1
|
Leyria J. Endocrine factors modulating vitellogenesis and oogenesis in insects: An update. Mol Cell Endocrinol 2024; 587:112211. [PMID: 38494046 DOI: 10.1016/j.mce.2024.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The endocrine system plays a pivotal role in shaping the mechanisms that ensure successful reproduction. With over a million known insect species, understanding the endocrine control of reproduction has become increasingly complex. Some of the key players include the classic insect lipid hormones juvenile hormone (JH) and ecdysteroids, and neuropeptides such as insulin-like peptides (ILPs). Individual endocrine factors not only modulate their own target tissue but also play crucial roles in crosstalk among themselves, ensuring successful vitellogenesis and oogenesis. Recent advances in omics, gene silencing, and genome editing approaches have accelerated research, offering both fundamental insights and practical applications for studying in-depth endocrine signaling pathways. This review provides an updated and integrated view of endocrine factors modulating vitellogenesis and oogenesis in insect females.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
2
|
Sukhan ZP, Hossen S, Cho Y, Lee WK, Kho KH. Molecular and structural analysis of Hdh-MIRP3 and its impact on reproductive regulation in female Pacific abalone, Haliotis discus hannai. Int J Biol Macromol 2024; 263:130352. [PMID: 38403211 DOI: 10.1016/j.ijbiomac.2024.130352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Molluscan insulin-related peptides (MIRP) play a crucial role in various biological processes, including reproduction and larval development in mollusk species. To investigate the involvement of MIRP in the ovarian development of Pacific abalone (Haliotis discus hannai), the Hdh-MIRP3 was cloned from cerebral ganglion (CG). Hdh-MIRP3 cDNA was 993 bp long, encoded a 13.22 kDa peptide, comprising 118 amino acids. Fluorescence in situ hybridization confirmed the localization of Hdh-MIRP3 in the CG and ovary. Molecular docking revealed that Hdh-MIRP3 binds to the N-terminal region of Hdh-IRP-R. Tissue expression analysis showed the highest Hdh-MIRP3 expression in the CG, followed by ovarian tissue. Hdh-MIRP3 expression was significantly upregulated in the CG and ovary during the ripe stage of seasonal ovarian development and in effective accumulative temperature conditioned abalone. Furthermore, siRNA silencing of Hdh-MIRP3 significantly downregulated the expression of four reproduction-related genes, including Hdh-GnRH, Hdh-GnRH-R, Hdh-IRP-R, and Hdh-VTG in both the CG and ovary, and Hdh-MIRP3 as well. These results indicate that Hdh-MIRP3 acts as a regulator of ovarian development in Pacific abalone. Additionally, expression analysis indicated that Hdh-MIRP3 plays a role in embryonic and larval development. Overall, the present findings elucidate the role of Hdh-MIRP3 in reproductive development in female Pacific abalone.
Collapse
Affiliation(s)
- Zahid Parvez Sukhan
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Shaharior Hossen
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Yusin Cho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Won-Kyo Lee
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
3
|
El-Desoky MS, Takeuchi R, Katayama H, Tsutsui N. Chemical synthesis of insulin-like peptide 1 and its potential role in vitellogenesis of the kuruma prawn Marsupenaeus japonicus. J Pept Sci 2023; 29:e3529. [PMID: 37403818 DOI: 10.1002/psc.3529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
The insulin superfamily comprises a group of peptides with diverse physiological functions and is conserved across the animal kingdom. Insulin-like peptides (ILPs) of crustaceans are classified into four major types: insulin, relaxin, gonadulin, and androgenic gland hormone (AGH)/insulin-like androgenic gland factor (IAG). Of these, the physiological functions of AGH/IAG have been clarified to be the regulation of male sex differentiation, but those of the other types have not been uncovered. In this study, we chemically synthesized Maj-ILP1, an ILP identified in the ovary of the kuruma prawn Marsupenaeus japonicus, using a combination of solid-phase peptide synthesis and regioselective disulfide bond formation reactions. As the circular dichroism spectral pattern of synthetic Maj-ILP1 is typical of other ILPs reported thus far, the synthetic peptide likely possessed the proper conformation. Functional analysis using ex vivo tissue incubation revealed that Maj-ILP1 significantly increased the expression of the yolk protein genes Maj-Vg1 and Maj-Vg2 in the hepatopancreas and Maj-Vg1 in the ovary of adolescent prawns. This is the first report on the synthesis of a crustacean ILP other than IAGs and also shows the positive relationship between the reproductive process and female-dominant ILP.
Collapse
Affiliation(s)
- Marwa Said El-Desoky
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
- Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom, Menoufia, Egypt
| | - Rino Takeuchi
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Hidekazu Katayama
- Department of Bioengineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan
| | - Naoaki Tsutsui
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
4
|
Glendinning S, Fitzgibbon QP, Smith GG, Ventura T. Unravelling the neuropeptidome of the ornate spiny lobster Panulirus ornatus: A focus on peptide hormones and their processing enzymes expressed in the reproductive tissues. Gen Comp Endocrinol 2023; 332:114183. [PMID: 36471526 DOI: 10.1016/j.ygcen.2022.114183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Neuropeptides are commonly produced in the neural tissues yet can have effects on far-reaching targets, with varied biological responses. We describe here the neuropeptidome of the ornate spiny lobster, Panulirus ornatus, a species of emerging importance to closed-system aquaculture, with a focus on peptide hormones produced by the reproductive tissues. Transcripts for a precursor to one neuropeptide, adipokinetic hormone/corazonin-related peptide (ACP) were identified in high numbers in the sperm duct of adult spiny lobsters suggesting a role for ACP in the reproduction of this species. Neuropeptide production in the sperm duct may be linked with physiological control of spermatophore production in the male, or alternatively may function in signalling to the female. The enzymes which process nascent neuropeptide precursors into their mature, active forms have seldom been studied in decapods, and never before at the multi-tissue level. We have identified transcripts for multiple members of the proprotein convertase subtisilin/kexin family in the ornate spiny lobster, with some enzymes showing specificity to certain tissues. In addition, other enzyme transcripts involved with neuropeptide processing are identified along with their tissue and life stage expression patterns.
Collapse
Affiliation(s)
- Susan Glendinning
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia.
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Gregory G Smith
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia; School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
5
|
Green S, Bachvaroff T, Sook Chung J. Eyestalk neuropeptide identification in the female red deep-sea crab, Chaceon quinquedens. Gen Comp Endocrinol 2023; 330:114128. [PMID: 36152768 DOI: 10.1016/j.ygcen.2022.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Eyestalk-derived neuropeptides, primarily the crustacean hyperglycemic hormone (CHH) neuropeptide family, regulate vitellogenesis in decapod crustaceans. The red deep-sea crab, Chaceon quinquedens, a cold-water species inhabiting depths between 200 and 1800 m, has supported a small fishery, mainly harvesting adult males in the eastern US for over 40 years. This study aimed to understand the role of eyestalk-neuropeptides in vitellogenesis in C. quinquedens with an extended intermolt stage. Chromatography shows two CHH and one MIH peak in the sinus gland, with a CHH2 peak area four times larger than CHH1. The cDNA sequence of MIH and CHH of C. quinquedens is isolated from the eyestalk ganglia, and the qPCR assay shows MIH is significantly higher only at ovarian stages 3 than 4 and 5. However, MIH transcript and its neuropeptides do differ between stages 1 and 3. While CHH transcripts remain constant, its neuropeptide levels are higher at stages 3 than 1. Additionally, transcriptomic analysis of the de novo eyestalk ganglia assembly at ovarian stages 1 and 3 found 28 eyestalk neuropeptides. A GIH/VIH or GSH/VSH belonging to the CHH family is absent in the transcriptome. Transcripts per million (TPM) values of ten neuropeptides increase by 1.3 to 2.0-fold at stage 3 compared to stage 1: twofold for Bursicon α, followed by CHH, AKH/corazonin-like, Pyrokinin, CCAP, Glycoprotein B, PDH1, and IDLSRF-like peptide, and 1.3-fold of allatostatin A and short NP-F. WXXXRamide, the only downregulated neuropeptide, decreases TPM by ∼ 2-fold at stage 3, compared to stage 1. Interestingly, neuroparsin with the highest TPM values remains the same in stages 1 and 3. The mandibular organ-inhibiting hormone is not found in de novo assembly. We report that CHH, MIH, and eight other neuropeptides may play a role in vitellogenesis in this species.
Collapse
Affiliation(s)
- Shadaesha Green
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
6
|
Lü Z, Liu Y, Yan J, Zhang Y, Gong L, Liu B, Liu J, Xu Z, Liu L. Insulin-like Peptide Receptor (ILPR) in the Cuttlefish Sepiella japonica: Characterization, Expression, and Regulation of Reproduction. Int J Mol Sci 2022; 23:12903. [PMID: 36361695 PMCID: PMC9654127 DOI: 10.3390/ijms232112903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 09/24/2024] Open
Abstract
Insulin-like peptide receptor (ILPR) can effectively regulate ovarian development in invertebrates, but its effect in cuttlefish has not been reported. We isolated and characterized a ILPR gene from Sepiella japonica, referred to as SjILPR. This gene displayed significant homologies to Octopus bimaculoides ILPR, and contained all typical features of insulin receptors and tyrosine kinase domain structure. SjILPR is expressed in all detected tissues, with the highest expression in the ovary. During ovarian development stages, its expression levels in the ovary, pancreas, and liver were correlated to the female reproductive cycle. After the silencing of SjILPR in vivo, comparative transcriptome analysis identified 4314 differentially expressed genes (DEGs) in the injected group, including 2586 down-regulated genes and 1728 up-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that 832 DEGs were assigned to 222 pathways, many pathways of which were related to gonadal development. Four down-regulated genes relevant to ovarian development (Vitellogenin 1, Vitellogenin 2, Cathepsin L1-like, and Follistatin) were selected to confirm the accuracy of RNA-seq data by qRT-PCR. These results showed that SjILPR might regulate ovarian development to control reproduction by affecting the expression of the relevant genes in female S. japonica.
Collapse
Affiliation(s)
- Zhenming Lü
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Yantao Liu
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jun Yan
- Zhejiang Marine Fisheries Research Institute, Zhoushan 316000, China
| | - Yao Zhang
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Li Gong
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Bingjian Liu
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jing Liu
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute of Zhejiang Province, Zhoushan 316000, China
| | - Liqin Liu
- National Engineering Research Center for Marine Germplasm Resources Exploration and Utilization, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
7
|
Hoang T, Foquet B, Rana S, Little DW, Woller DA, Sword GA, Song H. Development of RNAi Methods for the Mormon Cricket, Anabrus simplex (Orthoptera: Tettigoniidae). INSECTS 2022; 13:739. [PMID: 36005364 PMCID: PMC9409436 DOI: 10.3390/insects13080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Mormon crickets are a major rangeland pest in the western United States and are currently managed by targeted applications of non-specific chemical insecticides, which can potentially have negative effects on the environment. In this study, we took the first steps toward developing RNAi methods for Mormon crickets as a potential alternative to traditional broad-spectrum insecticides. To design an effective RNAi-based insecticide, we first generated a de novo transcriptome for the Mormon cricket and developed dsRNAs that could silence the expression of seven housekeeping genes. We then characterized the RNAi efficiencies and time-course of knockdown using these dsRNAs, and assessed their ability to induce mortality. We have demonstrated that it is possible to elicit RNAi responses in the Mormon cricket by injection, but knockdown efficiencies and the time course of RNAi response varied according to target genes and tissue types. We also show that one of the reasons for the poor knockdown efficiencies could be the presence of dsRNA-degrading enzymes in the hemolymph. RNAi silencing is possible in Mormon cricket, but more work needs to be done before it can be effectively used as a population management method.
Collapse
Affiliation(s)
- Toan Hoang
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Seema Rana
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Drew W. Little
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Derek A. Woller
- USDA-APHIS-PPQ-Science & Technology-Insect Management and Molecular Diagnostics Laboratory (Phoenix Station), Phoenix, AZ 85040, USA
| | - Gregory A. Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in Spodoptera litura (F.). INSECTS 2022; 13:insects13080701. [PMID: 36005325 PMCID: PMC9409390 DOI: 10.3390/insects13080701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The tobacco cutworm, Spodoptera litura (F.), exemplifies strong reproductive capacities and damages many agricultural crops. The insulin signaling pathway is known as a key determinant of female reproduction in insects. However, the detailed molecular mechanisms in these processes are poorly studied. Here, we injected bovine insulin into the newly emerged moth, resulting in gene expression changes in the insulin pathway, while knockdown of SlInR caused an inverse gene expression change involved in the insulin pathway. Further studies indicated that the content of JH-III, Vg, total proteins and triacylgycerol could be suppressed by SlInR dsRNA injection. Furthermore, stunted ovaries and lower fecundity were observed by RNAi. Our studies indicated that SlInR plays a key role in JH-III synthesis and the ovarian development in S. litura. Abstract Insulin signaling can regulate various physiological functions, such as energy metabolism and reproduction and so on, in many insects, including mosquito and locust. However, the molecular mechanism of this physiological process remains elusive. The tobacco cutworm, Spodoptera litura, is one of the most important pests of agricultural crops around the world. In this study, phosphoinositide 3-kinase (SlPI3K), protein kinase B (SlAKT), target of rapamycin (SlTOR), ribosomal protein S6 kinase (SlS6K) and transcription factor cAMP-response element binding protein (SlCREB) genes, except transcription factor forkhead box class O (SlFoxO), can be activated by bovine insulin injection. Then, we studied the influence of the insulin receptor gene (SlInR) on the reproduction of S. litura using RNA interference technology. qRT-PCR analysis revealed that SlInR was most abundant in the head. The SlPI3K, SlAKT, SlTOR, SlS6K and SlCREB genes were decreased, except SlFoxO, after the SlInR gene knockdown. Further studies revealed that the expression of vitellogenin mRNA and protein, Methoprene-tolerant gene (SlMet), could be down-regulated by the injection of dsRNA of SlInR significantly. Furthermore, a depletion in the insulin receptor by RNAi significantly decreased the content of juvenile hormone III (JH-III), total proteins and triacylgycerol. These changes indicated that a lack of SlInR could impair ovarian development and decrease fecundity in S. litura. Our studies contribute to a comprehensive insight into reproduction, regulated by insulin and the juvenile hormone signaling pathway through nutrition, and a provide theoretical basis for the reproduction process in pest insects.
Collapse
|
9
|
Characterization of Insulin-like Peptide (ILP) and Its Potential Role in Ovarian Development of the Cuttlefish Sepiella japonica. Curr Issues Mol Biol 2022; 44:2490-2504. [PMID: 35735611 PMCID: PMC9221753 DOI: 10.3390/cimb44060170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/09/2023] Open
Abstract
The insulin-like peptide (ILP) family is well known for regulating reproduction in invertebrates, while its role in mollusks remains largely unknown. In this study, we first isolated and characterized the ILP gene in the cuttlefish Sepiella japonica. The full-length SjILP cDNA obtained was 926 bp and encoded a precursor protein of 161 amino acids. The precursor protein consisted of a signal peptide, a B chain, a C-peptide, and an A chain. It possessed the typical features of ILP proteins, including two cleavage sites (KR) and eight conserved cysteines. To define the function of SjILP, the expression of SjILP in different tissues and ovarian development stages were analyzed using qRT-PCR. SjILP was mainly expressed in the ovary, and its gene expression correlated with ovarian development. Furthermore, silencing SjILP using RNA interference (RNAi) dramatically decreased the expression levels of four ovarian-development-related genes (vitellogenin1, vitellogenin2, cathepsin L1-like, and follistatin). These data suggest the critical role of SjILP in the regulation of ovarian development in S. japonica.
Collapse
|
10
|
Zhang BZ, Hu GL, Lu LY, Chen XL, Gao XW. Silencing of CYP6AS160 in Solenopsis invicta Buren by RNA interference enhances worker susceptibility to fipronil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:171-178. [PMID: 34365981 DOI: 10.1017/s0007485321000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 monooxygenases play a key role in pest resistance to insecticides by detoxification. Four new P450 genes, CYP6AS160, CYP6AS161, CYP4AB73 and CYP4G232 were identified from Solenopsis invicta. CYP6AS160 was highly expressed in the abdomen and its expression could be induced significantly with exposure to fipronil, whereas CYP4AB73 was not highly expressed in the abdomen and its expression could not be significantly induced following exposure to fipronil. Expression levels of CYP6AS160 and CYP4AB73 in workers were significantly higher than that in queens. RNA interference-mediated gene silencing by feeding on double-stranded RNA (dsRNA) found that the levels of this transcript decreased (by maximum to 64.6%) when they fed on CYP6AS160-specific dsRNA. Workers fed dsCYP6AS160 had significantly higher mortality after 24 h of exposure to fipronil compared to controls. Workers fed dsCYP6AS160 had reduced total P450 activity of microsomal preparations toward model substrates p-nitroanisole. However, the knockdown of a non-overexpressed P450 gene, CYP4AB73 did not lead to an increase of mortality or a decrease of total P450 activity. The knockdown effects of CYP6AS160 on worker susceptibility to fipronil, combined with our other findings, indicate that CYP6AS160 is responsible for detoxification of fipronil. Feeding insects dsRNA may be a general strategy to trigger RNA interference and may find applications in entomological research and in the control of insect pests in the field.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| |
Collapse
|
11
|
Transcriptional Regulation of Reproductive Diapause in the Convergent Lady Beetle, Hippodamia convergens. INSECTS 2022; 13:insects13040343. [PMID: 35447785 PMCID: PMC9026804 DOI: 10.3390/insects13040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Diapause is a dormant period typically controlled by daylength that ensures an insect’s survival through harsh environmental conditions. The convergent lady beetle, Hippodamia convergens, undergoes a reproductive diapause in winter, where female ovaries remain immature and no eggs are laid. This species is an important biological control agent, but during diapause, beetles are less likely to eat pest insects. Thus, knowledge of diapause mechanisms may facilitate manipulation thereof to improve biological control. Further, molecular studies of adult diapause and diapause in Coleoptera are relatively lacking. Here, we assembled and annotated a transcriptome for this species and quantified transcript expression changes during diapause. Female beetles were sampled at three times in diapause (early, mid, and late diapause), which allowed us to characterize the molecular processes occurring at distinct transitions throughout diapause. We found that transcripts involved in flight were consistently upregulated during diapause, which is consistent with dispersal flights at this stage, while transcripts involved in ovarian development were downregulated, which is consistent with the shutdown of reproduction in diapausing females. These findings identify key regulators of diapause in H. convergens and contribute to a growing body of literature on the molecular mechanisms of diapause across the insect phylogeny. Abstract Diapause is an alternate development program that synchronizes an insect’s life cycle with seasonally abundant resources and ensures survival in unfavorable conditions. The physiological basis of diapause has been well characterized, but the molecular mechanisms regulating it are still being elucidated. Here, we present a de novo transcriptome and quantify transcript expression during diapause in the convergent lady beetle Hippodamia convergens. H. convergens is used as an augmentative biocontrol agent, and adult females undergo reproductive diapause that is regulated by photoperiod. We sampled females at three stages (early, mid, and late diapause) and compared transcript expression to non-diapausing individuals. Based on principle component analysis, the transcriptomes of diapausing beetles were distinct from non-diapausing beetles, and the three diapausing points tended to cluster together. However, there were still classes of transcripts that differed in expression across distinct phases of diapause. In general, transcripts involved in muscle function and flight were upregulated during diapause, likely to support dispersal flights that occur during diapause, while transcripts involved in ovarian development were downregulated. This information could be used to improve biological control by manipulating diapause. Additionally, our data contribute to a growing understanding of the genetic regulation of diapause across diverse insects.
Collapse
|
12
|
Fan YH, Song HF, Abbas M, Wang YL, Li T, Ma EB, Cooper AMW, Silver K, Zhu KY, Zhang JZ. A dsRNA-degrading nuclease (dsRNase2) limits RNAi efficiency in the Asian corn borer (Ostrinia furnacalis). INSECT SCIENCE 2021; 28:1677-1689. [PMID: 33140888 DOI: 10.1111/1744-7917.12882] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of RNA interference (RNAi) varies substantially among different insect species. Rapid degradation of double-stranded RNA (dsRNA) by dsRNA-degrading nucleases (dsRNases) has been implicated to cause low RNAi efficiency in several insect species. In this study, we identified four dsRNase genes (OfdsRNase1, OfdsRNase2, OfdsRNase3 and OfdsRNase4) from the Asian corn borer (Ostrinia furnacalis) transcriptome database. Bioinformatic analyses showed that each deduced protein sequence contained endonuclease NS domains and signal peptides. Gene expression analysis revealed that OfdsRNase2 was exclusively expressed in the midgut of larvae. RNAi efficiency was investigated in 2-d-old fifth-instar larvae (high expression of dsRNase2) and 2-d-old pupae (low expression of dsRNase2) by feeding or injecting dsRNA targeting a marker gene that encodes the lethal giant larvae protein (OfLgl). Our results showed that OfLgl only partially silenced the expression of OfLgl in pupae, but not in larvae, suggesting that OfdsRNase2 could contribute to lower RNAi efficiency in larval stages. This hypothesis was supported by our RNAi-of-RNAi experiment using a tissue culture technique where the silencing efficiency against the reporter gene, OfHex1, was significantly improved after knockdown of OfdsRNase2. When double luciferase assays were performed to evaluate the role of the four dsRNases in vitro, only OfdsRNase2 expressed in S2 cells significantly affected RNAi efficiency by degrading dsRNA. Taken together, our results suggested that the degradation of dsRNA by OfdsRNase2 in the midgut contributed to low RNAi efficiency in O. furnacalis larvae.
Collapse
Affiliation(s)
- Yun-He Fan
- Institute of Applied Biology, Shanxi University, Taiyuan, China
- College of Life Science, Shanxi University, Taiyuan, China
| | - Hui-Fang Song
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, Shanxi, China
| | - Mureed Abbas
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yan-Li Wang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Tao Li
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - En-Bo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | | | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, Kansas, USA
| | - Jian-Zhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
13
|
Zheng H, Zeng B, Shang T, Zhou S. Identification of G protein-coupled receptors required for vitellogenesis and egg development in an insect with panoistic ovary. INSECT SCIENCE 2021; 28:1005-1017. [PMID: 32537938 DOI: 10.1111/1744-7917.12841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
G protein-coupled receptors (GPCRs), a superfamily of integral transmembrane proteins regulate a variety of physiological processes in insects. Juvenile hormone (JH) is known to stimulate Vitellogenin (Vg) synthesis in the fat body, secretion into the hemolymph and uptake by developing oocytes. However, the role of GPCRs in JH-dependent insect vitellogenesis and oocyte maturation remains elusive. In the present study, we performed transcriptomic analysis and RNA interference (RNAi) screening in vitellogenic females of the migratory locust Locusta migratoria. Of 22 GPCRs identified in ovarian transcriptome, LGR4, OR-A1, OR-A2, Mthl1, Mthl5 and Smo were most abundant in the ovary. By comparison, mAChR-C expressed at higher levels in the fat body, whereas Oct/TyrR, OARβ, AdoR and ADGRA3 were at higher expression levels in the brain. Our RNAi screening demonstrated that knockdown of six GPCRs resulted in defective phenotypes of Vg accumulation in developing oocytes, accompanied by blocked ovarian development and impaired oocyte maturation. While LGR4 and Oct/TyrR appeared to control Vg synthesis in the fat body, OR-A1, OR-A2, mAChR-C and CirlL regulated Vg transportation and uptake. The findings provide fundamental evidence for deciphering the regulatory mechanisms of GPCRs in JH-stimulated insect reproduction.
Collapse
Affiliation(s)
- Hongyuan Zheng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Baojuan Zeng
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Tiantian Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, Henan Province, China
| |
Collapse
|
14
|
Su S, Munganga BP, Tian C, Li J, Yu F, Li H, Wang M, He X, Tang Y. Comparative Analysis of the Intermolt and Postmolt Hepatopancreas Transcriptomes Provides Insight into the Mechanisms of Procambarus clarkii Molting Process. Life (Basel) 2021; 11:480. [PMID: 34070595 PMCID: PMC8228513 DOI: 10.3390/life11060480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, we used RNA-Seq to investigate the expression changes in the transcriptomes of two molting stages (postmolt (M) and intermolt (NM)) of the red swamp crayfish and identified differentially expressed genes. The transcriptomes of the two molting stages were de novo assembled into 139,100 unigenes with a mean length of 675.59 bp. The results were searched against the NCBI, NR, KEGG, Swissprot, and KOG databases, to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. Furthermore, using the DESeq R package, differentially expressed genes were evaluated. The analysis revealed that 2347 genes were significantly (p > 0.05) differentially expressed in the two molting stages. Several genes and other factors involved in several molecular events critical for the molting process, such as energy requirements, hormonal regulation, immune response, and exoskeleton formation were identified and evaluated by correlation and KEGG analysis. The expression profiles of transcripts detected via RNA-Seq were validated by real-time PCR assay of eight genes. The information presented here provides a transient view of the hepatopancreas transcripts available in the postmolt and intermolt stage of crayfish, hormonal regulation, immune response, and skeletal-related activities during the postmolt stage and the intermolt stage.
Collapse
Affiliation(s)
- Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Brian Pelekelo Munganga
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Can Tian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Meiyao Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Xinjin He
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| | - Yongkai Tang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (B.P.M.); (C.T.); (J.L.); (F.Y.); (H.L.); (M.W.); (X.H.)
| |
Collapse
|
15
|
Exogenous administration of dsRNA for the demonstration of RNAi in Maruca vitrata (lepidoptera: crambidae). 3 Biotech 2021; 11:197. [PMID: 33927988 DOI: 10.1007/s13205-021-02741-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022] Open
Abstract
The polyphagous spotted pod borer, Maruca vitrata is an important agricultural pest that causes extensive damage on various food crops. Though the pest is managed by synthetic chemicals, exploration of biotechnological approaches for its control is important. RNAi-based gene silencing is one such tool that has been extensively used for functional genomics and is highly variable in insects. In view of this, we have attempted to demonstrate RNAi in M. vitrata through exogenous double-stranded RNA (dsRNA) administration targeting seven genes associated with midgut, chemosensory, cell signalling and development. Two modes of exogenous dsRNA delivery by either haemolymph injection and/or ingestion into third and late third instar larval stages respectively exhibited efficient silencing of specific transcripts. Furthermore, dsRNA injection into the haemolymph showed significant reduction of target gene expression compared to negative controls establishing this mode of delivery to be more efficient. Interestingly, haemolymph injection required lesser dsRNA and led to higher reduction of transcript level vis-à-vis ingestion as demonstrated in dsRNA Serine Protease 33 (ds-SP33)-fed larvae. Over-expression of key RNAi component DICER and detection of siRNA authenticated the presence of RNAi in M. vitrata. Additionally, we have identified inhibitor molecules like morpholine, piperidine, carboxamide and piperidine-carboxamide through in silico analysis for blocking the function of SP33 to demonstrate the utility of functional genomics. Thus, the present study establishes the usefulness of injection and ingestion approaches for exogenous dsRNA delivery into M. vitrata larvae for effective RNAi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02741-8.
Collapse
|
16
|
Crucial Role of Juvenile Hormone Receptor Components Methoprene-Tolerant and Taiman in Sexual Maturation of Adult Male Desert Locusts. Biomolecules 2021; 11:biom11020244. [PMID: 33572050 PMCID: PMC7915749 DOI: 10.3390/biom11020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Currently (2020), Africa and Asia are experiencing the worst desert locust (Schistocerca gregaria) plague in decades. Exceptionally high rainfall in different regions caused favorable environmental conditions for very successful reproduction and population growth. To better understand the molecular mechanisms responsible for this remarkable reproductive capacity, as well as to fill existing knowledge gaps regarding the regulation of male reproductive physiology, we investigated the role of methoprene-tolerant (Scg-Met) and Taiman (Scg-Tai), responsible for transducing the juvenile hormone (JH) signal, in adult male locusts. We demonstrated that knockdown of these components by RNA interference strongly inhibits male sexual maturation, severely disrupting reproduction. This was evidenced by the inability to show mating behavior, the absence of a yellow-colored cuticle, the reduction of relative testes weight, and the drastically reduced phenylacetonitrile (PAN) pheromone levels of the treated males. We also observed a reduced relative weight, as well as relative protein content, of the male accessory glands in Scg-Met knockdown locusts. Interestingly, in these animals the size of the corpora allata (CA), the endocrine glands where JH is synthesized, was significantly increased, as well as the transcript level of JH acid methyltransferase (JHAMT), a rate-limiting enzyme in the JH biosynthesis pathway. Moreover, other endocrine pathways appeared to be affected by the knockdown, as evidenced by changes in the expression levels of the insulin-related peptide and two neuroparsins in the fat body. Our results demonstrate that JH signaling pathway components play a crucial role in male reproductive physiology, illustrating their potential as molecular targets for pest control.
Collapse
|
17
|
Veenstra JA, Leyria J, Orchard I, Lange AB. Identification of Gonadulin and Insulin-Like Growth Factor From Migratory Locusts and Their Importance in Reproduction in Locusta migratoria. Front Endocrinol (Lausanne) 2021; 12:693068. [PMID: 34177814 PMCID: PMC8220825 DOI: 10.3389/fendo.2021.693068] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Many insect species have several genes coding for insulin-related peptides (IRPs), but so far only a single IRP gene has been identified in migratory locusts. Here, we report and characterize two other genes coding for peptides that are related to insulin, namely gonadulin and arthropod insulin-like growth factor (aIGF); peptides postulated to be orthologs of Drosophila melanogaster insulin-like peptides 8 and 6 respectively. In Locusta migratoria the aIGF transcript is expressed in multiple tissues as was previously reported for IRP in both L. migratoria and Schistocerca gregaria, but there are significant differences in expression patterns between the two species. The gonadulin transcript, however, seems specific to the ovary, whereas its putative receptor transcript is expressed most abundantly in the ovary, fat body and the central nervous system. Since the central nervous system-fat body-ovary axis is essential for successful reproduction, we studied the influence of gonadulin on vitellogenesis and oocyte growth. A reduction in the gonadulin transcript (via RNA interference) led to a significant reduction in vitellogenin mRNA levels in the fat body and a strong oocyte growth inhibition, thus suggesting an important role for gonadulin in reproduction in this species.
Collapse
Affiliation(s)
- Jan A. Veenstra
- INCIA UMR 5287 CNRS, University of Bordeaux, Pessac, France
- *Correspondence: Jan A. Veenstra, ; Jimena Leyria,
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- *Correspondence: Jan A. Veenstra, ; Jimena Leyria,
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
18
|
Qiao H, Xiong Y, Jiang S, Zhang W, Xu L, Jin S, Gong Y, Wu Y, Fu H. Three neuroparsin genes from oriental river prawn, Macrobrachium nipponense, involved in ovary maturation. 3 Biotech 2020; 10:537. [PMID: 33224706 DOI: 10.1007/s13205-020-02531-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022] Open
Abstract
In this study, we identified three neuroparsin (NP) genes in Macrobrachium nipponense: Mn-NP1, Mn-NP2, and Mn-NP3, encoding 99, 100, and 101 amino acid proteins, respectively. Multiple sequence alignments showed that these genes contained 12 cysteine residues, of which 11 were at conserved positions. The total sequence identity between the genes was 47.5%, and they showed a high degree of sequence identity (> 54% similarity) with other crustacean genes. Phylogenetic tree analysis showed that Mn-NPs were clustered at different branches, indicating that Mn-NPs may have different functions. Tissue distribution data revealed that the three genes were present in males and females during the breeding and nonbreeding season, but their expression patterns differed. Mn-NP1 was highly expressed in the breeding season, in the male testis, and highly expressed in the nonbreeding season, in the female ovary. Mn-NP3 exhibited biased female expression in the breeding and nonbreeding season, with dominant expression in the ovary. All Mn-NPs were detected during embryo development, but with different expression patterns. These data indicated that Mn-NP1 may function during embryonic development, and that Mn-NP2 may be expressed during early embryo cell division, and late larval development. Mn-NP3 expression patterns reflected maternal inheritance, and may be associated with ovarian maturation. These expression data suggested that Mn-NP1 and Mn-NP2 are negatively correlated with ovarian development, with inhibition roles during this development. Mn-NP3 may be involved in vitellogenesis.
Collapse
|
19
|
You L, Zhang F, Huang S, Merchant A, Zhou X, Li Z. Over-expression of RNA interference (RNAi) core machinery improves susceptibility to RNAi in silkworm larvae. INSECT MOLECULAR BIOLOGY 2020; 29:353-362. [PMID: 32086963 DOI: 10.1111/imb.12639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/18/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
RNA interference (RNAi), one of the strategies that organisms use to defend against invading viruses, is an important tool for functional genomic analysis. In insects, the efficacy of RNAi varies amongst taxa. Lepidopteran insects are, in large part, recalcitrant to RNAi. The overall goal of this study is to overcome such insensitivity in lepidopterans to RNAi. We hypothesize that over-expression of core RNAi machinery enzymes can improve RNAi efficacy in traditionally recalcitrant species. A transgenic Bombyx mori strain, Baculovirus Immediate-Early Gene, ie1, promoter driven expression of silkworm Dicer2 coding sequence (IE1-BmDicer2), which over-expresses BmDicer2, was generated by piggyBac transposon-mediated transgenesis. Two indexes, the ratio of animals that showed a silencing phenotype and the duration of silencing, were used to evaluate silencing efficiency. Significant knockdown of target gene expression was observed at 48 h postinjection at both the transcriptional and translational levels. Furthermore, we coexpressed B. mori Argonaute 2 BmAgo2)and BmDicer 2 and found that 22% of the animals (n = 18) showed an obvious silencing effect even at 72 h, suggesting that coexpression of these two RNAi core machinery enzymes further increased the susceptibility of B. mori to injected double-stranded RNAs. This study offers a new strategy for functional genomics research in RNAi-refractory insect taxa in general and for lepidopterans in particular.
Collapse
Affiliation(s)
- L You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - F Zhang
- School of Life Science, Shanghai University, Shanghai, China
| | - S Huang
- Agricultrual and Medical Biotechnology, University of Kentucky, Lexington, KY, USA
| | - A Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - X Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Z Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Transcriptomic analysis of regulatory pathways involved in female reproductive physiology of Rhodnius prolixus under different nutritional states. Sci Rep 2020; 10:11431. [PMID: 32651410 PMCID: PMC7351778 DOI: 10.1038/s41598-020-67932-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
The triatomine Rhodnius prolixus, a vector of the etiological agent of Chagas disease, has long been used as model to understand important aspects of insect physiology. Despite this history, the impact of the nutritional state on regulatory pathways associated with reproductive performance in triatomines has never been studied. The insulin-like peptide/target of rapamycin (ILP/ToR) signaling pathway is typically responsible for detecting and interpreting nutrient levels. Here, we analyzed transcriptomes from the central nervous system, fat bodies and ovaries of adult females in unfed and fed conditions, with a focus on the ILP/ToR signaling. The results show an up-regulation of transcripts involved in ILP/ToR signaling in unfed insects. However, we demonstrate that this signaling is only activated in tissues from fed insects. Moreover, we report that FoxO (forkhead box O) factor, which regulates longevity via ILP signaling, is responsible for the up-regulation of transcripts related with ILP/ToR signaling in unfed insects. As a consequence, we reveal that unfed females are in a sensitized state to respond to an increase of ILP levels by rapidly activating ILP/ToR signaling. This is the first analysis that correlates gene expression and protein activation of molecules involved with ILP/ToR signaling in R. prolixus females in different nutritional states.
Collapse
|
21
|
Han B, Zhang T, Feng Y, Liu X, Zhang L, Chen H, Zeng F, Wang M, Liu C, Li Y, Cui J, Li Z, Mao J. Two insulin receptors coordinate oogenesis and oviposition via two pathways in the green lacewing, Chrysopa pallens. JOURNAL OF INSECT PHYSIOLOGY 2020; 123:104049. [PMID: 32199917 DOI: 10.1016/j.jinsphys.2020.104049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
Insulin signalling in insects, as in mammals, regulates various physiological functions, such as reproduction. However, the molecular mechanism by which insulin signals orchestrate ovarian stem cell proliferation, vitellogenesis, and oviposition remains elusive. Here, we investigate the functions of the phosphoinositide 3-kinase (PI3K)-serine/threonine kinase (Akt) pathway, GTPase Ras/mitogen-activated protein kinase (MAPK) pathway, and their downstream messengers in a natural predator, Chrysopa pallens, by the RNAi method. When C. pallens vitellogenin gene 1 (CpVg1) expression was knocked down, the follicle maturation was arrested and total fecundity was reduced. Silencing C. pallens insulin receptor 1 (CpInR1) suppressed Vg transcription and reduced egg mass and hatching rate. Depletion of C. pallens insulin receptor 2 (CpInR2) transcripts lowered Vg transcript level, hampered ovarian development and decreased reproductive output. Knockdown of C. pallens Akt (CpAkt) and C. pallens extracellular-signal-regulated kinase (Cperk) caused phenotypes similar to those caused by knockdown of CpInR2. Disruption of C. pallens transcription factor forkhead box O (CpFoxO) expression caused no significant effects on ovarian development, but sharply impaired total fecundity. Interference with the expression of C. pallens target of rapamycin (CpTor) gene and C. pallens cAMP-response element binding protein (CpCreb) gene led to a down-regulation of Vg transcription, blocking of ovariole growth, and decrease in egg quality. These results suggested the two CpInRs orchestrate oogenesis and oviposition via two signalling pathways to guarantee natural reproduction in the green lacewing, C. pallens.
Collapse
Affiliation(s)
- Benfeng Han
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingting Zhang
- School of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yanjiao Feng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaopin Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lisheng Zhang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongyin Chen
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fanrong Zeng
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengqing Wang
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenxi Liu
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyan Li
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, Zhejiang, China
| | - Jianjun Mao
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
22
|
Identification of neuropeptides from eyestalk transcriptome profiling analysis of female oriental river prawn (Macrobrachium nipponense) under hypoxia and reoxygenation conditions. Comp Biochem Physiol B Biochem Mol Biol 2020; 241:110392. [DOI: 10.1016/j.cbpb.2019.110392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
|
23
|
Liu J, Liu A, Liu F, Huang H, Ye H. Role of neuroparsin 1 in vitellogenesis in the mud crab, Scylla paramamosain. Gen Comp Endocrinol 2020; 285:113248. [PMID: 31430448 DOI: 10.1016/j.ygcen.2019.113248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 08/16/2019] [Indexed: 11/17/2022]
Abstract
Neuroparsin (NP) is an important neuropeptide in invertebrates. It is well-known that NP displays multiple biological activities, including antidiuretic and inhibition of vitellogenesis in insects. However, the information about its effect in crustaceans is scarce. In this study, the sequence of Sp-NP1 was selected from the transcriptome database from the mud crab, Scylla paramamosain. Sequence analyses indicate that the Sp-NP1 amino acid (AA) sequences consist of a 27 AA signal peptide and a 74 AA mature peptide, which contains 12 cysteine residues. qRT-PCR analysis has revealed that the expressions of Sp-NP1 gene are high in the nervous tissues and extremely low in the ovary and hepatopancreas. In situ hybridization has shown that the positive signals are localized in cell cluster 6 of protocerebrum and cell clusters 10 and 11 of deutocerebrum. The presence of Sp-NP1 in the haemolymph has been detected in S. paramamosain through western blot, which indicates that Sp-NP1 serves as an endocrine factor in the regulation of physiological activities. In vitro experiments have further shown that the mRNA level of vitellogenin in the hepatopancreas notably decreases following administration of recombinant Sp-NP1, while the mRNA level of vitellogenin receptor and cyclin B in the ovary shows no significant differences. Collectively, Sp-NP1 possibly can inhibit the production of vitellogenin in the hepatopancreas and has no direct effect on the ovary in S. paramamosain.
Collapse
Affiliation(s)
- Jing Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
24
|
Wang X, Ma S, Liu Y, Lu W, Sun L, Zhao P, Xia Q. Transcriptional repression of endogenous genes in BmE cells using CRISPRi system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103172. [PMID: 31103783 DOI: 10.1016/j.ibmb.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/03/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Recent advancements in genetic engineering technology have led to the development of CRISPR interference (CRISPRi) as a precise tool for regulating gene expression. When CRISPR/dCas9 is fused with transcriptional repressors, the system can robustly silence endogenous gene expression. The CRISPR/Cas9 tool is a promising alternative in organisms (e.g., Bombyx mori) that do not respond to traditional gene suppression techniques, such as RNA interference (RNAi). However, transcriptional repressors remain poorly categorized in multiple cell types and species, leading to difficulties in optimizing performance and efficiency. Here, we tested CRISPRi usability and efficiency in Bombyx mori cells (BmE). We fused dCas9 to five transcriptional repressors including KRAB, Hairy, SID, SRDX, and ERD. All five constructs were efficient in BmE cells. In a proof-of-concept experiment, we showed that CRISPRi acting on BmSoxE (a gene involved in cell proliferation) could generate similar phenotypes as RNAi gene suppression. Moreover, CRISPRi has fewer off-target effects. Through co-transfection of BmE cells with sgRNAs, we also demonstrated that dCas9 could simultaneously repress the expression of multiple genes. Furthermore, we identified sgRNA distance from transcriptional start site (TSS) and the dCas9: sgRNA ratio as the two limiting factors of CRISPRi efficiency. Our results demonstrated that CRISPR/dCas9 is a viable and rapid alternative for functional investigations of the B. mori genome and perhaps other Lepidoptera insects.
Collapse
Affiliation(s)
- Xiaogang Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Sanyuan Ma
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Yue Liu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Wei Lu
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Le Sun
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
25
|
Gijbels M, Lenaerts C, Vanden Broeck J, Marchal E. Juvenile Hormone receptor Met is essential for ovarian maturation in the Desert Locust, Schistocerca gregaria. Sci Rep 2019; 9:10797. [PMID: 31346226 PMCID: PMC6658565 DOI: 10.1038/s41598-019-47253-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023] Open
Abstract
Juvenile hormones (JH) are key endocrine regulators produced by the corpora allata (CA) of insects. Together with ecdysteroids, as well as nutritional cues, JH coordinates different aspects of insect postembryonic development and reproduction. The function of the recently characterized JH receptor, Methoprene-tolerant (Met), appears to be conserved in different processes regulated by JH. However, its functional interactions with other hormonal signalling pathways seem highly dependent on the feeding habits and on the developmental and reproductive strategies employed by the insect species investigated. Here we report on the effects of RNA interference (RNAi) mediated SgMet knockdown during the first gonadotrophic cycle in female desert locusts (Schistocerca gregaria). This voracious, phytophagous pest species can form migrating swarms that devastate field crops and harvests in several of the world’s poorest countries. A better knowledge of the JH signalling pathway may contribute to the development of novel, more target-specific insecticides to combat this very harmful swarming pest. Using RNAi, we show that the JH receptor Met is essential for ovarian maturation, vitellogenesis and associated ecdysteroid biosynthesis in adult female S. gregaria. Interestingly, knockdown of SgMet also resulted in a significant decrease of insulin-related peptide (SgIRP) and increase of neuroparsin (SgNP) 3 and 4 transcript levels in the fat body, illustrating the existence of an intricate regulatory interplay between different hormonal factors. In addition, SgMet knockdown in females resulted in delayed display of copulation behaviour with virgin males, when compared with dsGFP injected control animals. Moreover, we observed an incapacity of adult dsSgMet injected female locusts to oviposit during the time of the experimental setup. As such, SgMet is an essential gene playing crucial roles in the endocrine communication necessary for successful reproduction of the desert locust.
Collapse
Affiliation(s)
- Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000, Leuven, Belgium
| | - Cynthia Lenaerts
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000, Leuven, Belgium. .,Imec, Kapeldreef 75, B- 3001, Leuven, Belgium.
| |
Collapse
|
26
|
Castro-Arnau J, Marín A, Castells M, Ferrer I, Maestro JL. The expression of cockroach insulin-like peptides is differentially regulated by physiological conditions and affected by compensatory regulation. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:57-67. [PMID: 30822409 DOI: 10.1016/j.jinsphys.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
In insects, the insulin receptor (InR) pathway is involved in regulating key physiological processes, including juvenile hormone (JH) synthesis, vitellogenin production, and oocyte growth. This raises the question about which ligand (or ligands) binds to InR to trigger the above effects. We have cloned seven insulin-like peptides (BgILP1 to 7) from female Blattella germanica cockroaches and found that the brain expresses BgILP1 to 6, the fat body BgILP7, and the ovary BgILP2. Starvation induces the reduction of BgILP3, 5, and 6 mRNA levels in the brain, and the various BgILPs are differentially expressed during the gonadotrophic cycle. In addition, by knocking down the BgILPs we were able to identify compensatory regulation at transcriptional level between the different BgILPs, although none of the BgILP knockdown assays, including the knockdown of the seven BgILPs, produced the same phenotypes that we achieved by depleting InR. Taken together, the results indicate that B. germanica ILPs are differentially expressed in tissues and in response to physiological conditions, and that they are affected by compensatory regulation.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Ainoa Marín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Marc Castells
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Iamil Ferrer
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
27
|
Lenaerts C, Monjon E, Van Lommel J, Verbakel L, Vanden Broeck J. Peptides in insect oogenesis. CURRENT OPINION IN INSECT SCIENCE 2019; 31:58-64. [PMID: 31109674 DOI: 10.1016/j.cois.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
The physiological control of reproduction in insects depends on a combination of environmental and internal cues. In the adult stage, insects become sexually mature and generate gametes. In females, the latter process is designated as oogenesis. Peptides are a versatile class of extracellular signalling molecules that regulate many processes, including oogenesis. At present, the best documented physiological control mechanism of insect oogenesis is the insulin-related peptide signalling pathway. It regulates different stages of the process and provides a functional link between nutritional status and reproduction. Several other peptides have been shown to exert gonadoregulatory activities, but in most cases their exact mode of action still has to be unravelled and their effects on oogenesis could be direct or indirect. Some regulatory peptides, such as the Drosophila sex peptide, are being transferred from the male to the female during the mating process.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Emilie Monjon
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Joachim Van Lommel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Lina Verbakel
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
28
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
29
|
Lenaerts C, Marchal E, Peeters P, Vanden Broeck J. The ecdysone receptor complex is essential for the reproductive success in the female desert locust, Schistocerca gregaria. Sci Rep 2019; 9:15. [PMID: 30626886 PMCID: PMC6327042 DOI: 10.1038/s41598-018-36763-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/21/2018] [Indexed: 02/08/2023] Open
Abstract
Ecdysteroid hormones influence the development and reproduction of arthropods by binding a heterodimeric complex of nuclear receptors, the ecdysone receptor (EcR) and the retinoid-X-receptor/ultraspiracle (RXR/USP). Here, we report on the in vivo role(s) of the ecdysone receptor complex, SchgrEcR/SchgrRXR, in the female reproductive physiology of a major phytophagous pest insect, i.e. the desert locust, Schistocerca gregaria. Tissue and temporal distribution profiles were analysed during the first gonadotrophic cycle of adult female locusts. RNA interference was used as a reverse genetics tool to investigate the in vivo role of the ecdysone receptor complex in ovarian maturation, oogenesis, fertility and fecundity. We discovered that silencing the ecdysone receptor complex in S. gregaria resulted in impaired ovulation and oviposition, indicative for a crucial role of this complex in chorion formation. We also found evidence for a feedback of SchgrEcR/SchgrRXR on juvenile hormone biosynthesis by the corpora allata. Furthermore, we observed a tissue-dependent effect of the SchgrEcR/SchgrRXR knockdown on the transcript levels of the insulin receptor and neuroparsin 3 and 4. The insulin receptor transcript levels were upregulated in the brain, but not the fat body and gonads. Neuroparsins 3 and 4 transcript levels were down regulated in the brain and fat body, but not in the gonads.
Collapse
Affiliation(s)
- Cynthia Lenaerts
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Paulien Peeters
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular and Developmental Physiology and Signal Transduction research group, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000, Leuven, Belgium
| |
Collapse
|
30
|
Oliphant A, Alexander JL, Swain MT, Webster SG, Wilcockson DC. Transcriptomic analysis of crustacean neuropeptide signaling during the moult cycle in the green shore crab, Carcinus maenas. BMC Genomics 2018; 19:711. [PMID: 30257651 PMCID: PMC6158917 DOI: 10.1186/s12864-018-5057-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ecdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis. Results Transcriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis. Conclusions The data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5057-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Jodi L Alexander
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Simon G Webster
- School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - David C Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DA, UK.
| |
Collapse
|
31
|
Zera AJ, Vellichirammal NN, Brisson JA. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:233-243. [PMID: 29656101 DOI: 10.1016/j.jinsphys.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The functional basis of life history adaptation is a key topic of research in life history evolution. Studies of wing-polymorphism in the cricket Gryllus firmus have played a prominent role in this field. However, prior in-depth investigations of morph specialization have primarily focused on a single hormone, juvenile hormone, and a single aspect of intermediary metabolism, the fatty-acid biosynthetic component of lipid metabolism. Moreover, the role of diurnal variation in life history adaptation in G. firmus has been understudied, as is the case for organisms in general. Here, we identify genes whose expression differs consistently between the morphs independent of time-of-day during early adulthood, as well as genes that exhibit a strong pattern of morph-specific diurnal expression. We find strong, consistent, morph-specific differences in the expression of genes involved in endocrine regulation, carbohydrate and lipid metabolism, and immunity - in particular, in the expression of an insulin-like-peptide precursor gene and genes involved in triglyceride production. We also find that the flight-capable morph exhibited a substantially greater number of genes exhibiting diurnal change in gene expression compared with the flightless morph, correlated with the greater circadian change in the hemolymph juvenile titer in the dispersing morph. In fact, diurnal differences in expression within the dispersing morph at different times of the day were significantly greater in magnitude than differences between dispersing and flightless morphs at the same time-of-day. These results provide important baseline information regarding the potential role of variable gene expression on life history specialization in morphs of G. firmus, and the first information on genetically-variable, diurnal change in gene expression, associated with a key life history polymorphism. These results also suggest the existence of prominent morph-specific circadian differences in gene expression in G. firmus, possibly caused by the morph-specific circadian rhythm in the juvenile hormone titer.
Collapse
Affiliation(s)
- Anthony J Zera
- School of Biological Sciences, University of Nebraska-Lincoln, NE 68588, United States.
| | | | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
32
|
Nguyen TV, Rotllant GE, Cummins SF, Elizur A, Ventura T. Insights Into Sexual Maturation and Reproduction in the Norway Lobster ( Nephrops norvegicus) via in silico Prediction and Characterization of Neuropeptides and G Protein-coupled Receptors. Front Endocrinol (Lausanne) 2018; 9:430. [PMID: 30100897 PMCID: PMC6073857 DOI: 10.3389/fendo.2018.00430] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
Multiple biological processes across development and reproduction are modulated by neuropeptides that are predominantly produced and secreted from an animal's central nervous system. In the past few years, advancement of next-generation sequencing technologies has enabled large-scale prediction of putative neuropeptide genes in multiple non-model species, including commercially important decapod crustaceans. In contrast, knowledge of the G protein-coupled receptors (GPCRs), through which neuropeptides act on target cells, is still very limited. In the current study, we have used in silico transcriptome analysis to elucidate genes encoding neuropeptides and GPCRs in the Norway lobster (Nephrops norvegicus), which is one of the most valuable crustaceans in Europe. Fifty-seven neuropeptide precursor-encoding transcripts were detected, including phoenixin, a vertebrate neurohormone that has not been detected in any invertebrate species prior to this study. Neuropeptide gene expression analysis of immature and mature female N. norvegicus, revealed that some reproduction-related neuropeptides are almost exclusively expressed in immature females. In addition, a total of 223 GPCR-encoding transcripts were identified, of which 116 encode GPCR-A (Rhodopsin), 44 encode GPCR-B (Secretin) and 63 encode other GPCRs. Our findings increase the molecular toolbox of neural signaling components in N. norvegicus, allowing for further advances in the fisheries/larvae culture of this species.
Collapse
Affiliation(s)
- Tuan V. Nguyen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Guiomar E. Rotllant
- Institute de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Scott F. Cummins
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
- *Correspondence: Tomer Ventura
| |
Collapse
|
33
|
Qiao H, Fu H, Xiong Y, Jiang S, Zhang W, Sun S, Jin S, Gong Y, Wang Y, Shan D, Li F, Wu Y. Molecular insights into reproduction regulation of female Oriental River prawns Macrobrachium nipponense through comparative transcriptomic analysis. Sci Rep 2017; 7:12161. [PMID: 28939826 PMCID: PMC5610250 DOI: 10.1038/s41598-017-10439-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important commercial aquaculture resource in China. During breeding season, short ovary maturation cycles of female prawns cause multi-generation reunions in ponds and affect the growth of females representing individual miniaturization (known as autumn -propagation). These reproductive characteristics pose problems for in large - scale farming. To date, the molecular mechanisms of reproduction regulation of M. nipponense remain unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalk and cerebral ganglia of female M. nipponense during breeding and non-breeding seasons. Differentially expressed gene enrichment analysis results revealed several important reproduction related terms and signaling pathways, such as "photoreceptor activity", "structural constituent of cuticle" and "G-protein coupled receptor activity". The following six key genes from the transcriptome were predicted to mediate environmental factors regulating reproduction of M. nipponense: neuroparsin, neuropeptide F II, orcokinin II, crustacean cardioactive peptide, pigment-dispersing hormone 3 and tachykinin. These results will contribute to a better understanding of the molecular mechanisms of reproduction of oriental river prawns. Further detailed functional analyses of the candidate reproduction regulation related neuropeptides are needed to shed light on the mechanisms of reproduction of crustacean.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yabing Wang
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Dongyan Shan
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Fei Li
- Wuxi Fishery College Nanjing Agricultural University, Wuxi, 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| |
Collapse
|
34
|
Role of the venus kinase receptor in the female reproductive physiology of the desert locust, Schistocerca gregaria. Sci Rep 2017; 7:11730. [PMID: 28916758 PMCID: PMC5601475 DOI: 10.1038/s41598-017-11434-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Venus kinase receptors (VKR) are a subfamily of invertebrate receptor tyrosine kinases, which have only recently been discovered. They contain an intracellular tyrosine kinase domain and an extracellular Venus FlyTrap domain. VKRs have been functionally and pharmacologically characterized in only two invertebrate species, namely the human parasite Schistosoma mansoni and the mosquito Aedes aegypti, where they play a crucial role in oogenesis. Here, we report the characterization of a VKR in the desert locust, Schistocerca gregaria. We performed an in-depth profiling study of the SgVKR transcript levels in different tissues throughout the female adult stage. Using the RNA interference technique, the possible role of SgVKR was investigated. SgVKR knockdown had significant effects on ovarian ecdysteroid levels and on the size of oocytes during the vitellogenic stage. SgVKR is probably involved in the complex cross-talk between several important pathways regulating female reproductive physiology. Contrary to A. aegypti and S. mansoni, we cannot conclude that this receptor is essential for reproduction, since silencing SgVKR did not affect fecundity or fertility. Considering the evolutionary distance between A. aegypti and S. gregaria, as well as the differences in regulation of their female reproductive physiology, this article constitutes a valuable asset in better understanding VKRs.
Collapse
|
35
|
Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. PEST MANAGEMENT SCIENCE 2016; 72:1231-1241. [PMID: 26299648 DOI: 10.1002/ps.4103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 07/22/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Juvenile hormone (JH) plays a critical role in the regulation of metamorphosis in Leptinotarsa decemlineata, a notorious defoliator of potato. JH acid methyltransferase (JHAMT) is involved in one of the final steps of JH biosynthesis. RESULTS A putative JHAMT cDNA (LdJHAMT) was cloned. Two double-stranded RNAs (dsRNAs) (dsJHAMT1 and dsJHAMT2) against LdJHAMT were constructed and bacterially expressed. Experiments were conducted to investigate the effectiveness of RNAi in both second- and fourth-instar larvae. Dietary introduction of dsJHAMT1 and dsJHAMT2 successfully knocked down the target gene, lowered JH titre in the haemolymph and reduced the transcript of Krüppel homologue 1 gene. Ingestion of dsJHAMT caused larval death and weight loss, shortened larval developmental period and impaired pupation. Moreover, the dsJHAMT-fed pupae exhibited lower adult emergence rates. The resulting adults weighed an average of 50 mg less than the control group, and the females did not deposit eggs. Application of pyriproxyfen to the dsJHAMT-fed insects rescued all the negative effects. CONCLUSIONS LdJHAMT expresses functional JHAMT enzyme. The RNAi targeting LdJHAMT could be used for control of L. decemlineata. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kai-Yun Fu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qian Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Li-Tao Zhou
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Feng-Gong Lü
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
36
|
Veenstra JA. Similarities between decapod and insect neuropeptidomes. PeerJ 2016; 4:e2043. [PMID: 27257538 PMCID: PMC4888303 DOI: 10.7717/peerj.2043] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Neuropeptides are important regulators of physiological processes and behavior. Although they tend to be generally well conserved, recent results using trancriptome sequencing on decapod crustaceans give the impression of significant differences between species, raising the question whether such differences are real or artefacts. Methods. The BLAST+ program was used to find short reads coding neuropeptides and neurohormons in publicly available short read archives. Such reads were then used to find similar reads in the same archives, and the DNA assembly program Trinity was employed to construct contigs encoding the neuropeptide precursors as completely as possible. Results. The seven decapod species analyzed in this fashion, the crabs Eriocheir sinensis, Carcinus maenas and Scylla paramamosain, the shrimp Litopenaeus vannamei, the lobster Homarus americanus, the fresh water prawn Macrobrachium rosenbergii and the crayfish Procambarus clarkii had remarkably similar neuropeptidomes. Although some neuropeptide precursors could not be assembled, in many cases individual reads pertaining to the missing precursors show unambiguously that these neuropeptides are present in these species. In other cases, the tissues that express those neuropeptides were not used in the construction of the cDNA libraries. One novel neuropeptide was identified: elongated PDH (pigment dispersing hormone), a variation on PDH that has a two-amino-acid insertion in its core sequence. Hyrg is another peptide that is ubiquitously present in decapods and is likely a novel neuropeptide precursor. Discussion. Many insect species have lost one or more neuropeptide genes, but apart from elongated PDH and hyrg all other decapod neuropeptides are present in at least some insect species, and allatotropin is the only insect neuropeptide missing from decapods. This strong similarity between insect and decapod neuropeptidomes makes it possible to predict the receptors for decapod neuropeptides that have been deorphanized in insects. This includes the androgenic insulin-like peptide that seems to be homologous to drosophila insulin-like peptide 8.
Collapse
Affiliation(s)
- Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (CNRS UMR5287), University of Bordeaux , Pessac , France
| |
Collapse
|
37
|
Nässel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016; 73:271-90. [PMID: 26472340 PMCID: PMC11108470 DOI: 10.1007/s00018-015-2063-3] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023]
Abstract
Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Louvain, Belgium
| |
Collapse
|
38
|
Dillen S, Chen Z, Vanden Broeck J. Nutrient-dependent control of short neuropeptide F transcript levels via components of the insulin/IGF signaling pathway in the desert locust, Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:64-70. [PMID: 26631598 DOI: 10.1016/j.ibmb.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/31/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
Peptides of the short neuropeptide F (sNPF) family modulate feeding behavior in a wide variety of insect species, including the desert locust, Schistocerca gregaria. Likewise, the nutritional state of the animal can strongly affect sNPF expression. Although several studies have been published describing these nutrient-dependent effects, it remains largely unclear how they are achieved. In this study, we describe a series of in vivo experiments which indicate that it is not the act of feeding in se, but rather the consequent availability of nutrients in the insect's hemolymph that gives rise to the postprandial modulation of sNPF expression. Furthermore, by performing a series of RNAi-mediated knockdown experiments, we were able to show that components of the evolutionarily conserved insulin/insulin-related growth factor (IGF) signaling pathway form a functional link between nutrient levels and sNPF transcript levels.
Collapse
Affiliation(s)
- Senne Dillen
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, BE-3000, Belgium
| | - Ziwei Chen
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, BE-3000, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Biology, KU Leuven, Naamsestraat 59, Leuven, BE-3000, Belgium.
| |
Collapse
|
39
|
Neuropeptides in the cerebral ganglia of the mud crab, Scylla paramamosain: transcriptomic analysis and expression profiles during vitellogenesis. Sci Rep 2015; 5:17055. [PMID: 26592767 PMCID: PMC4655400 DOI: 10.1038/srep17055] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides play a critical role in regulating animal reproduction. In vertebrates, GnRH, GnIH and kisspeptin are the key neuropeptide hormones of the reproductive axis, however, the reproductive axis for invertebrates is vague. Knowledge on ovarian development of the mud crab, Scylla paramamosain, is critical for aquaculture and resources management of the commercially important species. This study employed Illumina sequencing, reverse transcription-polymerase chain reaction and quantitative real-time PCR techniques to identify neuropeptides that may be involved in ovarian development of S. paramamosain. A total of 32 neuropeptide transcripts from two dozen neuropeptide families, 100 distinct mature peptides were predicted from the transcriptome data of female S. paramamosain cerebral ganglia. Among them, two families, i.e. GSEFLamide and WXXXRamide, were first identified from the cerebral ganglia of crustaceans. Of these neuropeptides, 21 transcripts of interest were selected for further confirmation and all of them were detected in the cerebral ganglia, as well as in other nervous tissues and the ovary. Most of them also had differential expression in the cerebral ganglia during various vitellogenic stages, suggesting their likely involvement in regulating vitellogenesis and ovarian maturation. Overall, these findings provide an important basis for subsequent studies on peptide function in reproduction of S. paramamosain.
Collapse
|
40
|
Ons S, Bellés X, Maestro JL. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:129-133. [PMID: 26462930 DOI: 10.1016/j.jinsphys.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Orcokinins (OKs) are neuropeptides that were first identified in crustacean through their myotropic activity. In insects, the OK gene gives rise to two mRNAs coding for two different families of conserved mature neuropeptides: OKA and OKB. Although OKs are conserved in many insect species, its physiological role in this animal class is not fully understood. Until now prothoracicotropic, regulatory of light entrainment to the circadian clock and "awakening" activities have been reported for these peptides in different insect species. Here we report the identification of OKA and OKB precursors in the cockroach Blattella germanica. OKA mRNA was detected in brain, whereas OKB mRNA was detected both in brain and midgut. In vivo silencing of OK precursors suggests the involvement of OK gene products in the regulation of vitellogenin expression in the fat body, an action that appears to be independent of juvenile hormone. This is the first time that a function of this kind has been reported for OKs.
Collapse
Affiliation(s)
- Sheila Ons
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Xavier Bellés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
41
|
Hou L, Jiang F, Yang P, Wang X, Kang L. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:63-71. [PMID: 26036749 DOI: 10.1016/j.ibmb.2015.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 05/26/2023]
Abstract
Neuropeptides serve as the most important regulatory signals in insects. Many neuropeptides and their precursors have been identified in terms of the contig sequences of whole genome information of the migratory locust (Locusta migratoria), which exhibits a typical phenotypic plasticity in morphology, behavior and physiology. However, functions of these locust neuropeptides are largely unknown. In this study, we first revised the 23 reported neuropeptide precursor genes and identified almost all the neuropeptide precursors and corresponding products in L. migratoria. We further revealed the significant expansion profiles (such as AKH) and alternative splicing of neuropeptide genes (Lom-ITP, Lom-OK and Lom-NPF1). Transcriptomic analysis indicated that several neuropeptides, such as Lom-ACP and Lom-OK, displayed development-specific expression patterns. qRT-PCR data confirmed that most neuropeptide precursors were strongly expressed in the central nervous system. Fifteen neuropeptide genes displayed different expression levels between solitarious and gregarious locusts. These findings provide valuable clues to understand neuropeptide evolution and their functional roles in basic biology and phase transition in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
Lismont E, Vleugels R, Marchal E, Badisco L, Van Wielendaele P, Lenaerts C, Zels S, Tobe SS, Vanden Broeck J, Verlinden H. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schistocerca gregaria. Front Neurosci 2015; 9:84. [PMID: 25814925 PMCID: PMC4357254 DOI: 10.3389/fnins.2015.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022] Open
Abstract
Allatotropins (ATs) are pleiotropic neuropeptides initially isolated from the tobacco hornworm, Manduca sexta. In 2008, the first receptor for AT-like peptides (ATR) was characterized in Bombyx mori. Since then, ATRs have also been characterized in M. sexta, Tribolium castaneum, Aedes aegypti and Bombus terrestris. These receptors show sequence similarity to vertebrate orexin (ORX) receptors. When generating an EST-database of the desert locust (Schistocerca gregaria) central nervous system, we found cDNA sequences encoding the Schgr-AT precursor and a fragment of its putative receptor. This receptor cDNA has now been completed and functionally expressed in mammalian cell lines. Activation of this receptor, designated as Schgr-ATR, by Schgr-AT caused an increase in intracellular calcium ions, as well as cyclic AMP (cAMP), with an EC50 value in the nanomolar range. In addition, the transcript distribution of both the Schgr-AT precursor and Schgr-ATR was investigated by means of quantitative real-time PCR. Moreover, we found more evidence for the myotropic and allatostimulatory actions of Schgr-AT in the desert locust. These data are discussed and situated in a broader context by comparison with literature data on AT and ATR in insects.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Rut Vleugels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium ; Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Liesbeth Badisco
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | | | - Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Sven Zels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| |
Collapse
|
43
|
Eichner C, Dalvin S, Skern-Mauritzen R, Malde K, Kongshaug H, Nilsen F. Characterization of a novel RXR receptor in the salmon louse (Lepeophtheirus salmonis, Copepoda) regulating growth and female reproduction. BMC Genomics 2015; 16:81. [PMID: 25765704 PMCID: PMC4333900 DOI: 10.1186/s12864-015-1277-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nuclear receptors have crucial roles in all metazoan animals as regulators of gene transcription. A wide range of studies have elucidated molecular and biological significance of nuclear receptors but there are still a large number of animals where the knowledge is very limited. In the present study we have identified an RXR type of nuclear receptor in the salmon louse (Lepeophtheirus salmonis) (i.e. LsRXR). RXR is one of the two partners of the Ecdysteroid receptor in arthropods, the receptor for the main molting hormone 20-hydroxyecdysone (E20) with a wide array of effects in arthropods. RESULTS Five different LsRXR transcripts were identified by RACE showing large differences in domain structure. The largest isoforms contained complete DNA binding domain (DBD) and ligand binding domain (LBD), whereas some variants had incomplete or no DBD. LsRXR is transcribed in several tissues in the salmon louse including ovary, subcuticular tissue, intestine and glands. By using Q-PCR it is evident that the LsRXR mRNA levels vary throughout the L. salmonis life cycle. We also show that the truncated LsRXR transcript comprise about 50% in all examined samples. We used RNAi to knock-down the transcription in adult reproducing female lice. This resulted in close to zero viable offspring. We also assessed the LsRXR RNAi effects using a L. salmonis microarray and saw significant effects on transcription in the female lice. Transcription of the major yolk proteins was strongly reduced by knock-down of LsRXR. Genes involved in lipid metabolism and transport were also down regulated. Furthermore, different types of growth processes were up regulated and many cuticle proteins were present in this group. CONCLUSIONS The present study demonstrates the significance of LsRXR in adult female L. salmonis and discusses the functional aspects in relation to other arthropods. LsRXR has a unique structure that should be elucidated in the future.
Collapse
Affiliation(s)
- Christiane Eichner
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| | - Sussie Dalvin
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway. .,Institute of Marine Research, Bergen, Norway.
| | | | - Ketil Malde
- Institute of Marine Research, Bergen, Norway.
| | - Heidi Kongshaug
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| | - Frank Nilsen
- Department of Biology, Sea Lice Research Centre, University of Bergen, Bergen, Norway.
| |
Collapse
|
44
|
Santos D, Vanden Broeck J, Wynant N. Systemic RNA interference in locusts: reverse genetics and possibilities for locust pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:9-14. [PMID: 32846691 DOI: 10.1016/j.cois.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a biological process triggered by double stranded (ds)RNA that results in sequence-dependent mRNA degradation. Because of its high specificity, this post-transcriptional gene silencing mechanism is a widely used tool for reverse genetics in several insect species. In particular, locusts possess a very robust and sensitive RNAi response that has already been exploited to investigate a diverse range of important physiological processes. These orthopteran insects constitute important model organisms in several areas of entomology, but they can also become voracious swarming pests that threaten the agricultural production in large parts of the world. In comparison to the widely applied chemical insecticides, the RNAi-technology could contribute to the development of a novel generation of insecticides, with high species-specificity. In this article, we discuss the potential of the RNAi-technology in loss of function studies in locusts, as well as to control locust populations.
Collapse
Affiliation(s)
- Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
45
|
Characterization of the shrimp neuroparsin (MeNPLP): RNAi silencing resulted in inhibition of vitellogenesis. FEBS Open Bio 2014; 4:976-86. [PMID: 25431753 PMCID: PMC4244560 DOI: 10.1016/j.fob.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/21/2014] [Accepted: 09/19/2014] [Indexed: 11/21/2022] Open
Abstract
The full-length Metapenaeus ensis neuroparsin (MeNPLP) cDNA was cloned which encodes a shrimp protein homologous to the insect neuroparsin and vertebrate insulin-like growth factor binding protein (IGFBP). MeNPLP cDNA is 1389 bp in length and the longest open reading frame is 303 bp in length. The first 27 aa are predicted to be the signal peptide and aa 28-101 is the mature peptide with an estimated molecular weight of 7.83 kDa and pI of 5. It shows high amino acid sequence similarity (42-68%) to the neuroparsin of insects and N-terminal end of the IGFBP of vertebrates. The cysteine residues in MeNPLP responsible for disulfide bond formation are conserved as in other neuroparsin-like proteins. The expression level of MeNPLP is the highest in the hepatopancreas, followed by the nerve cord, brain, heart, ovary, and muscle. However, it was not expressed in the testis. Using an insect neuroparsin antibody, MeNPLP could only be detected in the hepatopancreatic tubules, suggesting that MeNPLP may be a secretary product. Although MeNPLP expression was stimulated in the ovary, it was inhibited in the hepatopancreas after treatment with neurotransmitter serotonin (5-HT). In vivo gene silencing of MeNPLP could cause a significant decrease of vitellogenin transcript level in the hepatopancreas and ovary. As a result, a corresponding decrease in vitellogenin protein level was observed in the hemolymph and ovary. In conclusion, this study has provided the first evidence that MeNPLP is involved in the initial stage of ovary maturation in shrimp.
Collapse
|
46
|
Marchal E, Hult EF, Huang J, Pang Z, Stay B, Tobe SS. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development. PLoS One 2014; 9:e106737. [PMID: 25197795 PMCID: PMC4157775 DOI: 10.1371/journal.pone.0106737] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Independent of the design of the life cycle of any insect, their growth and reproduction are highly choreographed through the action of two versatile hormones: ecdysteroids and juvenile hormones (JH). However, the means by which JH can target tissues and exert its pleiotropic physiological effects is currently still not completely elucidated. Although the identity of the one JH receptor is currently still elusive, recent evidence seems to point to the product of the Methoprene-tolerant gene (Met) as the most likely contender in transducing the action of JH. Studies on the role of this transcription factor have mostly been focused on immature insect stages. In this study we used the viviparous cockroach Diploptera punctata, a favorite model in studying JH endocrinology, to examine the role of Met during reproduction. A tissue distribution and developmental profile of transcript levels was determined for Met and its downstream partners during the first gonadotropic cycle of this cockroach. Using RNA interference, our study shows that silencing Met results in an arrest of basal oocyte development; vitellogenin is no longer transcribed in the fat body and no longer taken up by the ovary. Patency is not induced in these animals which fail to produce the characteristic profile of JH biosynthesis typical of the first gonadotropic cycle. Moreover, the ultrastructure of the follicle cells showed conspicuous whorls of rough endoplasmic reticulum and a failure to form chorion. Our study describes the role of Met on a cellular and physiological level during insect reproduction, and confirms the role of Met as a key factor in the JH signaling pathway.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenguo Pang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Barbara Stay
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
47
|
Abrisqueta M, Süren-Castillo S, Maestro JL. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 49:14-23. [PMID: 24657890 DOI: 10.1016/j.ibmb.2014.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 05/23/2023]
Abstract
Female reproductive processes, which comprise, amongst others, the synthesis of yolk proteins and the endocrine mechanisms which regulate this synthesis, need a considerable amount of energy and resources. The role of communicating that the required nutritional status has been attained is carried out by nutritional signalling pathways and, in particular, by the insulin receptor (InR) pathway. In the present study, using the German cockroach, Blattella germanica, as a model, we analysed the role of InR in different processes, but mainly those related to juvenile hormone (JH) synthesis and vitellogenin production. We first cloned the InR cDNA from B. germanica (BgInR) and then determined that its expression levels were constant in corpora allata and fat body during the first female gonadotrophic cycle. Results showed that the observed increase in BgInR mRNA in fat body from starved compared to fed females was abolished in those females treated with systemic RNAi in vivo against the transcription factor BgFoxO. RNAi-mediated BgInR knockdown during the final two nymphal stages produced significant delays in the moults, together with smaller adult females which could not spread the fore- and hindwings properly. In addition, BgInR knockdown led to a severe inhibition of juvenile hormone synthesis in adult female corpora allata, with a concomitant reduction of mRNA levels corresponding to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase-1, HMG-CoA synthase-2, HMG-CoA reductase and methyl farnesoate epoxidase. BgInR RNAi treatment also reduced fat body vitellogenin mRNA and oocyte growth. Our results show that BgInR knockdown produces similar phenotypes to those obtained in starved females in terms of corpora allata activity and vitellogenin synthesis, and indicate that the InR pathway mediates the activation of JH biosynthesis and vitellogenin production elicited by nutrition signalling.
Collapse
Affiliation(s)
- Marc Abrisqueta
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Songül Süren-Castillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - José L Maestro
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
48
|
Ren D, Cai Z, Song J, Wu Z, Zhou S. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. INSECT MOLECULAR BIOLOGY 2014; 23:175-184. [PMID: 24308607 DOI: 10.1111/imb.12074] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
RNA interference (RNAi) by introducing double-stranded RNA (dsRNA) is a powerful approach to the analysis of gene function in insects; however, RNAi responses vary dramatically in different insect species and tissues, and the underlying mechanisms remain poorly understood. The migratory locust, a destructive insect pest and a hemimetabolic insect with panoistic ovaries, is considered to be a highly susceptible species to RNAi via dsRNA injection, but its ovary appears to be completely insensitive. In the present study, we showed that dsRNA persisted only briefly in locust haemolymph. The ovariole sheath was permeable to dsRNA, but injected dsRNA was not present in the follicle cells and oocytes. The lack of dsRNA uptake into the follicle cells and oocytes is likely to be the primary factor that contributes to the ineffective RNAi response in locust ovaries. These observations provide insights into tissue-dependent variability of RNAi and help in achieving successful gene silencing in insensitive tissues.
Collapse
Affiliation(s)
- D Ren
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Wynant N, Santos D, Vanden Broeck J. Biological mechanisms determining the success of RNA interference in insects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:139-67. [PMID: 25262241 DOI: 10.1016/b978-0-12-800178-3.00005-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insects constitute the largest group of animals on this planet, having a huge impact on our environment, as well as on our quality of life. RNA interference (RNAi) is a posttranscriptional gene silencing mechanism triggered by double-stranded (ds)RNA fragments. This process not only forms the basis of a widely used reverse genetics research method in many different eukaryotes but also holds great promise to contribute to the species-specific control of agricultural pests and to combat viral infections in beneficial and disease vectoring insects. However, in many economically important insect species, such as flies, mosquitoes, and caterpillars, systemic delivery of naked dsRNA does not trigger effective gene silencing. Although many components of the RNAi pathway have initially been deciphered in the fruit fly, Drosophila melanogaster, it will be of major importance to investigate this process in a wider variety of species, including dsRNA-sensitive insects such as locusts and beetles, to elucidate the factors responsible for the remarkable variability in RNAi efficiency, as observed in different insects. In this chapter, we review the current knowledge on the RNAi pathway, as well as the most recent insights into the mechanisms that might determine successful RNAi in insects.
Collapse
Affiliation(s)
- Niels Wynant
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium.
| | - Dulce Santos
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat, Leuven, Belgium
| |
Collapse
|
50
|
Swevers L, Vanden Broeck J, Smagghe G. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 2013; 4:319. [PMID: 24204347 PMCID: PMC3817476 DOI: 10.3389/fphys.2013.00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/15/2013] [Indexed: 11/13/2022] Open
Abstract
RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," Athens, Greece
| | | | | |
Collapse
|