1
|
Xu G, Sun L, Tu Y, Teng X, Qi Y, Wang Y, Li A, Xie X, Gu X. Highly stable carbon-coated nZVI composite Fe 0@RF-C for efficient degradation of emerging contaminants. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100457. [PMID: 39161572 PMCID: PMC11331822 DOI: 10.1016/j.ese.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe0@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe0@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe0@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe0@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.
Collapse
Affiliation(s)
- Guizhou Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yizhou Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaolei Teng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yumeng Qi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yaoyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xianchuan Xie
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang, 330031, China
- Nanjing University & Yancheng Academy of Environment Protection Technology and Engineering, Nanjing, 210023, China
- Jiangxi Nanxin Environmental Protection Technology Co. LTD, Jiujiang City, Jiangxi Province, 330300, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Bustos KAG, Muñoz SS, da Silva SS, Alarcon MADF, dos Santos JC, Andrade GJC, Hilares RT. Saponin Molecules from Quinoa Residues: Exploring Their Surfactant, Emulsifying, and Detergent Properties. Molecules 2024; 29:4928. [PMID: 39459296 PMCID: PMC11510682 DOI: 10.3390/molecules29204928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The indiscriminate use of synthetic surfactants, despite their desirable properties, poses significant environmental risks to ecosystems. This study explores saponins extracted from quinoa (Chenopodium quinoa) residues as a sustainable alternative. Saponin extract (SE) with 42% purity, obtained through hydrodynamic cavitation and membrane technology, was analyzed to determine its techno-functional properties. The critical micelle concentration (CMC) was 1.2 g/L, reducing the surface tension (ST) from 72.0 mN/m to 50.0 mN/m. The effects of temperature (30-90 °C), pH (2-12), and salinity (10,000-150,000 ppm NaCl) on ST and the emulsification index (EI) were assessed using a Box-Behnken design. Optimized conditions yielded an ST of 49.02 mN/m and an EI of 63%. Given these characteristics, SE was evaluated as a detergent across diverse swatches. This study showcases the attributes of quinoa-derived saponins, highlighting their potential for eco-friendly detergent applications.
Collapse
Affiliation(s)
- Kiara A. García Bustos
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| | - Salvador Sanchez Muñoz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Silvio S. da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Miguel A. D. Flores Alarcon
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Júlio C. dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), Lorena 12602-810, SP, Brazil; (S.S.M.); (S.S.d.S.); (M.A.D.F.A.); (J.C.d.S.)
| | - Gilberto J. Colina Andrade
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| | - Ruly Terán Hilares
- Laboratorio de Bioprocesos, Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María—UCSM, Urb. San José s/n—Umacollo, Arequipa 04000, Peru; (K.A.G.B.); (G.J.C.A.)
| |
Collapse
|
3
|
Cisneros-Ontiveros HG, Zubieta-Otero LF, Medellín-Castillo NA, Flores-Rojas AI, Rodriguez-Garcia ME. Extraction of bio-hydroxyapatite from devilfish (Loricariidae) for the fluoride and cadmium adsorption from water and its feasible photocatalytic properties. CHEMOSPHERE 2024; 366:143535. [PMID: 39413931 DOI: 10.1016/j.chemosphere.2024.143535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/27/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
In this study, the adsorption capacity of bio-hydroxyapatite (Bio-HAp) from devilfish for the removal of F- and Cd(II) from aqueous solutions was investigated. This material was synthesized according to a 2FI factorial experimental design by varying the extraction conditions for Bio-HAp, including the type of pretreatment (alkaline and peroxide), the calcination temperature from 550 to 850 °C, and the sonication process. The maximum adsorption capacities were 8.48 and 83.56 mg g-1 for F- and Cd(II), respectively. Statistical analysis showed the importance of the type of pretreatment, temperature, and sonication for adsorption. The predicted optimal conditions were Bio-HAp extracted from bone with peroxide pretreatment, calcination at 550 °C and sonication. The surface of the Bio-HAp was found to be mesoporous and basic in character. TGA, FT-IR and SEM-EDS characterizations confirmed the presence of F- and Cd(II) on the Bio-HAp surface and confirmed the adsorption mechanisms by electrostatic forces, ion exchange, and chemisorption. The Praunitz-Rake model of adsorption isotherm showed better agreement with the equilibrium adsorption data of F- and Cd(II) at pH 7. Furthermore, photodegradation experiments showed 100% degradation methylene blue (MB) under natural sunlight. This study indicates an effective photodegradation process, suggesting high adsorption capacity of the samples. The use of devilfish as an adsorbent promises to be a viable and sustainable option for the removal of fluoride and cadmium from water, and for use in photodegradation experiments.
Collapse
Affiliation(s)
- Hilda G Cisneros-Ontiveros
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Agenda Ambiental, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 201, Zona Universitaria S.L.P., 78210, Mexico
| | - Luis F Zubieta-Otero
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230, Mexico.
| | - Nahum A Medellín-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 8, Zona Universitaria, S.L.P., 78290, Mexico.
| | - Alfredo I Flores-Rojas
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M Nava No. 8, Zona Universitaria, S.L.P., 78290, Mexico
| | - Mario E Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
4
|
Tang W, Guo L, Nessa A, Ma B, Guo T, Huang Z, Zhang M. Enhancing pakchoi cabbage yield and quality but reducing human-disease risk of bacterial community from wastewater irrigation by combined nanoscale zerovalent iron and nitrification inhibitor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124961. [PMID: 39299634 DOI: 10.1016/j.envpol.2024.124961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
It was indispensable to seek effective and feasible measures to alleviate the adverse effects of wastewater irrigation. Nanoscale zerovalent iron (nZVI) and soil nitrogen management might enhance the vegetable yield and quality but mitigate the potential human-disease risks from wastewater irrigation. This study selected the nZVI and nitrification inhibitor as experimental objects. The planted pakchoi cabbage was irrigated with the tap water and wastewater and treated with nZVI and 3, 4-dimethylpyrazole phosphate (DMPP), respectively, the pakchoi cabbage yield and quality, soil enzyme activity and abiotic property, and human-disease risk of bacterial community were quantified. Compared with the control, the nZVI significantly enhanced the pakchoi cabbage yield by 51.5% but reduced the pakchoi cabbage nitrate content by 52.6% under wastewater irrigation condition. The nZVI alone had double-edged sword effects of increasing the pakchoi cabbage yield, reducing the pakchoi cabbage nitrate content and soil human-disease risk but inhibiting the system multifunctionality and soil bacterial community diversity and stability, under wastewater irrigation condition. The nZVI diminished human-disease risk via increasing the soil Firmicutes and Verrucomicrobiota ratios, and the extra DMPP could mitigate the negative effects of nZVI by increasing soil enzyme activity and stimulating soil Acidobacteria ratio. The combinations of nZVI and DMPP could not only enhance the pakchoi cabbage yield and quality but also reduce the human-disease risk of soil bacterial community from wastewater irrigation.
Collapse
Affiliation(s)
- Wenhui Tang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Lei Guo
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Ashrafun Nessa
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
| | - Bin Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Tao Guo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhenrong Huang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Manyun Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China; Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
5
|
Soufi A, Hajjaoui H, Boumya W, Elmouwahidi A, Baillón-García E, Abdennouri M, Barka N. Recent trends in magnetic spinel ferrites and their composites as heterogeneous Fenton-like catalysts: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121971. [PMID: 39074433 DOI: 10.1016/j.jenvman.2024.121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
In recent years, there has been a growing interest in utilizing spinel ferrite and their nanocomposites as Fenton-like catalysts. The use of these materials offers numerous advantages, including ability to efficiently degrade pollutants and potential for long-term and repeated use facilitated by their magnetic properties that make them easily recoverable. The remarkable catalytic properties, stability, and reusability of these materials make them highly attractive for researchers. This paper encompasses a comprehensive review of various aspects related to the Fenton process and the utilization of spinel ferrite and their composites in catalytic applications. Firstly, it provides an overview of the background, principles, mechanisms, and key parameters governing the Fenton reaction, along with the role of physical field assistance in enhancing the process. Secondly, it delves into the advantages and mechanisms of H2O2 activation induced by different spinel ferrite and their composites for the removal of organic pollutants, shedding light on their efficacy in environmental remediation. Thirdly, the paper explores the application of these materials in various Fenton-like processes, including Fenon-like, photo-Fenton-like, sono-Fenton-like, and electro-Fenton-like, for the effective removal of different types of contaminants. Furthermore, it addresses important considerations such as the toxicity, recovery, and reuse of these materials. Finally, the paper presents the challenges associated with H2O2 activation by these materials, along with proposed directions for future improvements.
Collapse
Affiliation(s)
- Amal Soufi
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Hind Hajjaoui
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Wafaa Boumya
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Abdelhakim Elmouwahidi
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Esther Baillón-García
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente - Universidad de Granada (UEQ-UGR), ES18071, Granada, Spain
| | - Mohamed Abdennouri
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco
| | - Noureddine Barka
- Sultan Moulay Slimane University of Beni Mellal, Multidisciplinary Research and Innovation Laboratory, FP Khouribga, BP. 145, 2500, Khouribga, Morocco.
| |
Collapse
|
6
|
Zhang M, Lin K. Unintended polyhalogenated carbazole production during advanced oxidation of coking wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134649. [PMID: 38772108 DOI: 10.1016/j.jhazmat.2024.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging as dioxin-like global pollutants, yet their environmental origins are not fully understood. This study investigates the application of the Fenton process in coking wastewater treatment, focusing on its dual role in carbazole removal and unintended PHCZ formation. The common halide ions (Cl- and Br-) in coking wastewater, especially Br- ions, exerted a notable impact on carbazole removal. Particularly, the influence of Br- ions was more significant, not only enhancing carbazole removal but also shaping the congener composition of PHCZ formation. Elevated halide ion concentrations were associated with the heightened formation of higher halogenated carbazoles. The Fenton reagent dosage ratio was identified as a crucial factor affecting the congener composition of PHCZs and their toxic equivalency value. The coexisting organic substance (i.e., phenol) in coking wastewater was observed to inhibit PHCZ formation, likely through competitive reactions with carbazole. Intriguingly, ammonium (NH4+) facilitated the generation of higher and mixed halogenated carbazoles, possibly due to the generation of nitrogen-containing brominating agents with stronger bromination capacity. This study underscores the importance of a comprehensive assessment, considering both substrate removal and potential byproduct formation, when employing the Fenton process for saline wastewater treatment.
Collapse
Affiliation(s)
- Meng Zhang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Yuan Y, Li S, Zhu L. The use of bimetallic metal-organic frameworks as restoration materials for pollutants removal from water environment. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240380. [PMID: 39086832 PMCID: PMC11289953 DOI: 10.1098/rsos.240380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024]
Abstract
Bimetallic metal-organic frameworks (BMOFs) are a class of functional porous materials constructed by coordination between nodes containing two different metal ions and organic ligands. Studies have shown that the catalytic activity of BMOFs is greatly improved owing to the adjustment of charge distribution and the increase of active sites as well as the synergistic effect between the bimetals, and the advantages of their large specific surface area, high porosity, unique structure and dispersed active centres make them available as important organic materials applied in the field of wastewater treatment. In this review, the preparation and construction methods for BMOFs in recent years are summarized, and we focus on their removal of different types of pollutants in the aqueous environment, including ions, dyes, pharmaceuticals or personal care products, phenolic compounds and microorganisms, as well as their corresponding removal mechanisms. In addition, we provide an outlook on their future opportunities and challenges in wastewater treatment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| | - Shaocong Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| |
Collapse
|
8
|
Sun M, Xie Y, Huang J, Liu C, Dong Y, Li S, Zeng C. Oxygen-deficient AgIO 3 for efficiently photodegrading organic contaminants under natural sunlight. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121393. [PMID: 38850920 DOI: 10.1016/j.jenvman.2024.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Defect engineering is regarded as an effective strategy to boost the photo-activity of photocatalysts for organic contaminants removal. In this work, abundant surface oxygen vacancies (Ov) are created on AgIO3 microsheets (AgIO3-OV) by a facile and controllable hydrogen chemical reduction approach. The introduction of surface Ov on AgIO3 broadens the photo-absorption region from ultraviolet to visible light, accelerates the photoinduced charges separation and migration, and also activates the formation of superoxide radicals (•O2-). The AgIO3-OV possesses an outstanding degradation rate constant of 0.035 min-1, for photocatalytic degrading methyl orange (MO) under illumination of natural sunlight with a light intensity is 50 mW/cm2, which is 7 and 3.5 times that of the pristine AgIO3 and C-AgIO3 (AgIO3 is calcined in air without generating Ov). In addition, the AgIO3-OV also exhibit considerable photoactivity for degrading other diverse organic contaminants, including azo dye (rhodamine B (RhB)), antibiotics (sulflsoxazole (SOX), norfloxacin (NOR), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)), and even the mixture of organic contaminants (MO-RhB and CTC-OFX). After natural sunlight illumination for 50 min, 41.4% of total organic carbon (TOC) for MO-RhB mixed solution can be decreased over AgIO3-OV. In a broad range of solution pH from 3 to 11 or diverse water bodies of MO solution, AgIO3-OV exhibits attractive activity for decomposing MO. The MO photo-degradation process and mechanism over AgIO3-OV under natural sunlight irradiation has been systemically investigated and proposed. The toxicities of MO and its degradation intermediates over AgIO3-OV are compared using Toxicity Estimation Software (T.E.S.T.). Moreover, the non-toxicity of both AgIO3-OV catalyst and treated antibiotic solution (CTC-OFX mixture) are confirmed by E. coli DH5a cultivation test, supporting the feasibility of AgIO3-OV catalyst to treat organic contaminants in real water under natural sunlight illumination.
Collapse
Affiliation(s)
- Miaofei Sun
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunchang Xie
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, China
| | - Jiayang Huang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Chengyin Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Yujing Dong
- School of Science and Technology, Xinyang College, Xinyang, 464000, China.
| | - Shijie Li
- National Engineering Research Center for Marine Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Chao Zeng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
9
|
Liu M, Chen G, Xu L, He Z, Ye Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: a review. RSC Adv 2024; 14:21118-21138. [PMID: 38966811 PMCID: PMC11223516 DOI: 10.1039/d4ra02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The fast rise of organic and metallic pollution has brought significant risks to human health and the ecological environment. Consequently, the remediation of wastewater is in extremely urgent demand and has received increasing attention. Nanoscale zero valent iron (nZVI) possesses a high specific surface area and distinctive reactive interfaces, which offer plentiful active sites for the reduction, oxidation, and adsorption of contaminants. Given these abundant functionalities of nZVI, it has undergone significant and extensive studies on environmental remediation, linking to various mechanisms, such as reduction, oxidation, surface complexation, and coprecipitation, which have shown great promise for application in wastewater treatment. Among these functionalities of nZVI, reductivity is particularly important and widely adopted in dehalogenation, and reduction of nitrate, nitro compounds, and metal ions. The following review comprises a short survey of the most recent reports on the applications of nZVI based on its reductivity. It contains five sections, an introduction to the theme, chemical reduction applications, electrolysis-assisted reduction applications, bacterium-assisted reduction applications, and conclusions about the reported research with perspectives for future developments. Review and elaboration of the recent reductivity-dependent applications of nZVI may not only facilitate the development of more effective and sustainable nZVI materials and the protocols for comprehensive utilization of nZVI, but may also promote the exploration of innovative remediation approaches based on its reductivity.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Gang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| |
Collapse
|
10
|
Li Y, Wu N, Song J, Wang Z, Li P, Song Y. Differential and mechanism analysis of sulfate influence on the degradation of 1,1,2- trichloroethane by nano- and micron-size zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2024; 45:2612-2627. [PMID: 36763460 DOI: 10.1080/09593330.2023.2179944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The in-situ reduction of zero-valent iron (ZVI) is an effective method for removing chlorinated aliphatic hydrocarbons (CAHs) from groundwater. The heterogeneity of environmental conditions is also crucial in affecting dechlorination efficiency. Until now, the effect of Sulfate (SO42-) on ZVI activity has been debated, and the related mechanism research on SO42- behaviour during the abiotic reduction process of chlorinated alkanes is still lacking. In this study, the impacts of SO42- concentrations (0, 2, 4, 8, 80 mM) on the degradation of 1,1,2-trichloroethane (1,1,2-TCA) by micron-size ZVI (mZVI) and nano-size ZVI (nZVI) were systematically investigated. For mZVI, Kobs increased by 0.6 (2 mM), 0.5 (4 mM), 1.1 (8 mM), and 1.6 times (80 mM). For nZVI, Kobs decreased by 32% (2 mM), 39% (4 mM), 45% (8 mM), and 9% (80 mM). The results showed that SO42- increased the rate of 1,1,2-TCA degradation by mZVI but weakened the reduction performance of nZVI; however, this inhibition was reduced when the concentration reached 80 mM. SO42- controlled the degradation of 1,1,2-TCA mainly through the formation of different iron-sulfate complexes on the ZVI surface: water-soluble bidentate iron-sulfate complexes formed on the mZVI surface promoted the corrosion of the oxide layer and accelerated the reduction of 1,1,2-TCA, monodentate complexes mainly formed on the nZVI surface inhibited the reduction of 1,1,2-TCA by blocking surface sites. These results demonstrate the proof of concept to assist land managers in the field application of ZVI technology for the remediation of CAHs contaminated sites with different background concentrations of SO42-.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Naijin Wu
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Jiuhao Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Zhenxia Wang
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, People's Republic of China
| | - Peizhong Li
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| | - Yun Song
- Beijing Key Laboratory of Industrial Land Contamination and Remediation, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, People's Republic of China
| |
Collapse
|
11
|
Li S, Hu X, Zhou J, Zheng S, Ma Q, Fu H, Zhang WX, Deng Z. Biomass-derived cellulose nanocrystals modified nZVI for enhanced tetrabromobisphenol A (TBBPA) removal. Int J Biol Macromol 2024; 268:131625. [PMID: 38631569 DOI: 10.1016/j.ijbiomac.2024.131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/29/2023] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Nano zero-valent iron (nZVI) is an advanced environmental functional material for the degradation of tetrabromobisphenol A (TBBPA). However, high surface energy, self-agglomeration and low electron selectivity limit degradation rate and complete debromination of bare nZVI. Herein, we presented biomass-derived cellulose nanocrystals (CNC) modified nZVI (CNC/nZVI) for enhanced TBBPA removal. The effects of raw material (straw, filter paper and cotton), process (time, type and concentration of acid hydrolysis) and synthesis methods (in-situ and ex-situ) on fabrication of CNC/nZVI were systematically evaluated based on TBBPA removal performance. The optimized CNC-S/nZVI(in) was prepared via in-situ liquid-phase reduction using straw as raw material of CNC and processing through 44 % H2SO4 for 165 min. Characterizations illustrated nZVI was anchored to the active sites at CNC interface through electrostatic interactions, hydrogen bonds and FeO coordinations. The batch experiments showed 0.5 g/L CNC-S/nZVI(in) achieved 96.5 % removal efficiency at pH = 7 for 10 mg/L initial TBBPA. The enhanced TBBPA dehalogenation by CNC-S/nZVI(in), involving in initial adsorption, reduction process and partial detachment of debrominated products, were possibly attributed to elevated pre-adsorption capacity and high-efficiency delivery of electrons synergistically. This study indicated that fine-tuned fabrication of CNC/nZVI could potentially be a promising alternative for remediation of TBBPA-contaminated aquatic environments.
Collapse
Affiliation(s)
- Shiyan Li
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolei Hu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Zhou
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shuo Zheng
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Quanxue Ma
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Haoyang Fu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
12
|
Qiu D, Geng Y, Geng J, Du H, Chang J. Removal of dyes from wastewater using Eucalyptus wood fiber loaded nanoscale zero-valent iron: Characterization and removal mechanism. Int J Biol Macromol 2024; 266:131141. [PMID: 38537855 DOI: 10.1016/j.ijbiomac.2024.131141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024]
Abstract
Wood fiber as a natural and renewable material has low cost and plenty of functional groups, which owns the ability to adsorb dyes. In order to improve the application performance of wood fiber in dye-pollution wastewater, Eucalyptus wood fiber loaded nanoscale zero-valent iron (EWF-nZVI) was developed to give EWF magnetism and the ability to degrade dyes. EWF-nZVI was characterized via FTIR, XRD, zeta potential, VSM, SEM-EDS and XPS. Results showed that EWF-nZVI owned a strong magnetism of 96.51 emu/g. The dye removal process of EWF-nZVI was more in line with the pseudo-second-order kinetics model. In addition, the Langmuir isotherm model fitting results showed that the maximum removal capacities of Congo red and Rhodamine B by EWF-nZVI were 714.29 mg/g and 68.49 mg/g at 328 K, respectively. After five adsorption-desorption cycles, the regeneration efficiencies of Congo red and Rhodamine B were 74 % and 42 % in turn. The dye removal mechanisms of EWF-nZVI included redox degradation (Congo red and Rhodamine B) and electrostatic adsorption (Congo red). In summary, EWF-nZVI is a promising biomass-based material with high dye removal capacities. This work is beneficial to promote the large-scale application of wood fiber in water treatment.
Collapse
Affiliation(s)
- Dongxu Qiu
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Yuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jing Geng
- School of Material Science and Engineering, Beihua University, Jilin 132013, China.
| | - Hongshuang Du
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Jianmin Chang
- College of Material Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Xue W, Shi X, Guo J, Wen S, Lin W, He Q, Gao Y, Wang R, Xu Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. WATER RESEARCH 2024; 253:121309. [PMID: 38367381 DOI: 10.1016/j.watres.2024.121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang 421001, PR China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
14
|
Jokić Govedarica J, Tomašević Pilipović D, Gvoić V, Kerkez Đ, Leovac Maćerak A, Slijepčević N, Bečelić-Tomin M. Eco-friendly nanoparticles: mechanisms and capacities for efficient removal of heavy metals and phosphate from water using definitive screening design approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:118. [PMID: 38478162 DOI: 10.1007/s10653-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
Can nano-zero-valent iron, synthesized using oak leaf extract, be the key solution for water preservation, efficiently removing heavy metal ions and phosphate anions simultaneously? This research unveils how this technology not only promises high efficiency in the remediation of water resources, but also sets new standards for environmentally friendly processes. The high antioxidant capacity and high phenol content indicate suggest the possibility of oak-nZVI synthesis using oak leaf extract as a stable material with minimal agglomeration. The simultaneous removal of Cd and phosphates, as well as and Ni and phosphates was optimized by a statistically designed experiment with a definitive screening design approach. By defining the key factors with the most significant impact, a more efficient and faster method is achieved, improving the economic sustainability of the research by minimizing the number of experiments while maximizing precision. In terms of significance, four input parameters affecting process productivity were monitored: initial metal concentration (1-9 mg L-1), initial ion concentration (1-9 mg L-1), pH value (2-10), and oak-nZVI dosage (2-16 mL). The process optimization resulted in the highest simultaneous removal efficiency of 98.99 and 87.30% for cadmium and phosphate ions, respectively. The highest efficiency for the simultaneous removal of nickel and phosphate ions was 93.44 and 96.75%, respectively. The optimization process fits within the confidence intervals, which confirms the assumption that the selected regression model well describes the process. In the context of e of the challenges and problems of environmental protection, this work has shown considerable potential and successful application for the simultaneous removal of Cd(II) and Ni(II) in the presence of phosphates from water.
Collapse
Affiliation(s)
- Jovana Jokić Govedarica
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Dragana Tomašević Pilipović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Vesna Gvoić
- Faculty of Technical Sciences, Department of Graphic Engineering and Design, University of Novi Sad, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Đurđa Kerkez
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Anita Leovac Maćerak
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Nataša Slijepčević
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Milena Bečelić-Tomin
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
15
|
Wang Z, Zeng Y, Tan Q, Shen Y, Shen L, Sun J, Zhao L, Lin H. Novel combination of iron-carbon composite and Fenton oxidation processes for high-concentration antibiotic wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120383. [PMID: 38382434 DOI: 10.1016/j.jenvman.2024.120383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.
Collapse
Affiliation(s)
- Zhe Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yansha Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Qiyin Tan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Yue Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiahao Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Leihong Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
16
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
17
|
Muthukumar B, Satheeshkumar A, Parthipan P, Laishram B, Duraimurugan R, Devanesan S, AlSalhi MS, Rajamohan R, Rajasekar A. Integrated approach of nano assisted biodegradation of anthracene by Pseudomonas aeruginosa and iron oxide nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117911. [PMID: 38104919 DOI: 10.1016/j.envres.2023.117911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Azhagarsamy Satheeshkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India
| | - Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Ramanathan Duraimurugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India; Adjunct Faculty, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
18
|
Wang J, Wang S, Hu C. Advanced treatment of coking wastewater: Recent advances and prospects. CHEMOSPHERE 2024; 349:140923. [PMID: 38092162 DOI: 10.1016/j.chemosphere.2023.140923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Advanced treatment of refractory industrial wastewater is still a challenge. Coking wastewater is one of coal chemical wastewater, which contains various refractory organic pollutants. To meet the more and more rigorous discharge standard and increase the reuse ratio of coking wastewater, advanced treatment process must be set for treating the biologically treated coking wastewater. To date, several advanced oxidation processes (AOPs), including Fenton, ozone, persulfate-based oxidation, and iron-carbon micro-electrolysis, have been applied for the advanced treatment of coking wastewater. However, the performance of different advanced treatment processes changed greatly, depending on the components of coking wastewater and the unique characteristics of advanced treatment processes. In this review article, the state-of-the-art advanced treatment process of coking wastewater was systematically summarized and analyzed. Firstly, the major organic pollutants in the secondary effluents of coking wastewater was briefly introduced, to better understand the characteristics of the biologically treated coking wastewater. Then, the performance of various advanced treatment processes, including physiochemical methods, biological methods, advanced oxidation methods and combined methods were discussed for the advanced treatment of coking wastewater in detail. Finally, the conclusions and remarks were provided. This review will be helpful for the proper selection of advanced treatment processes and promote the development of advanced treatment processes for coking wastewater.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Shizong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, PR China
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
19
|
Che M, Su H, Si H, Guo B, Huang R, Zhao J, Su R. Efficient composite chlorinated ethenes removal using gallic acid to enhance Fe/Ni nanoparticles activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9421-9432. [PMID: 38191731 DOI: 10.1007/s11356-024-31823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
As the representative volatile chlorinated hydrocarbons detected in wastewater, the removal of composite chlorinated ethenes is a major challenge in wastewater treatment. In the present study, an efficient removal system for composite chlorinated ethenes was reported, in which gallic acid was used to enhance the activation of persulfate by Fe/Ni nanoparticles. The influences of gallic acid-Fe/Ni and persulfate concentrations, initial pH value, reaction temperature, inorganic anions, and natural organic matters were evaluated in the composite chlorinated ethenes removal. Our results showed that the gallic acid-Fe/Ni-persulfate system with 9.0 mM of gallic acid-Fe/Ni and 30.0 mM of persulfate yielded about 100% trichloroethylene removal and 97.3%-98.6% perchloroethylene removal in the pH range of 3.0-12.0. Electron paramagnetic resonance analysis and radical quenching experiments indicated that SO4•- and •OH were the predominant radical species under acidic and alkaline conditions. Ultraviolet visible spectroscopy and inductively coupled plasma optical emission spectrometer tests revealed the Fe-gallic acid chelation could regulate the concentration of iron ions and improve the reactivity of gallic acid-Fe/Ni. These results demonstrated that the gallic acid-Fe/Ni-persulfate system was a promising strategy for treating composite chlorinated ethenes-containing wastewater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Huimin Si
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Bin Guo
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jing Zhao
- 514 Brigade of North China Geological Exploration Bureau, Chengde, 067000, People's Republic of China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
20
|
Liu Y, Xu L, Su J, Ali A, Huang T, Wang Y, Zhang P. Microbially driven Fe-N cycle: Intrinsic mechanisms, enhancement, and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168084. [PMID: 37924885 DOI: 10.1016/j.scitotenv.2023.168084] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/21/2023] [Accepted: 10/21/2023] [Indexed: 11/06/2023]
Abstract
The iron‑nitrogen (FeN) cycle driven by microbes has great potential for treating wastewater. Fe is a metal that is frequently present in the environment and one of the crucial trace elements needed by microbes. Due to its synergistic role in the microbial N removal process, Fe goes much beyond the essential nutritional needs of microorganisms. Investigating the mechanisms behind the linked Fe-N cycle driven by microbes is crucial. The Fe-N cycle is frequently connected with anaerobic ammonia oxidation (anammox), nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), Feammox, and simultaneous nitrification denitrification (SND), etc. Although the main mechanisms of Fe-mediated biological N removal may vary depending on the valence state of the Fe, their similar transformation pathways may provide information on the study of certain element-microbial interactions. This review offers a thorough analysis of the facilitation effect and influence of Fe on the removal of nitrogenous pollutants in various biological N removal processes and summarizes the ideal Fe dosing. Additionally, the synergistic mechanisms of Fe and microbial synergistic N removal process are elaborated, covering four aspects: enzyme activity, electron transfer, microbial extracellular polymeric substances (EPS) secretion, and microbial community interactions. The methods to improve biological N removal based on the intrinsic mechanism were also discussed, with the aim of thoroughly understanding the biological mechanisms of Fe in the microbial N removal process and providing a reference and thinking for employing Fe to promote microbial N removal in practical applications.
Collapse
Affiliation(s)
- Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Kamani H, Hosseinzehi M, Ghayebzadeh M, Azari A, Ashrafi SD, Abdipour H. Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/ effect of parameters/kinetic studies. Heliyon 2024; 10:e23667. [PMID: 38187256 PMCID: PMC10767373 DOI: 10.1016/j.heliyon.2023.e23667] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Dyes are one of the most common contaminants in industrial effluents, whose continuous release into the environment has become an increasing global concern. In this work, nanoparticles of zero-valent iron (NZVI) were synthesized using the chemical regeneration method ،and were utilized for the first time as a catalyst in the advanced Sono-Nano-Fenton hybrid method for the decomposition of Reactive Red 198 (RR198). The properties of zero-valent iron nanoparticles were analyzed using SEM and XRD. The effect of pH, initial dye concentration, nanoparticle dosage, zero-valent iron and H2O2 concentration on the decomposition efficiency of Red Reactive 198 was investigated. Comparing the efficiency of Reactivate 198 dye degradation in Sonolysis, Sono-NZVI, Sono-H2O2 and Sono-Nano Fenton processes showed that 97 % efficiency was achieved by the Sono-Nano Fenton process in 60 min. The kinetics of the removal process showed that this process follows pseudo-first-order kinetics and the Langmuir-Hinshelwood model. The results indicate that the effectiveness of the ultrasonic process in removing resistant organic pollutants such as dyes increases tremendously with the synergy of the Fenton process.
Collapse
Affiliation(s)
- Hossein Kamani
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Hosseinzehi
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehdi Ghayebzadeh
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ali Azari
- Sirjan School of Medical Sciences, Sirjan, Iran
| | - Seyed Davoud Ashrafi
- Department of Environmental Health Engineering, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Abdipour
- Student Research Committee, Department of Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
22
|
Lebbihi R, Haddad L, Labiod C, Ismail AM, M'Nassri S, Majdoub R. Muscovite clay for methylene blue removal: advanced optimization and Al-guided breakthroughs-an independent application from prior antibiotic removal investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2851-2868. [PMID: 38066260 DOI: 10.1007/s11356-023-31281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
This study evaluates the efficacy of muscovite mineral clay as an adsorbent for removing Methylene Blue (MB) from water-based solutions. The research examined the impact of initial MB concentration, adsorbent mass, and time on the MB removal process. Two modeling techniques, namely Box-Behnken design with response surface methodology (BBD-RSM) and Artificial Neural Network (ANN), were employed to accurately predict the MB removal efficiency. The RSM and ANN models yielded satisfactory results in estimating MB removal efficiency. To further enhance the optimization process, conventional and techno-economic methods were implemented. The conventional method aimed to maximize dye removal efficiency (R), while the techno-economic approach incorporated multiple objectives. The comparative analysis demonstrated that the techno-economic optimization method outperformed the conventional method. This study emphasizes the significance of considering multiple objectives and integrating techno-economic factors in optimizing clay adsorption processes. The successful application of the techno-economic optimization approach highlights its potential as a robust optimization method, particularly in the field of wastewater treatment. The findings provide valuable insights for optimizing adsorption and advancing environmental remediation practices.
Collapse
Affiliation(s)
- Raouia Lebbihi
- Laboratory of Research in Management and Control of Animal and Environmental Resources in Semi-arid Ecosystem, Higher Agronomic Institute of Chott Meriem, University of Sousse, P.O.BOX: 42, 4042 Chott Meriem, Sousse, Tunisia
| | - Larbi Haddad
- Department of Chemistry, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar, El Oued-Algeria, P.O.BOX: 789, El Oued, Algeria.
- Laboratory of Biology, Environment and Health, Faculty of Natural Science and Life, University of Echahid Hamma Lakhdar, El Oued, Algeria, P.O.BOX: 789, El Oued, Algeria.
| | - Chouaib Labiod
- Electrical Engineering Department, Faculty of Technology, University of Echahid Hamma Lakhdar, P.O.BOX: 789, El Oued, Algeria
- Laboratory of Energy Systems Modeling (LMSE), Department of Electrical Engineering, University of Biskra, 145, 07000, Biskra, BP, Algeria
| | | | - Soumaia M'Nassri
- Laboratory of Research in Management and Control of Animal and Environmental Resources in Semi-arid Ecosystem, Higher Agronomic Institute of Chott Meriem, University of Sousse, P.O.BOX: 42, 4042 Chott Meriem, Sousse, Tunisia
| | - Rajouene Majdoub
- Laboratory of Research in Management and Control of Animal and Environmental Resources in Semi-arid Ecosystem, Higher Agronomic Institute of Chott Meriem, University of Sousse, P.O.BOX: 42, 4042 Chott Meriem, Sousse, Tunisia
| |
Collapse
|
23
|
Cui H, Zhan W, Ji X, Jiang M, Wu X, Huang M, Huang C, Ma S. Removal of sulfonamide antibiotics by a sonocatalytic Fenton-like reaction: Efficiency and mechanisms. ENVIRONMENTAL RESEARCH 2023; 239:117408. [PMID: 37838205 DOI: 10.1016/j.envres.2023.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
With the widespread use of sulfonamide antibiotics (SAs), SAs are detected as residues in aquatic environments, posing a serious threat to human life and safety. Because of their high water solubility, fast transmission rate, and strong antibacterial properties, the safe disposal of SAs has become a key constraint for water quality assurance. Therefore, an ultrasound (US)-assisted zero-valent iron (ZVI)/persulfate (PS) system was proposed to explore the rapid and effective degradation of SAs. Comparative experiments were performed to study the removal of sulfadiazine (SDZ) by US, ZVI, PS, US/ZVI, US/PS, ZVI/PS, and US-ZVI/PS systems, respectively. Experimental results indicated that the highest removal efficiency of SDZ was ahieved in US-ZVI/PS system (97.4%), which were 2-44 times higher than that in other systems. Furthermore, the degradation efficiency of five typical SAs was achieved over 95%, demonstrating the effectiveness of the US ZVI/PS system for SAs removal. Also, quantum chemical computations for potential reactive sites of SAs and intermediate product detection by HPLC‒MS/MS were performed. The radical attack on active sites of SAs, such as N atom (number 7), was the main reason for SAs removal in US-ZVI/PS system. Besides, the common degradation pathways of six typical SAs were defined as S-N bond cleavage, C-N bond cleavage, benzene ring hydroxylation, aniline oxidation, and R substituent oxidation. Interestingly, the unique pathway of "SO2 group extraction" was observed in the degradation of six-membered ring SAs. Therefore, the US-ZVI/PS system is a promising and cost-effective method for the removal of SAs and other refractory pollutants.
Collapse
Affiliation(s)
- Hao Cui
- Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, 510440, China; South China University of Technology, Guangzhou, 510641, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Xuan Ji
- Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, 510440, China
| | - Mingye Jiang
- Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, 510440, China
| | - Xiaoting Wu
- Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, 510440, China
| | - Minru Huang
- Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, 510440, China
| | - Chenhui Huang
- School of Ecological Environment, Guangdong Industry Polytechnic, Guangzhou, 510300, China
| | - Shanshan Ma
- School of Ecological Environment, Guangdong Industry Polytechnic, Guangzhou, 510300, China.
| |
Collapse
|
24
|
Liu R, Zhang J, Fu H, Yin L, Song Y, He G. A comparative study of methylene blue adsorption and removal mechanisms by calcium carbonate from different sources. BIORESOURCE TECHNOLOGY 2023; 387:129603. [PMID: 37544533 DOI: 10.1016/j.biortech.2023.129603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Efficient removal of organic dye pollution from contaminated water is a concern in the absorbent applications. In this study, a green biogenic calcium carbonate (BCC) absorbent was fabricated using Bacillus licheniformis for the removal of methylene blue (MB) from water. This was found to have superior adsorption capacity compared with abiotic calcium carbonate (ACC) and operate within a broad pH range from 3 to 9. MB adsorption on BCC was physical and exothermic. The hydrophobic features, rough nanoporous microstructure, and organic-inorganic mesoporous structure of the BCC may all be responsible for its favorable adsorption mass transfer. The adsorption energy of BCC had a more negative value than that of ACC, indicating a stronger MB interaction with BCC with a lower energy barrier. Hydrogen bonding and electrostatic attraction were involved in the adsorption process. Overall, the findings established a theoretical foundation for the application of BCC in remediation of MB-contaminated water.
Collapse
Affiliation(s)
- Renlu Liu
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Jialiang Zhang
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Haiyun Fu
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Li Yin
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China
| | - Yongsheng Song
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China.
| | - Genhe He
- Key Laboratory of Jiangxi Province for Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region, School of Life Sciences, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
25
|
Medykowska M, Wiśniewska M, Galaburda M, Szewczuk-Karpisz K. Novel carbon-based composites enriched with Fe and Mn as effective and eco-friendly adsorbents of heavy metals in multicomponent solutions. CHEMOSPHERE 2023; 340:139958. [PMID: 37634587 DOI: 10.1016/j.chemosphere.2023.139958] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
With increasing demand for adsorbents highly effective in pollutant removal, carbon-based porous materials are becoming more and more popular. In this work, a new approach to the synthesis of such solids using an environmentally friendly, two-step preparation method is presented. A series of hybrid porous silica-containing carbon composites was synthesized, namely: metal free (C/SiO2), enriched with manganese (C/Mn/SiO2), as well as iron (C/Fe/SiO2). The effect of additives on the structure and morphology of the composites was evaluated using X-ray photoelectron spectroscopy (XPS), nitrogen adsorption/desorption and scanning electron microscope (SEM). The as-synthesized carbons were used as effective adsorbents for the simultaneous removal of heavy metals, including lead (Pb(II)) and zinc (Zn(II)) ions. In particular, it was determined that C/Mn/SiO2 sample demonstrated the highest adsorption capacity towards Pb(II) and Zn(II) ions. It was equal to 211.60 mg/g for Pb(II) and 74.95 mg/g for Zn(II). Zeta potential and surface charge density of the solids, with and without metals, were investigated to determine electrical double layer structure, whereas stability studies and aggregate size measurements were performed to estimate solid aggregation under selected conditions. It was established that solids with adsorbed metals formed suspensions with lower stability than those without ions. This, in turn, facilitates their separation from aqueous solutions.
Collapse
Affiliation(s)
- Magdalena Medykowska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie- Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie- Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Mariia Galaburda
- Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov Street 17, 03164, Kyiv, Ukraine
| | | |
Collapse
|
26
|
Jena G, Dutta K, Daverey A. Surfactants in water and wastewater (greywater): Environmental toxicity and treatment options. CHEMOSPHERE 2023; 341:140082. [PMID: 37689147 DOI: 10.1016/j.chemosphere.2023.140082] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Surfactant, an emerging pollutant present in greywater, raises the toxicity levels in the water body. Soap, detergent, and personal care items add surfactant to greywater. Due to excessive washing and cleaning procedures brought on by the COVID-19 pandemic, the release of surfactants in greywater has also increased. Considering the environmental toxicity and problems it creates during the treatment, it's essential to remove surfactants from the wastewater. This review intends to explain and address the environmental toxicity of the surfactant released via greywater and current techniques for surfactant removal from wastewater. Various physical, chemical, and biological methods are reported. Modern adsorbents such as hydrophilic silica nanoparticles, chitosan, fly ash, and iron oxide remove surfactants by adsorption. Membrane filtration effectively removes surfactants but is not cost-effective. Coagulants (chemical and natural coagulants) neutralize surfactant charges and help remove them as bigger particles. Electrocoagulation/electroflotation causes surfactants to coagulate and float. Microorganisms break down surfactants in microbial fuel cells to generate power. Surfactants are removed by natural processes and plants in constructed wetlands where traditional aerobic and anaerobic approaches use microbes to break down surfactants. Constructed wetlands, natural coagulation-flocculation, and microbial fuel cells are environmentally beneficial methods to remove surfactants from wastewater.
Collapse
Affiliation(s)
- Gyanaranjan Jena
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|
27
|
Liu LY, Liu GS, Niu SM, Liu H, Cui MH, Wang AJ. Atomic hydrogen-mediated enhanced electrocatalytic hydrodehalogenation on Pd@MXene electrodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132113. [PMID: 37487329 DOI: 10.1016/j.jhazmat.2023.132113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In this study, a Pd@MXene catalyst was synthesized to enhance the electrocatalytic hydrodehalogenation (ECH) of emerging halogenated organic pollutants (HOPs) by improving the dispersibility, catalytic activity, and stability of palladium (Pd). The average size of Pd nanoparticles (NPs) was reduced to 3.62 ± 0.34 nm with a more intensive peak of Pd (111), which facilitated atomic hydrogen (H*) production. The Pd@MX/CC electrode demonstrated superior ECH activity for diclofenac (DCF) degradation, with a reaction rate constant (kobs) 2.48 times higher than that of Pd/CC (without MXene). The satisfactory ECH performance of Pd@MX/CC remained consistent within a wide range of initial DCF concentrations (5-100 mg/L), and no significant ECH attenuation was observed even after up to 10 batches. Furthermore, the high activity of Pd@MX/CC was also observed in the ECH of other halogenated organic pollutants (levofloxacin, tetrabromobisphenol A, and diatrizoate). Density functional theory (DFT) calculations revealed that electronic configuration modulation of the Pd@MXene catalyst optimized binging energies to H* , DCF, and dechlorinated products, thereby enhancing the ECH efficiency of DCF.
Collapse
Affiliation(s)
- Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Shuai Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
28
|
Kurnaz Yetim N, Hasanoğlu Özkan E, Öğütçü H. Use of Co 3O 4 nanoparticles with different surface morphologies for removal of toxic substances and investigation of antimicrobial activities via in vivo studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106585-106597. [PMID: 37730982 DOI: 10.1007/s11356-023-29879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
Co3O4 nanoparticles (NPs) were formed using hydrothermal synthesis method and various surfactants to study the effect of changing surface morphology on catalytic and antibacterial activities. FT-IR, TEM, SEM, BET, XRD, and XPS analyses were performed to characterize the NPs. It was observed that as the morphology of Co3O4 changes, it creates differences in the reduction efficiency of organic dyes and p-nitrophenol (p-NP), which are toxic to living organisms and widely used in industry. The reaction rate constants (Kapp) for Co3O4-urea, Co3O4-ed, and Co3O4-NaOH in the reduction of p-NP were found to be 1.86 × 10-2 s-1, 1.83 × 10-2 s-1, and 2.4 × 10-3 s-1, respectively. In the presence of Co3O4-urea catalyst from the prepared nanoparticles, 99.29% conversion to p-aminophenol (p-AP) was observed, while in the presence of the same catalyst, 98.06% of methylene blue (MB) was removed within 1 h. The antibacterial activity of Co3O4 particles was compared with five standard antibiotics for both gram-positive and gram-negative bacteria. The results obtained indicate that the antimicrobial activity of the synthesized Co3O4 particles has a remarkable inhibitory effect on the growth of various pathogenic microorganisms. The current work could be an innovative and beneficial search for both biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Nurdan Kurnaz Yetim
- Department of Chemistry, Faculty of Arts and Sciences, University of Kırklareli, Kırklareli, Turkey
| | - Elvan Hasanoğlu Özkan
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey.
| | - Hatice Öğütçü
- Department of Field Corps, Faculty of Agriculture, University of Kırşehir Ahi Evran, Kırşehir, Turkey
| |
Collapse
|
29
|
Jing Q, Ma Y, He J, Ren Z. Highly Stable, Mechanically Enhanced, and Easy-to-Collect Sodium Alginate/NZVI-rGO Gel Beads for Efficient Removal of Cr(VI). Polymers (Basel) 2023; 15:3764. [PMID: 37765618 PMCID: PMC10534353 DOI: 10.3390/polym15183764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoscale zero-valent iron (NZVI) is a material that is extensively applied for water pollution treatment, but its poor dispersibility, easy oxidation, and inconvenient collection limit its application. To overcome these drawbacks and limit secondary contamination of nanomaterials, we confine NZVI supported by reduced graphene oxide (rGO) in the scaffold of sodium alginate (SA) gel beads (SA/NZVI-rGO). Scanning electron microscopy showed that the NZVI was uniformly dispersed in the gel beads. Fourier transform infrared spectroscopy demonstrated that the hydrogen bonding and conjugation between SA and rGO allowed the NZVI-rGO to be successfully embedded in SA. Furthermore, the mechanical strength, swelling resistance, and Cr(VI) removal capacity of SA/NZVI-rGO were enhanced by optimizing the ratio of NZVI and rGO. Interestingly, cation exchange may drive Cr(VI) removal above 82% over a wide pH range. In the complex environment of actual Cr(VI) wastewater, Cr(VI) removal efficiency still reached 70.25%. Pseudo-first-order kinetics and Langmuir adsorption isotherm are preferred to explain the removal process. The mechanism of Cr(VI) removal by SA/NZVI-rGO is dominated by reduction and adsorption. The sustainable removal of Cr(VI) by packed columns could be well fitted by the Thomas, Adams-Bohart, and Yoon-Nelson models, and importantly, the gel beads maintained integrity during the prolonged removal. These results will contribute significant insights into the practical application of SA/NZVI-rGO beads for the Cr(VI) removal in aqueous environments.
Collapse
Affiliation(s)
- Qi Jing
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; (Y.M.); (J.H.); (Z.R.)
| | | | | | | |
Collapse
|
30
|
Xu Y, Shen W. Flocculation synergistic with nano zero-valent iron augmented attapulgite @ chitosan as Fenton-like catalyst for the treatment of landfill leachate. ENVIRONMENTAL TECHNOLOGY 2023; 44:3605-3613. [PMID: 35440289 DOI: 10.1080/09593330.2022.2068377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
In this study, nano-zero-valent iron (NZVI) was added to attapulgite/chitosan and used as a catalyst in the heterogeneous Fenton process to degrade stabilized landfill leachate. Landfill leachate has serious environmental impacts due to the complexity and diversity of its pollutants. A magnetic catalyst (NZVI@PATP/CS) was prepared by a liquid-phase reduction method. The NZVI@PATP/CS were characterized by XRD, FTIR and SEM. The pH of leachate and the dosage of catalyst and H2O2 were changed to determine the best-operating conditions for the effective removal of chemical oxygen demand (COD) and total phosphorus(TP). To understand the adsorption degradation mechanism, the quenching experiments of free radicals were carried out. The results showed that the degradation rates of COD and TP were 66% and 92%, respectively, under the optimum pH value of 8, the dosage of H2O2 of 5 mL, and the dosage of the catalyst of 0.25 g for 60 min.
Collapse
Affiliation(s)
- Yongyao Xu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, People's Republic of China
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| | - Wangqing Shen
- College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Yang X, Yang W, Chen Y, Li Z, Yang G. Chitosan-stabilized iron-copper nanoparticles for efficient removal of nitrate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97298-97309. [PMID: 37589845 DOI: 10.1007/s11356-023-29319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Chitosan-stabilized iron-copper nanomaterials (CS-nZVI/Cu) were successfully prepared and applied to the nitrate removal. Batch experiments were conducted to examine the effects of experimental parameters on nitrate removal, including Cu loading, CS-nZVI/Cu dosages, initial nitrate concentrations, and initial pHs. From the experimental date, it was concluded that CS-nZVI/Cu has a high nitrate removal efficiency, which can be more than 97%, respectively, at Cu loading = 5%, dosages of CS-nZVI/Cu = 3 g/L, initial nitrate concentrations of 30~120 mg/L, and initial pH values = 2~9. Additionally, the kinetic data for CS-nZVI/Cu were found to fit well with the first-order kinetic model with a rate constant of 0.15 (mg∙L)1-n/min, where n=1. The Langmuir model showed a good fit for NO3- removal, indicating that monolayer chemisorption occurred. The SEM and TEM analyses showed that the addition of chitosan resulted in improved dispersion of the CS-nZVI/Cu. The CS-nZVI/Cu nanomaterials have a more complete elliptical shape and are between 50 and 100 nm in size. The XRD analysis showed that the chitosan encapsulation reduced the oxidation of the iron component and the main product was Fe3O4. The FT-IR analysis showed that the immobilization of chitosan and the iron was accomplished by the ligand interaction. The nitrogen adsorption-desorption isotherm results showed that the CS-nZVI/Cu specific surface area and pore volume decreased significantly after the reaction. Adsorption, oxidation, and reduction are possible mechanisms for nitrate removal by CS-nZVI/Cu. The XPS analysis investigated the contribution of nZVI and Cu in the removal mechanism. Adding copper accelerates the reaction time and rate. In addition, nZVI played a vital role in reducing nitrate to N2. Based on these results, it looks like CS-nZVI/Cu could be a satisfactory material for nitrate removal.
Collapse
Affiliation(s)
- Xiaxia Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Wenhong Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Yingjie Chen
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Zixi Li
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China
| | - Gang Yang
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Pukou District, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
32
|
Kheskwani U, Ahammed MM. Removal of water pollutants using plant-based nanoscale zero-valent iron: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1207-1231. [PMID: 37771223 PMCID: wst_2023_270 DOI: 10.2166/wst.2023.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Nanotechnology has been increasingly explored for the treatment of various waste streams. Among different nanoparticles, nanoscale zerovalent iron (nZVI) has been extensively investigated due to its high reactivity and strong reducing power. However, conventional methods for the synthesis of nZVI particles have several limitations and led to the green synthesis of nZVI using plant-based materials. Plant extracts contain various reducing agents that can be used for nZVI synthesis, eliminating the need for toxic chemicals, and reducing energy consumption. Additionally, each plant species used for nZVI synthesis results in unique physicochemical properties of the nanoparticles. This review paper provides an overview of plant-based nZVI particle synthesis, its characteristics, and its application for the removal of different classes of pollutants such as dyes, heavy metals, nutrients, and trace organic pollutants from water. The review shows that continued research on plant-based nZVI particles to fully understand its potential in wastewater treatment, especially for the removal of a wider variety of pollutants, and for improving sustainability and reducing the cost and environmental impact of the process, is necessary.
Collapse
Affiliation(s)
- Urvashi Kheskwani
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India
| |
Collapse
|
33
|
Yue T, Yang Y, Chen S, Yao J, Liang H, Jia L, Fu K, Wang Z. In situ prepared Chlorella vulgaris-supported nanoscale zero-valent iron to remove arsenic (III). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89676-89689. [PMID: 37454381 DOI: 10.1007/s11356-023-28168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has a high removal affinity toward arsenic (As). However, the agglomeration of nZVI reduces the removal efficiency of As and, thus, limit its application. In this study, we report an environmentally friendly novel composite of Chlorella vulgaris-supported nanoscale zero-valent iron (abbreviated as CV-nZVI) that exhibits a fast and efficient removal of As(III) from As-contaminated water. Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used to characterize and analyze the CV-nZVI. These results indicated that the stabilization effect of C. vulgaris reduced the nZVI agglomeration and enhanced the reactivity of nZVI. The experiments showed a removal efficiency of 99.11% for As(III) at an optimum pH of 7.0. The adsorption kinetics and isotherms followed the pseudo-second-order kinetic model and Langmuir adsorption isotherm with the superior maximum adsorption capacities of 34.11 mg/g for As(III). The FTIR showed that the As(III) was adsorbed on the CV-nZVI surface by complexation reaction, and XPS indicated that oxidation reaction was also involved. After five reuse cycles, the removal efficiency of As(III) by CV-nZVI was 32.93%, suggesting that the CV-nZVI had some reusability and regeneration. Overall, this work provides a practical and highly efficient approach for As remediation in As-contaminated water, and simultaneously resolves the agglomeration problems of nZVI nanoparticles.
Collapse
Affiliation(s)
- Tingting Yue
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yuankun Yang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Shu Chen
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Jun Yao
- The School of Water Resource and Environment Engineering, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Huili Liang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Liang Jia
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Kaibin Fu
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, 621010, China
| | - Zhe Wang
- The Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
34
|
Peng A, Gao H, Wang H, Wang Y, Chen Z. Influence of organic cosolvents on hexabromobenzene degradation in solution by montmorillonite-templated subnanoscale zero-valent iron. ENVIRONMENTAL RESEARCH 2023; 229:115986. [PMID: 37100367 DOI: 10.1016/j.envres.2023.115986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Organic cosolvents are commonly used to increase the dissolution of poorly water-soluble organic pollutants into aqueous solutions during environmental remediation. In this study, the influences of five organic cosolvents on hexabromobenzene (HBB) degradation catalyzed by one typical reactive material montmorillonite-templated subnanoscale zero-valent iron (CZVI) were investigated. The results demonstrated that all cosolvents promoted HBB degradation but the degree of promotion was different for different cosolvents, which was associated with inconsistent solvent viscosities, dielectric constant properties, and the extent of interactions between cosolvents with CZVI. Meanwhile, HBB degradation was highly dependent on the volume ratio of cosolvent to water, which increased in the range of 10%-25% but persistently decreased in the range of more than 25%. This might be due to the fact that the cosolvents increased HBB dissolution at low concentrations but reduced the protons supplied by water and the contact between HBB with CZVI at high concentrations. In addition, the freshly-prepared CZVI had higher reactivity to HBB than the freeze-dried CZVI in all water-cosolvent solutions, probably because freeze-drying reduced the interlayer space of CZVI and thus the contact probability between HBB and active reaction sites. Finally, the CZVI-catalyzed HBB degradation mechanism was proposed as the electron transfer between zero-valent iron and HBB, which led to the formation of four debromination products. Overall, this study provides helpful information for the practical application of CZVI in the remediation of persistent organic pollutants in the environment.
Collapse
Affiliation(s)
- Anping Peng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Hu Gao
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Huimin Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yi Wang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu, 211167, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
35
|
Geldasa FT, Kebede MA, Shura MW, Hone FG. Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. RSC Adv 2023; 13:18404-18442. [PMID: 37342807 PMCID: PMC10278095 DOI: 10.1039/d3ra01505j] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
Photocatalysis is a more proficient technique that involves the breakdown or decomposition of different organic contaminants, various dyes, and harmful viruses and fungi using UV or visible light solar spectrum. Metal oxides are considered promising candidate photocatalysts owing to their low cost, efficiency, simple fabricating method, sufficient availability, and environment-friendliness for photocatalytic applications. Among metal oxides, TiO2 is the most studied photocatalyst and is highly applied in wastewater treatment and hydrogen production. However, TiO2 is relatively active only under ultraviolet light due to its wide bandgap, which limits its applicability because the production of ultraviolet is expensive. At present, the discovery of a photocatalyst of suitable bandgap with visible light or modification of the existing photocatalyst is becoming very attractive for photocatalysis technology. However, the major drawbacks of photocatalysts are the high recombination rate of photogenerated electron-hole pairs, the ultraviolet light activity limitations, and low surface coverage. In this review, the most commonly used synthesis method for metal oxide nanoparticles, photocatalytic applications of metal oxides, and applications and toxicity of different dyes are comprehensively highlighted. In addition, the challenges in the photocatalytic applications of metal oxides, strategies to suppress these challenges, and metal oxide studied by density functional theory for photocatalytic applications are described in detail.
Collapse
Affiliation(s)
- Fikadu Takele Geldasa
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
- Oda Bultum University, Department of Physics P. O. Box 226, Chiro Ethiopia
| | - Mesfin Abayneh Kebede
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa Florida Science Campus Johannesburg 1710 South Africa
| | - Megersa Wodajo Shura
- Adama Science and Technology University, Department of Applied Physics P. O. Box1888 Adama Ethiopia
| | - Fekadu Gashaw Hone
- Addis Ababa University, Department of Physics P.O. Box: 1176 Addis Ababa Ethiopia
| |
Collapse
|
36
|
Gutierrez AM, Dziubla TD, Hilt JZ. The Impact of Solution Ionic Strength, Hardness, and pH on the Sorption Efficiency of Polychlorinated Biphenyls in Magnetic Nanocomposite Microparticle (MNM) Gels. Gels 2023; 9:gels9040344. [PMID: 37102956 PMCID: PMC10137716 DOI: 10.3390/gels9040344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/04/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Environmental conditions of groundwater and surface water greatly vary as a function of location. Factors such as ionic strength, water hardness, and solution pH can change the physical and chemical properties of the nanocomposites used in remediation and the pollutants of interest. In this work, magnetic nanocomposite microparticle (MNM) gels are used as sorbents for remediation of PCB 126 as model organic contaminant. Three MNM systems are used: curcumin multiacrylate MNMs (CMA MNMs), quercetin multiacrylate MNMs (QMA MNMs), and polyethylene glycol-400-dimethacrylate MNMs (PEG MNMs). The effect of ionic strength, water hardness, and pH were studied on the sorption efficiency of the MNMs for PCB 126 by performing equilibrium binding studies. It is seen that the ionic strength and water hardness have a minimal effect on the MNM gel system sorption of PCB 126. However, a decrease in binding was observed when the pH increased from 6.5 to 8.5, attributed to anion-π interactions between the buffer ions in solution and the PCB molecules as well as with the aromatic rings of the MNM gel systems. Overall, the results indicate that the developed MNM gels can be used as magnetic sorbents for polychlorinated biphenyls in groundwater and surface water remediation, provided that the solution pH is controlled.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas D Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
37
|
Li X, Lu H, Yang K, Zhu L. Attenuation of tetracyclines and related resistance genes in soil when exposed to nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130867. [PMID: 36758429 DOI: 10.1016/j.jhazmat.2023.130867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Antibiotics pollution in soil poses increasing threats to human health due to stimulated proliferation and transmission of antibiotic resistance genes (ARGs). Nanoscale zero-valent iron (NZVI) is a promising material for the remediation of antibiotics, but how NZVI affects the diversity, abundance, and horizontal gene transfer potentials of ARGs remains unclear. Herein, the biotic and abiotic effects of NZVI at different concentrations on tetracyclines (TCs) and the associated ARGs were investigated. Results showed NZVI could effectively accelerate the degradation of TCs, which increased from 51.38% (without NZVI) to 57.96%- 71.66% (1-10 g NZVI/kg) in 20 days. Biotic degradation contributed to 66.10%- 76.30% of the total TCs removal. NZVI induced TCs biodegradation was probably due to alleviated toxicity of TCs on cells and increased microbial biomass and enzyme activities. Additionally, TCs-related ARGs were attenuated with decreased horizontal gene transfer potentials of intI1 and ISCR1, but opposite effects were observed for non TC-related ARGs, especially during excess exposure to NZVI. This study illustrated the possibility of remediating of antibiotic contaminated soil by NZVI and meanwhile reducing the potential risks of ARGs.
Collapse
Affiliation(s)
- Xu Li
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Huijie Lu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Sharma VK, Wang J, Feng M, Huang CH. Oxidation of Pharmaceuticals by Ferrate(VI)-Amino Acid Systems: Enhancement by Proline. J Phys Chem A 2023; 127:2314-2321. [PMID: 36862970 PMCID: PMC10848263 DOI: 10.1021/acs.jpca.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Indexed: 03/04/2023]
Abstract
The occurrence of micropollutants in water threatens public health and ecology. Removal of micropollutants such as pharmaceuticals by a green oxidant, ferrate(VI) (FeVIO42-, Fe(VI)) can be accomplished. However, electron-deficient pharmaceuticals, such as carbamazepine (CBZ) showed a low removal rate by Fe(VI). This work investigates the activation of Fe(VI) by adding nine amino acids (AA) of different functionalities to accelerate the removal of CBZ in water under mild alkaline conditions. Among the studied amino acids, proline, a cyclic AA, had the highest removal of CBZ. The accelerated effect of proline was ascribed by demonstrating the involvement of highly reactive intermediate Fe(V) species, generated by one-electron transfer by the reaction of Fe(VI) with proline (i.e., Fe(VI) + proline → Fe(V) + proline•). The degradation kinetics of CBZ by a Fe(VI)-proline system was interpreted by kinetic modeling of the reactions involved that estimated the rate of the reaction of Fe(V) with CBZ as (1.03 ± 0.21) × 106 M-1 s-1, which was several orders of magnitude greater than that of Fe(VI) of 2.25 M-1 s-1. Overall, natural compounds such as amino acids may be applied to increase the removal efficiency of recalcitrant micropollutants by Fe(VI).
Collapse
Affiliation(s)
- Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mingbao Feng
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843-8371, United States
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Wu S, Cai S, Qin F, He F, Liu T, Yan X, Wang Z. Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130730. [PMID: 36630876 DOI: 10.1016/j.jhazmat.2023.130730] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.
Collapse
Affiliation(s)
- Shuyan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Xiuping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
40
|
Li T, Teng Y, Li X, Luo S, Xiu Z, Wang H, Sun H. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130657. [PMID: 36580785 DOI: 10.1016/j.jhazmat.2022.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Atomic hydrogen (H*) has long been thought to play an important role in the dechlorination of trichloroethylene (TCE) by carbon-supported zero-valent iron (ZVI), which offers an alternative pathway for TCE dechlorination. Herein, we demonstrate that the reductive dechlorination of TCE by sulfidated microscale ZVI (S-mZVI) can be further enhanced by promoting the formation of H* through the introduction of reduced graphene oxide (rGO). The completely degradation of 10 mg/L TCE can be achieved by S-mZVI/rGO within 24 h, which was 3.3 times faster than that of S-mZVI. The change in the distribution of TCE degradation products over time suggests that the introduction of rGO leads to a change in the dechlorination pathway. The percentage of ethane in the final products of TCE degradation by S-mZVI/rGO was 34.3 %, while that of S-mZVI was only 21.9 %. The electrochemical tests confirmed the occurrence of hydrogen spillover in the S-mZVI/rGO composite, which promoted the reductive dechlorination of TCE by H*. Although the S-mZVI/rGO composite had stronger hydrogen evolution propensity than S-mZVI, the S-mZVI/rGO composite still exhibited higher electron utilization efficiency than S-mZVI thanks to the increased utilization of hydrogen.
Collapse
Affiliation(s)
- Tielong Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yaxin Teng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongming Xiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
41
|
Ohta N, Kobayashi M, Kawase Y. Removal of pharmaceutically active compounds (PhACs) by zero-valent iron: quantification of removal mechanisms consisting of degradation, adsorption and co-precipitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38819-38831. [PMID: 36586022 DOI: 10.1007/s11356-022-25047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
The removal mechanisms of carbamazepine (CBZ), which is one of pharmaceutically active compounds, using zero-valent iron (ZVI) were quantified by defining three fractions, namely "degradation", "adsorption", and "co-precipitation". The maximum total organic carbon (TOC) removal was obtained at pH 4. The results demonstrate that the adsorption on the ZVI surface is dominant in the TOC removal of CBZ for 4 ≤ pH ≤ 6 while the degradation by oxidative and reductive reactions is efficient exclusively for pH ≤ 3. TOC removal was not obtained for pH ≥ 8. The most dominant mechanism in the removal of CBZ by ZVI is the adsorption onto the iron oxides/hydroxides layer formed on ZVI surface rather than the degradation by oxidative and reductive reactions including Fenton and Fenton-like reactions for pH ≥ 4. A novel kinetic model for removal of CBZ by ZVI was developed to simulate the dynamic concentration profiles of CBZ, TOC, total Fe ions, and dissolved oxygen linked closely with each other and the contributions of degradation, adsorption, and co-precipitation in TOC removal of CBZ. Reasonable agreement between experimental data and model predictions suggests the applicability of the proposed kinetic model to quantitatively analyze the mechanisms of CBZ removal by ZVI.
Collapse
Affiliation(s)
- Naoki Ohta
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Maki Kobayashi
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| | - Yoshinori Kawase
- Research Center for Biochemical and Environmental Engineering, Department of Applied Chemistry, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| |
Collapse
|
42
|
Tartaya S, Bagtache R, Djaballah A, Özacar M, Trari M. Synthesis of KVPO4F and its Physical and Photo-electrochemical Properties: Application to Degradation of Methyl Violet. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
43
|
Bouazzi D, Mehri A, Kaaroud K, Touati H, Karouia F, Clacens J, Laghzizil A, Badraoui B. Beneficial effect of in-situ citrate-grafting of hydroxyapatite surface for water treatment. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
44
|
Raza S, Ghasali E, Orooji Y, Lin H, Karaman C, Dragoi EN, Erk N. Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. ENVIRONMENTAL RESEARCH 2023; 219:114998. [PMID: 36481367 DOI: 10.1016/j.envres.2022.114998] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An efficient solution to the global freshwater dilemma is desalination. MXene, Molybdenum Disulfide (MoS2), Graphene Oxide, Hexagonal Boron Nitride, and Phosphorene are just a few examples of two-dimensional (2D) materials that have shown considerable promise in the development of 2D materials for water desalination. However, other promising materials for desalinating water are biomaterials. The benefits of bio-materials are their wide distribution, lack of toxicity, and superior capacity for water desalination. METHODS For the rational use of water and the advancement of sustainable development, it is of the utmost importance to research 2D-dimensional materials and biomaterials that are effective for water desalination. The scientific community has concentrated on wastewater remediation using bio-derived materials, such as nanocellulose, chitosan, bio-char, bark, and activated charcoal generated from plant sources, among the various endeavors to enhance access to clean water. Moreover, the 2D-materials and biomaterials may have ushered in a new age in the production of desalination materials and created a promising future. RESULTS The present review article focuses on and reviews the progress of 2D materials and biomaterials for water desalination. Their properties, surface, and structure, combined with water desalination applications, are highlighted. Further, the practicability and potential future directions of 2D materials and biomaterials are proposed. Thus, the current work provides information and discernments for developing novel 2D materials and biomaterials for wastewater desalination. Moreover, it aims to promote the contribution and advancement of materials for water desalination, fabrication, and industrial production.
Collapse
Affiliation(s)
- Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ehsan Ghasali
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| | - Hongjun Lin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Ceren Karaman
- Departmen of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron No 73, 700050, Iasi, Romania.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| |
Collapse
|
45
|
Ji Z, Zhang Y, Yan H, Wu B, Wei B, Guo Y, Wang H, Li C. Adsorption of lead and tetracycline in aqueous solution by magnetic biomimetic bone composite. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
46
|
Liu Q, He J, Yang W, Wu Q, Zou L, Wu Y, Yang L, Shi G, Yang X. Mesoporous ceria nanoparticles for ultra-fast and highly flexible photo-fenton catalytic reaction. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
47
|
Qureashi A, Pandith AH, Bashir A, Malik LA, Manzoor T, Sheikh FA, Fatima K, Haq ZU. Electrochemical analysis of glyphosate using porous biochar surface corrosive nZVI nanoparticles. NANOSCALE ADVANCES 2023; 5:742-755. [PMID: 36756521 PMCID: PMC9890542 DOI: 10.1039/d2na00610c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is a widely used phosphonate herbicide for different agricultural purposes. Due to its widespread use, suspected toxicity, and ubiquitous bioaccumulation, it is one of the most harmful contaminants found in drinking water. This demands efficient sensing and removal of glyphosate from contaminated water. Here, we report the decoration of novel and highly porous biochar with nanozero-valent iron (nZVI) nanoparticles to develop an efficient electrochemical sensor for the trace detection of glyphosate. The as-synthesized composite was thoroughly characterized by various state-of-the-art instrumental techniques. The electron micrographs of the composite materials revealed the cavity-like structure and the abundant loading of nZVI nanoparticles. FTIR and XPS analyses confirmed the presence of oxygen-rich functionalities and Fe(0) in the composite nanostructure. Electrochemical analysis through CV, LSV, and DPV techniques suggested efficient sensing activity with a limit of detection as low as 0.13 ppm. Furthermore, the chronopotentiometric response suggested excellent and superior stability for long-term applications. To gain more insight into the interaction between glyphosate and the composite material, DFT calculations were carried out. The Frontier Molecular Orbital study (FMO), Molecular Electrostatic Potentials (MEPs), and Density of States (DOS) suggest an increase in the electron density, an increase in the DOS, and a decrease in the HOMO-LUMO band gap by combining nZVI nanoparticles and biochar. The results suggest more facile electron transfer from the composite for trace detection of glyphosate. As a proof of concept, we have demonstrated that real-time analysis of milk, apple juice, and the as-synthesized composite shows promising results for glyphosate detection with an excellent recovery rate.
Collapse
Affiliation(s)
- Aaliya Qureashi
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Altaf Hussain Pandith
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Arshid Bashir
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Lateef Ahmad Malik
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Taniya Manzoor
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir Srinagar-190006 Kashmir India
| | - Kaniz Fatima
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| | - Zia-Ul Haq
- Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir Hazratbal Srinagar J&K India +91-194-2414049 +91-194-2424900, +91-7006429021
| |
Collapse
|
48
|
Preethi R, Singh S. Ga based Sillenite-TiO 2 composite for efficient sunlight induced photo reduction of Cr (VI) and photo degradation of ampicillin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116831. [PMID: 36436248 DOI: 10.1016/j.jenvman.2022.116831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
This work reports the design and development of an efficient sillenite based visible light photoactive Bi24Ga2O39-TiO2 (BGT) heterostructure. Structural and morphological studies based on X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM) confirm the formation of combined phase as well the overall morphology of composite BGT. Additionally, X-ray photoelectron spectroscopy (XPS) results confirm the presence of Bi3+, Ga3+, Ti4+ & O2-. The composite exhibits a shift in the absorbance edge towards visible region of electromagnetic spectrum when compared to that of TiO2. Suitable band edge positions in the composite facilitate the formation of type-1 heterojunction enhancing visible light photocatalytic property. The photocatalytic activity is evident from photo reduction of Cr (VI) (95% reduction in 180 min). The composite also plays an improved and effective role in the degradation of persistent drug ampicillin-cloxacillin (AMC) with a rate constant of 0.02 min-1. Photocatalytic experiments conducted at different pH values showed higher performance at lower pH ∼3. Trapping experiments performed on the sample confirm the role of holes as the main active species during photocatalysis. Appreciable recyclability of BGT composite was noted with respect to AMC drug degradation.
Collapse
Affiliation(s)
- Raja Preethi
- Crystal Growth Centre, Anna University, Alagappa College of Technology (AcTech) Campus, Chennai, 600025, Tamil Nadu, India
| | - Shubra Singh
- Crystal Growth Centre, Anna University, Alagappa College of Technology (AcTech) Campus, Chennai, 600025, Tamil Nadu, India.
| |
Collapse
|
49
|
Ubah PC, Dashti AF, Saaid M, Imam SS, Adnan R. Fabrication and response optimization of Moringa oleifera-functionalized nanosorbents for the removal of diesel range organics from contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4462-4484. [PMID: 35969341 DOI: 10.1007/s11356-022-22245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The purpose of this research is to synthesize environmentally friendly nanosorbents for the novel adsorption of diesel range organics (DRO) from contaminated water. Central composite design (CCD) analysis of response surface methodology (RSM) was employed in a model fitting of the variables predicting the adsorption efficiency of Moringa oleifera-functionalized zerovalent iron particles (ZINPs) for the removal of DRO. The effects of the reaction parameters on the response were screened using 24 factorial designs to determine the statistically significant independent variables. A quadratic model predicting the DRO adsorption efficiency of ZINPs with an F value of 276.84 (p value < 0.0001) was developed. Diagnostic plots show that the predicted values were in excellent agreement with actual experimental values (R2 = 0.99). The maximum percentage removal of DRO of 92.6% was achieved after optimization, using the synthesized ZINPs after 8 h of contact between DRO substrates and ZINPs at pH of 8, the temperature of 25 °C, with an adsorbent dosage of 2 g/L and at composite desirability of 1. Characterization of ZINPs revealed the formation of quasi nanospheres and nanocubes with an average particle diameter of 50.9 ± 9.7, a crystallite size of 15.31 nm, a crystallinity index of 32.47% and a pore width of 75.69-88.59 nm. The adsorption equilibrium data modelling of ZINPs for adsorption of DRO was best described by Langmuir isotherm with the maximum monolayer coverage capacity of 7.194 mg/g. The separation factor [Formula: see text], indicated favourable adsorption. The adsorption kinetic data were consistent with pseudo-second-order kinetics indicating probable chemisorption.
Collapse
Affiliation(s)
- Promise Chima Ubah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Industrial Chemistry, Federal University of Technology, Imo State, Owerri, PMB 1526, Nigeria
| | | | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Saifullahi Shehu Imam
- Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B 3011, Nigeria
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
50
|
Albarano L, Toscanesi M, Trifuoggi M, Guida M, Lofrano G, Libralato G. In situ microcosm remediation of polyaromatic hydrocarbons: influence and effectiveness of Nano-Zero Valent Iron and activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3235-3251. [PMID: 35943650 PMCID: PMC9892105 DOI: 10.1007/s11356-022-22408-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Nano-zero-valent iron (nZVI) and activated carbon (AC) addition are ongoing techniques for the remediation of hydrophobic organic compound-contaminated sediment and water, but with still unexplored eco(toxico)logical implications, especially when applied in situ. In this study, we investigated AC and nZVI as remediation methods for marine contaminated sediment and water, including chemical and toxicity (Artemia franciscana survival and genotoxicity) surveys. The removal efficiency of AC and nZVI (about 99%) was similar in both sediment and seawater, while the survival of nauplii and adults was mainly impacted by nZVI than AC. At the molecular level, the nZVI-addition induced down-regulation in the expression of two stress and one developmental genes, whereas AC was able to up-regulated only one gene involved in stress response. Results suggested that the use of AC is safer than nZVI that requires further investigation and potential optimization to reduce secondary undesired effects.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy.
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| | - Maria Toscanesi
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Napoli Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Marco Trifuoggi
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Napoli Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126, Naples, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| |
Collapse
|