1
|
Nguyen Ngoc Pouplin J, Kaendiao T, Rahimi BA, Soni M, Basopia H, Shah D, Patil J, Dholakia V, Suthar Y, Tarning J, Mukaka M, Taylor WR. Bioequivalence of a new coated 15 mg primaquine formulation for malaria elimination. Malar J 2024; 23:176. [PMID: 38840151 PMCID: PMC11155120 DOI: 10.1186/s12936-024-04947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/12/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND With only one 15 mg primaquine tablet registered by a stringent regulatory authority and marketed, more quality-assured primaquine is needed to meet the demands of malaria elimination. METHODS A classic, two sequence, crossover study, with a 10-day wash out period, of 15 mg of IPCA-produced test primaquine tablets and 15 mg of Sanofi reference primaquine tablets was conducted. Healthy volunteers, aged 18-45 years, without glucose-6-phosphate dehydrogenase deficiency, a baseline haemoglobin ≥ 11 g/dL, creatinine clearance ≥ 70 mL/min/1.73 ms, and body mass index of 18.5-30 kg/m2 were randomized to either test or reference primaquine, administered on an empty stomach with 240 mL of water. Plasma primaquine and carboxyprimaquine concentrations were measured at baseline, then 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.333, 2.667, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 8.0, 10.0, 12.0, 16.0, 24.0, 36.0, 48.0 and 72.0 h by liquid chromatography coupled to tandem mass spectrometry. Primaquine pharmacokinetic profiles were evaluated by non-compartmental analysis and bioequivalence concluded if the 90% confidence intervals (CI) of geometric mean (GM) ratios of test vs. reference formulation for the peak concentrations (Cmax) and area under the drug concentration-time (AUC0-t) were within 80.00 to 125.00%. RESULTS 47 of 50 volunteers, median age 33 years, completed both dosing rounds and were included in the bioequivalence analysis. For primaquine, GM Cmax values for test and reference formulations were 62.12 vs. 59.63 ng/mL, resulting in a GM ratio (90% CI) of 104.17% (96.92-111.96%); the corresponding GM AUC0-t values were 596.56 vs. 564.09 ngxh/mL, for a GM ratio of 105.76% (99.76-112.08%). Intra-subject coefficient of variation was 20.99% for Cmax and 16.83% for AUC0-t. Median clearances and volumes of distribution were similar between the test and reference products: 24.6 vs. 25.2 L/h, 189.4 vs. 191.0 L, whilst the median half-lives were the same, 5.2 h. CONCLUSION IPCA primaquine was bioequivalent to the Sanofi primaquine. This opens the door to prequalification, registration in malaria endemic countries, and programmatic use for malaria elimination. Trial registration The trial registration reference is ISRCTN 54640699.
Collapse
Affiliation(s)
- Julie Nguyen Ngoc Pouplin
- Réseau Médicaments et Développement, 21Bis Avenue du Commandant l'Herminier, 44600, Saint-Nazaire, France.
| | - Thoopmanee Kaendiao
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | - Bilal Ahmad Rahimi
- Department of Paediatrics, Faculty of Medicine, Kandahar University, Kandahar, Afghanistan
| | - Mayur Soni
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Hensi Basopia
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Darshana Shah
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Jitendra Patil
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Vyom Dholakia
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Yash Suthar
- Cliantha Research Limited, Cliantha Corporate, Ahmedabad, Gujarat, India
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chotsiri P, Mahamar A, Diawara H, Fasinu PS, Diarra K, Sanogo K, Bousema T, Walker LA, Brown JM, Dicko A, Gosling R, Chen I, Tarning J. Population pharmacokinetics of primaquine and its metabolites in African males. Malar J 2024; 23:159. [PMID: 38773528 PMCID: PMC11106956 DOI: 10.1186/s12936-024-04979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primaquine (PQ) is the prototype 8-aminoquinoline drug, a class which targets gametocytes and hypnozoites. The World Health Organization (WHO) recommends adding a single low dose of primaquine to the standard artemisinin-based combination therapy (ACT) in order to block malaria transmission in regions with low malaria transmission. However, the haemolytic toxicity is a major adverse outcome of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient subjects. This study aimed to characterize the pharmacokinetic properties of primaquine and its major metabolites in G6PD-deficient subjects. METHODS A single low-dose of primaquine (0.4-0.5 mg/kg) was administered in twenty-eight African males. Venous and capillary plasma were sampled up to 24 h after the drug administration. Haemoglobin levels were observed up to 28 days after drug administration. Only PQ, carboxy-primaquine (CPQ), and primaquine carbamoyl-glucuronide (PQCG) were present in plasma samples and measured using liquid chromatography mass spectrometry. Drug and metabolites' pharmacokinetic properties were investigated using nonlinear mixed-effects modelling. RESULTS Population pharmacokinetic properties of PQ, CPQ, and PQCG can be described by one-compartment disposition kinetics with a transit-absorption model. Body weight was implemented as an allometric function on the clearance and volume parameters for all compounds. None of the covariates significantly affected the pharmacokinetic parameters. No significant correlations were detected between the exposures of the measured compounds and the change in haemoglobin or methaemoglobin levels. There was no significant haemoglobin drop in the G6PD-deficient patients after administration of a single low dose of PQ. CONCLUSIONS A single low-dose of PQ was haematologically safe in this population of G6PD-normal and G6PD-deficient African males without malaria. Trial registration NCT02535767.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Pius S Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Larry A Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, USA
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Ingrid Chen
- Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
3
|
Wattanakul T, Gilder ME, McGready R, Hanpithakpong W, Day NPJ, White NJ, Nosten F, Tarning J, Hoglund RM. Population pharmacokinetic modelling of primaquine exposures in lactating women and breastfed infants. Nat Commun 2024; 15:3851. [PMID: 38719803 PMCID: PMC11078975 DOI: 10.1038/s41467-024-47908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Warunee Hanpithakpong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
4
|
Pookmanee W, Thongthip S, Mungthin M, Sukasem C, Tankanitlert J, Chariyavilaskul P, Wittayalertpanya S. An increase in urinary primaquine and a reduction in urinary primaquine-5,6-orthoquinone in the Thai population with CYP2D6 reduced enzyme function. Heliyon 2024; 10:e24351. [PMID: 38293439 PMCID: PMC10827494 DOI: 10.1016/j.heliyon.2024.e24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Objectives Primaquine is metabolized by the cytochrome P450-2D6 enzyme (CYP2D6) to an active primaquine-5,6-orthoquinone (POQ). No relationships of CYP2D6 polymorphisms with the pharmacokinetics of primaquine and POQ were reported in the Thai population. Methods We evaluated the genetic distribution of CYP2D6 in 345 Thai army populations together with the pharmacokinetic profiles of primaquine and POQ in plasma and urine (n = 44, descriptive data are presented in median (range)). All dose-related pharmacokinetic parameters were normalized by primaquine dose per body weight before statistical analysis. Results CYP2D6*10 was the allele observed with the highest frequency (56.62%) corresponding to CYP2D6*10/*10 (32.94%) and CYP2D6*1/*10 (27.94%) genotypes. CYP2D6 intermediate metabolizers (CYP2D6 IM) were found in 44.41% of the cohort and had an increase in the cumulative amount of primaquine excreted (CAE) in urine compared to normal metabolizers of CYP2D6 (CYP2D6 NM); (CYP2D6 IM vs. CYP2D6 NM: 2444 (1697-3564) vs. 1757 (1092-2185) μg/mg/kg, p = 0.039), a reduction in urine CAE of POQ (CYP2D6 IM vs CYP2D6 NM: 115 (46-297) vs. 318 (92-498) μg/mg/kg, p = 0.047) and a reduction in the POQ/primaquine CAE ratio in urine (CYP2D6 IM vs. CYP2D6 NM: 0.06 (0.01-0.11) vs. 0.16 (0.06-0.26), p = 0.009). No significant differences were found in the pharmacokinetic profiles of plasma primaquine and POQ. Conclusions The CYP2D6 polymorphisms influenced the changes in primaquine and POQ that were noticeable in the urine, supporting the role of the CYP2D6 gene testing before drug administration.
Collapse
Affiliation(s)
- Waritda Pookmanee
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Depot Division, Royal Thai Army Medical Department, Bangkok, Thailand
| | - Siriwan Thongthip
- Maha Chakri Sirindhorn Clinical Research Center under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center, Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
| | | | - Pajaree Chariyavilaskul
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supeecha Wittayalertpanya
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Kumar A, Singh PP, Tyagi S, Hari Kishan Raju K, Sahu SS, Rahi M. Vivax malaria: a possible stumbling block for malaria elimination in India. Front Public Health 2024; 11:1228217. [PMID: 38259757 PMCID: PMC10801037 DOI: 10.3389/fpubh.2023.1228217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium vivax is geographically the most widely dispersed human malaria parasite species. It has shown resilience and a great deal of adaptability. Genomic studies suggest that P. vivax originated from Asia or Africa and moved to the rest of the world. Although P. vivax is evolutionarily an older species than Plasmodium falciparum, its biology, transmission, pathology, and control still require better elucidation. P. vivax poses problems for malaria elimination because of the ability of a single primary infection to produce multiple relapses over months and years. P. vivax malaria elimination program needs early diagnosis, and prompt and complete radical treatment, which is challenging, to simultaneously exterminate the circulating parasites and dormant hypnozoites lodged in the hepatocytes of the host liver. As prompt surveillance and effective treatments are rolled out, preventing primaquine toxicity in the patients having glucose-6-phosphate dehydrogenase (G6PD) deficiency should be a priority for the vivax elimination program. This review sheds light on the burden of P. vivax, changing epidemiological patterns, the hurdles in elimination efforts, and the essential tools needed not just in India but globally. These tools encompass innovative treatments for eliminating dormant parasites, coping with evolving drug resistance, and the development of potential vaccines against the parasite.
Collapse
Affiliation(s)
- Ashwani Kumar
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | - Suchi Tyagi
- ICMR - Vector Control Research Centre, Puducherry, India
| | | | | | - Manju Rahi
- ICMR - Vector Control Research Centre, Puducherry, India
- Indian Council of Medical Research, Hqrs New Delhi, India
| |
Collapse
|
6
|
Dowd S, Chen N, Gatton ML, Edstein MD, Cheng Q. Cytochrome P450 2D6 profiles and anti-relapse efficacy of tafenoquine against Plasmodium vivax in Australian Defence Force personnel. Antimicrob Agents Chemother 2023; 67:e0101423. [PMID: 37971260 PMCID: PMC10720419 DOI: 10.1128/aac.01014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
Plasmodium vivax infections and relapses remain a major health problem for malaria-endemic countries, deployed military personnel, and travelers. Presumptive anti-relapse therapy and radical cure using the 8-aminoquinoline drugs primaquine and tafenoquine are necessary to prevent relapses. Although it has been demonstrated that the efficacy of primaquine is associated with Cytochrome P450 2D6 (CYP2D6) activity, there is insufficient data on the role of CYP2D6 in the anti-relapse efficacy of tafenoquine. We investigated the relationship between CYP2D6 activity status and tafenoquine efficacy in preventing P. vivax relapses retrospectively using plasma samples collected from Australian Defence Force personnel deployed to Papua New Guinea and Timor-Leste who participated in clinical trials of tafenoquine during 1999-2001. The CYP2D6 gene was amplified from plasma samples and fully sequenced from 92 participant samples, comprised of relapse (n = 31) and non-relapse (n = 61) samples, revealing 14 different alleles. CYP2D6 phenotypes deduced from combinations of CYP2D6 alleles predicted that among 92 participants 67, 15, and 10 were normal, intermediate, and poor metabolizers, respectively. The deduced CYP2D6 phenotype did not correlate with the corresponding participant's plasma tafenoquine concentrations that were determined in the early 2000s by high-performance liquid chromatography or liquid chromatography-mass spectrometry. Furthermore, the deduced CYP2D6 phenotype did not associate with P. vivax relapse outcomes. Our results indicate that CYP2D6 does not affect plasma tafenoquine concentrations and the efficacy of tafenoquine in preventing P. vivax relapses in the assessed Australian Defence Force personnel.
Collapse
Affiliation(s)
- Simone Dowd
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Nanhua Chen
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michelle L. Gatton
- Centre for Immunology and Infection Control, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Michael D. Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Qin Cheng
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| |
Collapse
|
7
|
Mukaka M, Onyamboko MA, Olupot-Olupot P, Peerawaranun P, Suwannasin K, Pagornrat W, Kouhathong J, Madmanee W, Were W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Bongo GS, Okalebo CB, Abongo G, Uyoga S, Williams TN, Taya C, Dhorda M, Dondorp AM, Waithira N, Imwong M, Maitland K, Fanello C, Day NPJ, Tarning J, White NJ, Taylor WRJ. Pharmacokinetics of single low dose primaquine in Ugandan and Congolese children with falciparum malaria. EBioMedicine 2023; 96:104805. [PMID: 37757570 PMCID: PMC10550634 DOI: 10.1016/j.ebiom.2023.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND There are no pharmacokinetic data of single low dose primaquine (SLDPQ) as transmission blocking in African children with acute Plasmodium falciparum and glucose-6-phosphate dehydrogenase deficiency (G6PDd). METHODS Primaquine pharmacokinetics of age-dosed SLDPQ (shown previously to be gametocytocidal with similar tolerability as placebo) were characterised in falciparum-infected Ugandan and Congolese children aged 6 months to 11 years, treated on admission with standard 3-day dihydroartemisinin-piperaquine or artemether-lumefantrine plus SLDPQ: 6 m-<1 y: 1.25 mg, 1-5 y: 2.5 mg, 6-9 y: 5 mg, 10-11 y: 7.5 mg. LC-MS/MS-measured plasma primaquine and carboxyprimaquine (baseline, 1, 1.5, 2, 4, 8, 12, 24 h) were analysed by noncompartmental analysis. Multivariable linear regression modelled associations between covariates, including cytochrome-P450 2D6 metaboliser status, and outcomes. FINDINGS 258 children (median age 5 [interquartile range (IQR) 3-7]) were sampled; 8 (3.1%) with early vomiting were excluded. Primaquine doses of 0.10-0.40 (median 0.21, IQR 0.16-0.25) mg base/kg resulted in primaquine maximum plasma concentrations (Cmax) of 2.3-447 (median 103.0, IQR 72.1-140.0) ng/mL between 1.0 and 8.0 (median 2) hours (Tmax) and median areas under the drug concentration curves (AUC0-last) 730.2 (6 m-<1 y, n = 12), 582.8 (1-5 y, n = 126), 871.1 (6-9 y, n = 80), and 931.0 (10-11 y, n = 32) ng∗h/mL. Median elimination half-live (T½) was 4.7 (IQR 3.8-5.6) hours. Primaquine clearance/kg peaked at 18 months, plateauing at 4 y. Increasing CYP2D6 metaboliser activity score [poor (3/250), intermediate (52/250), normal (150/250), ultrarapid (5/250), indeterminate (40/250)] and baseline haemoglobin were significantly associated with a lower primaquine AUC0-last,which increased with increasing mg/kg dose and age but was independent of the artemisinin treatment used. INTERPRETATION Age-dosed SLDPQ resulted in variable primaquine exposure that depended on bodyweight-adjusted dose, age, baseline haemoglobin and CYP2D6 metaboliser status, but not on dihydroartemisinin-piperaquine or artemether-lumefantrine. These data support age-dosed SLDPQ for transmission blocking in sub-Saharan Africa. FUNDING This work was cofunded by the UK Medical Research Council, Wellcome Trust, and UK Aid through the Global Health Trials (grant reference MR/P006973/1). The funders had no role in the study design, execution, and analysis and decisions regarding publication.
Collapse
Affiliation(s)
- Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda; Busitema University, P.O. Box 1460, Mbale, Uganda
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Kanokon Suwannasin
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Watcharee Pagornrat
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Jindarat Kouhathong
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Wanassanan Madmanee
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Winifred Were
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Cate Namayanja
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Peter Onyas
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Harriet Titin
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Joy Baseke
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Georgette S Bongo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Democratic Republic of Congo
| | - Charles B Okalebo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Grace Abongo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, SW7 2AS, United Kingdom
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, SW7 2AS, United Kingdom
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
8
|
Macêdo MM, Almeida ACG, Silva GS, Oliveira AC, Mwangi VI, Shuan AC, Barbosa LRA, Rodrigues-Soares F, Melo GC. Association of CYP2C19, CYP2D6 and CYP3A4 Genetic Variants on Primaquine Hemolysis in G6PD-Deficient Patients. Pathogens 2023; 12:895. [PMID: 37513742 PMCID: PMC10384057 DOI: 10.3390/pathogens12070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In the Amazon, the treatment for Plasmodium vivax is chloroquine plus primaquine. However, this regimen is limited due to the risk of acute hemolytic anemia in glucose-6-phosphate dehydrogenase deficiency. Primaquine is a prodrug that requires conversion by the CYP2D6 enzyme to be effective against malaria. A series of cases were performed at an infectious diseases reference hospital in the Western Brazilian Amazon. The STANDARD G6PD (SD Biosensor®) assay was used to infer G6PD status and real-time PCR to genotype G6PD, CYP2C19, CYP2D6 and CYP3A4. Eighteen patients were included, of which 55.6% had African A- variant (G202A/A376G), 11.1% African A+ variant (A376G), 5.6% Mediterranean variant (C563T) and 27.8% were wild type. CYP2C19, CYP2D6 and CYP3A4 genotyping showed no statistically significant differences in the frequency of star alleles between the groups G6PD deficient and G6PD normal. Elevated levels of liver and kidney markers in the G6PDd patients were observed in gNM, gRM and gUM of CYP2C19 and CYP2D6 (p < 0.05). Furthermore, in this study there was no influence of CYPs on hemolysis. These findings reinforce the importance of studies on the mapping of G6PD deficiency and genetic variations of CYP2C19, CYP2D6 and CYP3A4. This mapping will allow us to validate the prevalence of CYPs and determine their influence on hemolysis in patients with malaria, helping to decide on the treatment regimen.
Collapse
Affiliation(s)
- Marielle M Macêdo
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Anne C G Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Gabrielly S Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Amanda C Oliveira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Victor I Mwangi
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Ana C Shuan
- Programa de Pós-graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Laila R A Barbosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba 35025-250, MG, Brazil
| | - Gisely C Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, AM, Brazil
| |
Collapse
|
9
|
Mekonnen DA, Abadura GS, Behaksra SW, Taffese HS, Bayissa GA, Bulto MG, Tessema TS, Tadesse FG, Gadisa E. Treatment of uncomplicated Plasmodium vivax with chloroquine plus radical cure with primaquine without G6PDd testing is safe in Arba Minch, Ethiopia: assessment of clinical and parasitological response. Malar J 2023; 22:135. [PMID: 37098510 PMCID: PMC10131480 DOI: 10.1186/s12936-023-04562-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/15/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Ethiopia rolled out primaquine nationwide in 2018 for radical cure along with chloroquine for the treatment of uncomplicated Plasmodium vivax malaria in its bid for malaria elimination by 2030. The emergence of anti-malarial drug resistance would challenge the elimination goal. There is limited evidence on the emergence of chloroquine drug resistance. The clinical and parasitological outcomes of treatment of P. vivax with chloroquine plus radical cure using low dose 14 days primaquine were assessed in an endemic area of Ethiopia. METHODS A semi-directly observed 42-days follow up in-vivo therapeutic efficacy study was conducted from October 2019 to February 2020. Plasmodium vivax mono-species infected patients (n = 102) treated with a 14 days low dose (0.25 mg/kg body weight per day) primaquine plus chloroquine (a total dose of 25 mg base/kg for 3 days) were followed for 42 days to examine clinical and parasitological outcomes. Samples collected at recruitment and days of recurrence were examined by 18 S based nested polymerase chain reaction (nPCR) and Pvmsp3α nPCR-restriction fragment length polymorphism. Asexual parasitaemia and the presence of gametocytes were assessed on the scheduled days using microscopy. Clinical symptoms, haemoglobin levels, and Hillmen urine test were also assessed. RESULTS Of the 102 patients followed in this study, no early clinical and parasitological failure was observed. All patients had adequate clinical and parasitological responses within the 28 days of follow up. Late clinical (n = 3) and parasitological (n = 6) failures were observed only after day 28. The cumulative incidence of failure was 10.9% (95% confidence interval, 5.8-19.9%) on day 42. Among the paired recurrent samples, identical clones were detected only in two samples on day 0 and day of recurrences (day 30 and 42) using Pvmsp3α genotyping. No adverse effect was detected related to the low dose 14 days primaquine administrations. CONCLUSION Co-administration of CQ with PQ in the study area is well tolerated and there was no recurrence of P. vivax before 28 days of follow up. Interpretation of CQ plus PQ efficacy should be done with caution especially when the recurrent parasitaemia occurs after day 28. Therapeutic efficacy studies with appropriate design might be informative to rule out chloroquine or primaquine drug resistance and/or metabolism in the study area.
Collapse
Affiliation(s)
- Daniel Abebe Mekonnen
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia.
- Institute of Biotechnology, Addis Ababa University, 1176, Addis Ababa, Ethiopia.
| | - Girma Shumie Abadura
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia
| | - Sinknesh Wolde Behaksra
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia
| | | | | | - Mikiyas Gebremichael Bulto
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia
| | | | - Fitsum G Tadesse
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia
| | - Endalamaw Gadisa
- Malaria and Neglected Tropical Diseases Directorate, Armauer Hansen Research Institute, 1005, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Samayoa-Reyes G, Flaherty SM, Wickham KS, Viera-Morilla S, Strauch PM, Roth A, Padrón L, Jackson CM, Meireles P, Calvo D, Roobsoong W, Kangwanrangsan N, Sattabongkot J, Reichard G, Lafuente-Monasterio MJ, Rochford R. Development of an ectopic huLiver model for Plasmodium liver stage infection. PLoS One 2023; 18:e0279144. [PMID: 36928885 PMCID: PMC10019673 DOI: 10.1371/journal.pone.0279144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Early Plasmodium falciparum and P. vivax infection requires parasite replication within host hepatocytes, referred to as liver stage (LS). However, limited understanding of infection dynamics in human LS exists due to species-specificity challenges. Reported here is a reproducible, easy-to-manipulate, and moderate-cost in vivo model to study human Plasmodium LS in mice; the ectopic huLiver model. Ectopic huLiver tumors were generated through subcutaneous injection of the HC-04 cell line and shown to be infectible by both freshly dissected sporozoites and through the bite of infected mosquitoes. Evidence for complete LS development was supported by the transition to blood-stage infection in mice engrafted with human erythrocytes. Additionally, this model was successfully evaluated for its utility in testing antimalarial therapeutics, as supported by primaquine acting as a causal prophylactic against P. falciparum. Presented here is a new platform for the study of human Plasmodium infection with the potential to aid in drug discovery.
Collapse
Affiliation(s)
- Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Siobhan M. Flaherty
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristina S. Wickham
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sara Viera-Morilla
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Pamela M. Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Laura Padrón
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Conner M. Jackson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Patricia Meireles
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - David Calvo
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Wanlapa Roobsoong
- Faculty of Tropical Medicine, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Niwat Kangwanrangsan
- Faculty of Science, Pathobiology Department, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Faculty of Tropical Medicine, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Gregory Reichard
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Maria José Lafuente-Monasterio
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
11
|
Khan W, Wang YH, Chaurasiya ND, Nanayakkara NPD, Bandara Herath HM, Harrison KA, Dale G, Stanford DA, Dahl EP, McChesney JD, Gul W, ElSohly MA, Jollow D, Tekwani BL, Walker LA. Comparative metabolism and tolerability of racemic primaquine and its enantiomers in human volunteers during 7-day administration. Front Pharmacol 2023; 13:1104735. [PMID: 36726785 PMCID: PMC9885159 DOI: 10.3389/fphar.2022.1104735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.
Collapse
Affiliation(s)
- Washim Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Yan-Hong Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Narayan D. Chaurasiya
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - H. M. Bandara Herath
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Kerri A. Harrison
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Gray Dale
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Donald A. Stanford
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Eric P. Dahl
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | | | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, United States
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,ElSohly Laboratories Inc., Oxford, MS, United States,Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - David Jollow
- Professor Emeritus, Department Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| |
Collapse
|
12
|
Corder RM, Arez AP, Ferreira MU. Individual variation in Plasmodium vivax malaria risk: Are repeatedly infected people just unlucky? PLoS Negl Trop Dis 2023; 17:e0011020. [PMID: 36634044 PMCID: PMC9836309 DOI: 10.1371/journal.pntd.0011020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Extensive research has examined why some people have frequent Plasmodium falciparum malaria episodes in sub-Saharan Africa while others remain free of disease most of the time. In contrast, malaria risk heterogeneity remains little studied in regions where P. vivax is the dominant species. Are repeatedly infected people in vivax malaria settings such as the Amazon just unlucky? Here, we briefly review evidence that human genetic polymorphism and acquired immunity after repeated exposure to parasites can modulate the risk of P. vivax infection and disease in predictable ways. One-fifth of the hosts account for 80% or more of the community-wide vivax malaria burden and contribute disproportionally to onward transmission, representing a priority target of more intensive interventions to achieve malaria elimination. Importantly, high-risk individuals eventually develop clinical immunity, even in areas with very low or residual malaria transmission, and may constitute a large but silent parasite reservoir.
Collapse
Affiliation(s)
- Rodrigo M. Corder
- Department of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Marcelo U. Ferreira
- Global Health and Tropical Medicine (GHTM), institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
14
|
Ferreira MU, Gamboa D, Torres K, Rodriguez-Ferrucci H, Soto-Calle VE, Pardo K, Fontoura PS, Tomko SS, Gazzinelli RT, Conn JE, Castro MC, Llanos-Cuentas A, Vinetz JM. Evidence-Based Malaria Control and Elimination in the Amazon: Input from the International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:160-167. [PMID: 36228907 PMCID: PMC9662230 DOI: 10.4269/ajtmh.21-1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/07/2022] Open
Abstract
Malaria remains endemic in 17 countries in the Americas, where 723,000 cases were reported in 2019. The majority (> 90%) of the regional malaria burden is found within the Amazon Basin, which includes nine countries and territories in South America. Locally generated evidence is critical to provide information to public health decision makers upon which the design of efficient and regionally directed malaria control and elimination programs can be built. Plasmodium vivax is the predominant malaria parasite in the Amazon Basin. This parasite species appears to be more resilient to malaria control strategies worldwide. Asymptomatic Plasmodium infections constitute a potentially infectious reservoir that is typically missed by routine microscopy-based surveillance and often remains untreated. The primary Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, has changed its behavior to feed and rest predominantly outdoors, reducing the efficiency of core vector control measures such as indoor residual spraying and distribution of long-lasting insecticide-treated bed nets. We review public health implications of recent field-based research carried out by the Amazonia International Center of Excellence in Malaria Research in Peru and Brazil. We discuss the relative role of traditional and novel tools and strategies for better malaria control and elimination across the Amazon, including improved diagnostic methods, new anti-relapse medicines, and biological larvicides, and emphasize the need to integrate research and public health policymaking.
Collapse
Affiliation(s)
- Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Address correspondence to Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo, Brazil, E-mail: or Dionicia Gamboa, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru, E-mail:
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Address correspondence to Marcelo U. Ferreira, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, Cidade Universitária, 05508-900 São Paulo, Brazil, E-mail: or Dionicia Gamboa, Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima, Peru, E-mail:
| | - Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Veronica E. Soto-Calle
- Dirección de Prevención y Control de Enfermedades Metaxénicas y Zoonosis, Ministerio de Salud, Lima, Peru
| | - Karim Pardo
- Universidad de Ciencias Aplicadas and Ejecutiva Adjunta II, Despacho Viceministerial de Salud Pública, Ministerio de Salud, Lima, Peru
| | - Pablo S. Fontoura
- Coordenação-Geral de Arboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Brazil
| | - Sheena S. Tomko
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Choi S, Choi H, Park SY, Kwak YG, Song JE, Shin SY, Baek JH, Shin HI, Cho SH, Lee SE, Kwon JR, Park S, Kim M, Oh HS, Kim YC, Kim MJ, Yeom JS. Association between CYP2D6 phenotype and recurrence of Plasmodium vivax infection in south Korean patients. Malar J 2022; 21:289. [PMID: 36217154 PMCID: PMC9552356 DOI: 10.1186/s12936-022-04311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Primaquine is activated by CYP2D6 in the hepatocytes. In Korea, primaquine is the only hypnozoitocidal agent used for patients with vivax malaria. Thus, patients with poor CYP2D6 activity could have an increased risk of primaquine failure and subsequent relapse. The study sought to identify the association between CYP2D6 phenotype and recurrence of malaria in Korean patients. Methods A total of 102 patients with vivax malaria were prospectively enrolled from eight institutions in Korea. An additional 38 blood samples from patients with recurred vivax malaria were provided by the Korea Disease Control and Prevention Agency. Malaria recurrence was defined as more than one episode of vivax malaria in the same or consecutive years. CYP2D6 star alleles, phenotypes, and activity scores were examined. Results Genotyping for CYP2D6 was successful in 101 of the prospectively enrolled patients and 38 samples from the Korea Disease Control and Prevention Agency, of which 91 were included in the no-recurrence group and 48 were included in the recurrence group. Reduced CYP2D6 activity (intermediate metabolizer) phenotype was more common in the recurrence group than in the no-recurrence group (OR, 2.33 (95% CI, 1.14–4.77); p = 0.02). Patients with lower CYP2D6 activity had a higher probability of recurrence (p = 0.029). Conclusion This study suggests that CYP2D6 polymorphism may affect primaquine efficacy and thus Plasmodium vivax recurrence in Korea. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04311-6.
Collapse
Affiliation(s)
- Sungim Choi
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Heun Choi
- Department of Infectious Diseases, National Health Insurance Service Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seong Yeon Park
- Division of Infectious Diseases, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yee Gyung Kwak
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Je Eun Song
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - So Youn Shin
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Ji Hyeon Baek
- Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Shin-Hyung Cho
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Jeong-Ran Kwon
- Division of Zoonotic and Vector borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Sookkyung Park
- Division of Zoonotic and Vector borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Miyoung Kim
- Division of Zoonotic and Vector borne Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Chungcheongbuk-do, Republic of Korea
| | - Hong Sang Oh
- Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yong Chan Kim
- Division of Infectious Diseases, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Republic of Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Cardoso JLM, Salazar YEAR, Almeida ACG, Barbosa LRA, Silva EL, Rodrigues MGA, Rodrigues-Soares F, Sampaio VS, Siqueira AM, Lacerda MVG, Monteiro WM, Melo GC. Influence of CYP2D6, CYP3A4 and CYP2C19 Genotypes on Recurrence of Plasmodium vivax. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.845451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe influence of the CYPs (cytochrome P-450) in the success of antimalarial therapy remains uncertain. In this study, the association of CYP2D6, CYP2C19 and CYP3A4 polymorphisms and predicted phenotypes with malaria recurrence was investigated.MethodsAfter diagnosis of vivax malaria, individuals treated at a reference center in Manaus were followed up for 180 days. Patients were separated into two groups: a recurrence group and a non-recurrence group. Genotyping of CYP2D6, CYP2C19 and CYP3A4 was performed using a TaqMan™ assay and real-time PCR.FindingsThe frequencies of decreased-function and normal-function alleles and phenotypes for all CYPs were similar between the groups, except for the CYP2D6*2xN allele (p=0.047) and the CYP2D6 gUM phenotype (p=0.057), which were more frequent in individuals without recurrence. Despite this, the CYP2D6, CYP2C19 and CYP3A4 genotypes had no association with an increased risk of recurrence. CYPs polymorphisms also had no influence in parasite clearance, neither in the time nor the number of recurrence episodes. MAINConclusionThis prospective cohort study demonstrated that CYP2D6, CYP2C19 and CYP3A4 polymorphisms have no influence on malaria recurrence. Nonetheless, our findings suggest that the CYP2D6 predicted ultrarapid phenotype was less susceptible to recurrence, and that patients with the CYP2D6 gUM phenotype are less susceptible to primaquine failure. Additional investigation of pharmacogenetics and pharmacokinetics are needed before implementing CYP analysis to better orientate individualized radical treatment of vivax malaria in reference centers that treat patients with multiple recurrences.
Collapse
|
17
|
Mwaiswelo RO, Ngasala B, Msolo D, Kweka E, Mmbando BP, Mårtensson A. A single low dose of primaquine is safe and sufficient to reduce transmission of Plasmodium falciparum gametocytes regardless of cytochrome P450 2D6 enzyme activity in Bagamoyo district, Tanzania. Malar J 2022; 21:84. [PMID: 35279143 PMCID: PMC8917764 DOI: 10.1186/s12936-022-04100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine is a pro-drug and its active metabolite is potent against mature Plasmodium falciparum gametocytes. Primaquine is metabolized by a highly polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. Mutations in the gene encoding this enzyme may lead to impaired primaquine activity. This study assessed if 0.25 mg/kg single-dose primaquine is safe and sufficient to reduce transmission of gametocytes in individuals with no, reduced, or increased CYP2D6 enzyme activity. METHODS Between June 2019 and January 2020 children aged 1-10 years, attending at Yombo dispensary, Bagamoyo district, with confirmed microcopy-determined uncomplicated P. falciparum malaria were enrolled in the study. The enrolled patients were treated with a standard artemether-lumefantrine regimen plus 0.25 mg/kg single-dose primaquine and followed up for 28 days for clinical and laboratory assessment. Primaquine was administered with the first dose of artemether-lumefantrine. Safety assessment involved direct questioning and recording of the nature and incidence of clinical signs and symptoms, and measurement of haemoglobin (Hb) concentration. Blood samples collected from 100 patients were used for assessment of post-treatment infectiousness on day 7 using mosquito membrane feeding assays. Molecular methods were used to determine CYP2D6 and glucose-6-phosphate dehydrogenase (G6PD) status. The primary outcome was the safety of 0.25 mg/kg single-dose primaquine based on CYP2D6 status. RESULTS In total, 157 children [median age 6.4 (Interquartile range 4.0-8.2) years] were recruited, of whom 21.0% (33/157) and 12.7% (20/157) had reduced CYP2D6 and deficient G6PD activity, respectively. Day 3 mean absolute Hb concentration reduction was 1.50 g/dL [95% confidence interval (CI) 1.10-1.90] and 1.51 g/dL (95% CI 1.31-1.71) in reduced and normal CYP2D6 patients, respectively (t = 0.012, p = 0.990). The day 3 mean absolute Hb concentration reduction in G6PD deficient, G6PD normal and heterozygous female was 1.82 g/dL (95% CI 1.32-2.32), 1.48 g/dL (95% CI 1.30-1.67) and 1.47 g/dL (95% CI 0.76-2.18), respectively (F = 0.838, p = 0.435). Sixteen percent (16/98) of the patients each infected at least one mosquito on day 7, and of these, 10.0% (2/20) and 17.9% (14/78) had reduced and normal CYP2D6 enzyme activity, respectively (x2 = 0.736, p = 0.513). CONCLUSION Single-dose 0.25 mg/kg primaquine was safe and sufficient for reducing transmission of P. falciparum gametocytes regardless of CYP2D6 or G6PD status. Trial registration Study registration number: NCT03352843.
Collapse
Affiliation(s)
- Richard Owden Mwaiswelo
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania.
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Dominick Msolo
- College of Natural and Applied Sciences, University of Dar Es Salaam, Dar es Salaam, Tanzania
| | - Eliningaya Kweka
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Bruno P Mmbando
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Charnaud S, Munro JE, Semenec L, Mazhari R, Brewster J, Bourke C, Ruybal-Pesántez S, James R, Lautu-Gumal D, Karunajeewa H, Mueller I, Bahlo M. PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus. Commun Biol 2022; 5:168. [PMID: 35217695 PMCID: PMC8881578 DOI: 10.1038/s42003-022-03102-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/01/2022] [Indexed: 01/31/2023] Open
Abstract
The CYP2D6 enzyme is estimated to metabolize 25% of commonly used pharmaceuticals and is of intense pharmacogenetic interest due to the polymorphic nature of the CYP2D6 gene. Accurate allele typing of CYP2D6 has proved challenging due to frequent copy number variants (CNVs) and paralogous pseudogenes. SNP-arrays, qPCR and short-read sequencing have been employed to interrogate CYP2D6, however these technologies are unable to capture longer range information. Long-read sequencing using the PacBio Single Molecule Real Time (SMRT) sequencing platform has yielded promising results for CYP2D6 allele typing. However, previous studies have been limited in scale and have employed nascent data processing pipelines. We present a robust data processing pipeline "PLASTER" for accurate allele typing of SMRT sequenced amplicons. We demonstrate the pipeline by typing CYP2D6 alleles in a large cohort of 377 Solomon Islanders. This pharmacogenetic method will improve drug safety and efficacy through screening prior to drug administration.
Collapse
Affiliation(s)
- Sarah Charnaud
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Jacob E. Munro
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Lucie Semenec
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1004.50000 0001 2158 5405ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW Australia
| | - Ramin Mazhari
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Jessica Brewster
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Caitlin Bourke
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Shazia Ruybal-Pesántez
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia ,grid.1056.20000 0001 2224 8486Burnet Institute, Melbourne, VIC Australia
| | - Robert James
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Dulcie Lautu-Gumal
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Harin Karunajeewa
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Ivo Mueller
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| | - Melanie Bahlo
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
19
|
Fasinu PS, Chaurasiya ND, Dhammika Nanayakkara NP, Wang YH, Bandara Herath HMT, Avula B, McChesney JD, Jollow D, Walker LA, Tekwani BL. Comparative pharmacokinetics and tissue distribution of primaquine enantiomers in mice. Malar J 2022; 21:33. [PMID: 35123453 PMCID: PMC8817607 DOI: 10.1186/s12936-022-04054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine (PQ) has been used for the radical cure of relapsing Plasmodium vivax malaria for more than 60 years. PQ is also recommended for prophylaxis and prevention of transmission of Plasmodium falciparum. However, clinical utility of PQ has been limited due to toxicity in individuals with genetic deficiencies in glucose 6-phosphate dehydrogenase (G6PD). PQ is currently approved for clinical use as a racemic mixture. Recent studies in animals as well as humans have established differential pharmacological and toxicological properties of the two enantiomers of PQ. This has been attributed to differential metabolism and pharmacokinetics of individual PQ enantiomers. The aim of the current study is to evaluate the comparative pharmacokinetics (PK), tissue distribution and metabolic profiles of the individual enantiomers in mice. METHODS Two groups of 21 male Albino ND4 Swiss mice were dosed orally with 45 mg/kg of S-(+)-PQ and R-(-)PQ respectively. Each of the enantiomers was comprised of a 50:50 mixture of 12C- and 13C- stable isotope labelled species (at 6 carbons on the benzene ring of the quinoline core). Three mice were euthanized from each group at different time points (at 0, 0.5, 1, 2, 4, 8, 24 h) and blood was collected by terminal cardiac bleed. Liver, spleen, lungs, kidneys and brain were removed, extracted and analysed using UPLC/MS. The metabolites were profiled by tandem mass (MS/MS) fragmentation profile and fragments with 12C-13C twin peaks. Non-compartmental analysis was performed using the Phoenix WinNonLin PK software module. RESULTS The plasma AUC0-last (µg h/mL) (1.6 vs. 0.6), T1/2 (h) (1.9 vs. 0.45), and Tmax (h) (1 vs. 0.5) were greater for SPQ as compared to RPQ. Generally, the concentration of SPQ was higher in all tissues. At Tmax, (0.5-1 h in all tissues), the level of SPQ was 3 times that of RPQ in the liver. Measured Cmax of SPQ and RPQ in the liver were about 100 and 40 times the Cmax values in plasma, respectively. Similar observations were recorded in other tissues where the concentration of SPQ was higher compared to RPQ (2× in the spleen, 6× in the kidneys, and 49× in the lungs) than in the plasma. CPQ, the major metabolite, was preferentially generated from RPQ, with higher levels in all tissues (> 10× in the liver, and 3.5× in the plasma) than from SPQ. The PQ-o-quinone was preferentially formed from the SPQ (> 4× compared to RPQ), with higher concentrations in the liver. CONCLUSION These studies show that in mice, PQ enantiomers are differentially biodistributed and metabolized, which may contribute to differential pharmacologic and toxicity profiles of PQ enantiomers. The findings on higher levels of PQ-o-quinone in liver and RBCs compared to plasma and preferential generation of this metabolite from SPQ are consistent with the higher anti-malarial efficacy of SPQ observed in the mouse causal prophylaxis test, and higher haemolytic toxicity in the humanized mouse model of G6PD deficiency. Potential relevance of these findings to clinical use of racemic PQ and other 8-aminoquinolines vis-à-vis need for further clinical evaluation of individual enantiomers are discussed.
Collapse
Affiliation(s)
- Pius S Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Narayan D Chaurasiya
- Department of Infectious Diseases, Division of Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bandara Herath
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - David Jollow
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Larry A Walker
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA.
| |
Collapse
|
20
|
Choi S, Choi H, Park SY, Kwak YG, Song JE, Shin SY, Baek JH, Shin HI, Oh HS, Kim YC, Yeom JS, Han JH, Kim MJ. Four Times of Relapse of Plasmodium vivax Malaria Despite Primaquine Treatment in a Patient with Impaired Cytochrome P450 2D6 Function. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:39-43. [PMID: 35247953 PMCID: PMC8898651 DOI: 10.3347/kjp.2022.60.1.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Plasmodium vivax exhibits dormant liver-stage parasites, called hypnozoites, which can cause relapse of malaria. The only drug currently used for eliminating hypnozoites is primaquine. The antimalarial properties of primaquine are dependent on the production of oxidized metabolites by the cytochrome P450 isoenzyme 2D6 (CYP2D6). Reduced primaquine metabolism may be related to P. vivax relapses. We describe a case of 4 episodes of recurrence of vivax malaria in a patient with decreased CYP2D6 function. The patient was 52-year-old male with body weight of 52 kg. He received total gastrectomy and splenectomy 7 months before the first episode and was under chemotherapy for the gastric cancer. The first episode occurred in March 2019 and each episode had intervals of 34, 41, and 97 days, respectively. At the first and second episodes, primaquine was administered as 15 mg for 14 days. The primaquine dose was increased with 30 mg for 14 days at the third and fourth episodes. Seven gene sequences of P. vivax were analyzed and revealed totally identical for all the 4 samples. The CYP2D6 genotype was analyzed and intermediate metabolizer phenotype with decreased function was identified.
Collapse
Affiliation(s)
- Sungim Choi
- Department of Infectious Diseases, Dongguk University Ilsan Hospital, Goyang 10326, Korea
| | - Heun Choi
- Department of Infectious Diseases, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea
| | - Seong Yeon Park
- Department of Infectious Diseases, Dongguk University Ilsan Hospital, Goyang 10326, Korea
| | - Yee Gyung Kwak
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Ilsan 10380, Korea
| | - Je Eun Song
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Ilsan 10380, Korea
| | - So Youn Shin
- Department of Infectious Diseases, International St. Mary's Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Ji Hyeon Baek
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Korea
| | - Hyun-Il Shin
- Division of Vectors and Parasitic Diseases, Bureau of Infectious Disease Diagnosis Control, Korea Disease Control and Prevention Agency, Chungbuk 28159, Korea
| | - Hong Sang Oh
- Division of Infectious Disease, Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam 13574, Korea
| | - Yong Chan Kim
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
21
|
Measurements of 5,6 orthoquinone, surrogate for presumed active primaquine metabolite 5-hydroxyprimaquine, in the urine of Cambodian adults. Antimicrob Agents Chemother 2022; 66:e0182121. [DOI: 10.1128/aac.01821-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6 orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6 orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for
Plasmodium vivax
infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma PQ area under the curve (AUC) was lower in the NM group (460 hr*ng/mL) compared to the IM group (561 hr*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6 orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6 orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (T
max
) at 4 hours. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6 orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.
Collapse
|
22
|
Dong Y, Huang H, Deng Y, Xu Y, Chen M, Liu Y, Zhang C. Prediction of the CYP2D6 enzymatic activity based on investigating of the CYP2D6 genotypes around the vivax malaria patients in Yunnan Province, China. Malar J 2021; 20:448. [PMID: 34823523 PMCID: PMC8620920 DOI: 10.1186/s12936-021-03988-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the incidence rate of vivax malaria recurrence still had 3.1% in Yunnan Province population after eradication therapy using primaquine (PQ). In order to understand the specific failure reasons for preventing vivax malaria relapses, a preliminary exploration on the CYP2D6 enzyme activity was carried out in the vivax malaria patients in Yunnan Province population by analysing mutational polymorphism in the coding region of CYP2D6 gene. METHODS Blood samples were collected from vivax malaria patients with suspected relapse (SR) and non-relapsed (NR) malaria in Yunnan Province. The DNA fragments containing 9 exons regions of human CYP2D6 gene were amplified by performing PCR and sequenced. The sequencing results were aligned by using DNAStar 11.0 to obtain the coding DNA sequence (CDS) of CYP2D6 gene. DnaSP 6.11.01 software was used to identify mutant polymorphisms and haplotypes of the CDS chain. The waterfall function of GenVisR package in R was utilized to visualize the mutational landscape. The alleles of CYP2D6 gene were identified according to the criteria prescribed by Human Cytochrome P450 (CYP) Allele Nomenclature Committee Database and the CYP2D6 enzyme activity was predicted based on diploid genotype. RESULTS A total of 320 maternal CDS chains, including 63 from SR group and 257 from NR group, were obtained. Twelve mutant loci, including c.31 (rs769259), c.100 (rs1065852), c.271 (rs28371703), c.281 (rs28371704), c.294 (rs28371705), c.297 (rs200269944), c.336 (rs1081003), c.408 (rs1058164), c.505 (rs5030865), c.801 (rs28371718), c.886 (rs16947), and c.1,457 (rs1135840) were observed on the 640 CDS chains (including 320 maternal and 320 paternal chains). The high-frequency mutation at rs1135840 (0.703) and low-frequency mutation, such as rs28371703, were detected only in the SR group. The frequency of mutant rs1058164 and rs1135840 were significantly increased in the SR group ([Formula: see text]= 4.468, 5.889, P < 0.05), as opposed to the NR group. Of the 23 haplotypes (from Hap_1 to Hap_23), the nomenclatures of 11 allelic forms could be found: Hap_3 was non-mutant, Hap_2 accounted for the highest frequency (36.9%, 236/640), and Hap_9 had the most complex sequence structure, containing 7 loci mutations. Allele *10 was the most frequent among these genotypes (0.423). Among the allele *10 standard named genotypes, *1/*10, *1/*1 and *2/*10 were significantly more frequent in the NR group ([Formula: see text]= 3.911, P < 0.05) and all showed uncompromised enzyme activity; the impaired genotype *10/*39 was more frequent in the SR group ([Formula: see text]= 10.050, P < 0.05), and genotype *4/*4was detected only in the SR group. CONCLUSION In the patients receiving PQ dosage in Yunnan Province population, both rs1135840 single nucleotide polymorphism and *10 allele form was common in the CYP2D6 gene. Low-frequency mutation sites, such as rs28371703, were only presented in patients with vivax malaria relapse.
Collapse
Affiliation(s)
- Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei, 230031, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| |
Collapse
|
23
|
Johansen IC, Rodrigues PT, Tonini J, Vinetz J, Castro MC, Ferreira MU. Cohort profile: the Mâncio Lima cohort study of urban malaria in Amazonian Brazil. BMJ Open 2021; 11:e048073. [PMID: 34789490 PMCID: PMC8727682 DOI: 10.1136/bmjopen-2020-048073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE This population-based open cohort study aims to investigate biological and sociodemographic drivers of malaria transmission in the main urban hotspot of Amazonian Brazil. PARTICIPANTS Nearly 20% of the households in the northwestern town of Mâncio Lima were randomly selected and 2690 participants were enrolled since April 2018. Sociodemographic, housing quality, occupational, behavioural and morbidity information and travel histories were collected during consecutive study visits. Blood samples from participants>3 months old were used for malaria diagnosis and human genetic studies; samples from participants with laboratory-confirmed malaria have been cryopreserved for genetic and phenotypic characterisation of parasites. Serology was introduced in 2020 to measure the prevalence and longevity of SARS-CoV-2 IgG antibodies. FINDINGS TO DATE Malaria prevalence rates were low (up to 1.0% for Plasmodium vivax and 0.6% for P. falciparum) during five consecutive cross-sectional surveys between April-May 2018 and October-November 2020; 63% of infections diagnosed by microscopy were asymptomatic. Malaria risk is heterogeneously distributed, with 20% study participants contributing 86% of the overall burden of P. vivax infection. Adult males are at greatest risk of infection and human mobility across the urban-rural interface may contribute to sustained malaria transmission. Local P. vivax parasites are genetically diverse and fragmented into discrete inbred lineages that remain stable across space and time. FUTURE PLANS Two follow-up visits, with similar study protocols, are planned in 2021. We aim to identify high-risk individuals that fuel onwards malaria transmission and represent a priority target for more intensive and effective control interventions. TRIAL REGISTRATION NUMBER NCT03689036.
Collapse
Affiliation(s)
| | | | - Juliana Tonini
- Parasitology, University of Sao Paulo, Sao Paulo, Brazil
| | - Joseph Vinetz
- Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marcia C Castro
- Global Health and Population, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
24
|
Woon SA, Manning L, Moore BR. Antimalarials for children with Plasmodium vivax infection: Current status, challenges, and research priorities. Parasitol Int 2021; 87:102512. [PMID: 34785369 DOI: 10.1016/j.parint.2021.102512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The aim of this narrative review is to summarise efficacy and pharmacokinetic data for Plasmodium vivax in children. The burden of P. vivax malaria in children continues to remain a significant public health issue, and the need for improved treatment regimens for this vulnerable population is critical. Relapse after re-activation of dormant liver-stage hypnozoites poses additional challenges for treatment, elimination, and control strategies for P. vivax. Whilst it is recognised that paediatric pharmacology may be significantly influenced by anatomical and physiological changes of childhood, dosing regimens often continue to be extrapolated from adult data, highlighting the need for antimalarial dosing in children to be evaluated in early phase clinical trials. This will ensure that globally recommended treatment regimens do not result in suboptimal dosing in children. Furthermore, the development of affordable paediatric formulations to enhance treatment acceptability and widespread G6PD testing to facilitate use of anti-hypnozoite treatment such as primaquine and tafenoquine, should be further prioritised. As the world prepares for malaria elimination, a renewed focus on P. vivax malaria provides an ideal opportunity to harness momentum and ensure that all populations, including children have access to safe, efficacious, and correctly dosed antimalarial therapies.
Collapse
Affiliation(s)
- Sze-Ann Woon
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Laurens Manning
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Brioni R Moore
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
25
|
Abstract
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it's biological, clinical, and public health complexity.
Collapse
Affiliation(s)
- Katherine E. Battle
- Institute for Disease Modeling, Seattle, Washington, United States of America
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
28
|
Pookmanee W, Thongthip S, Tankanitlert J, Mungthin M, Sukasem C, Wittayalertpanya S. Simplified and Rapid Determination of Primaquine and 5,6-Orthoquinone Primaquine by UHPLC-MS/MS: Its Application to a Pharmacokinetic Study. Molecules 2021; 26:molecules26144357. [PMID: 34299634 PMCID: PMC8304466 DOI: 10.3390/molecules26144357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The method for the determination of primaquine (PQ) and 5,6-orthoquinone primaquine (5,6-PQ), the representative marker for PQ active metabolites, via CYP2D6 in human plasma and urine has been validated. All samples were extracted using acetonitrile for protein precipitation and analyzed using the ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) system. Chromatography separation was carried out using a Hypersil GOLDTM aQ C18 column (100 × 2.1 mm, particle size 1.9 μm) with a C18 guard column (4 × 3 mm) flowed with an isocratic mode of methanol, water, and acetonitrile in an optimal ratio at 0.4 mL/min. The retention times of 5,6-PQ and PQ in plasma and urine were 0.8 and 1.6 min, respectively. The method was validated according to the guideline. The linearity of the analytes was in the range of 25–1500 ng/mL. The matrix effect of PQ and 5,6-PQ ranged from 100% to 116% and from 87% to 104% for plasma, and from 87% to 89% and from 86% to 87% for urine, respectively. The recovery of PQ and 5,6-PQ ranged from 78% to 95% and form 80% to 98% for plasma, and from 102% to from 112% to 97% to 109% for urine, respectively. The accuracy and precision of PQ and 5,6-PQ in plasma and urine were within the acceptance criteria. The samples should be kept in the freezer (−80 °C) and analyzed within 7 days due to the metabolite stability. This validated UHPLC-MS/MS method was beneficial for a pharmacokinetic study in subjects receiving PQ.
Collapse
Affiliation(s)
- Waritda Pookmanee
- Interdisciplinary Program in Pharmacology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriwan Thongthip
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Jeeranut Tankanitlert
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (J.T.); (M.M.)
| | - Mathirut Mungthin
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok 10400, Thailand; (J.T.); (M.M.)
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Supeecha Wittayalertpanya
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-8-1421-9164
| |
Collapse
|
29
|
Kulkeaw K, Pengsart W. Progress and Challenges in the Use of a Liver-on-a-Chip for Hepatotropic Infectious Diseases. MICROMACHINES 2021; 12:mi12070842. [PMID: 34357252 PMCID: PMC8306537 DOI: 10.3390/mi12070842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
The liver is a target organ of life-threatening pathogens and prominently contributes to the variation in drug responses and drug-induced liver injury among patients. Currently available drugs significantly decrease the morbidity and mortality of liver-dwelling pathogens worldwide; however, emerging clinical evidence reveals the importance of host factors in the design of safe and effective therapies for individuals, known as personalized medicine. Given the primary adherence of cells in conventional two-dimensional culture, the use of these one-size-fit-to-all models in preclinical drug development can lead to substantial failures in assessing therapeutic safety and efficacy. Advances in stem cell biology, bioengineering and material sciences allow us to develop a more physiologically relevant model that is capable of recapitulating the human liver. This report reviews the current use of liver-on-a-chip models of hepatotropic infectious diseases in the context of precision medicine including hepatitis virus and malaria parasites, assesses patient-specific responses to antiviral drugs, and designs personalized therapeutic treatments to address the need for a personalized liver-like model. Second, most organs-on-chips lack a monitoring system for cell functions in real time; thus, the review discusses recent advances and challenges in combining liver-on-a-chip technology with biosensors for assessing hepatocyte viability and functions. Prospectively, the biosensor-integrated liver-on-a-chip device would provide novel biological insights that could accelerate the development of novel therapeutic compounds.
Collapse
Affiliation(s)
- Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence: ; Tel.: +66-2-419-6468 (ext. 96484)
| | - Worakamol Pengsart
- Faculty of Graduate Studies, Mahidol University, Nakhon Pathom 73170, Thailand;
| |
Collapse
|
30
|
Satyagraha AW, Sadhewa A, Panggalo LV, Subekti D, Elyazar I, Soebianto S, Mahpud N, Harahap AR, Baird JK. Genotypes and phenotypes of G6PD deficiency among Indonesian females across diagnostic thresholds of G6PD activity guiding safe primaquine therapy of latent malaria. PLoS Negl Trop Dis 2021; 15:e0009610. [PMID: 34270547 PMCID: PMC8318249 DOI: 10.1371/journal.pntd.0009610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis. METHODS & FINDINGS This study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those). CONCLUSIONS In this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.
Collapse
Affiliation(s)
| | | | | | - Decy Subekti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Saraswati Soebianto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Nunung Mahpud
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | - J. Kevin Baird
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes. Sci Rep 2021; 11:12420. [PMID: 34127730 PMCID: PMC8203617 DOI: 10.1038/s41598-021-91866-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to analyze the interaction of primaquine (PQ), chloroquine (CQ), and liposomes to support the design of optimal liposomal delivery for hepatic stage malaria infectious disease. The liposomes were composed of hydrogenated soybean phosphatidylcholine, cholesterol, and distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethyleneglycol]-2000), prepared by thin film method, then evaluated for physicochemical and spectrospic characteristics. The calcein release was further evaluated to determine the effect of drug co-loading on liposomal membrane integrity. The results showed that loading PQ and CQ into liposomes produced changes in the infrared spectra of the diester phosphate and carbonyl ester located in the polar part of the phospholipid, in addition to the alkyl group (CH2) in the nonpolar portion. Moreover, the thermogram revealed the loss of the endothermic peak of liposomes dually loaded with PQ and CQ at 186.6 °C, which is identical to that of the phospholipid. However, no crystallinity changes were detected through powder X-ray diffraction analysis. Moreover, PQ, with either single or dual loading, produced the higher calcein release profiles from the liposomes than that of CQ. The dual loading of PQ and CQ tends to interact with the polar head group of the phosphatidylcholine bilayer membrane resulted in an increase in water permeability of the liposomes.
Collapse
|
32
|
Suarez-Kurtz G. Impact of CYP2D6 Genetic Variation on Radical Cure of Plasmodium vivax Malaria. Clin Pharmacol Ther 2021; 110:595-598. [PMID: 34042179 DOI: 10.1002/cpt.2313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/08/2021] [Indexed: 11/09/2022]
Abstract
Plasmodium vivax (P. vivax) is the most widespread human malaria parasite, with 2.5 billion people at risk of infection worldwide. P. vivax forms liver hypnozoites, which trigger further symptomatic episodes (relapses) weeks or months after the initial episode. Radical cure of vivax malaria requires hypnozoitocide therapy to prevent relapses. The two US Food and Drug Administration (FDA)-approved hypnozoiticides for human use, primaquine, and tafenoquine, are pro-drugs, that require in vivo conversion into metabolites with redox activity. This mini-review focuses on the association between CYP2D6-mediated hydroxylation and hypnozoitocide efficacy of primaquine and tafenoquine. Studies in murine models show that the antimalarial activity of primaquine and tafenoquine is abolished by CYP2D knock-out and partially restored by knock-in of humanized CYP2D6. Human studies explored the impact of CYP2D6 genetic variation and genotype-inferred CYP2D6 phenotype on anti-relapse efficacy. Most, but not all, studies with primaquine report higher rates of relapse in patients with decreased CYP2D6 activity (activity scores (AS) ≤ 1) compared to normal activity (AS ≥ 1.5). Potential factors for discordance among studies include risk of reinfection in endemic areas, adherence to primaquine-treatment, assignment of CYP2D6 phenotypes based on CYP2D6 polymorphism and choice of AS values for dichotomizing the study cohorts. Tafenoquine anti-relapse efficacy did not differ between patients with AS < 1 vs. AS ≥ 1.5 in 2 studies. Absence/small number of poor CYP2D6 metabolizers in AS ≤ 1 groups, combined with lesser dependence of tafenoquine on CYP2D6-mediated conversion into active redox metabolites may account for this result. Additional tafenoquine studies with larger representation of poor CYP2D6 metabolizers are warranted.
Collapse
Affiliation(s)
- Guilherme Suarez-Kurtz
- Coordenação de Pesquisa, Instituto Nacional de Câncer and Rede Nacional de Farmacogenômica, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Population Pharmacokinetics of Primaquine in the Korean Population. Pharmaceutics 2021; 13:pharmaceutics13050652. [PMID: 34063671 PMCID: PMC8147617 DOI: 10.3390/pharmaceutics13050652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
While primaquine has long been used for malaria treatment, treatment failure is common. This study aims to develop a population pharmacokinetic model of primaquine and its metabolite, carboxyprimaquine, and examine factors influencing pharmacokinetic variability. The data was obtained from a clinical study in 24 Korean subjects randomly assigned to normal and obese groups. The participants received primaquine 15 mg daily for 4 days and blood samples were collected at day 4. Pharmacokinetic modeling was performed with NONMEM and using simulations; the influences of doses and covariates on drug exposure were examined. A minimal physiology-based pharmacokinetic model connected with a liver compartment comprehensively described the data, with CYP450 mediated clearance being positively correlated with the body weight and CYP2D6 activity score (p < 0.05). In the simulation, while the weight-normalized area under drug concentration for primaquine in the obese group decreased by 29% at the current recommended dose of 15 mg, it became similar to the normal weight group at a weight-normalized dose of 3.5 mg/kg. This study has demonstrated that the body weight and CYP2D6 activity score significantly influence the pharmacokinetics of primaquine. The developed model is expected to be used as a basis for optimal malaria treatment in Korean patients.
Collapse
|
34
|
Nekkab N, Lana R, Lacerda M, Obadia T, Siqueira A, Monteiro W, Villela D, Mueller I, White M. Estimated impact of tafenoquine for Plasmodium vivax control and elimination in Brazil: A modelling study. PLoS Med 2021; 18:e1003535. [PMID: 33891582 PMCID: PMC8064585 DOI: 10.1371/journal.pmed.1003535] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite recent intensification of control measures, Plasmodium vivax poses a major challenge for malaria elimination efforts. Liver-stage hypnozoite parasites that cause relapsing infections can be cleared with primaquine; however, poor treatment adherence undermines drug effectiveness. Tafenoquine, a new single-dose treatment, offers an alternative option for preventing relapses and reducing transmission. In 2018, over 237,000 cases of malaria were reported to the Brazilian health system, of which 91.5% were due to P. vivax. METHODS AND FINDINGS We evaluated the impact of introducing tafenoquine into case management practices on population-level transmission dynamics using a mathematical model of P. vivax transmission. The model was calibrated to reflect the transmission dynamics of P. vivax endemic settings in Brazil in 2018, informed by nationwide malaria case reporting data. Parameters for treatment pathways with chloroquine, primaquine, and tafenoquine with glucose-6-phosphate dehydrogenase deficiency (G6PDd) testing were informed by clinical trial data and the literature. We assumed 71.3% efficacy for primaquine and tafenoquine, a 66.7% adherence rate to the 7-day primaquine regimen, a mean 5.5% G6PDd prevalence, and 8.1% low metaboliser prevalence. The introduction of tafenoquine is predicted to improve effective hypnozoite clearance among P. vivax cases and reduce population-level transmission over time, with heterogeneous levels of impact across different transmission settings. According to the model, while achieving elimination in only few settings in Brazil, tafenoquine rollout in 2021 is estimated to improve the mean effective radical cure rate from 42% (95% uncertainty interval [UI] 41%-44%) to 62% (95% UI 54%-68%) among clinical cases, leading to a predicted 38% (95% UI 7%-99%) reduction in transmission and over 214,000 cumulative averted cases between 2021 and 2025. Higher impact is predicted in settings with low transmission, low pre-existing primaquine adherence, and a high proportion of cases in working-aged males. High-transmission settings with a high proportion of cases in children would benefit from a safe high-efficacy tafenoquine dose for children. Our methodological limitations include not accounting for the role of imported cases from outside the transmission setting, relying on reported clinical cases as a measurement of community-level transmission, and implementing treatment efficacy as a binary condition. CONCLUSIONS In our modelling study, we predicted that, provided there is concurrent rollout of G6PDd diagnostics, tafenoquine has the potential to reduce P. vivax transmission by improving effective radical cure through increased adherence and increased protection from new infections. While tafenoquine alone may not be sufficient for P. vivax elimination, its introduction will improve case management, prevent a substantial number of cases, and bring countries closer to achieving malaria elimination goals.
Collapse
Affiliation(s)
- Narimane Nekkab
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Raquel Lana
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcus Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Thomas Obadia
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - André Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Wuelton Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- School of Health Sciences, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Daniel Villela
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ivo Mueller
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Population Health & Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| |
Collapse
|
35
|
Ferreira MU, Nobrega de Sousa T, Rangel GW, Johansen IC, Corder RM, Ladeia-Andrade S, Gil JP. Monitoring Plasmodium vivax resistance to antimalarials: Persisting challenges and future directions. Int J Parasitol Drugs Drug Resist 2021; 15:9-24. [PMID: 33360105 PMCID: PMC7770540 DOI: 10.1016/j.ijpddr.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/23/2022]
Abstract
Emerging antimalarial drug resistance may undermine current efforts to control and eliminate Plasmodium vivax, the most geographically widespread yet neglected human malaria parasite. Endemic countries are expected to assess regularly the therapeutic efficacy of antimalarial drugs in use in order to adjust their malaria treatment policies, but proper funding and trained human resources are often lacking to execute relatively complex and expensive clinical studies, ideally complemented by ex vivo assays of drug resistance. Here we review the challenges for assessing in vivo P. vivax responses to commonly used antimalarials, especially chloroquine and primaquine, in the presence of confounding factors such as variable drug absorption, metabolism and interaction, and the risk of new infections following successful radical cure. We introduce a simple modeling approach to quantify the relative contribution of relapses and new infections to recurring parasitemias in clinical studies of hypnozoitocides. Finally, we examine recent methodological advances that may render ex vivo assays more practical and widely used to confirm P. vivax drug resistance phenotypes in endemic settings and review current approaches to the development of robust genetic markers for monitoring chloroquine resistance in P. vivax populations.
Collapse
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal.
| | - Tais Nobrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, René Rachou Institute, Fiocruz, Belo Horizonte, Brazil
| | - Gabriel W Rangel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Igor C Johansen
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| |
Collapse
|
36
|
De-Oliveira ACAX, Paumgartten FJR. Malaria-induced Alterations of Drug Kinetics and Metabolism in Rodents and Humans. Curr Drug Metab 2021; 22:127-138. [PMID: 33397251 DOI: 10.2174/1389200221999210101232057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infections and inflammation lead to a downregulation of drug metabolism and kinetics in experimental animals. These changes in the expression and activities of drug-metabolizing enzymes may affect the effectiveness and safety of pharmacotherapy of infections and inflammatory conditions. OBJECTIVE In this review, we addressed the available evidence on the effects of malaria on drug metabolism activity and kinetics in rodents and humans. RESULTS An extensive literature review indicated that infection by Plasmodium spp consistently decreased the activity of hepatic Cytochrome P450s and phase-2 enzymes as well as the clearance of a variety of drugs in mice (lethal and non-lethal) and rat models of malaria. Malaria-induced CYP2A5 activity in the mouse liver was an exception. Except for paracetamol, pharmacokinetic trials in patients during acute malaria and in convalescence corroborated rodent findings. Trials showed that, in acute malaria, clearance of quinine, primaquine, caffeine, metoprolol, omeprazole, and antipyrine is slower and that AUCs are greater than in convalescent individuals. CONCLUSION Notwithstanding the differences between rodent models and human malaria, studies in P. falciparum and P. vivax patients confirmed rodent data showing that CYP-mediated clearance of antimalarials and other drugs is depressed during the symptomatic disease when rises in levels of acute-phase proteins and inflammatory cytokines occur. Evidence suggests that inflammatory cytokines and the interplay between malaria-activated NF-kB-signaling and cell pathways controlling phase 1/2 enzyme genes transcription mediate drug metabolism changes. The malaria-induced decrease in drug clearance may exacerbate drug-drug interactions, and the occurrence of adverse drug events, particularly when patients are treated with narrow-margin-of-safety medicines.
Collapse
Affiliation(s)
- Ana C A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Huang H, Dong Y, Xu Y, Deng Y, Zhang C, Liu S, Chen M, Liu Y. The association of CYP2D6 gene polymorphisms in the full-length coding region with higher recurrence rate of vivax malaria in Yunnan Province, China. Malar J 2021; 20:160. [PMID: 33743705 PMCID: PMC7981985 DOI: 10.1186/s12936-021-03685-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/05/2021] [Indexed: 11/12/2022] Open
Abstract
Background Accumulating evidence suggest that compromised CYP2D6 enzyme activity caused by gene mutation could contribute to primaquine failure for the radical cure of vivax malaria. The current study aims to preliminarily reveal the association between the recurrence of vivax malaria in Yunnan Province and CYP2D6 gene mutation by analysing polymorphisms in the entire coding region of human CYP2D6 gene. Methods Blood samples were collected from patients with vivax malaria, who received "chloroquine and 8-day course of primaquine therapy" in Yunnan Province. The suspected relapsed cases were determined by epidemiological approaches and gene sequence alignment. PCR was conducted to amplify the CYP2D6 gene in the human genome, and the amplified products were then sequenced to compare with the non-mutation “reference” sequence, so as to ensure correct sequencing results and to determine 9 exon regions. Subsequently, the DNA sequences of 9 exons were spliced into the coding DNA sequence (CDS), which, by default, is known as maternal CDS. The paternal CDS was obtained by adjusting the bases according to the sequencing peaks. The mutation loci, haplotypes (star alleles), genotypes and odds ratios (OR) of all the CDSs were analysed. Results Of the119 maternal CDS chains in total with 1491 bp in length, 12 mutation sites in the 238 maternal and paternal CDS chains were detected. The c.408G > C mutation was most frequently detected in both suspected relapsed group (SR) and non-relapsed group (NR), reaching 85.2% (75/88) and 76.0% (114/150), respectively. The c.886C > T mutation was most closely related to the recurrence of vivax malaria (OR = 2.167, 95% CI 1.104–4.252, P < 0.05). Among the 23 haplotypes (Hap_1 ~ Hap_23), Hap_3 was non-mutant, and the sequence structure of Hap_9 was the most complicated one. Five star alleles, including *1, *2, *4, *10 and *39, were confirmed by comparison, and CYP2D6*10 allele accounted for the largest percentage (45.4%, 108/238). The frequency of CYP2D6*2 allele in the SR group was significantly higher than that in the NR group (Χ2 = 16.177, P < 0.05). Of the defined 24 genotypes, 8 genotypes, including *4/*4, *4/*o, *2/*39, *39/*m, *39/*x, *1/*r, *1/*n, and *v/*10, were detected only in the SR group. Conclusion Mutation of CYP2D6*10 allele accounts for the highest proportion of vivax malaria cases in Yunnan Province. The mutations of c. 886C > T and CYP2D6*2 allele, which correspond to impaired PQ metabolizer phenotype, are most closely related to the relapse of vivax malaria. In addition, the genotype *4/*4 with null CYP2D6 enzyme function was only detected in the SR group. These results reveal the risk of defected CYP2D6 enzyme activity that diminishes the therapeutic effect of primaquine on vivax malaria. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03685-3.
Collapse
Affiliation(s)
- Herong Huang
- School of Basic Medical Sciences, Dali University, Dali, 667000, China
| | - Ying Dong
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China.
| | - Yanchun Xu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Deng
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Canglin Zhang
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Shuping Liu
- School of Basic Medical Sciences, Dali University, Dali, 667000, China
| | - Mengni Chen
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| | - Yan Liu
- Yunnan Institute of Parasitic Diseases Control, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Centre of Malaria Research, Pu'er, 665000, China
| |
Collapse
|
38
|
Iwado S, Abe S, Oshimura M, Kazuki Y, Nakajima Y. Bioluminescence Measurement of Time-Dependent Dynamic Changes of CYP-Mediated Cytotoxicity in CYP-Expressing Luminescent HepG2 Cells. Int J Mol Sci 2021; 22:ijms22062843. [PMID: 33799598 PMCID: PMC7999318 DOI: 10.3390/ijms22062843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
We sought to develop a cell-based cytotoxicity assay using human hepatocytes, which reflect the effects of drug-metabolizing enzymes on cytotoxicity. In this study, we generated luminescent human hepatoblastoma HepG2 cells using the mouse artificial chromosome vector, in which click beetle luciferase alone or luciferase and major drug-metabolizing enzymes (CYP2C9, CYP2C19, CYP2D6, and CYP3A4) are expressed, and monitored the time-dependent changes of CYP-mediated cytotoxicity expression by bioluminescence measurement. Real-time bioluminescence measurement revealed that compared with CYP-non-expressing cells, the luminescence intensity of CYP-expressing cells rapidly decreased when the cells were treated with low concentrations of aflatoxin B1 or primaquine, which exhibits cytotoxicity in the presence of CYP3A4 or CYP2D6, respectively. Using kinetics data obtained by the real-time bioluminescence measurement, we estimated the time-dependent changes of 50% inhibitory concentration (IC50) values in the aflatoxin B1- and primaquine-treated cell lines. The first IC50 value was detected much earlier and at a lower concentration in primaquine-treated CYP-expressing HepG2 cells than in primaquine-treated CYP-non-expressing cells, and the decrease of IC50 values was much faster in the former than the latter. Thus, we successfully monitored time- and concentration-dependent dynamic changes of CYP-mediated cytotoxicity expression in CYP-expressing luminescent HepG2 cells by means of real-time bioluminescence measurement.
Collapse
Affiliation(s)
- Satoru Iwado
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan
- Correspondence: (Y.K.); (Y.N.); Tel.: +81-859-38-6219 (Y.K.); +81-87-869-3525 (Y.N.)
| | - Yoshihiro Nakajima
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Tottori, Japan; (S.I.); (S.A.); (M.O.)
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu 761-0395, Kagawa, Japan
- Correspondence: (Y.K.); (Y.N.); Tel.: +81-859-38-6219 (Y.K.); +81-87-869-3525 (Y.N.)
| |
Collapse
|
39
|
Abstract
Supplemental Digital Content is available in the text. Plasmodium vivax has the largest geographic range of human malaria species and is challenging to manage and eradicate due to its ability to establish a dormant liver stage, the hypnozoite, which can reactivate leading to relapse. Until recently, the only treatment approved to kill hypnozoites was the 8-aminoquinoline, primaquine, requiring daily treatment for 14 days. Tafenoquine, an 8-aminoquinoline single-dose treatment with activity against P. vivax hypnozoites, has recently been approved by the US Food and Drug Administration and Australian Therapeutic Goods Administration for the radical cure of P. vivax malaria in patients 16 years and older. We conducted an exploratory pharmacogenetic analysis (GSK Study 208099) to assess the role of host genome-wide variation on tafenoquine efficacy in patients with P. vivax malaria using data from three GSK clinical trials, GATHER and DETECTIVE Part 1 and Part 2. Recurrence-free efficacy at 6 and 4 months and time to recurrence up to 6 months postdosing were analyzed in 438 P. vivax malaria patients treated with tafenoquine. Among the approximately 10.6 million host genetic variants analyzed, two signals reached genome-wide significance (P value ≤ 5 × 10−8). rs62103056, and variants in a chromosome 12 intergenic region, were associated with recurrence-free efficacy at 6 and 4 months, respectively. Neither of the signals has an obvious biological rationale and would need replication in an independent population. This is the first genome-wide association study to evaluate genetic influence on response to tafenoquine in P. vivax malaria.
Collapse
|
40
|
Almeida AC, Elias ABR, Marques MP, de Melo GC, da Costa AG, Figueiredo EFG, Brasil LW, Rodrigues-Soares F, Monteiro WM, de Lacerda MVG, Lanchote VL, Suarez-Kurtz G. Impact of Plasmodium vivax malaria and antimalarial treatment on cytochrome P450 activity in Brazilian patients. Br J Clin Pharmacol 2020; 87:1859-1868. [PMID: 32997351 DOI: 10.1111/bcp.14574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS To investigate the impact of Plasmodium vivax malaria and chloroquine-primaquine chemotherapy on CYP2D6 and CYP2C19 activity in patients from the Brazilian Amazon. METHODS Adult patients (n = 30) were given subtherapeutic doses of CYP2D6 and CYP2C19 phenotypic probes metoprolol (10 mg) and omeprazole (2 mg) in three different stages of vivax malaria illness: acute disease (study phase 1), post chemotherapy (phase 2) and convalescence (stage 3). Plasma concentrations of probes and CYP-hydroxylated metabolites (α-OH metoprolol and 5-OH omeprazole) were measured using LC/MS/MS. Two pharmacokinetic metrics were used to estimate CYP activity: (a) ratio of plasma concentrations of probe/metabolite at 240 minutes after administration of the probes and (b) ratio of areas under the time-concentration curves for probe/metabolite (AUC0-12h ). For statistical analysis, the pharmacokinetic metrics were normalized to the respective values in phase 3. Taqman assays were used for CYP2D6 and CYP2C19 genotyping. Cytokines levels were measured using cytometric bead array. RESULTS Both pharmacokinetic metrics for metoprolol and omeprazole, and plasma concentrations of cytokines IL-6, IL-8 and IL-10 varied significantly across the three study phases (ANOVA P < 0.0001). Post hoc tests showed greater metoprolol:α-OH metoprolol ratios in phases 1 and 2 compared to phase 3, larger omeprazole:5-OH omeprazole ratios in phase 1 than in phases 2 and 3, and higher circulating IL-6, IL-8 and IL-10 in phase 1 than in phases 2 and 3. CONCLUSION P. vivax malaria and treatment altered CYP2D6 and CYP2C19 metabolic phenotypes. CYP2C19 inhibition is attributed to a higher level of circulating proinflammatory cytokines, while suppression of CYP2D6 is ascribed mainly to chloroquine exposure.
Collapse
Affiliation(s)
- Anne Cristine Almeida
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Maria Paula Marques
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gisely Cardoso de Melo
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Departamento de Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
| | - Erick Frota Gomes Figueiredo
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Larissa Wanderley Brasil
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wuelton Marcelo Monteiro
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
41
|
Grobusch MP, Rodríguez-Morales AJ, Schlagenhauf P. The Primaquine Problem-and the Solution? Point-of-care Diagnostics for Glucose 6-Phosphate Dehydrogenase Deficiency. Clin Infect Dis 2020; 69:1443-1445. [PMID: 30783651 DOI: 10.1093/cid/ciz124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Alfonso J Rodríguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Risaralda, Colombia
| | - Patricia Schlagenhauf
- University of Zürich, World Health Organization Collaborating Centre for Travel Medicine, Travel Clinic and Department of Public Health, Epidemiology, Biostatistics and Prevention Institute, Switzerland
| |
Collapse
|
42
|
Marasini B, Lal BK, Thapa S, Awasthi KR, Bajracharya B, Khanal P, Neupane S, Jha SN, Acharya S, Iama S, Koirala M, Koirala D, Bhandari S, Mahato RK, Chaudhary A, Ghimire P, Magar RG, Bhattarai RK, Gornsawun G, Penpitchaporn P, Bancone G, Acharya BP. G6PD deficiency in malaria endemic areas of Nepal. Malar J 2020; 19:287. [PMID: 32787970 PMCID: PMC7425560 DOI: 10.1186/s12936-020-03359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/04/2020] [Indexed: 12/02/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is currently a threat to malaria elimination due to risk of primaquine-induced haemolysis in G6PD deficient individuals. The World Health Organization (WHO) recommends G6PD screening before providing primaquine as a radical treatment against vivax malaria. However, evidence regarding the prevalence and causing mutations of G6PD deficiency in Nepal is scarce. Methods A cross-sectional, population-based, prevalence study was carried out from May to October 2016 in 12 malaria-endemic districts of Nepal. The screening survey included 4067 participants whose G6PD status was determined by G6PD Care Start™ rapid diagnostic test and genotyping. Results The prevalence of G6PD deficiency at the national level was 3.5% (4.1% among males and 2.1% among females). When analysed according to ethnic groups, G6PD deficiency was highest among the Janajati (6.2% overall, 17.6% in Mahatto, 7.7% in Chaudhary and 7.5% in Tharu) and low among Brahman and Chhetri (1.3%). District-wise, prevalence was highest in Banke (7.6%) and Chitwan (6.6%). Coimbra mutation (592 C>T) was found among 75.5% of the G6PD-deficient samples analysed and Mahidol (487 G>A) and Mediterranean (563 C>T) mutations were found in equal proportions in the remaining 24.5%. There was no specific geographic or ethnic distribution for the three mutations. Conclusions This study has identified populations with moderate to high prevalence of G6PD deficiency which provides strong evidence supporting the WHO recommendations to screen G6PD deficiency at health facility level before the use of primaquine-based radical curative regimen for Plasmodium vivax.
Collapse
Affiliation(s)
- Baburam Marasini
- Epidemiology and Disease Control Division, Department of Health Services Government of Nepal, Teku, Kathmandu, Nepal
| | - Bibek Kumar Lal
- Epidemiology and Disease Control Division, Department of Health Services Government of Nepal, Teku, Kathmandu, Nepal
| | - Suman Thapa
- Save The Children, Global Fund, Airport, Shambhu Marg, Kathmandu, Nepal
| | - Kiran Raj Awasthi
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Bijay Bajracharya
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal.
| | - Pratik Khanal
- Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Sanjeev Neupane
- Save The Children, Global Fund, Airport, Shambhu Marg, Kathmandu, Nepal
| | - Shambhu Nath Jha
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Sanjaya Acharya
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Smriti Iama
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Madan Koirala
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Dinesh Koirala
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Suresh Bhandari
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Ram Kumar Mahato
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Arun Chaudhary
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Pramin Ghimire
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | - Rahachan Gharti Magar
- Epidemiology and Disease Control Division/Program Management Unit (Global Fund/SCI), Teku, Kathmandu, Nepal
| | | | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Pimsupah Penpitchaporn
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Bhim Prasad Acharya
- Epidemiology and Disease Control Division, Department of Health Services Government of Nepal, Teku, Kathmandu, Nepal
| |
Collapse
|
43
|
Corder RM, de Lima ACP, Khoury DS, Docken SS, Davenport MP, Ferreira MU. Quantifying and preventing Plasmodium vivax recurrences in primaquine-untreated pregnant women: An observational and modeling study in Brazil. PLoS Negl Trop Dis 2020; 14:e0008526. [PMID: 32735631 PMCID: PMC7423143 DOI: 10.1371/journal.pntd.0008526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/12/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Each year, 4.3 million pregnant women are exposed to malaria risk in Latin America and the Caribbean. Plasmodium vivax causes 76% of the regional malaria burden and appears to be less affected than P. falciparum by current elimination efforts. This is in part due to the parasite's ability to stay dormant in the liver and originate relapses within months after a single mosquito inoculation. Primaquine (PQ) is routinely combined with chloroquine (CQ) or other schizontocidal drugs to supress P. vivax relapses and reduce the risk of late blood-stage recrudescences of parasites with low-grade CQ resistance. However, PQ is contraindicated for pregnant women, who remain at increased risk of repeated infections following CQ-only treatment. Here we apply a mathematical model to time-to-recurrence data from Juruá Valley, Brazil's main malaria transmission hotspot, to quantify the extra burden of parasite recurrences attributable to PQ ineligibility in pregnant women. The model accounts for competing risks, since relapses and late recrudescences (that may be at least partially prevented by PQ) and new infections (that are not affected by PQ use) all contribute to recurrences. We compare recurrence rates observed after primary P. vivax infections in 158 pregnant women treated with CQ only and 316 P. vivax infections in non-pregnant control women, matched for age, date of infection, and place of residence, who were administered a standard CQ-PQ combination. We estimate that, once infected with P. vivax, 23% of the pregnant women have one or more vivax malaria recurrences over the next 12 weeks; 86% of these early P. vivax recurrences are attributable to relapses or late recrudescences, rather than new infections that could be prevented by reducing malaria exposure during pregnancy. Model simulations indicate that weekly CQ chemoprophylaxis extending over 4 to 12 weeks, starting after the first vivax malaria episode diagnosed in pregnancy, might reduce the risk of P. vivax recurrences over the next 12 months by 20% to 65%. We conclude that post-treatment CQ prophylaxis could be further explored as a measure to prevent vivax malaria recurrences in pregnancy and avert their adverse effects on maternal and neonatal health.
Collapse
Affiliation(s)
- Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (RMC); (MUF)
| | - Antonio C. P. de Lima
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - David S. Khoury
- Kirby Institute for Infection and Immunity, University of New South Wales, Sidney, Australia
| | - Steffen S. Docken
- Kirby Institute for Infection and Immunity, University of New South Wales, Sidney, Australia
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sidney, Australia
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (RMC); (MUF)
| |
Collapse
|
44
|
Martin Ramírez A, Lombardia González C, Soler Maniega T, Gutierrez Liarte Á, Domingo García D, Lanza Suárez M, Bernal Fernández MJ, Rubio JM. Several Plasmodium vivax relapses after correct primaquine treatment in a patient with impaired cytochrome P450 2D6 function. Malar J 2020; 19:259. [PMID: 32680522 PMCID: PMC7368755 DOI: 10.1186/s12936-020-03326-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Plasmodium vivax malaria is characterized by the presence of dormant liver-stage parasites, called hypnozoites, which can cause malaria relapses after an initial attack. Primaquine, which targets liver hypnozoites, must be used in combination with a schizonticidal agent to get the radical cure. However, relapses can sometimes occur in spite of correct treatment, due to different factors such as a diminished metabolization of primaquine. Case presentation In January 2019, a 21 years old woman with residence in Madrid, returning from a trip to Venezuela with clinical symptoms compatible with malaria infection, was diagnosed with vivax malaria. Chloroquine for 3 days plus primaquine for 14 days was the elected treatment. Two months later and after a second trip to Venezuela, the patient presented a second P. vivax infection, which was treated as the previous one. A third P. vivax malaria episode was diagnosed 2 months later, after returning from a trip to Morocco, receiving chloroquine for 3 days but increasing to 28 days the primaquine regimen, and with no more relapses after 6 months of follow up. The genotyping of P. vivax in the three malaria episodes revealed that the same strain was present in the different relapses. Upon confirmation of correct adherence to the treatment, non-description of resistance in the infection area and the highly unlikely re-infection on subsequent trips or stays in Spain, a possible metabolic failure was considered. CYP2D6 encodes the human cytochrome P450 isoenzyme 2D6 (CYP2D6), responsible for primaquine activation. The patient was found to have a CYP2D6*4/*1 genotype, which turns out in an intermediate metabolizer phenotype, which has been related to P. vivax relapses. Conclusions The impairment in CYP2D6 enzyme could be the most likely cause of P. vivax relapses in this patient. This highlights the importance of considering the analysis of CYP2D6 gene polymorphisms in cases of P. vivax relapses after a correct treatment and, especially, it should be considered in any study of dosage and duration of primaquine treatment.
Collapse
Affiliation(s)
- Alexandra Martin Ramírez
- Malaria and Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Tamara Soler Maniega
- Microbiology and Parasitology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | | | - Diego Domingo García
- Microbiology and Parasitology Department, Hospital Universitario de la Princesa, Madrid, Spain
| | - Marta Lanza Suárez
- Malaria and Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - María Josefa Bernal Fernández
- Malaria and Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| | - José Miguel Rubio
- Malaria and Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
45
|
Influence of CYP2C8, CYP3A4, and CYP3A5 Host Genotypes on Early Recurrence of Plasmodium vivax. Antimicrob Agents Chemother 2020; 64:AAC.02125-19. [PMID: 32366712 DOI: 10.1128/aac.02125-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/25/2020] [Indexed: 11/20/2022] Open
Abstract
Cytochrome P450 (CYP) enzymes are involved in the biotransformation of chloroquine (CQ), but the role of the different profiles of metabolism of this drug in relation to Plasmodium vivax recurrences has not been properly investigated. To investigate the influence of the CYP genotypes associated with CQ metabolism on the rates of P. vivax early recurrences, a case-control study was carried out. The cases included patients presenting with an early recurrence (CQ-recurrent individuals), defined as a recurrence during the first 28 days after initial infection and plasma concentrations of CQ plus desethylchloroquine (DCQ; the major CQ metabolite) higher than 100 ng/ml. A control group with no parasite recurrence over the follow-up (the CQ-responsive group) was also included. CQ and DCQ plasma levels were measured on day 28. CQ-metabolizing CYP (CYP2C8, CYP3A4, and CYP3A5) genotypes were determined by real-time PCR. An ex vivo study was conducted to verify the efficacy of CQ and DCQ against P. vivax isolates. The frequency of alleles associated with normal and slow metabolism was similar between the cases and the controls for the CYP2C8 (odds ratio [OR] = 1.45, 95% confidence interval [CI] = 0.51 to 4.14, P = 0.570), CYP3A4 (OR = 2.38, 95% CI = 0.92 to 6.19, P = 0.105), and CYP3A5 (OR = 4.17, 95% CI = 0.79 to 22.04, P = 1.038) genes. DCQ levels were higher than CQ levels, regardless of the genotype. Regarding the DCQ/CQ ratio, there was no difference between groups or between those patients who had a normal genotype and those patients who had a mutant genotype. DCQ and CQ showed similar efficacy ex vivo CYP genotypes had no influence on early recurrence rates. The similar efficacy of CQ and DCQ ex vivo could explain the absence of therapeutic failure, despite the presence of alleles associated with slow metabolism.
Collapse
|
46
|
Spring MD, Sousa JC, Li Q, Darko CA, Morrison MN, Marcsisin SR, Mills KT, Potter BM, Paolino KM, Twomey PS, Moon JE, Tosh DM, Cicatelli SB, Froude JW, Pybus BS, Oliver TG, McCarthy WF, Waters NC, Smith PL, Reichard GA, Bennett JW. Determination of Cytochrome P450 Isoenzyme 2D6 (CYP2D6) Genotypes and Pharmacogenomic Impact on Primaquine Metabolism in an Active-Duty US Military Population. J Infect Dis 2020; 220:1761-1770. [PMID: 31549155 PMCID: PMC6804407 DOI: 10.1093/infdis/jiz386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium vivax malaria requires a 2-week course of primaquine (PQ) for radical cure. Evidence suggests that the hepatic isoenzyme cytochrome P450 2D6 (CYP2D6) is the key enzyme required to convert PQ into its active metabolite. Methods CYP2D6 genotypes and phenotypes of 550 service personnel were determined, and the pharmacokinetics (PK) of a 30-mg oral dose of PQ was measured in 45 volunteers. Blood and urine samples were collected, with PQ and metabolites were measured using ultraperformance liquid chromatography with mass spectrometry. Results Seventy-six CYP2D6 genotypes were characterized for 530 service personnel. Of the 515 personnel for whom a single phenotype was predicted, 58% had a normal metabolizer (NM) phenotype, 35% had an intermediate metabolizer (IM) phenotype, 5% had a poor metabolizer (PM) phenotype, and 2% had an ultrametabolizer phenotype. The median PQ area under the concentration time curve from 0 to ∞ was lower for the NM phenotype as compared to the IM or PM phenotypes. The novel 5,6-ortho-quinone was detected in urine but not plasma from all personnel with the NM phenotype. Conclusion The plasma PK profile suggests PQ metabolism is decreased in personnel with the IM or PM phenotypes as compared to those with the NM phenotype. The finding of 5,6-ortho-quinone, the stable surrogate for the unstable 5-hydroxyprimaquine metabolite, almost exclusively in personnel with the NM phenotype, compared with sporadic or no production in those with the IM or PM phenotypes, provides further evidence for the role of CYP2D6 in radical cure. Clinical Trials Registration NCT02960568.
Collapse
Affiliation(s)
- Michele D Spring
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring
| | | | - Qigui Li
- Experimental Therapeutics Branch, Silver Spring
| | | | | | | | | | | | - Kristopher M Paolino
- Division of Infectious Disease, SUNY Upstate Medical University, Syracuse, New York
| | - Patrick S Twomey
- Licensing and Early Development-Oncology, Genentech, South San Francisco, California
| | | | - Donna M Tosh
- Clinical Operations, Government and Public Health Solutions, ICON, Hinckley, Ohio
| | | | - Jeffrey W Froude
- Vaccines/Therapeutics Division, Defense Threat Reduction Agency, Fort Belvoir, Virginia
| | | | | | - William F McCarthy
- U. S. Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Jason W Bennett
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Silver Spring.,Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring
| |
Collapse
|
47
|
Abstract
As the world gets closer to eliminating malaria, the scientific community worldwide has begun to realize the importance of malaria transmission-blocking interventions. The onus of breaking the life cycle of the human malaria parasite Plasmodium falciparum predominantly rests upon transmission-blocking drugs because of emerging resistance to commonly used schizonticides and insecticides. This third part of our review series on malaria transmission-blocking entails transmission-blocking potential of preclinical transmission-blocking antimalarials and other non-malaria drugs/experimental compounds that are not in clinical or preclinical development for malaria but possess transmission-blocking potential. Collective analysis of the structure and the activity of these experimental compounds might pave the way toward generation of novel prototypes of next-generation transmission-blocking drugs.
Collapse
|
48
|
Spring MD, Lon C, Sok S, Sea D, Wojnarski M, Chann S, Kuntawunginn W, Kheang Heng T, Nou S, Arsanok M, Sriwichai S, Vanachayangkul P, Lin JT, Manning JE, Jongsakul K, Pichyangkul S, Satharath P, Smith PL, Dysoley L, Saunders DL, Waters NC. Prevalence of CYP2D6 Genotypes and Predicted Phenotypes in a Cohort of Cambodians at High Risk for Infections with Plasmodium vivax. Am J Trop Med Hyg 2020; 103:756-759. [PMID: 32394887 PMCID: PMC7410472 DOI: 10.4269/ajtmh.20-0061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clinical failure of primaquine (PQ) has been demonstrated in people with CYP450 2D6 genetic polymorphisms that result in reduced or no enzyme activity. The distribution of CYP2D6 genotypes and predicted phenotypes in the Cambodian population is not well described. Surveys in other Asian countries have shown an approximate 50% prevalence of the reduced activity CYP2D6 allele *10, which could translate into increased risk of PQ radical cure failure and repeated relapses, making interruption of transmission and malaria elimination difficult to achieve. We determined CYP2D6 genotypes from 96 volunteers from Oddor Meanchey Province, Cambodia, an area endemic for Plasmodium vivax. We found a 54.2% frequency of the *10 allele, but in approximately half of our subjects, it was paired with a normal activity allele, either *1 or *2. The prevalence of *5, a null allele, was 9.4%. Overall predicted phenotype percentages were normal metabolizers, 46%; intermediate metabolizers, 52%; and poor metabolizers, 1%.
Collapse
Affiliation(s)
- Michele D Spring
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Chanthap Lon
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Darapiseth Sea
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mariusz Wojnarski
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Soklyda Chann
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Thay Kheang Heng
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Samon Nou
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Montri Arsanok
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sabaithip Sriwichai
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Jessica T Lin
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Jessica E Manning
- US National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | - Krisada Jongsakul
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sathit Pichyangkul
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Philip L Smith
- Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Lek Dysoley
- National Malaria Program of Cambodia, Phnom Penh, Cambodia
| | - David L Saunders
- U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Norman C Waters
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
49
|
Abstract
There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
50
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|