Research Centre (CIFOR). INIACrta. La Coruña km 7,5, 28040, Madrid, Spain
- Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPMMadrid, Spain
| |
Collapse
|
41
|
Raherison E, Rigault P, Caron S, Poulin PL, Boyle B, Verta JP, Giguère I, Bomal C, Bohlmann J, MacKay J. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression. BMC Genomics 2012; 13:434. [PMID: 22931377 PMCID: PMC3534630 DOI: 10.1186/1471-2164-13-434] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 07/11/2012] [Indexed: 12/22/2022] Open
Abstract
Background Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees.
Collapse
Affiliation(s)
- Elie Raherison
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, QC, Canada, G1V 0A6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tsumura Y, Uchiyama K, Moriguchi Y, Ueno S, Ihara-Ujino T. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica. Heredity (Edinb) 2012; 109:349-60. [PMID: 22929151 DOI: 10.1038/hdy.2012.50] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Local adaptation is important in evolutionary processes and speciation. We used multiple tests to identify several candidate genes that may be involved in local adaptation from 1026 loci in 14 natural populations of Cryptomeria japonica, the most economically important forestry tree in Japan. We also studied the relationships between genotypes and environmental variables to obtain information on the selective pressures acting on individual populations. Outlier loci were mapped onto a linkage map, and the positions of loci associated with specific environmental variables are considered. The outlier loci were not randomly distributed on the linkage map; linkage group 11 was identified as a genomic island of divergence. Three loci in this region were also associated with environmental variables such as mean annual temperature, daily maximum temperature, maximum snow depth, and so on. Outlier loci identified with high significance levels will be essential for conservation purposes and for future work on molecular breeding.
Collapse
Affiliation(s)
- Y Tsumura
- Department of Forest Genetics, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
43
|
Nucleotide polymorphisms related to altitude and physiological traits in contrasting provenances of Norway spruce (Picea abies). Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0077-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Kullan ARK, van Dyk MM, Hefer CA, Jones N, Kanzler A, Myburg AA. Genetic dissection of growth, wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E. urophylla. BMC Genet 2012; 13:60. [PMID: 22817272 PMCID: PMC3416674 DOI: 10.1186/1471-2156-13-60] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND F1 hybrid clones of Eucalyptus grandis and E. urophylla are widely grown for pulp and paper production in tropical and subtropical regions. Volume growth and wood quality are priority objectives in Eucalyptus tree improvement. The molecular basis of quantitative variation and trait expression in eucalypt hybrids, however, remains largely unknown. The recent availability of a draft genome sequence (http://www.phytozome.net) and genome-wide genotyping platforms, combined with high levels of genetic variation and high linkage disequilibrium in hybrid crosses, greatly facilitate the detection of quantitative trait loci (QTLs) as well as underlying candidate genes for growth and wood property traits. In this study, we used Diversity Arrays Technology markers to assess the genetic architecture of volume growth (diameter at breast height, DBH) and wood basic density in four-year-old progeny of an interspecific backcross pedigree of E. grandis and E. urophylla. In addition, we used Illumina RNA-Seq expression profiling in the E. urophylla backcross family to identify cis- and trans-acting polymorphisms (eQTLs) affecting transcript abundance of genes underlying QTLs for wood basic density. RESULTS A total of five QTLs for DBH and 12 for wood basic density were identified in the two backcross families. Individual QTLs for DBH and wood basic density explained 3.1 to 12.2% of phenotypic variation. Candidate genes underlying QTLs for wood basic density on linkage groups 8 and 9 were found to share trans-acting eQTLs located on linkage groups 4 and 10, which in turn coincided with QTLs for wood basic density suggesting that these QTLs represent segregating components of an underlying transcriptional network. CONCLUSION This is the first demonstration of the use of next-generation expression profiling to quantify transcript abundance in a segregating tree population and identify candidate genes potentially affecting wood property variation. The QTLs identified in this study provide a resource for identifying candidate genes and developing molecular markers for marker-assisted breeding of volume growth and wood basic density. Our results suggest that integrated analysis of transcript and trait variation in eucalypt hybrids can be used to dissect the molecular basis of quantitative variation in wood property traits.
Collapse
Affiliation(s)
- Anand Raj Kumar Kullan
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | | | | | | | | | | |
Collapse
|
45
|
Hudson CJ, Freeman JS, Kullan ARK, Petroli CD, Sansaloni CP, Kilian A, Detering F, Grattapaglia D, Potts BM, Myburg AA, Vaillancourt RE. A reference linkage map for Eucalyptus. BMC Genomics 2012; 13:240. [PMID: 22702473 PMCID: PMC3436727 DOI: 10.1186/1471-2164-13-240] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/04/2012] [Indexed: 01/26/2023] Open
Abstract
Background Genetic linkage maps are invaluable resources in plant research. They provide a key tool for many genetic applications including: mapping quantitative trait loci (QTL); comparative mapping; identifying unlinked (i.e. independent) DNA markers for fingerprinting, population genetics and phylogenetics; assisting genome sequence assembly; relating physical and recombination distances along the genome and map-based cloning of genes. Eucalypts are the dominant tree species in most Australian ecosystems and of economic importance globally as plantation trees. The genome sequence of E. grandis has recently been released providing unprecedented opportunities for genetic and genomic research in the genus. A robust reference linkage map containing sequence-based molecular markers is needed to capitalise on this resource. Several high density linkage maps have recently been constructed for the main commercial forestry species in the genus (E. grandis, E. urophylla and E. globulus) using sequenced Diversity Arrays Technology (DArT) and microsatellite markers. To provide a single reference linkage map for eucalypts a composite map was produced through the integration of data from seven independent mapping experiments (1950 individuals) using a marker-merging method. Results The composite map totalled 1107 cM and contained 4101 markers; comprising 3880 DArT, 213 microsatellite and eight candidate genes. Eighty-one DArT markers were mapped to two or more linkage groups, resulting in the 4101 markers being mapped to 4191 map positions. Approximately 13% of DArT markers mapped to identical map positions, thus the composite map contained 3634 unique loci at an average interval of 0.31 cM. Conclusion The composite map represents the most saturated linkage map yet produced in Eucalyptus. As the majority of DArT markers contained on the map have been sequenced, the map provides a direct link to the E. grandis genome sequence and will serve as an important reference for progressing eucalypt research.
Collapse
Affiliation(s)
- Corey J Hudson
- School of Plant Science and CRC for Forestry, University of Tasmania, Private Bag 55 Hobart, Tasmania, 7001, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. THE NEW PHYTOLOGIST 2012; 194:116-128. [PMID: 22309312 DOI: 10.1111/j.1469-8137.2011.04038.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
• Genomic selection (GS) is expected to cause a paradigm shift in tree breeding by improving its speed and efficiency. By fitting all the genome-wide markers concurrently, GS can capture most of the 'missing heritability' of complex traits that quantitative trait locus (QTL) and association mapping classically fail to explain. Experimental support of GS is now required. • The effectiveness of GS was assessed in two unrelated Eucalyptus breeding populations with contrasting effective population sizes (N(e) = 11 and 51) genotyped with > 3000 DArT markers. Prediction models were developed for tree circumference and height growth, wood specific gravity and pulp yield using random regression best linear unbiased predictor (BLUP). • Accuracies of GS varied between 0.55 and 0.88, matching the accuracies achieved by conventional phenotypic selection. Substantial proportions (74-97%) of trait heritability were captured by fitting all genome-wide markers simultaneously. Genomic regions explaining trait variation largely coincided between populations, although GS models predicted poorly across populations, likely as a result of variable patterns of linkage disequilibrium, inconsistent allelic effects and genotype × environment interaction. • GS brings a new perspective to the understanding of quantitative trait variation in forest trees and provides a revolutionary tool for applied tree improvement. Nevertheless population-specific predictive models will likely drive the initial applications of GS in forest tree breeding.
Collapse
Affiliation(s)
- Marcos D V Resende
- EMBRAPA Forestry Research, Colombo, PR, 83411-000, Brazil
- Universidade Federal de Viçosa - Viçosa MG, 36570-000, Brazil
| | | | - Carolina P Sansaloni
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade de Brasilia - Campus Darcy Ribeiro Brasília, DF, 70910-900, Brazil
| | - Cesar D Petroli
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade de Brasilia - Campus Darcy Ribeiro Brasília, DF, 70910-900, Brazil
| | - Alexandre A Missiaggia
- FIBRIA Celulose S.A., Rod. Aracruz/Barra do Riacho, km 25, Aracruz, ES, 29197-900, Brazil
| | - Aurelio M Aguiar
- FIBRIA Celulose S.A., Rod. Aracruz/Barra do Riacho, km 25, Aracruz, ES, 29197-900, Brazil
| | - Jupiter M Abad
- FIBRIA Celulose S.A., Rod. Aracruz/Barra do Riacho, km 25, Aracruz, ES, 29197-900, Brazil
| | | | - Antonio M Rosado
- CENIBRA Celulose Nipo Brasileira S.A, Belo Oriente, MG, 35196-000, Brazil
| | - Danielle A Faria
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
| | - Georgios J Pappas
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Catolica de Brasília- SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| | - Andrzej Kilian
- DArT - Diversity Arrays Technology, POB 7141, Yarralumla, ACT, Australia 2600
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Catolica de Brasília- SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
47
|
Mizrachi E, Mansfield SD, Myburg AA. Cellulose factories: advancing bioenergy production from forest trees. THE NEW PHYTOLOGIST 2012; 194:54-62. [PMID: 22474687 DOI: 10.1111/j.1469-8137.2011.03971.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Fast-growing, short-rotation forest trees, such as Populus and Eucalyptus, produce large amounts of cellulose-rich biomass that could be utilized for bioenergy and biopolymer production. Major obstacles need to be overcome before the deployment of these genera as energy crops, including the effective removal of lignin and the subsequent liberation of carbohydrate constituents from wood cell walls. However, significant opportunities exist to both select for and engineer the structure and interaction of cell wall biopolymers, which could afford a means to improve processing and product development. The molecular underpinnings and regulation of cell wall carbohydrate biosynthesis are rapidly being elucidated, and are providing tools to strategically develop and guide the targeted modification required to adapt forest trees for the emerging bioeconomy. Much insight has already been gained from the perturbation of individual genes and pathways, but it is not known to what extent the natural variation in the sequence and expression of these same genes underlies the inherent variation in wood properties of field-grown trees. The integration of data from next-generation genomic technologies applied in natural and experimental populations will enable a systems genetics approach to study cell wall carbohydrate production in trees, and should advance the development of future woody bioenergy and biopolymer crops.
Collapse
Affiliation(s)
- Eshchar Mizrachi
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | | | | |
Collapse
|
48
|
Namroud MC, Bousquet J, Doerksen T, Beaulieu J. Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evol Appl 2012; 5:641-56. [PMID: 23028404 PMCID: PMC3461146 DOI: 10.1111/j.1752-4571.2012.00242.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 12/12/2022] Open
Abstract
A scan involving 1134 single-nucleotide polymorphisms (SNPs) from 709 expressed genes was used to assess the potential impact of artificial selection for height growth on the genetic diversity of white spruce. Two case populations of different sizes simulating different family selection intensities (K = 13% and 5%, respectively) were delineated from the Quebec breeding program. Their genetic diversity and allele frequencies were compared with those of control populations of the same size and geographic origin to assess the effect of increasing the selection intensity. The two control populations were also compared to assess the effect of reducing the sampling size. On one hand, in all pairwise comparisons, genetic diversity parameters were comparable and no alleles were lost in the case populations compared with the control ones, except for few rare alleles in the large case population. Also, the distribution of allele frequencies did not change significantly (P ≤ 0.05) between the populations compared, but ten and nine SNPs (0.8%) exhibited significant differences in frequency (P ≤ 0.01) between case and control populations of large and small sizes, respectively. Results of association tests between breeding values for height at 15 years of age and these SNPs supported the hypothesis of a potential effect of selection on the genes harboring these SNPs. On the other hand, contrary to expectations, there was no evidence that selection induced an increase in linkage disequilibrium in genes potentially affected by selection. These results indicate that neither the reduction in the sampling size nor the increase in selection intensity was sufficient to induce a significant change in the genetic diversity of the selected populations. Apparently, no loci were under strong selection pressure, confirming that the genetic control of height growth in white spruce involves many genes with small effects. Hence, selection for height growth at the present intensities did not appear to compromise background genetic diversity but, as predicted by theory, effects were detected at a few gene SNPs harboring intermediate allele frequencies.
Collapse
Affiliation(s)
- Marie-Claire Namroud
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université LavalQuebec City, QC, Canada
| | - Jean Bousquet
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université LavalQuebec City, QC, Canada
| | - Trevor Doerksen
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université LavalQuebec City, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre CentreQuebec City, QC, Canada
| | - Jean Beaulieu
- Arborea and Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université LavalQuebec City, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre CentreQuebec City, QC, Canada
| |
Collapse
|
49
|
Lidder P, Sonnino A. Biotechnologies for the management of genetic resources for food and agriculture. ADVANCES IN GENETICS 2012; 78:1-167. [PMID: 22980921 DOI: 10.1016/b978-0-12-394394-1.00001-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can facilitate the development and appropriate use of biotechnologies in developing countries; and that FAO and other relevant international organizations and donors should significantly increase their efforts to support the strengthening of national capacities in the development and appropriate use of pro-poor agricultural biotechnologies.
Collapse
Affiliation(s)
- Preetmoninder Lidder
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| | - Andrea Sonnino
- Office of Knowledge Exchange, Research and Extension, Research and Extension Branch, Food and Agriculture Organization of the UN (FAO), Viale delle Terme di Caracalla, Rome, Italy
| |
Collapse
|
50
|
Porth I, Hamberger B, White R, Ritland K. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 2011; 12:608. [PMID: 22177423 PMCID: PMC3288119 DOI: 10.1186/1471-2164-12-608] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/16/2011] [Indexed: 12/03/2022] Open
Abstract
Background In trees, a substantial amount of carbon is directed towards production of phenolics for development and defense. This metabolic pathway is also a major factor in resistance to insect pathogens in spruce. In such gene families, environmental stimuli may have an important effect on the evolutionary fate of duplicated genes, and different expression patterns may indicate functional diversification. Results Gene families in spruce (Picea) have expanded to superfamilies, including O-methyltransferases, cytochrome-P450, and dirigents/classIII-peroxidases. Neo-functionalization of superfamily members from different clades is reflected in expression diversification. Genetical genomics can provide new insights into the genetic basis and evolution of insect resistance in plants. Adopting this approach, we merged genotype data (252 SNPs in a segregating pedigree), gene expression levels (for 428 phenylpropanoid-related genes) and measures of susceptibility to Pissodes stobi, using a partial-diallel crossing-design with white spruce (Picea glauca). Thirty-eight expressed phenylpropanoid-related genes co-segregated with weevil susceptibility, indicating either causative or reactive effects of these genes to weevil resistance. We identified eight regulatory genomic regions with extensive overlap of quantitative trait loci from susceptibility and growth phenotypes (pQTLs) and expression QTL (eQTL) hotspots. In particular, SNPs within two different CCoAOMT loci regulate phenotypic variation from a common set of 24 genes and three resistance traits. Conclusions Pest resistance was associated with individual candidate genes as well as with trans-regulatory hotspots along the spruce genome. Our results showed that specific genes within the phenylpropanoid pathway have been duplicated and diversified in the conifer in a process fundamentally different from short-lived angiosperm species. These findings add to the information about the role of the phenylpropanoid pathway in the evolution of plant defense mechanisms against insect pests and provide substantial potential for the functional characterization of several not yet resolved alternative pathways in plant defenses.
Collapse
Affiliation(s)
- Ilga Porth
- Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T1Z4, Canada
| | | | | | | |
Collapse
|