1
|
Santiago-Lamelas L, Castro-Santos P, Carracedo Á, Olloquequi J, Díaz-Peña R. Unveiling the Significance of HLA and KIR Diversity in Underrepresented Populations. Biomedicines 2024; 12:1333. [PMID: 38927540 PMCID: PMC11202227 DOI: 10.3390/biomedicines12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules and their relationships with natural killer (NK) cells, specifically through their interaction with killer-cell immunoglobulin-like receptors (KIRs), exhibit robust associations with the outcomes of diverse diseases. Moreover, genetic variations in HLA and KIR immune system genes offer limitless depths of complexity. In recent years, a surge of high-powered genome-wide association studies (GWASs) utilizing single nucleotide polymorphism (SNP) arrays has occurred, significantly advancing our understanding of disease pathogenesis. Additionally, advances in HLA reference panels have enabled higher resolution and more reliable imputation, allowing for finer-grained evaluation of the association between sequence variations and disease risk. However, it is essential to note that the majority of these GWASs have focused primarily on populations of Caucasian and Asian origins, neglecting underrepresented populations in Latin America and Africa. This omission not only leads to disparities in health care access but also restricts our knowledge of novel genetic variants involved in disease pathogenesis within these overlooked populations. Since the KIR and HLA haplotypes prevalent in each population are clearly modelled by the specific environment, the aim of this review is to encourage studies investigating HLA/KIR involvement in infection and autoimmune diseases, reproduction, and transplantation in underrepresented populations.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
2
|
Boukouaci W, Rivera-Franco MM, Volt F, Lajnef M, Wu CL, Rafii H, Cappelli B, Scigliuolo GM, Kenzey C, Ruggeri A, Rocha V, Gluckman E, Tamouza R. HLA peptide-binding pocket diversity modulates immunological complications after cord blood transplant in acute leukaemia. Br J Haematol 2024; 204:1920-1934. [PMID: 38380743 DOI: 10.1111/bjh.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Pocket motifs and their amino acid positions of HLA molecules are known to govern antigen presentation to effector cells. Our objective was to analyse their influence on the risk of graft-versus-host disease (GVHD) and relapse after umbilical cord blood transplant (UCBT). The transplant characteristics of 849 patients with acute leukaemia were obtained from the Eurocord/EBMT database. Higher acute (a) GVHD was associated with homozygosity of UCB HLA-C amino acid positions 77 and 80 (NN/KK) (p = 0.008). Severe aGVHD was associated with HLA-A pocket B YSAVMENVHY motif (p = 0.002) and NN and RR genotypes of the HLA-C amino acid positions 77 and 156 (p = 0.006 and p = 0.002). Such risk was also increased in case of recipient and UCB mismatches in P4 (p < 0.0001) and P9 (p = 0.003) pockets of HLA-DQB1 alleles. For chronic GVHD, the pocket B YYAVMEISNY motif of the HLA-B*15:01 allele and the absence of mismatch between recipient and UCB in the P6 pocket of HLA-DRB1 were associated with a lower risk (p = 0.0007 and p = 0.0004). In relapse, both UCB pocket B YFAVMENVHY belonging to HLA-A*32:01 and recipient pocket B YDSVGENYQY motif of the HLA-C*07:01 allele were associated with higher risk (p = 0.0026 and p = 0.015). We provide clues on HLA-mediated cellular interactions and their role in the development of GVHD and relapse.
Collapse
Affiliation(s)
| | - Monica M Rivera-Franco
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Fernanda Volt
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Mohamed Lajnef
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Ching-Lien Wu
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| | - Hanadi Rafii
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Barbara Cappelli
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Graziana Maria Scigliuolo
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Chantal Kenzey
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
| | - Annalisa Ruggeri
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanderson Rocha
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Service of Hematology, Transfusion and Cell Therapy, and Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Hospital das Clínicas, Faculty of Medicine, São Paulo University, São Paulo, Brazil
| | - Eliane Gluckman
- Eurocord, Hôpital Saint Louis APHP, Institut de Recherche de Saint-Louis (IRSL) EA3518, Université de Paris Cité, Paris, France
- Monacord, Centre Scientifique de Monaco, Monaco, Monaco
| | - Ryad Tamouza
- Univ Paris Est Créteil, INSERM U955, IMRB, Créteil, France
| |
Collapse
|
3
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Alves E, Chopra A, Ram R, Currenti J, Kalams SA, Mallal SA, Phillips EJ, Gaudieri S. Underrepresentation of activating KIR gene expression in single-cell RNA-seq data is due to KIR gene misassignment. Eur J Immunol 2024; 54:e2350590. [PMID: 37944995 DOI: 10.1002/eji.202350590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Standard single-cell RNA-sequencing alignment pipelines exhibit a propensity for misassigning killer immunoglobulin-like receptor (KIR) transcripts, thereby giving rise to inaccuracies in quantifying KIR expression. Alves et al. elucidated that these default workflows frequently misclassify activating KIR transcripts as inhibitory KIR expression, resulting in a skewed representation of the KIR repertoire.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Jennifer Currenti
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia
- School of Medicine, Curtin University, Bentley, Western Australia, Australia
| | - Spyros A Kalams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Simon A Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Montero-Martin G, Kichula KM, Misra MK, Vargas LB, Marin WM, Hollenbach JA, Fernández-Viña MA, Elfishawi S, Norman PJ. Exceptional diversity of KIR and HLA class I in Egypt. HLA 2024; 103:e15177. [PMID: 37528739 PMCID: PMC11068459 DOI: 10.1111/tan.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maneesh K. Misra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Luciana B. Vargas
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley M. Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Sally Elfishawi
- BMT lab unit, Clinical Pathology Dept., National Cancer Institute, Cairo University, Cairo, Egypt
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
6
|
Ma Q, Augusto DG, Montero-Martin G, Caillier SJ, Osoegawa K, Cree BAC, Hauser SL, Didonna A, Hollenbach JA, Norman PJ, Fernandez-Vina M, Oksenberg JR. High-resolution DNA methylation screening of the major histocompatibility complex in multiple sclerosis. Front Neurol 2023; 14:1326738. [PMID: 38145128 PMCID: PMC10739394 DOI: 10.3389/fneur.2023.1326738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Background The HLA-DRB1 gene in the major histocompatibility complex (MHC) region in chromosome 6p21 is the strongest genetic factor identified as influencing multiple sclerosis (MS) susceptibility. DNA methylation changes associated with MS have been consistently detected at the MHC region. However, understanding the full scope of epigenetic regulations of the MHC remains incomplete, due in part to the limited coverage of this region by standard whole genome bisulfite sequencing or array-based methods. Methods We developed and validated an MHC capture protocol coupled with bisulfite sequencing and conducted a comprehensive analysis of the MHC methylation landscape in blood samples from 147 treatment naïve MS study participants and 129 healthy controls. Results We identified 132 differentially methylated region (DMRs) within MHC region associated with disease status. The DMRs overlapped with established MS risk loci. Integration of the MHC methylome with human leukocyte antigen (HLA) genetic data indicate that the methylation changes are significantly associated with HLA genotypes. Using DNA methylation quantitative trait loci (mQTL) mapping and the causal inference test (CIT), we identified 643 cis-mQTL-DMRs paired associations, including 71 DMRs possibly mediating causal relationships between 55 single nucleotide polymorphisms (SNPs) and MS risk. Results The results describe MS-associated methylation changes in MHC region and highlight the association between HLA genotypes and methylation changes. Results from the mQTL and CIT analyses provide evidence linking MHC region variations, methylation changes, and disease risk for MS.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Danillo G. Augusto
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| | - Gonzalo Montero-Martin
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- HLA Histocompatibility and Immunogenetics Laboratory, Vitalant, Phoenix, AZ, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Kazutoyo Osoegawa
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Bruce A. C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Biomedical Informatics and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marcelo Fernandez-Vina
- Histocompatibility and Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
BAZIE MOMEIYIMICHEE, DJIGMA FLORENCIAWENDKUUNI, SANOU MAHAMOUDOU, SORGHO PEGDWENDÉABEL, OUATTARA ABDOULKARIM, OBIRI-YEBOAH DORCAS, KAPIEKO NADÈGE, SOMBIE HERMANKARIM, BADO PROSPER, YELEMKOURE EDWIGETAMPOUBILA, KIENDREBEOGO ISABELLETOUWENDPOULIMDÉ, NAGALO MARIUSBOLNI, YONLI ALBERTTHÉOPHANE, SIMPORE JACQUES. Killer cell immunoglobulin-like receptor alleles influence susceptibility to occult hepatitis B infection in West African population. J Public Health Afr 2023; 14:2586. [PMID: 37908389 PMCID: PMC10615156 DOI: 10.4081/jphia.2023.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 11/02/2023] Open
Abstract
Occult hepatitis B infection (OBI) is a public health problem in Burkina Faso. OBI represents a risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). OBI could be due to mutant viruses undetectable by HBsAg assays or a strong suppression of viral replication and gene expression under the pression of the host immune system. To investigate the role of killer cell immunoglobulin-like receptor (KIR) gene polymorphisms in patients with OBI in Burkina Faso compared to healthy and chronic hepatitis B subjects. A total of 286 participants was recruited, including 42 cases of OBI, 110 cases of chronic hepatitis B and 134 HBV negative subjects. SSP-PCR was performed to search for the presence of KIR genes. The HBV viral load was determined by qPCR. The frequencies of the activator gene KIR2DS5 (P=0.045) and the pseudogene KIR2DP1 (P<0.001) in patients with OBI were higher than those in patients with chronic hepatitis B. These genes are associated with susceptibility of occult hepatitis B infection. The frequencies of the inhibitory KIR gene KIR2DL3 (P=0.01) of patients with occult hepatitis B were lower than those in chronic hepatitis B patients. This gene KIR2DL3 is associated with protection against occult hepatitis B infection. Also, the frequencies of the inhibitory KIR genes KIR2DL2 (P<0.001), KIR2DL3 (P<0.001) and activators KIR2DS2 (P<0.001) in chronic hepatitis B patients were higher compared to the frequencies of the KIR genes in healthy subjects. These genes KIR2DL3, KIR2DL5 (A, B), KIR3DL3, KIR3DS1, KIR2DL2 and KIR2DS2 are thought to be genes associated with the susceptibility to OBI. The KIR2DS5 and KIR2DP1 genes could be associated with susceptibility to OBI. As for the KIR gene KIR2DL3 could be associated with protection against occult hepatitis B infection.
Collapse
Affiliation(s)
- MOMEIYI MICHEE BAZIE
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - FLORENCIA WENDKUUNI DJIGMA
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - MAHAMOUDOU SANOU
- Department of Pharmacy, Joseph Ki-Zerbo University, Ouagadougou, Burkina Faso
| | - PEGDWENDÉ ABEL SORGHO
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - ABDOUL KARIM OUATTARA
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - DORCAS OBIRI-YEBOAH
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Ghana
| | - NADÈGE KAPIEKO
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - HERMAN KARIM SOMBIE
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - PROSPER BADO
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - EDWIGE TAMPOUBILA YELEMKOURE
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - ISABELLE TOUWENDPOULIMDÉ KIENDREBEOGO
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - MARIUS BOLNI NAGALO
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, Arizona, United States
| | - ALBERT THÉOPHANE YONLI
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| | - JACQUES SIMPORE
- Molecular Biology and Genetics Laboratory (LABIOGENE), Department of Biochemistry-Microbiology, Joseph Ki-Zerbo University, Ouagadougou
- Pietro Annigoni Biomolecular Research Center (CERBA), Ouagadougou
| |
Collapse
|
8
|
Sim MJW, Brennan P, Wahl KL, Lu J, Rajagopalan S, Sun PD, Long EO. Innate receptors with high specificity for HLA class I-peptide complexes. Sci Immunol 2023; 8:eadh1781. [PMID: 37683038 DOI: 10.1126/sciimmunol.adh1781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Genetic studies associate killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands with a variety of human diseases. The basis for these associations and the relative contribution of inhibitory and activating KIR to NK cell responses are unclear. Because KIR binding to HLA-I is peptide dependent, we performed systematic screens, which totaled more than 3500 specific interactions, to determine the specificity of five KIR for peptides presented by four HLA-C ligands. Inhibitory KIR2DL1 was largely peptide sequence agnostic and could bind ~60% of hundreds of HLA-peptide complexes tested. Inhibitory KIR2DL2, KIR2DL3, and activating KIR2DS1 and KIR2DS4 bound only 10% and down to 1% of HLA-peptide complexes tested, respectively. Activating KIR2DS1, previously described as weak, had high binding affinity for HLA-C, with high peptide sequence specificity. Our data revealed MHC-restricted peptide recognition by germline-encoded NK receptors and suggest that NK cell responses can be shaped by HLA-I-bound immunopeptidomes in the context of disease or infection.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Katherine L Wahl
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| |
Collapse
|
9
|
Hay AL, Birch J, Ellis S, Burns D, Mansour S, Khakoo SI, Hammond JA. Cattle killer immunoglobulin-like receptor expression on leukocyte subsets suggests functional divergence compared to humans. Vet Immunol Immunopathol 2023; 263:110646. [PMID: 37634416 DOI: 10.1016/j.vetimm.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Cattle, sheep, and goats are the only species outside primates known to have an expanded and diversified family of killer immunoglobulin-like receptors (KIR). Primate KIR are expressed on the surface of NK and T cells and bind MHC-I to control activation. However, the surface expression, ligands and function of bovid KIR remain unknown. Cattle botaKIR2DL1 is the only functional KIR of the same DL-lineage as the expanded KIR in primates and we examined if leukocyte expression patterns were consistent with human. We raised a specific mouse anti-botaKIR2DL1 monoclonal antibody and assessed its utility in flow cytometry, ELISA, and western blot. Unlike primates, cattle DL-lineage KIR (botaKIR2DL1) is present on B cells and monocytes in addition to T cells and low-level expression on NK cells. Expression decreases after in vitro PBMC stimulation with IL-2. This suggests that botaKIR2DL1 has different functions, and potentially ligands, compared to primate KIR.
Collapse
Affiliation(s)
- Abigail L Hay
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - James Birch
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Shirley Ellis
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom
| | - Daniel Burns
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Salah Mansour
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Salim I Khakoo
- School of Medicine, University of Southampton, Tremona Road, Southampton, Hampshire SO17 1BJ, United Kingdom
| | - John A Hammond
- The Pirbright Institute, Woking, Surrey GU24 0NF, United Kingdom.
| |
Collapse
|
10
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
11
|
Li YM, Li YX, Hu XZ, Li DY, An L, Yuan ZY, Liu ZL, Du KM, Zheng ZZ. Exploration of KIR genes and hematological-related diseases in Chinese Han population. Sci Rep 2023; 13:9773. [PMID: 37328612 PMCID: PMC10276034 DOI: 10.1038/s41598-023-36882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
The function of natural killer (NK) cells has previously been implicated in hematopoietic-related diseases. Killer immunoglobulin-like receptors (KIR) play an important role in NK cells after hematopoietic stem cell transplantation. To explore the immunogenetic predisposition of hematological-related diseases, herein, a multi-center retrospective study in China was conducted, analyzing and comparing 2519 patients with hematopathy (mainly, acute lymphoblastic leukemia, acute myeloid leukemia, aplastic anemia, and myelodysplastic syndrome) to 18,108 individuals without known pathology. Genotyping was performed by polymerase chain reaction with specific sequence primers (PCR-SSP). As a result, we discovered four genes including KIR2DL5 (OR: 0.74, 95% CI 0.59-0.93; Pc = 0.0405), 2DS1 (OR: 0.74, 95% CI 0.59-0.93; Pc = 0.0405), 2DS3 (OR: 0.58, 95% CI 0.41-0.81; Pc = 0.0180), and 3DS1 (OR: 0.74, 95% CI 0.58-0.94; Pc = 0.0405) to be protective factors that significantly reduce the risk of aplastic anemia. Our findings offer new approaches to immunotherapy for hematological-related diseases. As these therapies mature, they are promising to be used alone or in combination with current treatments to help to make blood disorders a manageable disease.
Collapse
Affiliation(s)
- Ye-Mo Li
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | - Yu-Xia Li
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | - Xiao-Zhuang Hu
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | - Dai-Yang Li
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | - Lin An
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | - Zhi-Yang Yuan
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | | | - Ke-Ming Du
- Shanghai Tissuebank Biotechnology Co, Ltd, Shanghai, China
| | | |
Collapse
|
12
|
Roshan Zamir M, Ariafar A, Ghaderi A, Amirzargar A. The impact of killer cell immunoglobulin-like receptor (KIR) genes and human leukocyte antigen (HLA) class I ligands on predisposition or protection against prostate cancer. Immunobiology 2023; 228:152319. [PMID: 36599262 DOI: 10.1016/j.imbio.2022.152319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cell development largely depends on killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) class I ligands. In the current study, we investigated the role of KIR genes, HLA ligands, and KIR-HLA combinations in vulnerability or protection against prostate cancer (PC). To analyze the frequency of 16 KIR genes and 5 HLA ligands, polymerase chain reaction with sequence-specific primers (PCR-SSP) was conducted in 150 PC patients and 200 healthy controls (CNs). KIR2DL5 (p = 0.0346, OR = 0.606, CI = 0.3916-0.9336), KIR2DS5 (p = 0.0227, OR = 0.587, CI = 0.3793-0.9139), HLA-B Bw4Thr80 (p = 0.0401, OR = 0.3552, CI = 0.1466-0.9059), HLA Bw4 (p = 0.0190, OR = 0.4744, CI = 0.2656-0.8521), and T4 gene cluster (including KIR2DS5-2DL5-3DS1-2DS1 genes) (p = 0.0194, OR = 0.5575, CI = 0.3449-0.8938) had a lower frequency in the PC patients compared to the control group. Moreover, a lower frequency of the genotypes contacting activating KIR (aKIR) > inhibitory KIR (iKIR) (p = 0.0298, OR = 0.5291, CI = 0.3056-0.9174) and iKIR + HLA < aKIR + HLA (p = 0.0183, OR = 0.2197, CI = 0.0672-0.7001) in PC patients compared to the CNs implies a protective role for aKIR genes. In the case of KIR-HLA interactions, we detected a significant association between KIR3DS1+ + HLA-A Bw4+ (p = 0.0113, OR = 0.5093, CI = 0.3124-0.8416) and KIR3DL1- + HLA-A Bw4+ (p = 0.0306, OR = 0.1153, CI = 0.0106-0.6537) combinations and resistance to prostate cancer. In contrast, the presence of KIR3DL1 in the absence of HLA-A Bw4 (p = 0.0040, OR = 2.00, CI = 1.264-3.111), HLA Bw4 (p = 0.0296, OR = 2.066, CI = 1.094-3.906), and HLA-Bw4Thr80 (p = 0.0071, OR = 2.505, CI = 1.319-4.703) genes probably predisposes to prostate cancer. Carrying the CxT4 genotype in PC patients was positively associated with lower tumor grades (Gleason score ≤ 6) (p = 0.0331, OR = 3.290, and CI = 1.181-8.395). Altogether, our data suggest a protective role for aKIRs, HLA-B Bw4Thr80, and HLA Bw4 ligands as well as a predisposing role for certain KIR-HLA combinations in prostate cancer. The findings of this study offer new insight into the population's risk assessment for prostate cancer in men. Additionally, predicting immunotherapy response based on KIR-HLA combinations aids in implementing the most effective therapeutic approach in the early stages of the disease.
Collapse
Affiliation(s)
- Mina Roshan Zamir
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Ariafar
- Urology-Oncology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Bruijnesteijn J. HLA/MHC and KIR characterization in humans and non-human primates using Oxford Nanopore Technologies and Pacific Biosciences sequencing platforms. HLA 2023; 101:205-221. [PMID: 36583332 DOI: 10.1111/tan.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The gene products of the HLA/MHC and KIR multigene families are important modulators of the immune system and are associated with health and disease. Characterization of the genes encoding these receptors has been integrated into different biomedical applications, including transplantation and reproduction biology, immune therapies and in fundamental research into disease susceptibility or resistance. Conventional short-read sequencing strategies have shown their value in high throughput typing, but are insufficient to uncover the entire complexity of the highly polymorphic HLA/MHC and KIR gene systems. The implementation of single-molecule and real-time sequencing platforms, offered by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), revolutionized the fields of genomics and transcriptomics. Using fundamentally distinct principles, these platforms generate long-read data that can unwire the plasticity of the HLA/MHC and KIR genes, including high-resolution characterization of genes, alleles, phased haplotypes, transcription levels and epigenetics modification patterns. These insights might have profound clinical relevance, such as improved matching of donors and patients in clinical transplantation, but could also lift disease association studies to a higher level. Even more, a comprehensive characterization may refine animal models in preclinical studies. In this review, the different HLA/MHC and KIR characterization approaches using PacBio and ONT platforms are described and discussed.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
14
|
Aguiar VRC, Castelli EC, Single RM, Bashirova A, Ramsuran V, Kulkarni S, Augusto DG, Martin MP, Gutierrez-Arcelus M, Carrington M, Meyer D. Comparison between qPCR and RNA-seq reveals challenges of quantifying HLA expression. Immunogenetics 2023; 75:249-262. [PMID: 36707444 PMCID: PMC9883133 DOI: 10.1007/s00251-023-01296-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil ,Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erick C. Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University, Botucatu, SP Brazil
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Veron Ramsuran
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa ,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Smita Kulkarni
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Danillo G. Augusto
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC USA ,Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
15
|
Bakhtiari T, Ahmadvand M, Salmaninejad A, Ghaderi A, Yaghmaie M, Sadeghi A, Mousavi SA, Rostami T, Ganjalikhani-Hakemi M. The Influence of KIR Gene Polymorphisms and KIR-ligand Binding on Outcomes in Hematologic Malignancies following Haploidentical Stem Cell Transplantation: A Comprehensive Review. Curr Cancer Drug Targets 2023; 23:868-878. [PMID: 37226789 DOI: 10.2174/1568009623666230523155808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 05/26/2023]
Abstract
Natural killer (NK) cell behavior and function are controlled by a balance between negative or positive signals generated by an extensive array of activating and inhibiting receptors, including killer cell immunoglobulin-like receptor (KIR) proteins, main components of the innate immune system that contribute to initial responses against viral infected-transformed cells through generation of the release of cytokines and cytotoxicity. What is certain is that KIRs are genetically polymorphic and the extent of KIRs diversity within the individuals may have the potential outcomes for hematopoietic stem cell transplantation (HSCT). In this regard, recent studies suggest that KIR is as imperative as its ligand (HLA) in stem cell transplantation for malignant diseases. However, unlike HLA epitope mismatches, which are well-known causes of NK alloreactivity, a complete understanding of KIR genes' role in HSCT remains unclear. Because of genetic variability in KIR gene content, allelic polymorphism, and cell-surface expression among individuals, an appropriate selection of donors based on HLA and KIR profiles is crucial to improve outcomes of stem cell transplantation. In addition, the impact of the KIR/HLA interaction on HSCT outcomes needs to be investigated more comprehensively. The present work aimed to review the NK cell regeneration, KIR gene polymorphisms, and KIRligand binding on outcomes in hematologic malignancies following haploidentical stem cell transplantation. Comprehensive data gathered from the literature can provide new insight into the significance of KIR matching status in transplantations.
Collapse
Affiliation(s)
- Tahereh Bakhtiari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University Medical Sciences, Rasht, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Marjan Yaghmaie
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadeghi
- Department of Internal Medicine, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seied Asadollah Mousavi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Rostami
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazdak Ganjalikhani-Hakemi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Immunology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
16
|
Ligotti ME, Aiello A, Accardi G, Calabrò A, Ciaccio M, Colomba C, Di Bona D, Lo Sasso B, Pojero F, Tuttolomondo A, Caruso C, Candore G, Duro G. Distribution of KIR Genes and Their HLA Ligands in Different Viral Infectious Diseases: Frequency Study in Sicilian Population. Int J Mol Sci 2022; 23:ijms232415466. [PMID: 36555106 PMCID: PMC9779783 DOI: 10.3390/ijms232415466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells play a role in defence against viral infections by killing infected cells or by producing cytokines and interacting with adaptive immune cells. Killer immunoglobulin-like receptors (KIRs) regulate the activation of NK cells through their interaction with human leucocyte antigens (HLA). Ninety-six Sicilian patients positive to Human Immunodeficiency Virus-1 (HIV) and ninety-two Sicilian patients positive to SARS-CoV-2 were genotyped for KIRs and their HLA ligands. We also included fifty-six Sicilian patients with chronic hepatitis B (CHB) already recruited in our previous study. The aim of this study was to compare the distribution of KIR-HLA genes/groups of these three different infected populations with healthy Sicilian donors from the literature. We showed that the inhibitory KIR3DL1 gene and the KIR3DL1/HLA-B Bw4 pairing were more prevalent in individual CHB. At the same time, the frequency of HLA-C2 was increased in CHB compared to other groups. In contrast, the HLA-C1 ligand seems to have no contribution to CHB progression whereas it was significantly higher in COVID-19 and HIV-positive than healthy controls. These results suggest that specific KIR-HLA combinations can predict the outcome/susceptibility of these viral infections and allows to plan successful customized therapeutic strategies.
Collapse
Affiliation(s)
- Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
- Correspondence:
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Bruna Lo Sasso
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90134 Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy
| |
Collapse
|
17
|
Hu Q, Huang X, Jin Y, Zhang R, Zhao A, Wang Y, Zhou C, Liu W, Liu X, Li C, Fan G, Zhuo M, Wang X, Ling F, Luo W. Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biol Direct 2022; 17:36. [PMID: 36447238 PMCID: PMC9707422 DOI: 10.1186/s13062-022-00350-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) and the killer cell immunoglobulin-like receptors (KIR) are key regulators of immune responses. The cynomolgus macaque, an Old World monkey species, can be applied as an important preclinical model for studying human diseases, including coronavirus disease 2019 (COVID-19). Several MHC-KIR combinations have been associated with either a poor or good prognosis. Therefore, macaques with a well-characterized immunogenetic profile may improve drug evaluation and speed up vaccine development. At present, a complete overview of the MHC and KIR haplotype organizations in cynomolgus macaques is lacking, and characterization by conventional techniques is hampered by the extensive expansion of the macaque MHC-B region that complicates the discrimination between genes and alleles. METHODS We assembled complete MHC and KIR genomic regions of cynomolgus macaque using third-generation long-read sequencing approach. We identified functional Mafa-B loci at the transcriptome level using locus-specific amplification in a cohort of 33 Vietnamese cynomolgus macaques. RESULTS This is the first physical mapping of complete MHC and KIR gene regions in a Vietnamese cynomolgus macaque. Furthermore, we identified four functional Mafa-B loci (B2, B3, B5, and B6) and showed that alleles of the Mafa-I*01, -B*056, -B*034, and -B*001 functional lineages, respectively, are highly frequent in the Vietnamese cynomolgus macaque population. CONCLUSION The insights into the MHC and KIR haplotype organizations and the level of diversity may refine the selection of animals with specific genetic markers for future medical research.
Collapse
Affiliation(s)
- Qingxiu Hu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoqi Huang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yabin Jin
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| | - Rui Zhang
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Aimin Zhao
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Yiping Wang
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chenyun Zhou
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Weixin Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xunwei Liu
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Chunhua Li
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Guangyi Fan
- grid.21155.320000 0001 2034 1839BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Min Zhuo
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Xiaoning Wang
- grid.414252.40000 0004 1761 8894National Clinic Center of Geriatric, The Chinese PLA General Hospital, Beijing, 100853 China
| | - Fei Ling
- grid.79703.3a0000 0004 1764 3838Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 China
| | - Wei Luo
- grid.12981.330000 0001 2360 039XThe First People’s Hospital of Foshan, Sun Yat-sen University, Foshan, 528000 China
| |
Collapse
|
18
|
KIR2DL2, KIR2DL5A and KIR2DL5B Genes Induce Susceptibility to Dengue Virus Infection, while KIR3DL3 and KIR2DS5 Confer Protection. Mediterr J Hematol Infect Dis 2022; 14:e2022075. [PMID: 36425145 PMCID: PMC9652005 DOI: 10.4084/mjhid.2022.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Dengue fever (DF), an emerging and re-emerging viral disease, is a major public health problem. The aim of this study was to investigate the influence of KIRs genes polymorphism and KIRs genotypes in susceptibility to dengue virus infection and disease severity in a population from Burkina Faso through a case-control study. METHODS KIRs genes determination was performed using PCR-SSP in 50 patients infected by dengue virus (DENV) and 54 Healthy controls (HC) subjects who had never been infected. RESULTS Data analysis showed significant association between frequencies of three KIR genes and dengue virus infection (DF): KIR2DL2 (OR: 7.32; IC: 2.87-18.65; P < 0.001); KIR2DL5A (OR: 15.00, IC: 5.68-39.59; P < 0.001) and KIR2DL5B (OR: 11.43; IC: 4.42-29; P < 0.001). While, KIR3DL3 (OR: 0.13, IC: 0.052-0.32; P < 0.001) and KIR2DS5 (OR: 0.12; IC: 0.04-0.30; P < 0.001) were associated with protection against DF. KIR2DL4 (OR: 9.75; IC95%: 1.33-70.97; p: 0.03) and KIRD3DL1 (OR: 12.00; IC95%: 1.60-90.13; p: 0.02) were associated with an increased risk in the development of secondary dengue infection (SDI). CONCLUSION The results suggest a contribution of KIR2DL2, KIR2DL5A, and KIR2DL5B genes in the susceptibility of DF development. In contrast, KIR3DL3 and KIR2DS5 were associated with protection against DF development by enhancing both innate and acquired immune responses.
Collapse
|
19
|
de Sá NBR, de Souza NCS, Neira-Goulart M, Ribeiro-Alves M, Da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, de Oliveira Pinto LM, Scott-Algara D, Morgado MG, Teixeira SLM. Inflammasome genetic variants are associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. Front Cell Infect Microbiol 2022; 12:962059. [PMID: 36204643 PMCID: PMC9531132 DOI: 10.3389/fcimb.2022.962059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTuberculosis (TB) and AIDS are the leading causes of infectious diseases death worldwide. Here, we investigated the relationship between from single nucleotide polymorphisms (SNPs) of the NLRP3, CARD8, AIM2, CASP-1, IFI16, and IL-1β inflammasome genes, as well as the profiles of secreted proinflammatory cytokines (e.g., IL-1β, IL-18, IL-33, and IL-6) with the TB clinical profiles, TB-HIV coinfection, and IRIS onset.MethodsThe individuals were divided into four groups: TB-HIV group (n=88; 11 of them with IRIS), HIV-1 group (n=20), TB group (n=24) and healthy volunteers (HC) group (n=10), and were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. Real-time PCR was used to determine the genotypes of the Single Nucleotide Polymorphism (SNPs), and ELISA was used to measure the plasma cytokine levels. Unconditional logistic regression models were used to perform risk estimations.ResultsA higher risk for extrapulmonary TB was associated with the TT genotype (aOR=6.76; P=0.026) in the NLRP3 rs4612666 Single Nucleotide Polymorphism (SNP) and the C-C-T-G-C haplotype (aOR=4.99; P= 0.017) in the NLRP3 variants. This same Single Nucleotide Polymorphism (SNP) was associated with lower risk against extrapulmonary TB when the carrier allele C (aOR=0.15; P=0.021) was present. Among those with HIV-1 infections, a higher risk for TB onset was associated with the GA genotype (aOR=5.5; P=0.044) in the IL1-β rs1143634 Single Nucleotide Polymorphism (SNP). In contrast, lower risk against TB onset was associated with the A-G haplotype (aOR=0.17; P= 0.026) in the CARD8 variants. Higher IL-6 and IL-33 levels were observed in individuals with TB. A higher risk for IRIS onset was associated with CD8 counts ≤ 500 cells/mm3 (aOR=12.32; P=0.010), the presence of extrapulmonary TB (aOR=6.6; P=0.038), and the CT genotype (aOR=61.06; P=0.026) or carrier allele T (aOR=61.06; P=0.026) in the AIM2 rs2276405 Single Nucleotide Polymorphism (SNP), whereas lower risk against IRIS onset was associated with the AT genotype (aOR=0.02; P=0.033) or carrier allele T (aOR=0.02; P=0.029) in the CARD8 rs2043211 Single Nucleotide Polymorphism (SNP) and the T-G haplotype (aOR=0.07; P= 0.033) in the CARD8 variants. No other significant associations were observed.ConclusionsOur results depict the involvement of genetic polymorphisms of crucial innate immunity genes and proinflammatory cytokines in the clinical outcomes related to TB-HIV coinfection.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | | - Milena Neira-Goulart
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira Da Silva
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | |
Collapse
|
20
|
Elpidio LNS, de Moraes AG, Langer IBV, do Amaral GC, Moretti ML, Garcia MT, Angerami R, Proenca-Modena JL, Bispo-dos-Santos K, Martini MC, Parise PL, Ayo CM, de Mattos LC, Brandão CC, Nogueira ML, Oliani DCMV, Spegiorin LCJF, de Lima Neto QA, Visentainer JEL. Lack of association of the KIR and HLA class I ligands with ZIKV infection in south and southeast of Brazil. Mem Inst Oswaldo Cruz 2022; 117:e210194. [PMID: 35976280 PMCID: PMC9377541 DOI: 10.1590/0074-02760210194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) is an emerging arbovirus associated with foetal malformations and neurological complications. The infection is usually associated with mild symptoms. The comparison between the allelic frequency of polymorphic genes in symptomatic infected individuals in the population can clarify the pathogenic mechanisms of ZIKV. During ZIKV infection, cytokines are produced and natural killer (NK) cells are recruited, whose activation depends on signaling pathways activated by specific receptors, such as killer cell immunoglobulin-like receptors (KIR). These molecules interact with human leukocyte antigen (HLA) class I ligands and are encoded by polymorphic genes. OBJECTIVES This study aimed to evaluate the frequency of allelic variants of the genes encoding the KIR receptors and their HLA class I ligands in 139 symptomatic ZIKV-patients and 170 controls negative for the virus, and to evaluate the role of these variants for ZIKV susceptibility. METHODS KIR and HLA class I genes were genotyped using the polymerase chain reaction-sequence specific oligonucleotide (PCR-SSO) technique. FINDINGS No significant differences in the frequency distribution of KIRs and KIR-HLA in patients compared to controls were observed. MAIN CONCLUSIONS KIR and its HLA ligands might play a minor role in ZIKV infection in the south and southeast Brazilian individuals.
Collapse
Affiliation(s)
- Laise Nayana Sala Elpidio
- Universidade Estadual de Maringá, Programa de Pós-Graduação em
Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina,
Maringá, PR, Brasil
| | - Amarilis Giaretta de Moraes
- Universidade Estadual de Maringá, Programa de Pós-Graduação em
Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina,
Maringá, PR, Brasil
| | | | | | - Maria Luiza Moretti
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas,
Departamento de Medicina Interna, Campinas, SP, Brasil
| | - Márcia Teixeira Garcia
- Universidade Estadual de Campinas, Divisão de Epidemiologia
Hospitalar, Hospital das Clínicas, Campinas, SP, Brasil
| | - Rodrigo Angerami
- Departamento de Vigilância em Saúde Pública de Campinas, Campinas,
SP, Brasil
| | - José Luiz Proenca-Modena
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Genética, Microbiologia e Imunologia, Laboratório de Vírus
Emergentes, Campinas, SP, Brasil
| | - Karina Bispo-dos-Santos
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Genética, Microbiologia e Imunologia, Laboratório de Vírus
Emergentes, Campinas, SP, Brasil
| | - Matheus Cavalheiro Martini
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Genética, Microbiologia e Imunologia, Laboratório de Vírus
Emergentes, Campinas, SP, Brasil
| | - Pierina Lorencini Parise
- Universidade Estadual de Campinas, Instituto de Biologia,
Departamento de Genética, Microbiologia e Imunologia, Laboratório de Vírus
Emergentes, Campinas, SP, Brasil
| | - Christiane Maria Ayo
- Faculdade de Medicina de São José do Rio Preto, Departamento de
Biologia Molecular, Laboratório de Imunogenética, São José do Rio Preto, SP,
Brasil
| | - Luiz Carlos de Mattos
- Faculdade de Medicina de São José do Rio Preto, Departamento de
Biologia Molecular, Laboratório de Imunogenética, São José do Rio Preto, SP,
Brasil
| | - Cinara Cássia Brandão
- Faculdade de Medicina de São José do Rio Preto, Departamento de
Biologia Molecular, Laboratório de Imunogenética, São José do Rio Preto, SP,
Brasil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São José do Rio Preto, Departamento de
Doenças Infecciosas e Parasitárias, Laboratório de Pesquisa em Virologia, São José
do Rio Preto, SP, Brasil
| | - Denise Cristina Mós Vaz Oliani
- Faculdade de Medicina de São José do Rio Preto, Departamento de
Ginecologia e Obstetrícia, São José do Rio Preto, SP, Brasil
| | | | - Quirino Alves de Lima Neto
- Universidade Estadual de Maringá, Programa de Pós-Graduação em
Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina,
Maringá, PR, Brasil
- Universidade Estadual de Maringá, Laboratório de Imunogenética,
Maringá, PR, Brasil
| | - Jeane Eliete Laguila Visentainer
- Universidade Estadual de Maringá, Programa de Pós-Graduação em
Biociências e Fisiopatologia, Departamento de Análises Clínicas e Biomedicina,
Maringá, PR, Brasil
- Universidade Estadual de Maringá, Laboratório de Imunogenética,
Maringá, PR, Brasil
| |
Collapse
|
21
|
Vigón L, Galán M, Torres M, Martín-Galiano AJ, Rodríguez-Mora S, Mateos E, Corona M, Malo R, Navarro C, Murciano-Antón MA, García-Gutiérrez V, Planelles V, Martínez-Laso J, López-Huertas MR, Coiras M. Association between HLA-C alleles and COVID-19 severity in a pilot study with a Spanish Mediterranean Caucasian cohort. PLoS One 2022; 17:e0272867. [PMID: 35960731 PMCID: PMC9374209 DOI: 10.1371/journal.pone.0272867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.
Collapse
Affiliation(s)
- Lorena Vigón
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Galán
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Torres
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio J. Martín-Galiano
- Intrahospital Infections Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Rodríguez-Mora
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Elena Mateos
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Magdalena Corona
- Hematology Service, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rosa Malo
- Neumology Service, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - Vicente Planelles
- Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jorge Martínez-Laso
- Immunogenetic Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Rosa López-Huertas
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Mayte Coiras
- Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | |
Collapse
|
22
|
Chen C, Song N, Dong Q, Sun X, Mulder HL, Easton J, Zhang J, Yasui Y, Bhatia S, Armstrong GT, Wang H, Ness KK, Hudson MM, Robison LL, Wang Z. Association of Single-Nucleotide Variants in the Human Leukocyte Antigen and Other Loci With Childhood Hodgkin Lymphoma. JAMA Netw Open 2022; 5:e2225647. [PMID: 35939300 PMCID: PMC9361085 DOI: 10.1001/jamanetworkopen.2022.25647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Studies focusing on genetic susceptibility of childhood Hodgkin lymphoma (HL) are limited. OBJECTIVES To identify genetic variants associated with childhood-onset HL vs adult-onset HL. DESIGN, SETTING, AND PARTICIPANTS This genetic association study was performed with 3 cohorts: the St Jude Lifetime Cohort Study (SJLIFE), initiated in 2007 with ongoing follow-up, and the original and expansion cohorts of the Childhood Cancer Survivor Study (CCSS), initiated in the 1990s with ongoing follow-up. Results of these genome-wide association studies (GWASs) were combined via meta-analysis. Data were analyzed from June 2021 to June 2022. MAIN OUTCOMES AND MEASURES Childhood HL was the focused outcome. Single-nucleotide variant (SNV, formerly single-nucleotide polymorphism) array genotyping and imputation were conducted for the CCSS original cohort, and whole-genome sequencing was performed for the SJLIFE and CCSS expansion cohort. RESULTS A total of 1286 HL cases (mean diagnosis [SD] age, 14.6 [3.9] years), 6193 non-HL childhood cancer cases, and 369 noncancer controls, all of European ancestry, were included in the analysis. Using step-wise conditional logistic regression, the odds ratios (ORs) for each of the 3 independent SNVs identified in the human leukocyte antigen (HLA) locus were 1.80 (95% CI, 1.59-2.03; P = 2.14 × 10-21) for rs28383311, 1.53 (95% CI, 1.37-1.70; P = 2.05 × 10-14) for rs3129198, and 1.51 (95% CI, 1.35-1.69; P = 6.21 × 10-13) for rs3129890. Further HLA imputation revealed 9 alleles and 55 amino acid changes that potentially conferred HL susceptibility. In addition, 5 non-HLA loci were identified: (1) rs1432297 (OR, 1.29; 95% CI, 1.18-1.41; P = 2.5 × 10-8; r2 = 0.55; D' = 0.75 with previously reported rs1432295, REL); (2) rs2757647 (OR, 1.30; 95% CI, 1.18-1.42; P = 3.5 × 10-8; r2 = 0.59; D' = 0.83 with previously reported rs6928977, AHI1); (3) rs13279159 (OR, 1.33; 95% CI, 1.20-1.47; P = 1.7 × 10-8; r2 = 0.75; D' = 1.00 with previously reported rs2019960, PVT1); (4) rs3824662 (OR, 1.52; 95% CI, 1.33-1.73; P = 3.9 × 10-10; r2 = 0.91; D' = 1.00 with previously reported rs3781093, GATA3); and (5) rs117953624 (OR, 1.98; 95% CI, 1.56-2.51; P = 1.5 × 10-8; minor allele frequency, 0.02), a novel uncommon SNV mapped to PDGFD. Twelve of 18 previously reported genome-wide significant non-HLA SNVs (67%) were replicated with statistically significant results. CONCLUSIONS AND RELEVANCE In this genetic association study, a predominantly common and potentially unique genetic etiology was found between childhood-onset and adulthood-onset HL.
Collapse
Affiliation(s)
- Cheng Chen
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Nan Song
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Qian Dong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xiaojun Sun
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Heather L. Mulder
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | | | - Gregory T. Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hui Wang
- School of Public Health, Shanghai Jiaotong University, Shanghai, China
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
23
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
24
|
Wang Y, Ju Y, Wang J, Sun N, Tang Z, Gao H, Gu P, Ji J. Identification of immune hub genes participating in the pathogenesis and progression of Vogt-Koyanagi-Harada disease. Front Immunol 2022; 13:936707. [PMID: 35958546 PMCID: PMC9358976 DOI: 10.3389/fimmu.2022.936707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Vogt-Koyanagi-Harada (VKH) disease is an autoimmune inflammatory disorder characterized by bilateral granulomatous uveitis. The objective of this study was to identify immune hub genes involved in the pathogenesis and progression of VKH disease. Methods High throughput sequencing data were downloaded from the Gene Expression Omnibus (GEO) and an immune dataset was downloaded from ImmPort. Immune differentially expressed genes (DEGs) were obtained from their intersection in the GEO and ImmPort datasets. Immune hub genes for VKH disease were selected through differential expression analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease Ontology (DO), protein-protein interaction (PPI) network, and clustering analyses. Confidence in the immune hub genes was subsequently validated using box plots and receiver operating characteristic (ROC) curves. Results A total of 254 DEGs were screened and after the intersection with ImmPort, 20 genes were obtained as immune DEGs. Functional enrichment analysis indicated that the key genes were mainly involved in several types of immune pathways (such as the lymphocyte mediated and leukocyte mediated immune responses, natural killer cell mediated cytotoxicity, and antigen binding) and immunodeficiency diseases. Following PPI network analysis, the top seven genes in cluster 1 were selected as potential immune hub genes in VKH. After evaluating the accuracy of the hub genes, one gene (GNLY) was excluded because its expression level was statistically similar in VKH patients and healthy controls. Finally, six immune hub genes, namely KLRC2, KLRC3 SH2D1B, GZMB, KIR2DL3, and KIR3DL2 were identified as playing important roles in the occurrence and development of VKH disease. Conclusion Six immune hub genes (KLRC2, KLRC3 SH2D1B, GZMB, KIR2DL3, and KIR3DL2) identified by our bioinformatics analyses may provide new diagnostic and therapeutic targets for VKH disease.
Collapse
Affiliation(s)
- Yiqi Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Na Sun
- Department of Ophthalmology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Ping Gu, ; Jing Ji,
| | - Jing Ji
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
- *Correspondence: Ping Gu, ; Jing Ji,
| |
Collapse
|
25
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
26
|
Feng Q, Zhou M, Li S, Morimoto L, Hansen H, Myint SS, Wang R, Metayer C, Kang A, Fear AL, Pappas D, Erlich H, Hollenbach JA, Mancuso N, Trachtenberg E, de Smith AJ, Ma X, Wiemels JL. Interaction between maternal killer immunoglobulin-like receptors and offspring HLAs and susceptibility of childhood ALL. Blood Adv 2022; 6:3756-3766. [PMID: 35500222 PMCID: PMC9631572 DOI: 10.1182/bloodadvances.2021006821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) in children is associated with a distinct neonatal cytokine profile. The basis of this neonatal immune phenotype is unknown but potentially related to maternal-fetal immune receptor interactions. We conducted a case-control study of 226 case child-mother pairs and 404 control child-mother pairs to evaluate the role of interaction between HLA genotypes in the offspring and maternal killer immunoglobulin-like receptor (KIR) genotypes in the etiology of childhood ALL, while considering potential mediation by neonatal cytokines and the immune-modulating enzyme arginase-II (ARG-II). We observed different associations between offspring HLA-maternal KIR activating profiles and the risk of ALL in different predicted genetic ancestry groups. For instance, in Latino subjects who experience the highest risk of childhood leukemia, activating profiles were significantly associated with a lower risk of childhood ALL (odds ratio [OR] = 0.59; 95% confidence interval [CI], 0.49-0.71) and a higher level of ARG-II at birth (coefficient = 0.13; 95% CI, 0.04-0.22). HLA-KIR activating profiles were also associated with a lower risk of ALL in non-Latino Asians (OR = 0.63; 95% CI, 0.38-1.01), although they had a lower tumor necrosis factor-α level (coefficient = -0.27; 95% CI, -0.49 to -0.06). Among non-Latino White subjects, no significant association was observed between offspring HLA-maternal KIR interaction and ALL risk or cytokine levels. The current study reports the association between offspring HLA-maternal KIR interaction and the development of childhood ALL with variation by predicted genetic ancestry. We also observed some associations between activating profiles and immune factors related to cytokine control; however, cytokines did not demonstrate causal mediation of the activating profiles on ALL risk.
Collapse
Affiliation(s)
- Qianxi Feng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Mi Zhou
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Libby Morimoto
- School of Public Health, University of California, Berkeley, CA
| | - Helen Hansen
- Department of Neurosurgery, University of California, San Francisco, CA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | | | - Alice Kang
- School of Public Health, University of California, Berkeley, CA
| | - Anna Lisa Fear
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Derek Pappas
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Henry Erlich
- Children’s Hospital Oakland Research Institute, Oakland, CA; and
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | | | - Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT
| | - Joseph L. Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| |
Collapse
|
27
|
Alexandrova M, Manchorova D, Dimova T. Immunity at maternal-fetal interface: KIR/HLA (Allo)recognition. Immunol Rev 2022; 308:55-76. [PMID: 35610960 DOI: 10.1111/imr.13087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Both KIR and HLA are the most variable gene families in the human genome. The recognition of the semi-allogeneic embryo-derived trophoblasts by maternal decidual NK (dNK) cells is essential for the establishment of the functional placenta. This recognition is based on the KIR-HLA interactions and trophoblast expresses a specific HLA profile that constitutes classical polymorphic HLA-C and non-classical oligomorphic HLA-E, HLA-F, and HLA-G molecules. This review highlights some features of the KIR/HLA-C (allo)recognition by decidual NK (dNK) cells as a main immune cell population specifically enriched at maternal-fetal interface during human early pregnancy. How KIR/HLA-C axis operates in pregnancy disorders and in the context of transplacental infections is discussed as well. We summarized old and new data on dNK-cell functional plasticity, their selective expression of KIR and fetal maternal/paternal HLA-C haplotypes present. Results showed that KIR-HLA-C combinations and the corresponding axis operate differently in each pregnancy, determined by the variability of both maternal KIR haplotypes and fetus' maternal/paternal HLA-C allotype combinations. Moreover, the maturation of NK cells strongly depends on if or not HLA allotypes for certain KIR are present. We suggest that the unique KIR/HLA combinations reached in each pregnancy (normal and pathological) should be studied according to well-defined guidelines and unified methodologies to have comparable results ease to interpret and use in clinics.
Collapse
Affiliation(s)
- Marina Alexandrova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
28
|
Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses 2022; 14:v14050879. [PMID: 35632621 PMCID: PMC9144834 DOI: 10.3390/v14050879] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The long search for the environmental trigger of the endemic pemphigus foliaceus (EPF, fogo selvagem) has not yet resulted in any tangible findings. Here, we searched for genetic associations and the differential expression of host genes involved in early viral infections and innate antiviral defense. Genetic variants could alter the structure, expression sites, or levels of the gene products, impacting their functions. By analyzing 3063 variants of 166 candidate genes in 227 EPF patients and 194 controls, we found 12 variants within 11 genes associated with differential susceptibility (p < 0.005) to EPF. The products of genes TRIM5, TPCN2, EIF4E, EIF4E3, NUP37, NUP50, NUP88, TPR, USP15, IRF8, and JAK1 are involved in different mechanisms of viral control, for example, the regulation of viral entry into the host cell or recognition of viral nucleic acids and proteins. Only two of nine variants were also associated in an independent German cohort of sporadic PF (75 patients, 150 controls), aligning with our hypothesis that antiviral host genes play a major role in EPF due to a specific virus−human interaction in the endemic region. Moreover, CCL5, P4HB, and APOBEC3G mRNA levels were increased (p < 0.001) in CD4+ T lymphocytes of EPF patients. Because there is limited or no evidence that these genes are involved in autoimmunity, their crucial role in antiviral responses and the associations that we observed support the hypothesis of a viral trigger for EPF, presumably a still unnoticed flavivirus. This work opens new frontiers in searching for the trigger of EPF, with the potential to advance translational research that aims for disease prevention and treatment.
Collapse
|
29
|
Meazza R, Falco M, Canevali P, Loiacono F, Colomar-Carando N, Muntasell A, Rea A, Mingari MC, Locatelli F, Moretta L, Lopez-Botet M, Pende D. Characterization of KIR + NK cell subsets with a monoclonal antibody selectively recognizing KIR2DL1 and blocking the specific interaction with HLA-C. HLA 2022; 100:119-132. [PMID: 35439359 PMCID: PMC9543057 DOI: 10.1111/tan.14640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/07/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
The phenotypic identification of different NK cell subsets allows more in‐depth characterization of KIR repertoire and function, which are of potential interest in KIR and disease association studies. KIR genes are highly polymorphic, but a great homology exists among the various sequences and few monoclonal antibodies (mAbs) specifically recognize a single KIR. This is the case of HP‐DM1 which was demonstrated by analysis of cell transfectants and epitope mapping to be exclusively KIR2DL1‐specific, covering all allotypes identified to date, except for KIR2DL1*022 and *020, and also to react with KIR2DS1*013. Here, we compared in immunofluorescence analyses the staining of HP‐DM1 with other available mAbs to precisely identify KIR2DL1+ NK cells in potential donors for αβT/B‐depleted haplo‐HSCT, with known KIR genotype. HP‐DM1 mAb was used in combination with EB6 or 11PB6 (anti‐KIR2DL1/S1 and anti‐KIR2DL3*005), 143211 (anti‐KIR2DL1/S5), and HP‐MA4 (anti‐KIR2DL1/S1/S3/S5) mAbs, allowing the accurate identification of different KIR+ NK cell subsets. These phenotypic evaluations appeared useful to dissect the expression pattern of various KIR2D in NK cells from KIR2DL3*005+ individuals, particularly if KIR2DS1 is present. HP‐DM1 mAb remarkably refined NK cell phenotyping of donors carrying KIR2DS5, either in the centromeric or telomeric region. Functional assays with KIR2DL1+/S1+/S5+ NK cells confirmed that only HP‐DM1 exclusively reacts with KIR2DL1. Finally, we demonstrated that HP‐DM1 mAb blocked KIR2DL1 recognition of C2+ HLA‐C. Altogether, the data support that HP‐DM1 is a unique reagent valuable for characterizing KIR+ NK cell subsets.
Collapse
Affiliation(s)
| | | | | | | | - Natalia Colomar-Carando
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Anna Rea
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Cristina Mingari
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.,Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Miguel Lopez-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Daniela Pende
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
30
|
Bruijnesteijn J, de Groot N, de Vos-Rouweler AJM, de Groot NG, Bontrop RE. Comparative genetics of KIR haplotype diversity in humans and rhesus macaques: the balancing act. Immunogenetics 2022; 74:313-326. [PMID: 35291021 DOI: 10.1007/s00251-022-01259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022]
Abstract
The role of natural killer (NK) cells is tightly modulated by interactions of killer cell immunoglobulin-like receptors (KIR) with their ligands of the MHC class I family. Several characteristics of the KIR gene products are conserved in primate evolution, like the receptor structures and the variegated expression pattern. At the genomic level, however, the clusters encoding the KIR family display species-specific diversity, reflected by differential gene expansions and haplotype architecture. The human KIR cluster is extensively studied in large cohorts from various populations, which revealed two KIR haplotype groups, A and B, that represent more inhibitory and more activating functional profiles, respectively. So far, genomic KIR analyses in large outbred populations of non-human primate species are lacking. In this study, we roughly quadrupled the number of rhesus macaques studied for their KIR transcriptome (n = 298). Using segregation analysis, we defined 112 unique KIR region configurations, half of which display a more inhibitory profile, whereas the other half has a more activating potential. The frequencies and functional potential of these profiles might mirror the human KIR haplotype groups. However, whereas the human group A and B KIR haplotypes are confined to largely fixed organizations, the haplotypes in macaques feature highly variable gene content. Moreover, KIR homozygosity was hardly encountered in this panel of macaques. This study exhibits highly diverse haplotype architectures in humans and macaques, which nevertheless might have an equivalent effect on the modulation of NK cell activity.
Collapse
Affiliation(s)
- Jesse Bruijnesteijn
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands.
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, 2288 GJ, Rijswijk, the Netherlands
- Theoretical Biology and Bioinformatics Group, Utrecht University, 3527, Utrecht, the Netherlands
| |
Collapse
|
31
|
Doria M, Moscato GMF, Di Cesare S, Di Matteo G, Sgrulletti M, Bachelerie F, Marin-Esteban V, Moschese V. Case Report: Altered NK Cell Compartment and Reduced CXCR4 Chemotactic Response of B Lymphocytes in an Immunodeficient Patient With HPV-Related Disease. Front Immunol 2022; 13:799564. [PMID: 35154113 PMCID: PMC8825485 DOI: 10.3389/fimmu.2022.799564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The study of inborn errors of immunity (IEI) provides unique opportunities to elucidate the microbiome and pathogenic mechanisms related to severe viral infection. Several immunological and genetic anomalies may contribute to the susceptibility to develop Human Papillomavirus (HPV) pathogenesis. They include different acquired immunodeficiencies, EVER1-2 or CIB1 mutations underlying epidermodysplasia verruciformis (EV) syndrome and multiple IEI. Whereas EV syndrome patients are specifically unable to control infections with beta HPV, individuals with IEI show broader infectious and immune phenotypes. The WHIM (warts, hypogammaglobulinemia, infection, and myelokathexis) syndrome caused by gain-of-CXCR4-function mutation manifests by HPV-induced extensive cutaneous warts but also anogenital lesions that eventually progress to dysplasia. Here we report alterations of B and NK cells in a female patient suffering from cutaneous and mucosal HPV-induced lesions due to an as-yet unidentified genetic defect. Despite no detected mutations in CXCR4, B but not NK cells displayed a defective CXCR4-dependent chemotactic response toward CXCL12. In addition, NK cells showed an abnormal distribution with an expanded CD56bright cell subset and defective cytotoxicity of CD56dim cells. Our observations extend the clinical and immunological spectrum of IEI associated with selective susceptibility toward HPV pathogenesis, thus providing new insight on the immune control of HPV infection and potential host susceptibility factors.
Collapse
Affiliation(s)
- Margherita Doria
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children's Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giusella M F Moscato
- Infectious Diseases Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children's Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gigliola Di Matteo
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy.,PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Viviana Marin-Esteban
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
| |
Collapse
|
32
|
Exploring the Role of Innate Lymphocytes in the Immune System of Bats and Virus-Host Interactions. Viruses 2022; 14:v14010150. [PMID: 35062356 PMCID: PMC8781337 DOI: 10.3390/v14010150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.
Collapse
|
33
|
Hajeer A, Jawdat D, Massadeh S, Aljawini N, Abedalthagafi MS, Arabi YM, Alaamery M. Association of KIR gene polymorphisms with COVID-19 disease. Clin Immunol 2022; 234:108911. [PMID: 34929414 PMCID: PMC8683215 DOI: 10.1016/j.clim.2021.108911] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
34
|
Sim MJW, Stotz Z, Lu J, Brennan P, Long EO, Sun PD. T cells discriminate between groups C1 and C2 HLA-C. eLife 2022; 11:75670. [PMID: 35587797 PMCID: PMC9177145 DOI: 10.7554/elife.75670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/15/2022] [Indexed: 01/09/2023] Open
Abstract
Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCRs) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pΩ), including the pΩ-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C-restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Zachary Stotz
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| |
Collapse
|
35
|
Douillard V, Castelli EC, Mack SJ, Hollenbach JA, Gourraud PA, Vince N, Limou S. Approaching Genetics Through the MHC Lens: Tools and Methods for HLA Research. Front Genet 2021; 12:774916. [PMID: 34925459 PMCID: PMC8677840 DOI: 10.3389/fgene.2021.774916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
The current SARS-CoV-2 pandemic era launched an immediate and broad response of the research community with studies both about the virus and host genetics. Research in genetics investigated HLA association with COVID-19 based on in silico, population, and individual data. However, they were conducted with variable scale and success; convincing results were mostly obtained with broader whole-genome association studies. Here, we propose a technical review of HLA analysis, including basic HLA knowledge as well as available tools and advice. We notably describe recent algorithms to infer and call HLA genotypes from GWAS SNPs and NGS data, respectively, which opens the possibility to investigate HLA from large datasets without a specific initial focus on this region. We thus hope this overview will empower geneticists who were unfamiliar with HLA to run MHC-focused analyses following the footsteps of the Covid-19|HLA & Immunogenetics Consortium.
Collapse
Affiliation(s)
- Venceslas Douillard
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | | | - Steven J. Mack
- Division of Allergy, Immunology and Bone Marrow Transplantation, Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Pierre-Antoine Gourraud
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Université de Nantes, Nantes, France
- Ecole Centrale de Nantes, Department of Computer Sciences and Mathematics in Biology, Nantes, France
| |
Collapse
|
36
|
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021; 10:cells10123357. [PMID: 34943866 PMCID: PMC8699266 DOI: 10.3390/cells10123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.
Collapse
Affiliation(s)
- Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Correspondence: (J.D.); (P.K.)
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | | | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Norbert Zapotoczny
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: (J.D.); (P.K.)
| |
Collapse
|
37
|
Kubanov AA, Karamova AE, Chikin VV, Verbenko DA, Znamenskaya LF, Artamonova OG. Genetic markers for psoriatic arthritis in patients with psoriasis. Part I: non-HLA genes. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Psoriatic arthritis often develops in patients with psoriasis and can lead to joint deformity, stiffness, dysfunction, and disability. Psoriatic arthritis is a polygenic disease. and the issue of personalizing the prognosis of its development can only be resolved taking into account the variability of plenty genomic loci associated with the development of the disease. The personification of the prognosis of the disease can be solved taking into account the variability of the set of genomic loci with which its development is associated. The review examines genomic polymorphisms associated with the development of psoriatic arthritis not psoriasis, except of HLA polymorphisms. Genome regions containing polymorphisms, allelic variants of which are associated both with the development of psoriatic arthritis and reducing the likelihood of its occurrence, are described. It has been reported that the predisposition to the development of psoriatic arthritis in patients with psoriasis is determined by genes encoding proteins involved in inflammation and bone metabolism.
Collapse
|
38
|
Mkorombindo T, Tran-Nguyen TK, Yuan K, Zhang Y, Xue J, Criner GJ, Kim YI, Pilewski JM, Gaggar A, Cho MH, Sciurba FC, Duncan SR. HLA-C and KIR permutations influence chronic obstructive pulmonary disease risk. JCI Insight 2021; 6:e150187. [PMID: 34464355 PMCID: PMC8525585 DOI: 10.1172/jci.insight.150187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
A role for hereditary influences in the susceptibility for chronic obstructive pulmonary disease (COPD) is widely recognized. Cytotoxic lymphocytes are implicated in COPD pathogenesis, and functions of these leukocytes are modulated by interactions between their killer cell Ig-like receptors (KIR) and human leukocyte antigen–Class I (HLA–Class I) molecules on target cells. We hypothesized HLA–Class I and KIR inheritance affect risks for COPD. HLA–Class I alleles and KIR genotypes were defined by candidate gene analyses in multiple cohorts of patients with COPD (total n = 392) and control smokers with normal spirometry (total n = 342). Compared with controls, patients with COPD had overrepresentations of HLA-C*07 and activating KIR2DS1, with underrepresentations of HLA-C*12. Particular HLA-KIR permutations were synergistic; e.g., the presence of HLA-C*07 + KIR2DS1 + HLA-C12null versus HLAC*07null + KIR2DS1null + HLA-C12 was associated with COPD, especially among HLA-C1 allotype homozygotes. Cytotoxicity of COPD lymphocytes was more enhanced by KIR stimulation than those of controls and was correlated with lung function. These data show HLA-C and KIR polymorphisms strongly influence COPD susceptibility and highlight the importance of lymphocyte-mediated cytotoxicity in COPD pathogenesis. Findings here also indicate that HLA-KIR typing could stratify at-risk patients and raise possibilities that HLA-KIR axis modulation may have therapeutic potential.
Collapse
Affiliation(s)
- Takudzwa Mkorombindo
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thi K Tran-Nguyen
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kaiyu Yuan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jianmin Xue
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Young-Il Kim
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael H Cho
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Frank C Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven R Duncan
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
39
|
Rowaiye AB, Asala T, Oli AN, Uzochukwu IC, Akpa A, Esimone CO. The Activating Receptors of Natural Killer Cells and Their Inter-Switching Potentials. Curr Drug Targets 2021; 21:1733-1751. [PMID: 32914713 DOI: 10.2174/1389450121666200910160929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
The global incidence of cancer is on the increase and researchers are prospecting for specific and non-selective therapies derived from the immune system. The killer activating receptors of NK cells are known to be involved in immunosurveillance against tumor and virally-infected cells. These receptors belong to two main categories, namely the immunoglobulin like and C-lectin like families. Though they have different signal pathways, all the killer activating receptors have similar effector functions which include direct cytotoxicity and the release of inflammatory cytokines such as IFN-gamma and TNF-alpha. To transduce signals that exceed the activation threshold for cytotoxicity, most of these receptors require synergistic effort. This review profiles 21 receptors: 13 immunoglobulin-like, 5 lectin-like, and 3 others. It critically explores their structural uniqueness, role in disease, respective transduction signal pathways and their status as current and prospective targets for cancer immunotherapy. While the native ligands of most of these receptors are known, much work is required to prospect for specific antibodies, peptides and multi-target small molecules with high binding affinities.
Collapse
Affiliation(s)
| | - Titilayo Asala
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Ikemefuna Chijioke Uzochukwu
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| | - Alex Akpa
- Department of Medical Biotechnology, National Biotechnology Development Agency, Abuja, Nigeria
| | - Charles Okechukwu Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Agulu, Anambra state, Nigeria
| |
Collapse
|
40
|
Ayo CM, Bestetti RB, de Campos Junior E, Ronchi LS, Borim AA, Brandão CC, de Matttos LC. MICA and KIR: Immunogenetic Factors Influencing Left Ventricular Systolic Dysfunction and Digestive Clinical Form of Chronic Chagas Disease. Front Immunol 2021; 12:714766. [PMID: 34489964 PMCID: PMC8418128 DOI: 10.3389/fimmu.2021.714766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue damage observed in the clinical forms of chronic symptomatic Chagas disease seems to have a close relationship with the intensity of the inflammatory process. The objective of this study was to investigate whether the MICA (MHC class I-related chain A) and KIR (killer cell immunoglobulin-like receptors) polymorphisms are associated with the cardiac and digestive clinical forms of chronic Chagas disease. Possible influence of these genes polymorphisms on the left ventricular systolic dysfunction (LVSD) in patients with chronic Chagas heart disease was also evaluated. This study enrolled 185 patients with positive serology for Trypanosoma cruzi classified according to the clinical form of the disease: cardiac (n=107) and digestive (n=78). Subsequently, patients with the cardiac form of the disease were sub-classified as with LVSD (n=52) and without LVSD (n=55). A control group was formed of 110 healthy individuals. Genotyping was performed by polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP). Statistical analyzes were carried out using the Chi-square test and odds ratio with 95% confidence interval was also calculated to evaluate the risk association. MICA-129 allele with high affinity for the NKG2D receptor was associated to the LVSD in patients with CCHD. The haplotype MICA*008~HLA-C*06 and the KIR2DS2-/KIR2DL2-/KIR2DL3+/C1+ combination were associated to the digestive clinical form of the disease. Our data showed that the MICA and KIR polymorphisms may exert a role in the LVSD of cardiac patients, and in digestive form of Chagas disease.
Collapse
Affiliation(s)
- Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| | - Reinaldo Bulgarelli Bestetti
- Department of Cardiology and Cardiovascular Surgery, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| | | | - Luiz Sérgio Ronchi
- Surgery Department, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| | - Aldenis Albaneze Borim
- Surgery Department, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| | - Luiz Carlos de Matttos
- Immunogenetics Laboratory, Molecular Biology Department, Medicine School in São José do Rio Preto, São José do Rio Preto, Brazil
| |
Collapse
|
41
|
Maucourant C, Nonato Queiroz GA, Corneau A, Leandro Gois L, Meghraoui-Kheddar A, Tarantino N, Bandeira AC, Samri A, Blanc C, Yssel H, Rios Grassi MF, Vieillard V. NK Cell Responses in Zika Virus Infection Are Biased towards Cytokine-Mediated Effector Functions. THE JOURNAL OF IMMUNOLOGY 2021; 207:1333-1343. [PMID: 34408012 DOI: 10.4049/jimmunol.2001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/23/2021] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has emerged as a global concern because of its impact on human health. ZIKV infection during pregnancy can cause microcephaly and other severe brain defects in the developing fetus and there have been reports of the occurrence of Guillain-Barré syndrome in areas affected by ZIKV. NK cells are activated during acute viral infections and their activity contributes to a first line of defense because of their ability to rapidly recognize and kill virus-infected cells. To provide insight into NK cell function during ZIKV infection, we have profiled, using mass cytometry, the NK cell receptor-ligand repertoire in a cohort of acute ZIKV-infected female patients. Freshly isolated NK cells from these patients contained distinct, activated, and terminally differentiated, subsets expressing higher levels of CD57, NKG2C, and KIR3DL1 as compared with those from healthy donors. Moreover, KIR3DL1+ NK cells from these patients produced high levels of IFN-γ and TNF-α, in the absence of direct cytotoxicity, in response to in vitro stimulation with autologous, ZIKV-infected, monocyte-derived dendritic cells. In ZIKV-infected patients, overproduction of IFN-γ correlated with STAT-5 activation (r = 0.6643; p = 0.0085) and was mediated following the recognition of MHC class 1-related chain A and chain B molecules expressed by ZIKV-infected monocyte-derived dendritic cells, in synergy with IL-12 production by the latter cells. Together, these findings suggest that NK cells contribute to the generation of an efficacious adaptive anti-ZIKV immune response that could potentially affect the outcome of the disease and/or the development of persistent symptoms.
Collapse
Affiliation(s)
- Christopher Maucourant
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Aurelien Corneau
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Luana Leandro Gois
- FIOCRUZ, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Aida Meghraoui-Kheddar
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nadine Tarantino
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Assia Samri
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Catherine Blanc
- UPMC Univ Paris 06, Plateforme de Cytométrie, UMS30-LUMIC, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpêtrière, Paris, France; and
| | - Hans Yssel
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | | | - Vincent Vieillard
- Sorbonne Université, UPMC, Inserm U1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, Paris, France;
| |
Collapse
|
42
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
43
|
Licensing Natural Killers for Antiviral Immunity. Pathogens 2021; 10:pathogens10070908. [PMID: 34358058 PMCID: PMC8308748 DOI: 10.3390/pathogens10070908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable discrimination between self- and non-self molecules on the surface of host target cells. In this regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are versatile in that they can also positively impact lymphocyte functionality, as exemplified by their role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede virus-specific NK responses for reasons that remain poorly understood. This review highlights a role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection, their impact on virus-specific NK cells during acute infection, and their potential to affect viral pathogenesis and disease.
Collapse
|
44
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence. J Infect Dis 2021; 224:175-183. [PMID: 33165540 PMCID: PMC8491837 DOI: 10.1093/infdis/jiaa698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Collapse
Affiliation(s)
- Jean C Digitale
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Infectious Disease and Immunity Graduate Group, University
of California, Berkeley, Berkeley, California, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland,
USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - John Rek
- Infectious Diseases Research Collaboration,
Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- London School of Hygiene and Tropical
Medicine, London, United
Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- Department of Medicine, Makerere University,
Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH MIT and Harvard,
Cambridge, Massachusetts, USA
| | | | - Margaret E Feeney
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San
Francisco, San Francisco, California, USA
| |
Collapse
|
45
|
Wawina-Bokalanga T, Vanmechelen B, Lhermitte V, Martí-Carreras J, Vergote V, Koundouno FR, Akoi-Boré J, Thom R, Tipton T, Steeds K, Moussa KB, Amento A, Laenen L, Duraffour S, Gabriel M, Ruibal P, Hall Y, Kader-Kondé M, Günther S, Baele G, Muñoz-Fontela C, Van Weyenbergh J, Carroll MW, Maes P. Human Diversity of Killer Cell Immunoglobulin-Like Receptors and Human Leukocyte Antigen Class I Alleles and Ebola Virus Disease Outcomes. Emerg Infect Dis 2021; 27:76-84. [PMID: 33350932 PMCID: PMC7774578 DOI: 10.3201/eid2701.202177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We investigated the genetic profiles of killer cell immunoglobulin-like receptors (KIRs) in Ebola virus–infected patients. We studied the relationship between KIR–human leukocyte antigen (HLA) combinations and the clinical outcomes of patients with Ebola virus disease (EVD). We genotyped KIRs and HLA class I alleles using DNA from uninfected controls, EVD survivors, and persons who died of EVD. The activating 2DS4–003 and inhibitory 2DL5 genes were significantly more common among persons who died of EVD; 2DL2 was more common among survivors. We used logistic regression analysis and Bayesian modeling to identify 2DL2, 2DL5, 2DS4–003, HLA-B-Bw4-Thr, and HLA-B-Bw4-Ile as probably having a significant relationship with disease outcome. Our findings highlight the importance of innate immune response against Ebola virus and show the association between KIRs and the clinical outcome of EVD.
Collapse
|
46
|
Ahn R, Vukcevic D, Motyer A, Nititham J, Squire DM, Hollenbach JA, Norman PJ, Ellinghaus E, Nair RP, Tsoi LC, Oksenberg J, Foerster J, Lieb W, Weidinger S, Franke A, Elder JT, Jorgenson E, Leslie S, Liao W. Large-Scale Imputation of KIR Copy Number and HLA Alleles in North American and European Psoriasis Case-Control Cohorts Reveals Association of Inhibitory KIR2DL2 With Psoriasis. Front Immunol 2021; 12:684326. [PMID: 34177931 PMCID: PMC8231283 DOI: 10.3389/fimmu.2021.684326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) regulate immune responses in NK and CD8+ T cells via interaction with HLA ligands. KIR genes, including KIR2DS1, KIR3DL1, and KIR3DS1 have previously been implicated in psoriasis susceptibility. However, these previous studies were constrained to small sample sizes, in part due to the time and expense required for direct genotyping of KIR genes. Here, we implemented KIR*IMP to impute KIR copy number from single-nucleotide polymorphisms (SNPs) on chromosome 19 in the discovery cohort (n=11,912) from the PAGE consortium, University of California San Francisco, and the University of Dundee, and in a replication cohort (n=66,357) from Kaiser Permanente Northern California. Stratified multivariate logistic regression that accounted for patient ancestry and high-risk HLA alleles revealed that KIR2DL2 copy number was significantly associated with psoriasis in the discovery cohort (p ≤ 0.05). The KIR2DL2 copy number association was replicated in the Kaiser Permanente replication cohort. This is the first reported association of KIR2DL2 copy number with psoriasis and highlights the importance of KIR genetics in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Richard Ahn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Damjan Vukcevic
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children’s Research Institute, Parkville, VIC, Australia
| | - Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne Nititham
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - David McG. Squire
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Paul J. Norman
- Division of Personalized Medicine, Department of Immunology and Microbiology, University of Colorado, San Francisco, CA, United States
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Rajan P. Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Jorge Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - John Foerster
- College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, United Kingdom
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - James T. Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
- Ann Arbor Veterans Affairs Hospital, Dermatology, Ann Arbor, MI, United States
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente, Oakland, CA, United States
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Parkville, VIC, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Amorim LM, Augusto DG, Nemat-Gorgani N, Montero-Martin G, Marin WM, Shams H, Dandekar R, Caillier S, Parham P, Fernández-Viña MA, Oksenberg JR, Norman PJ, Hollenbach JA. High-Resolution Characterization of KIR Genes in a Large North American Cohort Reveals Novel Details of Structural and Sequence Diversity. Front Immunol 2021; 12:674778. [PMID: 34025673 PMCID: PMC8137979 DOI: 10.3389/fimmu.2021.674778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
The KIR (killer-cell immunoglobulin-like receptor) region is characterized by structural variation and high sequence similarity among genes, imposing technical difficulties for analysis. We undertook the most comprehensive study to date of KIR genetic diversity in a large population sample, applying next-generation sequencing in 2,130 United States European-descendant individuals. Data were analyzed using our custom bioinformatics pipeline specifically designed to address technical obstacles in determining KIR genotypes. Precise gene copy number determination allowed us to identify a set of uncommon gene-content KIR haplotypes accounting for 5.2% of structural variation. In this cohort, KIR2DL4 is the framework gene that most varies in copy number (6.5% of all individuals). We identified phased high-resolution alleles in large multi-locus insertions and also likely founder haplotypes from which they were deleted. Additionally, we observed 250 alleles at 5-digit resolution, of which 90 have frequencies ≥1%. We found sequence patterns that were consistent with the presence of novel alleles in 398 (18.7%) individuals and contextualized multiple orphan dbSNPs within the KIR complex. We also identified a novel KIR2DL1 variant, Pro151Arg, and demonstrated by molecular dynamics that this substitution is predicted to affect interaction with HLA-C. No previous studies have fully explored the full range of structural and sequence variation of KIR as we present here. We demonstrate that pairing high-throughput sequencing with state-of-art computational tools in a large cohort permits exploration of all aspects of KIR variation including determination of population-level haplotype diversity, improving understanding of the KIR system, and providing an important reference for future studies.
Collapse
Affiliation(s)
- Leonardo M. Amorim
- Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Danillo G. Augusto
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
| | - Gonzalo Montero-Martin
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Wesley M. Marin
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Hengameh Shams
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Ravi Dandekar
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Stacy Caillier
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Peter Parham
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
| | | | - Jorge R. Oksenberg
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Paul J. Norman
- Department of Structural Biology, Stanford University, Palo Alto, CA, United States
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Denver, CO, United States
| | - Jill A. Hollenbach
- Department of Neurology, University of California, San Francisco, CA, United States
| |
Collapse
|
48
|
Sonon P, Collares CVA, Ferreira MLB, Almeida RS, Sadissou I, Cordeiro MT, de Fátima Militão de Albuquerque M, Castelli EC, Lucena-Silva N, Donadi EA. Peripheral spectrum neurological disorder after arbovirus infection is associated with HLA-F variants among Northeastern Brazilians. INFECTION GENETICS AND EVOLUTION 2021; 92:104855. [PMID: 33839310 DOI: 10.1016/j.meegid.2021.104855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Non-classical class I human leukocyte antigens (HLA) molecules are known to modulate the function of cytotoxic cells (NK and T CD8+) during viral infection by interacting with inhibitory/activating receptors. However, little is known about the HLA-E/-F genetic variability on arbovirus infections. METHODS We evaluated by massive parallel sequencing the full HLA-E/-F genetic diversity among patients infected during the arbovirus (ZIKV, DENV, and CHIKV) outbreak leading to a broad range of neurological complications in the Brazilian State of Pernambuco. In parallel, healthy blood donors from the same area were also studied. Plink and R software were used for genetic association study. To limit the false-positive results and enhance the reliability of the results, we adopted P-values <0.01 as significant levels. RESULTS Compared to controls, the HLA-F alleles: -1610 C (rs17875375), +1383 G (rs17178385), and +3537 A (rs17875384), all in complete linkage disequilibrium with each other (r2 = 1), were overrepresented in patients presenting peripheral spectrum disorders (PSD). The HLA-F*Distal-D haplotype that harbored the -1610 C allele exhibited a trend increase in PSD group. No associations were found for HLA-E. CONCLUSIONS Our findings showed that the HLA-F genetic background seems to be more important than HLA-E on the susceptibility to PSD complications.
Collapse
Affiliation(s)
- Paulin Sonon
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil; Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Cristhianna V A Collares
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Maria Lúcia Brito Ferreira
- Hospital da Restauração Gov. Paulo Guerra, Av. Gov. Agamenon Magalhães, s/n, Derby, 52171011 Recife, PE, Brazil
| | - Renata Santos Almeida
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Ibrahim Sadissou
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil
| | - Marli Tenório Cordeiro
- Virology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Maria de Fátima Militão de Albuquerque
- Public Health Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Erick C Castelli
- São Paulo State University (UNESP), School of Medicine, Molecular Genetics and Bioinformatics Laboratory, Prof. Dr. Walter Maurício Correa, s/n Unesp, Campus de Botucatu, Botucatu CEP 18618681, SP, Brazil; São Paulo State University (UNESP), Department of Pathology, School of Medicine, Botucatu, SP, Brazil
| | - Norma Lucena-Silva
- Immunogenetic Laboratory, Immunology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Av. Moraes rego, s/n, Campus da UFPE, Cidade Universitária, 50670420 Recife, PE, Brazil
| | - Eduardo A Donadi
- Ribeirão Preto Medical School, University of São Paulo, AV Bandeirantes, 3900, HC, Vila Monte Alegre, 14049900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
49
|
Leite MDM, Gonzalez-Galarza FF, Silva BCCD, Middleton D, Santos EJMD. Predictive immunogenetic markers in COVID-19. Hum Immunol 2021; 82:247-254. [PMID: 33546902 PMCID: PMC7817393 DOI: 10.1016/j.humimm.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/22/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
Immunorelevant genes are among the most probable modulators of coronavirus disease 2019 (COVID-19) progression and prognosis. However, in the few months of the pandemic, data generated on host genetics has been scarce. The present study retrieved data sets of HLA-B alleles, KIR genes and functional single nucleotide polymorphisms (SNPs) in cytokines related to COVID-19 cytokine storm from two publicly available databases: Allele Frequency Net Database and Ensembl, and correlated these frequency data with Case Fatality Rate (CFR) and Daily Death Rates (DDR) across countries. Correlations of eight HLA-B alleles and polymorphisms in three cytokine genes (IL6, IL10, and IL12B) were observed and were mainly associated with DDR. Additionally, HLA-B correlations suggest that differences in allele affinities to SARS-CoV-2 peptides are also associated with DDR. These results may provide rationale for future host genetic marker surveys on COVID-19.
Collapse
Affiliation(s)
- Mauro de Meira Leite
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil.
| | - Faviel F Gonzalez-Galarza
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK; Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Bruno Conde Costa da Silva
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil
| | - Derek Middleton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eduardo José Melo Dos Santos
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil
| |
Collapse
|
50
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|