1
|
Zhou C, Zheng X, Peng K, Feng K, Yue B, Wu Y. Chromosome-level genome assembly of the kiang (Equus kiang) illuminates genomic basis for its high-altitude adaptation. Integr Zool 2024; 19:1199-1210. [PMID: 38151756 DOI: 10.1111/1749-4877.12795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The kiang (Equus kiang) can only be observed in the Qinghai-Tibet Plateau (QTP). The kiang displayed excellent athletic performance in the high-altitude environment, which attracted wide interest in the investigation of the potential adaptive mechanisms to the extreme environment. Here, we assembled a chromosome-level genome of the kiang based on Hi-C sequencing technology. A total of 324.14 Gb clean data were generated, and the chromosome-level genome with 26 chromosomes (25 + X) and scaffold N50 of 101.77 Mb was obtained for the kiang. The genomic synteny analysis revealed large-scale chromosomal rearrangement during the evolution process of Equus species. Phylogenetic and divergence analyses revealed that the kiang was the sister branch to the ass and diverged from a common ancestor at approximately 13.5 Mya. The expanded gene families were mainly related to the hypoxia response, metabolism, and immunity. The kiang suffered a significant loss of olfaction-related genes, which might indicate decreased olfactory sensibility. Positively selected genes (PSGs) detected in the kiang were mainly associated with hypoxia response. Especially, there were two species-specific missense amino acid mutations in the PSG STAT3 annotated in the hypoxia-inducible factor 1 signal pathway, which may play an important role in the high-altitude adaptation of the kiang. Moreover, structure variations in the kiang genome were also identified, which possibly contributed to the high-altitude adaptation of the kiang. Comparative analysis revealed a lot of species-specific insertions and deletions in the kiang genome, such as PIK3CB and AKT with 3258 and 189 bp insertions in the intron region, respectively, possibly affecting the expression and regulation of hypoxia-related downstream pathways. This study provided valuable genomic resources, and our findings help a better understanding of the underlying adaptive strategies to the high-altitude environment in the kiang.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kexin Peng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Kaize Feng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Ma Y, Zou C, Yang Y, Fang M, Guan Y, Sun J, Gao Y, Shang Z, Zhang X. Arachidonic acid enhances hepatocyte bile acid uptake and alleviates cholestatic liver disease by upregulating OATP1 expression. Food Funct 2024; 15:9916-9927. [PMID: 39258405 DOI: 10.1039/d4fo02158d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Cholestatic liver disease is caused by disorders of bile synthesis, secretion, and excretion. Over the long term, progressive liver cell damage from the disease evolves into liver fibrosis and cirrhosis, ultimately leading to liver failure and even cancer. Notably, cholestatic liver disease has a complex pathogenesis that remains relatively unclear. In this study, we generated two mouse models of cholestatic liver disease using a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and α-naphthyl isothiocyanate (ANIT) gavage. Quantitative proteomics using liquid chromatography-tandem mass spectrometry showed that arachidonic acid metabolism was a common pathway in both models. Additionally, serum arachidonic acid concentrations were lower in both models than in the control group. Arachidonic acid supplementation in the diet of DDC model mice significantly reduced the levels of serum markers of cholestasis (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, total bile acid, and total bilirubin) and decreased the degree of bile duct hyperplasia and cholestasis. To elucidate the mechanisms by which arachidonic acid improved bile stasis, we analyzed gene expression after arachidonic acid administration and found that Oatp1 was upregulated in the liver tissue of cholestatic mice. Arachidonic acid also increased Oatp1 expression in AML12 cells, which promoted bile acid uptake. Conclusively, our research showed that arachidonic acid mitigates cholestatic liver disease by upregulating Oatp1, promoting bile acid uptake by hepatocytes and participating in intestinal-hepatic circulation. Overall, these results suggest that supplementing foods with arachidonic acid in the daily diet may be an effective treatment strategy for cholestatic liver disease.
Collapse
Affiliation(s)
- Yanlu Ma
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yunfeng Guan
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Jianqi Sun
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine Anhui Hospital, Anhui, China
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Shanghai Traditional Chinese Medicine Clinical Key Laboratory, Shanghai, China
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Lu W, Aihaiti A, Abudukeranmu P, Liu Y, Gao H. Arachidonic acid metabolism as a novel pathogenic factor in gastrointestinal cancers. Mol Cell Biochem 2024:10.1007/s11010-024-05057-2. [PMID: 38963615 DOI: 10.1007/s11010-024-05057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Gastrointestinal (GI) cancers are a major global health burden, representing 20% of all cancer diagnoses and 22.5% of global cancer-related deaths. Their aggressive nature and resistance to treatment pose a significant challenge, with late-stage survival rates below 15% at five years. Therefore, there is an urgent need to delve deeper into the mechanisms of gastrointestinal cancer progression and optimize treatment strategies. Increasing evidence highlights the active involvement of abnormal arachidonic acid (AA) metabolism in various cancers. AA is a fatty acid mainly metabolized into diverse bioactive compounds by three enzymes: cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. Abnormal AA metabolism and altered levels of its metabolites may play a pivotal role in the development of GI cancers. However, the underlying mechanisms remain unclear. This review highlights a unique perspective by focusing on the abnormal metabolism of AA and its involvement in GI cancers. We summarize the latest advancements in understanding AA metabolism in GI cancers, outlining changes in AA levels and their potential role in liver, colorectal, pancreatic, esophageal, gastric, and gallbladder cancers. Moreover, we also explore the potential of targeting abnormal AA metabolism for future therapies, considering the current need to explore AA metabolism in GI cancers and outlining promising avenues for further research. Ultimately, such investigations aim to improve treatment options for patients with GI cancers and pave the way for better cancer management in this area.
Collapse
Affiliation(s)
- Weiqin Lu
- General Surgery, Cancer Center, Department of Vascular Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | | | - Yajun Liu
- Aksu First People's Hospital, Xinjiang, China
| | - Huihui Gao
- Cancer Center, Department of Hospital Infection Management and Preventive Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Chen W, Han Y, Xu Y, Wang T, Wang Y, Chen X, Qiu X, Li W, Li H, Fan Y, Yao Y, Zhu T. Fine particulate matter exposure and systemic inflammation: A potential mediating role of bioactive lipids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172993. [PMID: 38719056 DOI: 10.1016/j.scitotenv.2024.172993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Inflammation is a key mechanism underlying the adverse health effects of exposure to fine particulate matter (PM2.5). Bioactive lipids in the arachidonic acid (ARA) pathway are important in the regulation of inflammation and are reportedly altered by PM2.5 exposure. Ceramide-1-phosphate (C1P), a class of sphingolipids, is required to initiate ARA metabolism. We examined the role of C1P in the alteration of ARA metabolism after PM2.5 exposure and explored whether changes in the ARA pathway promoted systemic inflammation based on a panel study involving 112 older adults in Beijing, China. Ambient PM2.5 levels were continuously monitored at a fixed station from 2013 to 2015. Serum cytokine levels were measured to assess systemic inflammation. Multiple bioactive lipids in the ARA pathway and three subtypes of C1P were quantified in blood samples. Mediation analyses were performed to test the hypotheses. We observed that PM2.5 exposure was positively associated with inflammatory cytokines and the three subtypes of C1P. Mediation analyses showed that C1P significantly mediated the associations of ARA and 5, 6-dihydroxyeicosatrienoic acid (5, 6-DHET), an ARA metabolite, with PM2.5 exposure. ARA, 5, 6-DHET, and leukotriene B4 mediated systemic inflammatory response to PM2.5 exposure. For example, C1P C16:0 (a subtype of C1P) mediated a 12.9 % (95 % confidence interval: 3.7 %, 32.5 %) increase in ARA associated with 3-day moving average PM2.5 exposure, and ARA mediated a 27.1 % (7.8 %, 61.2 %) change in interleukin-8 associated with 7-day moving average PM2.5 exposure. Our study indicates that bioactive lipids in the ARA and sphingolipid metabolic pathways may mediate systemic inflammation after PM2.5 exposure.
Collapse
Affiliation(s)
- Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Yifan Xu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Xiongan, Hebei, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, China
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China
| | - Yunfei Fan
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; China National Environmental Monitoring Centre, Beijing, China
| | - Yuan Yao
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China; Department of Environmental Health Sciences, Jonathan and Karin Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China.
| |
Collapse
|
5
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
6
|
Xue X, Wang L, Wu R, Li Y, Liu R, Ma Z, Jia K, Zhang Y, Li X. Si-Wu-Tang alleviates metabolic dysfunction-associated fatty liver disease by inhibiting ACSL4-mediated arachidonic acid metabolism and ferroptosis in MCD diet-fed mice. Chin Med 2024; 19:79. [PMID: 38844978 PMCID: PMC11157816 DOI: 10.1186/s13020-024-00953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic liver disease worldwide. Si-Wu-Tang (SWT), a traditional Chinese medicine decoction has shown therapeutic effects on various liver diseases. However, the hepatoprotective effects and underlying mechanism of SWT on MAFLD remain unclear. METHODS First, a methionine-choline-deficient (MCD) diet-fed mice model was used and lipidomic analysis and transcriptomic analysis were performed. The contents of total iron ions, ferrous ions, and lipid peroxidation were detected and Prussian blue staining was performed to confirm the protective effects of SWT against ferroptosis. Finally, chemical characterization and network pharmacological analysis were employed to identify the potential active ingredients. RESULTS Serological and hepatic histopathological findings indicated SWT's discernible therapeutic impact on MCD diet-induced MAFLD. Lipidomic analysis revealed that SWT improved intrahepatic lipid accumulation by inhibiting TG synthesis and promoting TG transport. Transcriptomic analysis suggested that SWT ameliorated abnormal FA metabolism by inhibiting FA synthesis and promoting FA β-oxidation. Then, ferroptosis phenotype experiments revealed that SWT could effectively impede hepatocyte ferroptosis, which was induced by long-chain acyl-CoA synthetase 4 (ACSL4)-mediated esterification of arachidonic acid (AA). Finally, chemical characterization and network pharmacological analysis identified that paeoniflorin and other active ingredients might be responsible for the regulative effects against ferroptosis and MAFLD. CONCLUSION In conclusion, our study revealed the intricate mechanism through which SWT improved MCD diet-induced MAFLD by targeting FA metabolism and ferroptosis in hepatocytes, thus offering a novel therapeutic approach for the treatment of MAFLD and its complications.
Collapse
Affiliation(s)
- Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Le Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Havrylyuk D, Heidary DK, Glazer EC. The Impact of Inorganic Systems and Photoactive Metal Compounds on Cytochrome P450 Enzymes and Metabolism: From Induction to Inhibition. Biomolecules 2024; 14:441. [PMID: 38672458 PMCID: PMC11048704 DOI: 10.3390/biom14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of inorganic species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions. Intriguingly, while both organometallic and coordination compounds can act as potent CYP inhibitors, there is little evidence for the metabolism of inorganic compounds by CYPs, suggesting a potential alternative approach to evading issues associated with rapid modification and elimination of medically useful compounds.
Collapse
Affiliation(s)
| | - David K. Heidary
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| | - Edith C. Glazer
- Department of Chemistry, North Carolina State University, Raleigh, NC 27067, USA;
| |
Collapse
|
8
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Wiley AM, Yang J, Madhani R, Nath A, Totah RA. Investigating the association between CYP2J2 inhibitors and QT prolongation: a literature review. Drug Metab Rev 2024; 56:145-163. [PMID: 38478383 DOI: 10.1080/03602532.2024.2329928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Drug withdrawal post-marketing due to cardiotoxicity is a major concern for drug developers, regulatory agencies, and patients. One common mechanism of cardiotoxicity is through inhibition of cardiac ion channels, leading to prolongation of the QT interval and sometimes fatal arrythmias. Recently, oxylipin signaling compounds have been shown to bind to and alter ion channel function, and disruption in their cardiac levels may contribute to QT prolongation. Cytochrome P450 2J2 (CYP2J2) is the predominant CYP isoform expressed in cardiomyocytes, where it oxidizes arachidonic acid to cardioprotective epoxyeicosatrienoic acids (EETs). In addition to roles in vasodilation and angiogenesis, EETs bind to and activate various ion channels. CYP2J2 inhibition can lower EET levels and decrease their ability to preserve cardiac rhythm. In this review, we investigated the ability of known CYP inhibitors to cause QT prolongation using Certara's Drug Interaction Database. We discovered that among the multiple CYP isozymes, CYP2J2 inhibitors were more likely to also be QT-prolonging drugs (by approximately 2-fold). We explored potential binding interactions between these inhibitors and CYP2J2 using molecular docking and identified four amino acid residues (Phe61, Ala223, Asn231, and Leu402) predicted to interact with QT-prolonging drugs. The four residues are located near the opening of egress channel 2, highlighting the potential importance of this channel in CYP2J2 binding and inhibition. These findings suggest that if a drug inhibits CYP2J2 and interacts with one of these four residues, then it may have a higher risk of QT prolongation and more preclinical studies are warranted to assess cardiovascular safety.
Collapse
Affiliation(s)
- Alexandra M Wiley
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Jade Yang
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rivcka Madhani
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of WA School of Pharmacy, Seattle, WA, USA
| |
Collapse
|
10
|
Du Z, Li F, Jiang L, Li L, Du Y, Yu H, Luo Y, Wang Y, Sun H, Hu C, Li J, Yang Y, Jiao X, Wang L, Qin Y. Metabolic systems approaches update molecular insights of clinical phenotypes and cardiovascular risk in patients with homozygous familial hypercholesterolemia. BMC Med 2023; 21:275. [PMID: 37501168 PMCID: PMC10375787 DOI: 10.1186/s12916-023-02967-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is an orphan metabolic disease characterized by extremely elevated low-density lipoprotein cholesterol (LDL-C), xanthomas, aortic stenosis, and premature atherosclerotic cardiovascular disease (ASCVD). In addition to LDL-C, studies in experimental models and small clinical populations have suggested that other types of metabolic molecules might also be risk factors responsible for cardiovascular complications in HoFH, but definitive evidence from large-scale human studies is still lacking. Herein, we aimed to comprehensively characterize the metabolic features and risk factors of human HoFH by using metabolic systems strategies. METHODS Two independent multi-center cohorts with a total of 868 individuals were included in the cross-sectional study. First, comprehensive serum metabolome/lipidome-wide analyses were employed to identify the metabolomic patterns for differentiating HoFH patients (n = 184) from heterozygous FH (HeFH, n = 376) and non-FH (n = 100) subjects in the discovery cohort. Then, the metabolomic patterns were verified in the validation cohort with 48 HoFH patients, 110 HeFH patients, and 50 non-FH individuals. Subsequently, correlation/regression analyses were performed to investigate the associations of clinical/metabolic alterations with typical phenotypes of HoFH. In the prospective study, a total of 84 HoFH patients with available follow-up were enrolled from the discovery cohort. Targeted metabolomics, deep proteomics, and random forest approaches were performed to investigate the ASCVD-associated biomarkers in HoFH patients. RESULTS Beyond LDL-C, various bioactive metabolites in multiple pathways were discovered and validated for differentiating HoFH from HoFH and non-FH. Our results demonstrated that the inflammation and oxidative stress-related metabolites in the pathways of arachidonic acid and lipoprotein(a) metabolism were independently associated with the prevalence of corneal arcus, xanthomas, and supravalvular/valvular aortic stenosis in HoFH patients. Our results also identified a small marker panel consisting of high-density lipoprotein cholesterol, lipoprotein(a), apolipoprotein A1, and eight proinflammatory and proatherogenic metabolites in the pathways of arachidonic acid, phospholipid, carnitine, and sphingolipid metabolism that exhibited significant performances on predicting first ASCVD events in HoFH patients. CONCLUSIONS Our findings demonstrate that human HoFH is associated with a variety of metabolic abnormalities and is more complex than previously known. Furthermore, this study provides additional metabolic alterations that hold promise as residual risk factors in HoFH population.
Collapse
Affiliation(s)
- Zhiyong Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Fan Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Long Jiang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Linyi Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yunhui Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Huahui Yu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yan Luo
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Yu Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Haili Sun
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Chaowei Hu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Ya Yang
- Suzhou Municipal Hospital, Suzhou, 215002, Jiangsu Province, China
| | - Xiaolu Jiao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, College of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310020, Zhejiang Province, China
| | - Luya Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| | - Yanwen Qin
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China.
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
11
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Ongun MC, Tonyali NV, Kaplan O, Deger I, Celebier M, Basci Akduman NE, Sahin D, Yucel A, Babaoglu MO. Effects of genetic polymorphisms of CYP2J2, CYP2C9, CYP2C19, CYP4F2, CYP4F3 and CYP4A11 enzymes in preeclampsia and gestational hypertension. Placenta 2023; 137:88-95. [PMID: 37141740 DOI: 10.1016/j.placenta.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effects of cytochrome P450 (CYP) 2J2, CYP2C9, CYP2C19 and CYP4F2, CYP4F3 and CYP4A11 genetic polymorphisms in preeclampsia and gestational hypertension (GHT) patients in a sample of Turkish population. MATERIALS-METHODS Patients (n = 168; 110 GHT and 58 preeclampsia) and healthy pregnant women (n = 155, controls) participated in the study. For genotyping, polymerase chain reaction (PCR) and restriction analysis (RFLP) were used. Substance levels were measured using LC-MS. RESULTS Plasma DHET levels in GHT and preeclampsia patients were significantly lower than those in the control group (62.7%, 66.3% vs.100.0%, respectively, p < 0.0001). An increase in CYP2J2*7 allele frequency was observed in the preeclampsia group, as compared to GHT group (12.1% vs. 4.5%; odds ratio, O.R. = 2.88, p < 0.01). The frequencies of CYP2C19*2 and*17 alleles were higher in GHT group as compared to the control group (17.7% vs. 11.6%, O.R. = 1.99, p < 0.01; and 28.6% vs.18.4%, O.R. = 2.03, p < 0.01, respectively). An increased frequency of CYP4F3 rs3794987 G allele was found in GHT group as compared to the control group (48.0% vs. 38.0%; O.R. = 1.53, p < 0.01). DISCUSSION DHET plasma levels were significantly reduced in hypertensive pregnant groups as compared to the control group. The allele frequency distributions for CYP2J2*7, CYP2C19 *2, *17 and CYP4F3 rs3794987 were significantly different in hypertensive pregnant patients as compared to the healthy control subjects. Our results may suggest that investigated genetic polymorphisms may be useful in diagnosis and clinical management of GHT and preeclampsia patients.
Collapse
Affiliation(s)
- Mert C Ongun
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey.
| | | | - Ozan Kaplan
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ilter Deger
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| | - Mustafa Celebier
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | | | - Dilek Sahin
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Aykan Yucel
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Melih O Babaoglu
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara, Turkey
| |
Collapse
|
13
|
Association of CYP2C19 Polymorphic Markers with Cardiovascular Disease Risk Factors in Gas Industry Workers Undergoing Periodic Medical Examinations. High Blood Press Cardiovasc Prev 2023; 30:151-165. [PMID: 36840850 DOI: 10.1007/s40292-023-00567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Human cytochrome P450 (CYP) enzymes have a wide range of endogenous substrates and play a crucial role in cardiovascular physiology as well as in metabolic processes, so the issue of cytochrome P450 genes investigation has received considerable critical attention in the prevention of cardiovascular diseases (CVDs). AIM Comprehensive assessment of relationship between CYP2C19*2, CYP2C19*3 polymorphisms and CVD risk factors in gas industry workers undergoing periodic medical examination (PME). MATERIALS AND METHODS The study included 193 gas industry workers aged 30-55 years without acute diseases as well as exacerbations of chronic diseases, diabetes mellitus, and CVD history. CYP2C19 (rs4244285 and rs4986893) genotyping and analysis of the relationship between CYP2C19*2 and CYP2C19*3 and CVD risk factors were performed. RESULTS The CYP2C19*2 (A) and CYP2C19*3 (A) loss-of-function alleles frequencies were 20% and 2%, respectively. The frequency of high-normal blood pressure (BP) (130-139 and/or 85-89 mm Hg) detection was higher in the CYP2C19*2 (A) subgroup compared with wild-type GG allele carriers (26.7% vs. 5.2%, p = 0.03) in individuals without arterial hypertension (AH) and BP ≥ 140 and/or 90 mm Hg on PME. The median systolic BP levels were 5 mm Hg higher in CYP2C19*2 (A) group than in CYP2C19*2 (GG) group (125 vs. 120 mm Hg, p = 0.01). There was a similar trend for diastolic BP (85 vs. 80 mmHg, p = 0.08). CYP2C19*2 (A) was associated with higher mean levels of both systolic and diastolic BP (p = 0.015 and p = 0.044, respectively) in patients with AH. CYP2C19*2 was not associated with the other CVD risk factors analyzed. CONCLUSION The association of CYP2C19*2 with BP level suggests a possible role of this factor in AH development, which requires further research.
Collapse
|
14
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
15
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Watanabe A, Momo K, Tanaka K, Uchikura T, Kiryu Y, Niiyama K, Kodaira N, Matsuzaki A, Sasaki T. Identification of the Components of Proton Pump Inhibitors and Potassium-Competitive Acid Blocker That Lead to Cardiovascular Events in Working-Age Individuals: A 12-Month Retrospective Cohort Study Using a Large Claims Database. Biol Pharm Bull 2022; 45:1373-1377. [DOI: 10.1248/bpb.b22-00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ayako Watanabe
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University
| | - Kenji Momo
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University
| | - Katsumi Tanaka
- Department of Pharmacy, Showa University Koto Toyosu Hospital
| | | | - Yoshihiro Kiryu
- Department of Pharmacy, M&B Collaboration Medical corporation Hokuetsu Hospital
| | | | | | - Airi Matsuzaki
- Department of Pharmacy, Showa University Koto Toyosu Hospital
| | | |
Collapse
|
17
|
Yu J, Wang Z, Wang F, Wang W, Ge S, Fan Z, Liu B, Li M, Dong B, Dang R, Zhao F. Changes of sperm metabolites of Dezhou donkey after cryopreservation. Reprod Domest Anim 2022; 57:1593-1601. [PMID: 36018481 DOI: 10.1111/rda.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Sperm cryopreservation technology has laid the foundation for promoting the popularity of artificial insemination in donkey reproduction, but the freeze-thaw process can cause sperm damage, and the viability of frozen sperm is greatly reduced, resulting in low insemination ability. Sperm metabolites play an important role in the freezing process of spermatozoa and have a major influence on the freezability of spermatozoa. The aim of this study was to explore the differential metabolites in donkey spermatozoa before and after cryopreservation by liquid chromatography tandem mass spectrometry (LC-MS/MS). We analysed ejaculate samples from male donkeys obtained before and after freezing and identified 1323 metabolites. Compared with fresh sperm (F), the metabolites of cryopreserved sperm (CRY) were significantly changed, and 570 metabolites were significantly different between the two groups (P < 0.05). Among them, 277 metabolites were higher in frozen sperm, while the opposite was true for 293 metabolites. These metabolites mainly include phospholipids, lysophospholipids, and amino acids., most of which are associated with oxidative stress and sperm capacitation. We describe significantly different metabolites before and after freezing that are significantly associated with decreased sperm motility postfreezing and can be used as biomarkers of decreased sperm motility postfreezing.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Wenhao Wang
- College of Pharmacy, Heze University, Heze, China
| | - Shihao Ge
- College of Pharmacy, Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Boying Dong
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, China
| |
Collapse
|
18
|
Li W, Bai X, Hao J, Xu X, Lin F, Jiang Q, Ding C, Dai G, Peng F, Zhang M, Feng Y, Wang J, Chen X, Xue T, Guo X, Fu Z, Chen WH, Zhang L, Wang C, Jiao L. Thrombosis origin identification of cardioembolism and large artery atherosclerosis by distinct metabolites. J Neurointerv Surg 2022:neurintsurg-2022-019047. [PMID: 35654581 DOI: 10.1136/neurintsurg-2022-019047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/13/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The diagnosis of cerebral thrombosis origin is challenging and remains unclear. This study aims to identify thrombosis due to cardioembolism (CE) and large artery atherosclerosis (LAA) from a new perspective of distinct metabolites. METHODS Distinct metabolites between 26 CE and 22 LAA origin thrombi, which were extracted after successful mechanical thrombectomy in patients with acute ischemic stroke in the anterior circulation, were analyzed with a ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) system. Enriched metabolic pathways related to the metabolites were identified. Least absolute shrinkage selection operator regression analyses and a filtering method were used to select potential predictors. Furthermore, four machine learning classifiers, including decision tree, logistic regression, random forest (RF), and k means unsupervised classification model, were used to evaluate the predictive ability of the selected metabolites. RESULTS UPLC-QTOF-MS analysis revealed that levels of 88 and 55 metabolites were elevated in LAA and CE thrombi, respectively. Kyoto Encyclopedia of Genes and Genomes analysis revealed a significant difference between the pathways enriched in the two types of thrombi. Six metabolites (diglyceride (DG, 18:3/24:0), DG (22:0/24:0), phytosphingosine, galabiosylceramide (18:1/24:1), triglyceride (15:0/16:1/o-18:0), and glucosylceramide (18:1/24:0)) were finally selected to build a predictive model. The predictive RF model was confirmed to be the best, with a satisfactory stability and prediction capacity (area under the curve=0.889). CONCLUSIONS Six metabolites as potential predictors for distinguishing between cerebral thrombi of CE and LAA origin were identified. The results are useful for understanding the pathogenesis and for secondary stroke prevention.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Feng Lin
- Department of Neurology, Sanming First Hospital and First Hospital of Sanming Affiliated to Fujian Medical University, Sanming City, Fujian Province, China
| | - Qunlong Jiang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, China
| | - Gaolei Dai
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Xianyang Chen
- Zhongguancun Biological and Medical Big Data Center, Beijing, China.,Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Teng Xue
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China.,Zhongyuanborui Key Laborotory of Genetics and Metabolism, Guangdong-Macao In-depth Cooperation Zone in Hengqin, Zhuhai City, Guangdong Province, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Zhaolin Fu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,China International Neuroscience Institute (China-INI), Beijing, China
| | - Wen-Huo Chen
- Department of Neurology, Zhangzhou Affiliated Hospital, Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng City, Shandong Province, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China .,China International Neuroscience Institute (China-INI), Beijing, China.,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Shikuma A, Kami D, Maeda R, Suzuki Y, Sano A, Taya T, Ogata T, Konkel A, Matoba S, Schunck WH, Gojo S. Amelioration of Endotoxemia by a Synthetic Analog of Omega-3 Epoxyeicosanoids. Front Immunol 2022; 13:825171. [PMID: 35281027 PMCID: PMC8908263 DOI: 10.3389/fimmu.2022.825171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis, a systemic inflammatory response to pathogenic factors, is a difficult to treat life-threatening condition associated with cytokine and eicosanoid storms and multi-organ damage. Omega-3 polyunsaturated fatty acids, such as eicosapentaenoic (EPA) and docosahexaenoic acid, are the precursors of potent anti-inflammatory lipid mediators, including 17,18-epoxyeicosatetraenoic acid (17,18-EEQ), the main metabolite of EPA generated by cytochrome P450 epoxygenases. Searching for novel therapeutic or preventative agents in sepsis, we tested a metabolically robust synthetic analog of 17,18-EEQ (EEQ-A) for its ability to reduce mortality, organ damage, and pro-inflammatory cytokine transcript level in a mouse model of lipopolysaccharide (LPS)-induced endotoxemia, which is closely related to sepsis. Overall survival significantly improved following preventative EEQ-A administration along with decreased transcript level of pro-inflammatory cytokines. On the other hand, the therapeutic protocol was effective in improving survival at 48 hours but insignificant at 72 hours. Histopathological analyses showed significant reductions in hemorrhagic and necrotic damage and infiltration in the liver. In vitro studies with THP-1 and U937 cells showed EEQ-A mediated repression of LPS-induced M1 polarization and enhancement of IL-4-induced M2 polarization of macrophages. Moreover, EEQ-A attenuated the LPS-induced decline of mitochondrial function in THP-1 cells, as indicated by increased basal respiration and ATP production as well as reduction of the metabolic shift to glycolysis. Taken together, these data demonstrate that EEQ-A has potent anti-inflammatory and immunomodulatory properties that may support therapeutic strategies for ameliorating the endotoxemia.
Collapse
Affiliation(s)
- Akira Shikuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Nie S, Chen K, Guo C, Pei Q, Zou C, Yao L, Yuan H, Zhao X, Xie R, He X, Huang J, Yang G. Effect of CYP4F2 Polymorphisms on Ticagrelor Pharmacokinetics in Healthy Chinese Volunteers. Front Pharmacol 2022; 12:797278. [PMID: 35280252 PMCID: PMC8915292 DOI: 10.3389/fphar.2021.797278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Ticagrelor belongs to a new class of P2Y12 receptor inhibitor that has been widely used for antiplatelet therapy. This study aimed to explore the effect of single nucleotide polymorphisms (SNPs) in metabolic enzymes, transporters, and other relevant variants on the pharmacokinetics (PK) of ticagrelor and its active metabolite, AR-C124910XX. Methods: The study population comprised 68 healthy Chinese volunteers who were enrolled in a ticagrelor bioequivalence clinical trial. The PK profile of ticagrelor was evaluated after orally administering a single 90-mg dose of ticagrelor in tablet form. The plasma concentrations of ticagrelor and AR-C124910XX were determined through liquid chromatography–tandem mass spectrometry. Plasma DNA samples were used to explore the effect of gene polymorphisms on the PK of ticagrelor and AR-C124910XX with whole-exome sequencing. Results: Female participants had a higher maximum plasma concentration/weight ratio (Cmax/W; p < 0.001) and a shorter half-life (T1/2; p < 0.05) for ticagrelor than their male counterparts. In addition, a higher area under the curve/weight ratio (AUC/W; p < 0.001), and longer T1/2 (p < 0.001) and time to reach the maximum plasma concentration (Tmax; p < 0.001), as well as a lower apparent drug clearance (CL/F; p < 0.001), were observed among healthy volunteers in the fed trial compared to those enrolled in the fasting trial. For AR-C124910XX, higher Cmax/W (p < 0.001) and AUC/W (p < 0.001) but lower CL/F (p < 0.001) and apparent volume of distribution (Vd/F; p < 0.001) were observed among female participants. Healthy volunteers enrolled in the fasting trial exhibited higher Cmax/W (p < 0.001) and AUC/W (p < 0.01), shorter Tmax (p < 0.001), and lower CL/F (p < 0.001) and Vd/F (p < 0.001) than those enrolled in the fed trial. Upon confirmation through multivariate analysis, the CYP4F2 rs2074900 A/A carriers were associated with higher Cmax/W and AUC/W and lower CL/F and Vd/F than the CYP4F2 rs2074900 A/G and G/G carriers. Conclusion: This study is the first to show that the CYP4F2 rs2074900 SNP had a remarkable effect on ticagrelor PK, which is significant since it adds to the limited pharmacogenetic information on ticagrelor.
Collapse
Affiliation(s)
- Shanshan Nie
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kaifeng Chen
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chengxian Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qi Pei
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Liangyuan Yao
- Hunan Qianjin Xiangjiang Pharmaceutical Co., Ltd, Zhuzhou, China
| | - Hongbo Yuan
- Hunan Qianjin Xiangjiang Pharmaceutical Co., Ltd, Zhuzhou, China
| | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Ran Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Guoping Yang, ; Jie Huang,
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Guoping Yang, ; Jie Huang,
| |
Collapse
|
21
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
CYP2C19 & UGT1A6 genetic polymorphisms and the impact on Valproic acid-induced weight gain in people with epilepsy: Prospective genetic association study. Epilepsy Res 2021; 177:106786. [PMID: 34656038 DOI: 10.1016/j.eplepsyres.2021.106786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To study the association between CYP2C19*2 (681 G > A) and UGT1A6*2 (552A > C) polymorphisms on Valproic acid (VPA)-induced weight gain in People with epilepsy (PWE). METHODS We recruited PWE on VPA monotherapy and genotyped for CYP2C19 and UGT1A6 polymorphisms. Association between CYP2C19 polymorphism and weight gain was the primary outcome parameter. We followed them up monthly for six months and recorded Body mass index (BMI), drug compliance, side effects, food frequency, physical activity. RESULTS Of 108 participants recruited, we assessed the association between the polymorphism and weight gain in 101 PWE for CYP2C19*2 and 103 PWE for UGT1A6*2 polymorphism. The proportion of participants with weight gain was higher in those with poor and intermediate metabolizer genotypes of CYP2C19 (*1/*2 and *2/*2) compared to extensive metabolizers (*1/*1) [53.3 % vs 31.7 %, RR 1.68, 95 % CI (1.01-2.79), P = 0.03]. However, CYP2C19*2 allele did not show an increased risk of weight gain over the CYP2C19*1 allele. No association could be demonstrated with UGT1A6 genotypes and weight gain. In logistic regression analysis, CYP2C19*2 carrier genotype was the independent predictor of weight gain. OR 2.89 [95% CI (1.07-7.84)]. There were no significant association with serum TSH, fT4, testosterone, and valproate levels with CYP2C19 or UGT1A6 polymorphisms. SIGNIFICANCE People with epilepsy carrying CYP2C19 polymorphisms (*1/*2) and (*2/*2) had 3 times higher risk of VPA-induced weight gain compared to wild type (*1/*1).
Collapse
|
23
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
24
|
Li WJ, Zhao Y, Gao Y, Dong LL, Wu YF, Chen ZH, Shen HH. Lipid metabolism in asthma: Immune regulation and potential therapeutic target. Cell Immunol 2021; 364:104341. [PMID: 33798909 DOI: 10.1016/j.cellimm.2021.104341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.
Collapse
Affiliation(s)
- Wei-Jie Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Gao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ling-Ling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yin-Fang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Hua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hua-Hao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; State Key Lab of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
25
|
Fu M, Yu J, Chen Z, Tang Y, Dong R, Yang Y, Luo J, Hu S, Tu L, Xu X. Epoxyeicosatrienoic acids improve glucose homeostasis by preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells. Mol Cell Endocrinol 2021; 523:111149. [PMID: 33387601 DOI: 10.1016/j.mce.2020.111149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Studies have shown that epoxyeicosatrienoic acids (EETs) can regulate glucose homeostasis, but the specific mechanisms need further exploration. The sodium-glucose co-transporter 2 (SGLT2) is highly expressed in diabetic kidneys, which further promotes renal reabsorption of glucose to respond to the hyperglycemic state of diabetes. Herein, whether EETs can be a latent inhibitor of SGLT2 to regulate glucose homeostasis in diabetic state needs to be elucidated. Our study demonstrated that EETs attenuated the glucose reabsorption via renal tubular epithelial cells in diabetic mice, which partly accounted for the beneficial effects of EETs on glucose homeostasis. Moreover, 14,15-EET suppressed SGLT2 expression in both diabetic kidney and renal tubular epithelial cells. Further, inhibition of NF-κB with BAY 11-7082 decreased insulin-induced SGLT2 expression while NF-κB overexpression reversed the above effects. In addition, 14,15-EET attenuated SGLT2 expression via inactivating NF-κB. Mechanistically, 14,15-EET attenuated NF-κB mediated SGLT2 transcription at the -1821/-1812 P65-binding site. These results showed that EETs ameliorated glucose homeostasis via preventing NF-κB-mediated transcription of SGLT2 in renal tubular epithelial cells, providing a unique therapeutic strategy for insulin resistance and diabetes.
Collapse
Affiliation(s)
- Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Yu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihui Chen
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Tang
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqing Hu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
26
|
Duflot T, Laurent C, Soudey A, Fonrose X, Hamzaoui M, Iacob M, Bertrand D, Favre J, Etienne I, Roche C, Coquerel D, Le Besnerais M, Louhichi S, Tarlet T, Li D, Brunel V, Morisseau C, Richard V, Joannidès R, Stanke-Labesque F, Lamoureux F, Guerrot D, Bellien J. Preservation of epoxyeicosatrienoic acid bioavailability prevents renal allograft dysfunction and cardiovascular alterations in kidney transplant recipients. Sci Rep 2021; 11:3739. [PMID: 33580125 PMCID: PMC7881112 DOI: 10.1038/s41598-021-83274-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
This study addressed the hypothesis that epoxyeicosatrienoic acids (EETs) synthesized by CYP450 and catabolized by soluble epoxide hydrolase (sEH) are involved in the maintenance of renal allograft function, either directly or through modulation of cardiovascular function. The impact of single nucleotide polymorphisms (SNPs) in the sEH gene EPHX2 and CYP450 on renal and vascular function, plasma levels of EETs and peripheral blood monuclear cell sEH activity was assessed in 79 kidney transplant recipients explored at least one year after transplantation. Additional experiments in a mouse model mimicking the ischemia–reperfusion (I/R) injury suffered by the transplanted kidney evaluated the cardiovascular and renal effects of the sEH inhibitor t-AUCB administered in drinking water (10 mg/l) during 28 days after surgery. There was a long-term protective effect of the sEH SNP rs6558004, which increased EET plasma levels, on renal allograft function and a deleterious effect of K55R, which increased sEH activity. Surprisingly, the loss-of-function CYP2C9*3 was associated with a better renal function without affecting EET levels. R287Q SNP, which decreased sEH activity, was protective against vascular dysfunction while CYP2C8*3 and 2C9*2 loss-of-function SNP, altered endothelial function by reducing flow-induced EET release. In I/R mice, sEH inhibition reduced kidney lesions, prevented cardiac fibrosis and dysfunction as well as preserved endothelial function. The preservation of EET bioavailability may prevent allograft dysfunction and improve cardiovascular disease in kidney transplant recipients. Inhibition of sEH appears thus as a novel therapeutic option but its impact on other epoxyfatty acids should be carefully evaluated.
Collapse
Affiliation(s)
- Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Charlotte Laurent
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Anne Soudey
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Xavier Fonrose
- Department of Pharmacology, Grenoble Alpes University Hospital, HP2, INSERM U1042, University of Grenoble Alpes, 38000, Grenoble, France
| | - Mouad Hamzaoui
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France
| | - Dominique Bertrand
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Julie Favre
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Isabelle Etienne
- Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Clothilde Roche
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - David Coquerel
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Maëlle Le Besnerais
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Safa Louhichi
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Tracy Tarlet
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Dongyang Li
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Valéry Brunel
- Department of General Biochemistry, Rouen University Hospital, 76000, Rouen, France
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Vincent Richard
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France
| | - Françoise Stanke-Labesque
- Department of Pharmacology, Grenoble Alpes University Hospital, HP2, INSERM U1042, University of Grenoble Alpes, 38000, Grenoble, France
| | - Fabien Lamoureux
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France.,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Dominique Guerrot
- UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France.,Department of Nephrology, Rouen University Hospital, 76000, Rouen, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen, France. .,UNIROUEN, INSERM U1096, FHU CARNAVAL, Normandie University, 76000, Rouen, France. .,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France. .,Department of Pharmacology, Rouen University Hospital, 76031, Rouen Cedex, France.
| |
Collapse
|
27
|
Kwon YJ, Shin S, Chun YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch Pharm Res 2021; 44:63-83. [PMID: 33484438 DOI: 10.1007/s12272-021-01306-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.
Collapse
Affiliation(s)
- Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
28
|
Han Y, Dong B, Chen M, Yao C. LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner. Mol Cell Biochem 2021; 476:1387-1400. [PMID: 33389498 DOI: 10.1007/s11010-020-03998-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Myocardial infarction (MI) is a major cause of cardiovascular disease which poses great healthy and financial burden for individuals. MI can be mainly induced by hypoxia. Therefore, in this study, we aimed to explore the function and mechanism of lncRNA H19 on hypoxia-induced pyroptosis of cardiomyocytes. METHOD Peripheral blood from healthy controls and MI patients was collected for determination of mRNA and protein expression levels of H19 and CYP1B1. The correlation between these two factors was analyzed. Then MI rat model was established and injected with H19 overexpression/CYP1B1 knockdown plasmid, in which the infraction area and pathological morphology were observed. Hypoxic cardiomyocytes were transfected with overexpression or knockdown of H19 and CYP1B1 for determination of NLRP3, ASC, caspase-1, IL-1β, IL-18, CyclinD1, and PCNA. Cell proliferation ability was assessed by CCK8. RIP and dual luciferase gene reporter assay were applied to verify the binding among H19, PBX3 and CYP1B1. RESULTS Downregulated H19 and upregulated CYP1B1 were observed in MI patients. A negative correlation was found for H19 and CYP1B1 expressions. Transfection of H19 overexpression or CYP1B1 knockdown could attenuate the MI progression in MI rats. In hypoxic cardiomyocytes, H19 overexpression or CYP1B1 knockdown could also inhibit NLRP3, ASC, caspase-1, IL-1β, and IL-18 in addition to suppressing cell apoptosis rate and promoting cell proliferation rate. Different expression pattern was found in cells transfected with H19 knockdown or CYP1B1 overexpression. Overexpression of CYP1B1 could abrogate the suppressive effect of H19 on pyroptosis of cardiomyocytes. H19 could inhibit activity of CYP1B1 promoters by regulating PBX3. CONCLUSION H19 could inhibit CYP1B1 expression in a PBX3-dependent way and thus attenuate cell pyroptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Youjian Han
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, People's Republic of China.
| | - Bo Dong
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, People's Republic of China
| | - Meijuan Chen
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, People's Republic of China
| | - Chanjiao Yao
- No.3 Obstetrics and Gynecology Department, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, People's Republic of China
| |
Collapse
|
29
|
Yuan L, Jiang F, Cao X, Liu Y, Xu YJ. Metabolomics reveals the toxicological effects of polar compounds from frying palm oil. Food Funct 2020; 11:1611-1623. [PMID: 32020140 DOI: 10.1039/c9fo02728a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polar compounds from frying oils have been found to be harmful to health. However, the mechanisms underlying this phenomenon have largely remained elusive. In this study, mass spectrometry-based metabolomics was used to investigate the toxicological effects of polar compounds. The serum and hepatic metabolites from polar compound-treated mice were measured using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. Multi-variate statistical analysis showed that a total of 36 serum metabolites and 18 hepatic metabolites were altered in the polar compound-treated mice as compared with that for normal diet-fed animals. These metabolic changes suggested novel alterations in lipid metabolism with the increase in phospholipids, fatty acids, and cholesterol and the decrease in choline, betaine and l-acetylcarnitine. The TCA cycle and carbohydrate, amino acid and purine metabolism were also impaired, with a significant elevation of d-glucose, d-maltose, β-mannobiose, branched chain amino acids, aromatic amino acids, and uric acid and a decline in succinate, serine, aspartate, arginine and ornithine. Pearson correlation analysis demonstrated the strong correlations between specific metabolic alterations and the redox index. Our overall findings reveal that polar compounds may progressively cause lipid deposition, impaired energy metabolism and oxidative stress, resulting in toxicological effects on the mammalian health.
Collapse
Affiliation(s)
- Liyang Yuan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Fan Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Xinyu Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
30
|
Yang J, Tian S, Zhao J, Zhang W. Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning. Pharmacol Res 2020; 159:105034. [PMID: 32565312 DOI: 10.1016/j.phrs.2020.105034] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Traditional Chinese medicine (TCM) has long been used in the clinical treatment of coronary heart disease (CHD). TCM is characterized by syndrome-based medication, which is, using different TCM formulae for different syndromes. However, the underlying mode of action remains unclear. In this work, we utilized network pharmacology and machine learning to explore the mechanism of eight classic TCM formulae in the treatment of different types of CHD. First, by integrating multiple databases, a total of 669 potential bioactive compounds and 581 targets of the eight formulae were screened. Then, the effectiveness of these formulae on CHD was evaluated using two network-based indicators. The results showed that each formula's targets were significantly correlated with CHD associated genes and overlapped with the targets of 9 classes of drugs for cardio vascular diseases (CVD) to some degree. Next, from 5 different levels, i.e., herb, symptom, compound, target, and pathway level, we systematically compared the eight formulae using network clustering and hierarchical clustering. We found that all the formulae could be grouped into five clusters and the clustering results were approximately consistent at different levels. All the formulae were involved in 7 pathways closely related to CHD and may exhibit the common effect of relieving angina. Formulae in the same group collectively regulated some unique pathways and suggest further specific indications. For example, the three formulae used for Qi stagnation and blood stasis, Qi deficiency and blood stasis, and Qi-Yin deficiency syndromes acted on two special pathways (TNF signaling pathway, NF-kappa B signaling pathway) and may exert anti-inflammatory and immune-enhancing effects; the two formulae for Yin deficiency of heart and kidney, and Yang deficiency of heart and kidney syndromes regulated two special pathways (PPAR signaling pathway, thyroid hormone signaling pathway) in endocrine system and could improve renal function. Subsequently, we designed a rank algorithm, which integrated network topology with biological function, to identify important targets of these formulae. The results were consistent with the multi-level clustering results. At last, our literature mining validated about 20 % putative targets, as well as clustering results and effects of the formulae by experimental evidences. This study explained the medication patterns and scientific significance of TCM formulae on different types of CHD from perspective of systems biology. It may facilitate the understanding of different types of CHD described by traditional Chinese medicine from the perspectives of modern biology.
Collapse
Affiliation(s)
- Jian Yang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jing Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
31
|
Yu L, Yang X, Ma B, Ying H, Shang X, He B, Zhang Q. Abnormal arachidonic acid metabolic network may reduce sperm motility via P38 MAPK. Open Biol 2020; 9:180091. [PMID: 31014201 PMCID: PMC6501647 DOI: 10.1098/rsob.180091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Asthenozoospermia is a common cause of male infertility, the aetiology of which remains unclear in 50–60% of cases. The current study aimed to characterize metabolic alterations in asthenozoospermic seminal plasma and to explore the signalling pathways involved in sperm motility regulation. At first, high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry was used to detect the targeted metabolic network of arachidonic acid (AA). Metabolomic multivariate data analysis showed significant distinction of AA metabolites between asthenozoospermic and healthy seminal plasma. AA as well as its lipoxygenase (LOX) and cytochrome P450 metabolites were found to be abnormally increased, while cyclooxygenase (COX) metabolites were complicatedly disturbed in asthenozoospermic volunteers compared with those in healthy ones. In vitro experiments and western blot analysis of sperm cells revealed a decrease in sperm motility and upregulation of sperm phosphor-P38 induced by AA. P38 inhibitor could increase AA-reduced sperm motility. Also, all the inhibitors of the three metabolic pathways of AA could block AA-induced P38 mitogen-activated protein kinase (MAPK) activation and further improve sperm motility. We report here for the first time that an abnormal AA metabolic network could reduce sperm motility via P38 MAPK activation through the LOX, cytochrome P450 and COX metabolic pathways, which might be an underlying pathomechanism of asthenozoospermia.
Collapse
Affiliation(s)
- Lisha Yu
- 1 College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Xiaojing Yang
- 1 College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Bo Ma
- 1 College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Hanjie Ying
- 2 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , Nanjing 211816 , People's Republic of China
| | - Xuejun Shang
- 3 Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University , Nanjing 210002 , People's Republic of China
| | - Bingfang He
- 1 College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009 , People's Republic of China
| | - Qi Zhang
- 1 College of Pharmaceutical Sciences, Nanjing Tech University , Nanjing 210009 , People's Republic of China
| |
Collapse
|
32
|
Grant MK, Abdelgawad IY, Lewis CA, Zordoky BN. Sexual Dimorphism in Doxorubicin-induced Systemic Inflammation: Implications for Hepatic Cytochrome P450 Regulation. Int J Mol Sci 2020; 21:ijms21041279. [PMID: 32074957 PMCID: PMC7072970 DOI: 10.3390/ijms21041279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent used to treat a wide variety of malignancies. In addition to its multi-organ toxicity, DOX treatment has been shown to induce systemic inflammation in patients and experimental animals. Inflammation alters the expression of hepatic cytochrome P450 (CYP) enzymes, which play important roles in drug metabolism and DOX-induced toxicity. Significant sex differences have been reported in DOX-induced toxicity; however, sex differences in DOX-induced systemic inflammation and the potential effects on hepatic CYP expression have not been determined. In the current work, male and female C57Bl/6 mice were administered DOX (20 mg/kg by intraperitoneal injection), and groups of mice were sacrificed 24 and 72 h after DOX administration. DOX elicited a systemic inflammatory response in both male and female mice, but the inflammatory response was stronger in male mice. DOX altered the expression of hepatic CYP isoforms in a sex-dependent manner. Most notably, inhibition of Cyp2c29 and Cyp2e1 was stronger in male than in female mice, which paralleled the sex differences in systemic inflammation. Therefore, sex differences in DOX-induced systemic inflammation may lead to sexually dimorphic drug interactions, in addition to contributing to the previously reported sexual dimorphism in specific DOX-induced organ toxicity.
Collapse
|
33
|
Rund KM, Nolte F, Doricic J, Greite R, Schott S, Lichtinghagen R, Gueler F, Schebb NH. Clinical blood sampling for oxylipin analysis - effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum. Analyst 2020; 145:2378-2388. [PMID: 32037406 DOI: 10.1039/c9an01880h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quantitative analysis of oxylipins in blood samples is of increasing interest in clinical studies. However, storage after sampling and transport of blood might induce artificial changes in the apparent oxylipin profile due to ex vivo formation/degradation by autoxidation or enzymatic activity. In the present study we investigated the stability of free (i.e. non-esterified) and total oxylipins in EDTA-plasma and serum generated under clinical conditions assessing delays in sample processing and automated transportation: Free cytochrome P450 monooxygenase and 5-lipoxygenase (LOX) formed oxylipins as well as autoxidation products were marginally affected by storage of whole blood up to 4 h at 4 °C, while total (i.e. the sum of free and esterified) levels of these oxylipins were stable up to 24 h and following transport. Cyclooxygenase (COX) products (TxB2, 12-HHT) and 12-LOX derived hydroxy-fatty acids were prone to storage and transport induced changes due to platelet activation. Total oxylipin patterns were generally more stable than the concentration of free oxylipins. In serum, coagulation induced higher levels of COX and 12-LOX products showing a high inter-individual variability. Overall, our results indicate that total EDTA-plasma oxylipins are the most stable blood oxylipin marker for clinical samples. Here, storage of blood before further processing is acceptable for a period up to 24 hours at 4 °C. However, levels of platelet derived oxylipins should be interpreted with caution regarding potential ex vivo formation.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Agba S, Hanif A, Edin ML, Zeldin DC, Nayeem MA. Cyp2j5-Gene Deletion Affects on Acetylcholine and Adenosine-Induced Relaxation in Mice: Role of Angiotensin-II and CYP-Epoxygenase Inhibitor. Front Pharmacol 2020; 11:27. [PMID: 32116704 PMCID: PMC7014568 DOI: 10.3389/fphar.2020.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Previously, we showed vascular endothelial overexpression of human-CYP2J2 enhances coronary reactive hyperemia in Tie2-CYP2J2 Tr mice, and eNOS−/− mice had overexpression of CYP2J-epoxygenase with adenosine A2A receptor-induced enhance relaxation, but we did not see the response in CYP2J-epoxygenase knockout mice. Therefore, we hypothesized that Cyp2j5-gene deletion affects acetylcholine- and 5'-N-ethylcarboxamidoadenosine (NECA) (adenosine)-induced relaxation and their response is partially inhibited by angiotensin-II (Ang-II) in mice. Acetylcholine (Ach)-induced response was tested with N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH, CYP-epoxygenase inhibitor; 10−5M) and Ang-II (10−6M). In Cyp2j5−/− mice, ACh-induced relaxation was different from C57Bl/6 mice, at 10−5 M (76.1 ± 3.3 vs. 58.3 ± 5.2, P < 0.05). However, ACh-induced relaxation was not blocked by MS-PPOH in Cyp2j5−/−: 58.5 ± 5.0%, P > 0.05, but blocked in C57Bl/6: 52.3 ± 7.5%, P < 0.05, and Ang-II reduces ACh-induced relaxation in both Cyp2j5−/− and C57Bl/6 mice (38.8 ± 3.9% and 45.9 ± 7.8, P <0.05). In addition, NECA-induced response was tested with Ang-II. In Cyp2j5−/− mice, NECA-induced response was not different from C57Bl/6 mice at 10−5M (23.1 ± 2.1 vs. 21.1 ± 3.8, P > 0.05). However, NECA-induced response was reduced by Ang-II in both Cyp2j5−/− and C57Bl/6 mice (−10.8 ± 2.3% and 3.2 ± 2.7, P < 0.05). Data suggest that ACh-induced relaxation in Cyp2j5−/− mice depends on nitric oxide (NO) but not CYP-epoxygenases, and the NECA-induced different response in male vs. female Cyp2j5−/− mice when Ang-II treated.
Collapse
Affiliation(s)
- Stephanie Agba
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Ahmad Hanif
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Durham, NC, United States
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Durham, NC, United States
| | - Mohammed A Nayeem
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
35
|
Association of CYP2J2 polymorphism with susceptibility to psoriasis in Turkish population: a case-control study. An Bras Dermatol 2020; 95:25-31. [PMID: 31902555 PMCID: PMC7058872 DOI: 10.1016/j.abd.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/19/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Cytochrome P450 2J2 is mostly expressed in extrahepatic tissues; it metabolizes arachidonic acid to epoxyeicosatrienoic acids, with various cardio protective and anti-inflammatory effects. CYP2J2 polymorphism has been identified as a risk factor for cardiovascular diseases, but its association with psoriasis remains unknown. OBJECTIVE To evaluate CYP2J2 polymorphism as a risk factor for psoriasis in the Turkish population. METHODS There were 94 patients with psoriasis and 100 age- and sex-matched healthy controls included in the study. Detailed demographic and clinical characteristics were recorded, and Psoriasis Area and Severity Index (PASI) scores were calculated for psoriasis patients. Venous blood samples were collected from all the participants and CYP2J2 50G>T (rs890293) polymorphism was analyzed using polymerase chain reaction (PCR). RESULTS Both T allele and TT+GT genotype frequencies were increased in psoriasis vulgaris patients compared to the control group (p=0.024 and p=0.029 respectively, OR=2.82, 95% CI: 1.11-7.15) No association between CYP2J2 polymorphism and clinical features of psoriasis was identified. STUDY LIMITATIONS A limited number of patients were included in the study. CONCLUSION CYP2J2 50G>T (rs890293) polymorphism was associated with an increased risk for PsV in the Turkish population.
Collapse
|
36
|
Sarı İ, Ökten H, Aktan Ç, Cihan E. Association of the sEH gene promoter polymorphisms and haplotypes with preeclampsia. J Med Biochem 2020; 39:428-435. [PMID: 33312058 DOI: 10.5937/jomb0-27745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Background The epoxyeicosatrienoic acids (EETs) have antihypertensive, anti-inflammatory, and organ protective properties and their circulation levels are related to hypertension, diabetes mellitus, cardiovascular diseases, and preeclampsia. Soluble epoxide hydrolase (sEH) catalyses the degradation of EETs to less biologically active dihydroxyeicosatrienoic acids. Here, we sequenced the promoter region of EPHX2 to investigate the association between promoter sequence alterations that we thought to affect the expression levels of the enzyme and preeclampsia (PE). Methods Nucleotide sequencing of the promoter region of the EPHX2, spanning from position -671 to +30, was performed on 100 pregnant women with PE and, 20 or more weeks pregnant normotensive, healthy women (n=100). Results Pregnant women who carry rs4149235, rs4149232, rs73227309, and rs62504268 polymorphisms have 4.4, 2.4, 2.3, and 2.8 times significantly increased risk of PE, respectively. CCGG (OR: 3.11; 95% CI: 1.12-8.62) and CCCA (OR: 0.45; 95% CI: 0.36-0.55) haplotypes were associated with an increased and decreased risk of PE, respectively. Conclusions Four SNPs (rs4149232, rs4149235, rs73227309, and rs62504268) in the promoter region of the EPHX2, and CCGG and CCCA haplotypes of these 4 SNPs were significantly associated with PE. These SNPs in the promoter region may affect sEH expression and thus enzyme activity and may play a role in PE pathogenesis by causing individual differences in EET levels. However, future studies are needed to confirm our findings and examine the effect of these SNPs on the sEH expression and/or enzyme activity.
Collapse
Affiliation(s)
- İsmail Sarı
- Niğde Omer Halisdemir University, Faculty of Medicine, Department of Medical Biochemistry, Niğde, Turkey
| | - Hatice Ökten
- Beykent University, Faculty of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Çağdaş Aktan
- Beykent University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Esra Cihan
- Niğde Omer Halisdemir University, Faculty of Medicine, Department of Obstetrics and Gynaecology, Niğde, Turkey
| |
Collapse
|
37
|
Fang Y, Wang T, Guo YY, Zhang HF, Wen Q, Xing YR, Gao N, Qiao HL. From Genotype to Phenotype: Content and Activities of Cytochromes P450 2A6 in Human Liver In Vitro and Predicted In Vivo. J Pharmacol Exp Ther 2019; 372:320-330. [DOI: 10.1124/jpet.119.263152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
|
38
|
Hanif A, Edin ML, Zeldin DC, Nayeem MA. Ephx2-gene deletion affects acetylcholine-induced relaxation in angiotensin-II infused mice: role of nitric oxide and CYP-epoxygenases. Mol Cell Biochem 2019; 465:37-51. [PMID: 31797255 DOI: 10.1007/s11010-019-03665-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023]
Abstract
Previously, we showed that adenosine A2A receptor induces relaxation independent of NO in soluble epoxide hydrolase-null mice (Nayeem et al. in Am J Physiol Regul Integr Comp Physiol 304:R23-R32, 2013). Currently, we hypothesize that Ephx2-gene deletion affects acetylcholine (Ach)-induced relaxation which is independent of A2AAR but dependent on NO and CYP-epoxygenases. Ephx2-/- aortas showed a lack of sEH (97.1%, P < 0.05) but an increase in microsomal epoxide hydrolase (mEH, 37%, P < 0.05) proteins compared to C57Bl/6 mice, and no change in CYP2C29 and CYP2J protein (P > 0.05). Ach-induced response was tested with nitro-L-arginine methyl ester (L-NAME) NO-inhibitor; 10-4 M), N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH) (CYP-epoxygenase inhibitor; 10-5 M), 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, an epoxyeicosatrienoic acid-antagonist; 10-5 M), SCH-58261 (A2AAR-antagonist; 10-6 M), and angiotensin-II (Ang-II, 10-6 M). In Ephx2-/- mice, Ach-induced relaxation was not different from C57Bl/6 mice except at 10-5 M (92.75 ± 2.41 vs. 76.12 ± 3.34, P < 0.05). However, Ach-induced relaxation was inhibited with L-NAME (Ephx2-/-: 23.74 ± 3.76% and C57Bl/6: 11.61 ± 2.82%), MS-PPOH (Ephx2-/-: 48.16 ± 6.53% and C57Bl/6: 52.27 ± 7.47%), and 14,15-EEZE (Ephx2-/-: 44.29 ± 8.33% and C57Bl/6: 39.27 ± 7.47%) vs. non-treated (P < 0.05). But, it did not block with SCH-58261 (Ephx2-/-: 68.75 ± 11.41% and C57Bl/6: 66.26 ± 9.43%, P > 0.05) vs. non-treated (P > 0.05). Interestingly, Ang-II attenuates less relaxation in Ehx2-/- vs. C57Bl/6 mice (58.80 ± 7.81% vs. 45.92 ± 7.76, P < 0.05). Our data suggest that Ach-induced relaxation in Ephx2-/- mice depends on NO and CYP-epoxygenases but not on A2A AR, and Ephx2-gene deletion attenuates less Ach-induced relaxation in Ang-II-infused mice.
Collapse
Affiliation(s)
- Ahmad Hanif
- Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Research Triangle Park, NC, USA
| | - Mohammed A Nayeem
- Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA. .,Department of Pharmaceutical Sciences, Health Science Center-School of Pharmacy, West Virginia University, Biomedical Research Building, 2nd Floor, Room # 220, 1 Medical Center Drive, PO Box 9530, Morgantown, WV, 26506-9530, USA.
| |
Collapse
|
39
|
Gladine C, Ostermann AI, Newman JW, Schebb NH. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med 2019; 144:72-89. [PMID: 31085232 DOI: 10.1016/j.freeradbiomed.2019.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
Oxylipins, including the well-known eicosanoids, are potent lipid mediators involved in numerous physiological and pathological processes. Therefore, their quantitative profiling has gained a lot of attention during the last years notably in the active field of health biomarker discovery. Oxylipins include hundreds of structurally and stereochemically distinct lipid species which today are most commonly analyzed by (ultra) high performance liquid chromatography-mass spectrometry based ((U)HPLC-MS) methods. To maximize the utility of oxylipin profiling in clinical research, it is crucial to understand and assess the factors contributing to the analytical and biological variability of oxylipin profiles in humans. In this review, these factors and their impacts are summarized and discussed, providing a framework for recommendations expected to enhance the interlaboratory comparability and biological interpretation of oxylipin profiling in clinical research.
Collapse
Affiliation(s)
- Cécile Gladine
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| | - John W Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; University of California Davis, Department of Nutrition, Davis, CA, USA
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, Gaußstraße 20, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
40
|
Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L. Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 2019; 21:393-404. [PMID: 31746392 DOI: 10.3892/mmr.2019.10810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular disease is the predominant complication and leading cause of mortality in patients with chronic kidney disease (CKD). Previous studies have revealed that uremic toxins, including indoxyl sulfate (IS), participate in cardiac hypertrophy. As a heme‑thiolate monooxygenase, cytochrome P450 family 1 subfamily B member 1 (CYP1B1) is able to metabolize arachidonic acid into hydroxyeicosatetraenoic acids, which are thought to serve a central function in the pathophysiology of the cardiovascular system. However, whether CYP1B1 is involved in cardiac hypertrophy induced by uremic toxins remains unknown. The present study revealed that the expression of the CYP1B1 gene was significantly (P<0.05, CKD or IS vs. control) upregulated by CKD serum or IS at the transcriptional and translational level. Furthermore, IS treatment resulted in the nuclear translocation of aryl hydrocarbon receptor (AhR), an endogenous ligand of IS. Binding of AhR in the promoter region of CYP1B1 was confirmed using a chromatin immunoprecipitation assay in the cardiomyoblast H9c2 cell line. In addition, knockdown of AhR or CYP1B1 reversed the production of cardiac hypertrophy markers. The in vivo injection of a CYP1B1 inhibitor significantly (P<0.05, Inhibitor vs. control) attenuated cardiac hypertrophy in mice. The data from the present study clearly demonstrated that CYP1B1 was involved in cardiac hypertrophy induced by uremic toxins.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Shaobo Wang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ke Yang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Yong Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Xianjin Bi
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Chi Liu
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jiachuan Xiong
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Bo Zhang
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Ling Nie
- Department of Nephrology, The Key Laboratory for The Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
41
|
Geng H, Li B, Wang Y, Wang L. Association Between the CYP4F2 Gene rs1558139 and rs2108622 Polymorphisms and Hypertension: A Meta-Analysis. Genet Test Mol Biomarkers 2019; 23:342-347. [PMID: 30932691 DOI: 10.1089/gtmb.2018.0202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: To investigate the association between the CYP4F2 gene rs1558139 and rs2108622 polymorphisms and hypertension. Materials and Methods: In this meta-analysis, we searched databases for case-control studies published before May 2018 examining the associations between two polymorphic sites of the CYP4F2 gene (rs1558139 and rs2108622) and hypertension. The fixed or random effects model chosen was selected according to the heterogeneity of the studies to calculate the pooled odds ratios (OR) and corresponding 95% confidence intervals (95% CI). Results: Six articles in total were analyzed in this study; three investigated the rs1558139 polymorphism and six investigated the rs2108622 polymorphism. The pooled OR and 95% CI using the dominant model for rs1558139, and both the homozygous model and the recessive model of rs2108622 were statistically significant giving values of 0.83 (0.71-0.96), 0.83 (0.71-0.98), and 1.24 (1.07-1.44), respectively. The pooled OR and 95% CI of the rs1558139 polymorphism in the subgroup analysis based on gender were 1.25 (1.08-1.45) and 0.98 (0.85-1.13), whereas the results for the rs2108622 polymorphism were 1.03 (0.86-1.24) and 0.91 (0.72-1.14). Conclusion: Our meta-analysis demonstrates that the rs1558139 and rs2108622 single nucleotide polymorphisms of the CYP4F2 gene are associated with hypertension, with a particularly strong link between the rs1558139 polymorphism in males.
Collapse
Affiliation(s)
- Huixia Geng
- Institute for Risk Assessment of Chronic Diseases, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan, P.R. China
| | - Bo Li
- Institute for Risk Assessment of Chronic Diseases, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan, P.R. China
| | - Yanmei Wang
- Institute for Risk Assessment of Chronic Diseases, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan, P.R. China
| | - Lai Wang
- Institute for Risk Assessment of Chronic Diseases, School of Nursing and Health Sciences, Henan University, Kaifeng, Henan, P.R. China
| |
Collapse
|
42
|
Jarrar YB, Jarrar Q, abed A, Abu-Shalhoob M. Effects of nonsteroidal anti-inflammatory drugs on the expression of arachidonic acid-metabolizing Cyp450 genes in mouse hearts, kidneys and livers. Prostaglandins Other Lipid Mediat 2019; 141:14-21. [DOI: 10.1016/j.prostaglandins.2019.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/04/2023]
|
43
|
Gilani A, Pandey V, Garcia V, Agostinucci K, Singh SP, Schragenheim J, Bellner L, Falck JR, Paudyal MP, Capdevila JH, Abraham NG, Laniado Schwartzman M. High-fat diet-induced obesity and insulin resistance in CYP4a14 -/- mice is mediated by 20-HETE. Am J Physiol Regul Integr Comp Physiol 2018; 315:R934-R944. [PMID: 30088983 PMCID: PMC6295494 DOI: 10.1152/ajpregu.00125.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to positively correlate with body mass index, hyperglycemia, and plasma insulin levels. This study seeks to identify a causal relationship between 20-HETE and obesity-driven insulin resistance. Cyp4a14-/- male mice, a model of 20-HETE overproduction, were fed a regular or high-fat diet (HFD) for 15 wk. 20-SOLA [2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-6( Z),15( Z)-dienoate], a 20-HETE antagonist, was administered from week 0 or week 7 of HFD. HFD-fed mice gained significant weight (16.7 ± 3.2 vs. 3.8 ± 0.35 g, P < 0.05) and developed hyperglycemia (157 ± 3 vs. 121 ± 7 mg/dl, P < 0.05) and hyperinsulinemia (2.3 ± 0.4 vs. 0.5 ± 0.1 ng/ml, P < 0.05) compared with regular diet-fed mice. 20-SOLA attenuated HFD-induced weight gain (9.4 ± 1 vs. 16.7 ± 3 g, P < 0.05) and normalized the hyperglycemia (157 ± 7 vs. 102 ± 5 mg/dl, P < 0.05) and hyperinsulinemia (1.1 ± 0.1 vs. 2.3 ± 0.4 ng/ml, P < 0.05). The impaired glucose homeostasis and insulin resistance in HFD-fed mice evidenced by reduced insulin and glucose tolerance were also ameliorated by 20-SOLA. Circulatory and adipose tissue 20-HETE levels significantly increased in HFD-fed mice correlating with impaired insulin signaling, including reduction in insulin receptor tyrosine (Y972) phosphorylation and increased serine (S307) phosphorylation of the insulin receptor substrate-1 (IRS-1). 20-SOLA treatments prevented changes in insulin signaling. These findings indicate that 20-HETE contributes to HFD-induced obesity, insulin resistance, and impaired insulin signaling.
Collapse
Affiliation(s)
- Ankit Gilani
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Varunkumar Pandey
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Victor Garcia
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Kevin Agostinucci
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Shailendra P Singh
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Joseph Schragenheim
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Lars Bellner
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Texas
| | - Mahesh P Paudyal
- Department of Biochemistry, University of Texas Southwestern Medical Center, Texas
| | - Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Nader G Abraham
- Departments of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
- Department of Medicine, New York Medical College School of Medicine, Valhalla, New York
| | | |
Collapse
|
44
|
Ge YH, Chen YY, Zhou GS, Liu X, Tang YP, Liu R, Liu P, Li N, Yang J, Wang J, Yue SJ, Zhou H, Duan JA. A Novel Antithrombotic Protease from Marine Worm Sipunculus Nudus. Int J Mol Sci 2018; 19:ijms19103023. [PMID: 30287737 PMCID: PMC6213608 DOI: 10.3390/ijms19103023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
Sipunculus nudus, an old marine species, has great potential for use as functional seafood due to its various bioactivities. Its potential antithrombotic activity pushed us to isolate the bio-active components bio-guided by tracking fibrinolytic activity. As a result, a novel protease named as SK (the kinase obtained from S. nudus) was obtained, which possessed a molecular weight of 28,003.67 Da and 15 N-terminal amino acid sequences of PFPVPDPFVWDTSFQ. SK exerted inhibitory effects on thrombus formation through improving the coagulation system with dose-effect relationship within a certain range. Furthermore, in most cases SK got obviously better effect than that of urokinase. With the help of untargeted mass spectrometry-based metabolomics profiling, arachidonic acid, sphingolipid, and nicotinate and nicotinamide mechanism pathways were found to be important pathways. They revealed that the effect mechanism of SK on common carotid arterial thrombosis induced by FeCl3 was achieved by inhibiting vessel contraction, platelet aggregation, adhesion, and release, correcting endothelial cell dysfunction and retarding process of thrombus formation. This study demonstrated SK was a promising thrombolytic agent on the basis of its comprehensive activities on thrombosis, and it should get further exploitation and utilization.
Collapse
Affiliation(s)
- Ya-Hui Ge
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Pei Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China.
| | - Jie Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Jing Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
45
|
Alsaad AMS. Dasatinib induces gene expression of CYP1A1, CYP1B1, and cardiac hypertrophy markers (BNP, β-MHC) in rat cardiomyocyte H9c2 cells. Toxicol Mech Methods 2018; 28:678-684. [DOI: 10.1080/15376516.2018.1497746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Abdulaziz M. S. Alsaad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Albertolle ME, Peter Guengerich F. The relationships between cytochromes P450 and H 2O 2: Production, reaction, and inhibition. J Inorg Biochem 2018; 186:228-234. [PMID: 29990746 PMCID: PMC6084448 DOI: 10.1016/j.jinorgbio.2018.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/26/2022]
Abstract
In this review we address the relationship between cytochromes P450 (P450) and H2O2. This association can affect biology in three distinct ways. First, P450s produce H2O2 as a byproduct either during catalysis or when no substrate is present. This reaction, known as uncoupling, releases reactive oxygen species that may have implications in disease. Second, H2O2 is used as an oxygen-donating co-substrate in peroxygenase and peroxidase reactions catalyzed by P450s. This activity has proven to be important mainly in reactions involving prokaryotic P450s, and investigators have harnessed this reaction with the aim of adaptation for industrial use. Third, H2O2-dependent inhibition of human P450s has been studied in our laboratory, demonstrating heme destruction and also the inactivating oxidation of the heme-thiolate ligand to a sulfenic acid (-SOH). This reversible oxidative modification of P450s may have implications in the prevention of uncoupling and may give new insights into the oxidative regulation of these enzymes. Research has elucidated many of the chemical mechanisms involved in the relationship between P450 and H2O2, but the application to biology is difficult to evaluate. Further studies are needed reveal both the harmful and protective natures of reactive oxygen species in an organismal context.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, United States.
| |
Collapse
|
47
|
Kashyap S, Kumar S, Agarwal V, Misra DP, Phadke SR, Kapoor A. Gene expression profiling of coronary artery disease and its relation with different severities. J Genet 2018. [DOI: 10.1007/s12041-018-0980-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Meiners B, Shenoy C, Zordoky BN. Clinical and preclinical evidence of sex-related differences in anthracycline-induced cardiotoxicity. Biol Sex Differ 2018; 9:38. [PMID: 30157941 PMCID: PMC6114275 DOI: 10.1186/s13293-018-0198-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/16/2018] [Indexed: 01/04/2023] Open
Abstract
Anthracyclines are very effective chemotherapeutic agents that are widely used to treat pediatric and adult cancer patients. Unfortunately, the clinical utility of anthracyclines is limited by cardiotoxicity. There are several established risk factors for anthracycline-induced cardiotoxicity (AIC), including total cumulative dose, very young and very old age, concomitant use of other cardiotoxic agents, and concurrent mediastinal radiation. However, the role of sex as a risk factor for AIC is not well defined. In pediatric cancer patients, most studies support the notion that female sex is a significant risk factor for AIC. Conversely, there is anecdotal evidence that female sex protects against AIC in adult cancer patients. The lack of consistency in study designs and the different definitions of cardiotoxicity preclude reaching consensus regarding the role of sex as a risk factor for AIC in both pediatric and adult cancer patients. Therefore, more clinical research using reliable techniques such as cardiac magnetic resonance imaging is needed to determine if there truly are sex differences in AIC. In adult preclinical rodent studies, however, there is unequivocal evidence that female sex confers significant protection against AIC, with a possible protective effect of female sex hormones and/or a detrimental role of the male sex hormones. Although findings of these rodent studies may not perfectly mirror the clinical scenario in adult anthracycline-treated cancer patients, understanding the mechanisms of this significant sexual dimorphism may reveal important cardioprotective mechanisms that can be therapeutically targeted.
Collapse
Affiliation(s)
- Becky Meiners
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 308 Harvard St S.E, Minneapolis, MN, 55455, USA
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, 308 Harvard St S.E, Minneapolis, MN, 55455, USA.
| |
Collapse
|
49
|
Yu K, Zhang T, Li X. Genetic role of CYP4A11 polymorphisms in the risk of developing cardiovascular and cerebrovascular diseases. Ann Hum Genet 2018; 82:370-381. [PMID: 30132788 DOI: 10.1111/ahg.12280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/14/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND We are interested in comprehensively evaluating the potential genetic influence of rs9332978 A/G, rs1126742 T/C, and rs9333025 G/A polymorphisms of CYP4A11 (cytochrome P450 family 4, subfamily A, member 11) in the risk of developing cardiovascular and cerebrovascular diseases. METHODS A meta-analysis was carried out using articles obtained from online databases and Stata/SE 12.0 software. We primarily used a P value of association test (Passociation ) and odds ratios (OR) to assess the genetic relationships. RESULTS We included 22 eligible case-control articles for our meta-analysis. For the overall meta-analysis of the rs9332978 A/G polymorphism, there was an increased risk of cardiovascular and cerebrovascular diseases in cases under the models of allele G vs. A (Passociation = 0.001, OR = 1.16), AG vs. AA (Passociation < 0.001, OR = 1.22), and AG+GG vs. AA (Passociation < 0.001, OR = 1.22) compared with the controls. There were similar results in the subgroup analysis of "hypertension" (Passociation = 0.024 for the allele model; Passociation = 0.003 for the heterozygote model; and Passociation = 0.005 for the dominant model). For rs1126742, there was a significant difference between cases and controls in the overall meta-analysis and subgroup of "Caucasian," "hypertension," and "population-based (PB)" under all of the genetic models (all Passociation < 0.05, OR > 1). Furthermore, a decreased risk was detected in the overall and "PB" subgroup meta-analysis of rs9333025 under the models of A vs. G, AA vs. GG, and AA vs. GG+GA (all Passociation < 0.05, OR < 1). CONCLUSION The rs1126742 T/C polymorphism of CYP4A11 is more likely to be a genetic risk factor for the hypertension cases in the Caucasian population. Moreover, whereas the AG genotype of CYP4A11 rs9332978 may be associated with an increased risk of hypertension, the AA genotype of rs9333025 may be linked to a decreased risk of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kuiying Yu
- First Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong, 255200, People's Republic of China
| | - Tao Zhang
- First Department of Neurology, The First Hospital of Zibo, Zibo City, Shandong, 255200, People's Republic of China
| | - Xuhua Li
- China Medical University Hospital of Boshan District, Zibo City, Shandong, 255200, People's Republic of China
| |
Collapse
|
50
|
Colli-Dula RC, Fang X, Moraga-Amador D, Albornoz-Abud N, Zamora-Bustillos R, Conesa A, Zapata-Perez O, Moreno D, Hernandez-Nuñez E. Transcriptome analysis reveals novel insights into the response of low-dose benzo(a)pyrene exposure in male tilapia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:162-173. [PMID: 29913432 DOI: 10.1016/j.aquatox.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Despite a wide number of toxicological studies that describe benzo[a]pyrene (BaP) effects, the metabolic mechanisms that underlie these effects in fish are largely unknown. Of great concern is the presence of BaP in aquatic systems, especially those in close proximity to human activity leading to consumption of potentially contaminated foods. BaP is a known carcinogen and it has been reported to have adverse effects on the survival, development and reproduction of fish. The purpose of this study was to investigate if a low dose of BaP can alter genes and key metabolic pathways in the liver and testis in male adult tilapia, and whether these could be associated with biological endpoints disruption. We used both high-throughput RNA-Sequencing to assess whole genome gene expression following repeated intraperitoneal injections of 3 mg/kg of BaP (every 6 days for 26 days) and morphometric endpoints as indicators of general health. Condition factor (K) along with hepatosomatic and gonadosomatic indices (morphometric parameters) were significantly lower in BaP-treated fish than in controls. BaP exposure induced important changes in the gene expression pattern in liver and testis as revealed by both Pathway and Gene Ontology (GO) analyses. Alterations that were shared by both tissues included arachidonic acid metabolism, androgen receptor to prostate-specific antigen signaling, and insulin-associated effects on lipogenesis. The most salient liver-specific effects included: biological processes involved in detoxification, IL6-associated insulin resistance, mTOR hyperactivation, mitotic cytokinesis, spindle pole and microtubule binding. BaP effects that were confined to the testis included: immune system functions, inflammatory response, estrogen and androgen metabolic pathways. Taken together, gene expression and morphometric end point data indicate that the reproductive success of adult male tilapia could be compromised as a result of BaP exposure. These results constitute new insights on the mechanism of action of low dose BaP in a non-model organism (tilapia).
Collapse
Affiliation(s)
- Reyna Cristina Colli-Dula
- CONACYT, Mexico; Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico.
| | - Xiefan Fang
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA.
| | | | - Nacira Albornoz-Abud
- Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico.
| | - Roberto Zamora-Bustillos
- Instituto Tecnológico de Conkal, División de Estudios de Posgrado e Investigación, Laboratorio de Genética Molecular, Conkal, Yucatán, 97345, Mexico.
| | - Ana Conesa
- Centro de Investigacion Principe Felipe, 46012 Valencia, Spain; Microbiology and Cell Science, Institute for Food and Agricultural Sciences, Genetics Institute, University of Florida, Gainesville, FL 32603, USA.
| | - Omar Zapata-Perez
- Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico.
| | - Diego Moreno
- Universidad Autónoma de Yucatán, Facultad de Ingeniería Ambiental, Mérida, Yucatán, 97150, Mexico.
| | - Emanuel Hernandez-Nuñez
- CONACYT, Mexico; Departamento de Recursos del Mar, Cinvestav Unidad Mérida, Mérida, Yucatán 97310, Mexico
| |
Collapse
|