1
|
Poniedziałek B, Rzymski P, Zarębska-Michaluk D, Flisiak R. Viral respiratory infections and air pollution: A review focused on research in Poland. CHEMOSPHERE 2024; 359:142256. [PMID: 38723686 DOI: 10.1016/j.chemosphere.2024.142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The COVID-19 pandemic has reinforced an interest in the relationship between air pollution and respiratory viral infections, indicating that their burden can be increased under poor air quality. This paper reviews the pathways through which air pollutants can enhance susceptibility to such infections and aggravate their clinical course and outcome. It also summarizes the research exploring the links between various viral infections and exposure to solid and gaseous pollution in Poland, a region characterized by poor air quality, especially during a heating season. The majority of studies focused on concentrations of particulate matter (PM; 86.7%); the other pollutants, i.e., BaP, benzene, CO, NOx, O3, and SO2, were studied less often and sometimes only in the context of a particular infection type. Most research concerned COVID-19, showing that elevated levels of PM and NO2 correlated with higher morbidity and mortality, while increased PM2.5 and benzo[a]pyrene levels were related to worse clinical course and outcome in hospitalized, regardless of age and dominant SARS-CoV-2 variant. PM10 and PM2.5 levels were also associated with the incidence of influenza-like illness and, along with NO2 concentrations, with a higher rate of children's hospitalizations due to lower respiratory tract RSV infections. Higher levels of air pollutants also increased hospitalization due to bronchitis (PM, NOx, and O3) and emergency department admission due to viral croup (PM10, PM2.5, NOx, CO, and benzene). Although the conducted studies imply only correlations and have other limitations, as discussed in the present paper, it appears that improving air quality through reducing combustion processes in energy production in Poland should be perceived as a part of multilayered protection measures against respiratory viral infections, decreasing the healthcare costs of COVID-19, lower tract RSV infections, influenza, and other respiratory viral diseases prevalent between autumn and early spring, in addition to other health and climate benefits.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | | | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
2
|
Ruggles A, Benakis C. Exposure to Environmental Toxins: Potential Implications for Stroke Risk via the Gut- and Lung-Brain Axis. Cells 2024; 13:803. [PMID: 38786027 PMCID: PMC11119296 DOI: 10.3390/cells13100803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Recent evidence indicates that exposure to environmental toxins, both short-term and long-term, can increase the risk of developing neurological disorders, including neurodegenerative diseases (i.e., Alzheimer's disease and other dementias) and acute brain injury (i.e., stroke). For stroke, the latest systematic analysis revealed that exposure to ambient particulate matter is the second most frequent stroke risk after high blood pressure. However, preclinical and clinical stroke investigations on the deleterious consequences of environmental pollutants are scarce. This review examines recent evidence of how environmental toxins, absorbed along the digestive tract or inhaled through the lungs, affect the host cellular response. We particularly address the consequences of environmental toxins on the immune response and the microbiome at the gut and lung barrier sites. Additionally, this review highlights findings showing the potential contribution of environmental toxins to an increased risk of stroke. A better understanding of the biological mechanisms underlying exposure to environmental toxins has the potential to mitigate stroke risk and other neurological disorders.
Collapse
Affiliation(s)
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, 81337 Munich, Germany;
| |
Collapse
|
3
|
Shah D, Dave B, Chorawala MR, Prajapati BG, Singh S, M. Elossaily G, Ansari MN, Ali N. An Insight on Microfluidic Organ-on-a-Chip Models for PM 2.5-Induced Pulmonary Complications. ACS OMEGA 2024; 9:13534-13555. [PMID: 38559954 PMCID: PMC10976395 DOI: 10.1021/acsomega.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Pulmonary diseases like asthma, chronic obstructive pulmonary disorder, lung fibrosis, and lung cancer pose a significant burden to global human health. Many of these complications arise as a result of exposure to particulate matter (PM), which has been examined in several preclinical and clinical trials for its effect on several respiratory diseases. Particulate matter of size less than 2.5 μm (PM2.5) has been known to inflict unforeseen repercussions, although data from epidemiological studies to back this are pending. Conventionally utilized two-dimensional (2D) cell culture and preclinical animal models have provided insufficient benefits in emulating the in vivo physiological and pathological pulmonary conditions. Three-dimensional (3D) structural models, including organ-on-a-chip models, have experienced a developmental upsurge in recent times. Lung-on-a-chip models have the potential to simulate the specific features of the lungs. With the advancement of technology, an emerging and advanced technique termed microfluidic organ-on-a-chip has been developed with the aim of identifying the complexity of the respiratory cellular microenvironment of the body. In the present Review, the role of lung-on-a-chip modeling in reproducing pulmonary complications has been explored, with a specific emphasis on PM2.5-induced pulmonary complications.
Collapse
Affiliation(s)
- Disha Shah
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhavarth Dave
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Mehul R. Chorawala
- Department
of Pharmacology and Pharmacy Practice, L.
M. College of Pharmacy Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Bhupendra G. Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research,
Ganpat University, Mehsana, Gujarat 384012, India
| | - Sudarshan Singh
- Office
of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Mohammed AN, Yadav N, Kaur P, Jandarov R, Yadav JS. Immunomodulation of susceptibility to pneumococcal pneumonia infection in mouse lungs exposed to carbon nanoparticles via dysregulation of innate and adaptive immune responses. Toxicol Appl Pharmacol 2024; 483:116820. [PMID: 38218205 DOI: 10.1016/j.taap.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Carbon nanotubes (CNTs) are emerging pollutants of occupational and environmental health concern. While toxicological mechanisms of CNTs are emerging, there is paucity of information on their modulatory effects on susceptibility to infections. Here, we investigated cellular and molecular events underlying the effect of multi-walled CNT (MWCNT) exposure on susceptibility to Streptococcus pneumoniae infection in our 28-day sub-chronic exposure mouse model. Data indicated reduced phagocytic function in alveolar macrophages (AMs) from MWCNT-exposed lungs evidenced by lower pathogen uptake in 1-h infection assay. At 24-h post-infection, intracellular pathogen count in exposed AMs showed 2.5 times higher net increase (2-fold in vehicle- versus 5-fold in MWCNT-treated), indicating a greater rate of intracellular multiplication and/or survival due to MWCNT exposure. AMs from MWCNT-exposed lungs exhibited downregulation of pathogen-uptake receptors CD163, Phosphatidyl-serine receptor (Ptdsr), and Macrophage scavenger receptors class A type 1 (Msr1) and type 2 (MSr2). In whole lung, MWCNT exposure shifted the macrophage polarization state towards the immunosuppressive phenotype M2b and increased the CD11c+ dendritic cell population required to activate the adaptive immune response. Notably, the MWCNT pre-exposure dysregulated T-cell immunity, evidenced by diminished CD4 and Th17 response, and exacerbated Th1 and Treg responses (skewed Th17/Treg ratio), thereby favoring the pneumococcal infection. Overall, these findings indicated that MWCNT exposure compromises both innate and adaptive immunity leading to diminished host lung defense against pneumonia infection. To our knowledge, this is the first report on an immunomodulatory role of CNT pre-exposure on pneumococcal infection susceptibility due to dysregulation of both innate and adaptive immunity targets.
Collapse
Affiliation(s)
- Afzaal Nadeem Mohammed
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA 22908-0738, USA
| | - Perminder Kaur
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jagjit Singh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Adhikary M, Mal P, Saikia N. Exploring the link between particulate matter pollution and acute respiratory infection risk in children using generalized estimating equations analysis: a robust statistical approach. Environ Health 2024; 23:12. [PMID: 38273338 PMCID: PMC10809452 DOI: 10.1186/s12940-024-01049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND India is facing a burdensome public health challenge due to air pollution, with a particularly high burden of acute respiratory infections (ARI) among children. To address this issue, our study aims to evaluate the association between exposure to fine particulate matter (PM2.5) and ARI incidence in young children in India. MATERIALS AND METHODS Our study used PM2.5 data provided by the Atmospheric Composition Analysis Group at Washington University to assess the association between PM2.5 exposure and ARI incidence in 223,375 children sampled from the 2019-2021 Demographic Health Survey in India. We employed the generalized estimating equation and reported odds ratios and 95% confidence intervals for a 10 µg/m3 increase in PM2.5 and quartiles of PM2.5 exposure. RESULTS Each 10 µg/m3 increase in PM2.5 levels was associated with an increased odds of ARI (OR: 1.23, 95% CI: 1.19-1.27). A change from the first quartile of PM2.5 (2.5-34.4 µg/m3) to the second quartile (34.5-51.5 µg/m3) of PM2.5 was associated with a two-fold change (OR: 2.06, 95% CI: 1.60-2.66) in the odds of developing ARI. Similarly, comparing the first quartile to the fourth quartile of PM2.5 exposure (78.3-128.9 µg/m3) resulted in an over four-fold increase in the odds of ARI (OR: 4.45, 95% CI: 3.37-5.87). CONCLUSION Mitigation efforts must be continued implementing higher restrictions in India and to bring new interventions to ensure safe levels of air for reducing the burden of disease and mortality associated with air pollution in India.
Collapse
Affiliation(s)
- Mihir Adhikary
- Department of Public Health and Mortality Studies, International Institute for Population Sciences, Mumbai, Maharashtra, India.
| | - Piyasa Mal
- Department of Public Health and Mortality Studies, International Institute for Population Sciences, Mumbai, Maharashtra, India
| | - Nandita Saikia
- Department of Public Health and Mortality Studies, International Institute for Population Sciences, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Smyth T, Jaspers I. Diesel exhaust particles induce polarization state-dependent functional and transcriptional changes in human monocyte-derived macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L83-L97. [PMID: 38084400 PMCID: PMC11279754 DOI: 10.1152/ajplung.00085.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
7
|
Liu Q, Ji Y, Wang L, Li Z, Tao B, Zhu L, Lu W, Martinez L, Zeng Y, Wang J. Air pollutants in bronchoalveolar lavage fluid and pulmonary tuberculosis: A mediation analysis of gene-specific methylation. iScience 2023; 26:108391. [PMID: 38047067 PMCID: PMC10690542 DOI: 10.1016/j.isci.2023.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Particulate matter (PM) exposure could alter the risk of tuberculosis, but the underlying mechanism is still unclear. We enrolled 132 pulmonary tuberculosis (PTB) patients and 30 controls. Bronchoalveolar lavage fluid samples were collected from all participants to detect organochlorine pesticides, polycyclic aromatic hydrocarbons, metal elements, and DNA methylation of immunity-related genes. We observed that γ-HCH, Bap, Sr, Ag, and Sn were related to an increased risk of PTB, while Cu and Ba had a negative effect. IFN-γ, IL-17A, IL-2, and IL-23 had a higher level in the PTB group, while IL-4 was lower. The methylation of 18 CpG sites was statistically associated with PTB risk. The methylation at the IL-4_06_121 site showed a significant mediating role on γ-HCH, Sr, and Sn. Our study suggests that PM exposure can increase the risk of tuberculosis by affecting DNA methylation and cytokine expression.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
- Department of Non-Communicable Disease, Center for Disease Control and Prevention of Jiangyin City, Wuxi 214434, P.R. China
| | - Li Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Bilin Tao
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Wei Lu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing 210009, P.R. China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Yi Zeng
- Department of Tuberculosis, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing 211113, P.R. China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, P.R. China
| |
Collapse
|
8
|
Liu Y, Wang Y, Zhang R, Wang S, Li J, An Z, Song J, Wu W. Transcriptomics profile of human bronchial epithelial cells exposed to ambient fine particles and influenza virus (H3N2). Sci Rep 2023; 13:19259. [PMID: 37935887 PMCID: PMC10630401 DOI: 10.1038/s41598-023-46724-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Fine particulate matter (PM2.5) pollution remains a major threat to public health. As the physical barrier against inhaled air pollutants, airway epithelium is a primary target for PM2.5 and influenza viruses, two major environmental insults. Recent studies have shown that PM2.5 and influenza viruses may interact to aggravate airway inflammation, an essential event in the pathogenesis of diverse pulmonary diseases. Airway epithelium plays a critical role in lung health and disorders. Thus far, the mechanisms for the interactive effect of PM2.5 and the influenza virus on gene transcription of airway epithelial cells have not been fully uncovered. In this present pilot study, the transcriptome sequencing approach was introduced to identify responsive genes following individual and co-exposure to PM2.5 and influenza A (H3N2) viruses in a human bronchial epithelial cell line (BEAS-2B). Enrichment analysis revealed the function of differentially expressed genes (DEGs). Specifically, the DEGs enriched in the xenobiotic metabolism by the cytochrome P450 pathway were linked to PM2.5 exposure. In contrast, the DEGs enriched in environmental information processing and human diseases, such as viral protein interaction with cytokines and cytokine receptors and epithelial cell signaling in bacterial infection, were significantly related to H3N2 exposure. Meanwhile, co-exposure to PM2.5 and H3N2 affected G protein-coupled receptors on the cell surface. Thus, the results from this study provides insights into PM2.5- and influenza virus-induced airway inflammation and potential mechanisms.
Collapse
Affiliation(s)
- Yuan Liu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Rui Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Shaolan Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
9
|
Błach J, Siedliński M, Sydor W. Immunology in COPD and the use of combustible cigarettes and heated tobacco products. Eur J Med Res 2023; 28:397. [PMID: 37794516 PMCID: PMC10548761 DOI: 10.1186/s40001-023-01374-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases, characterised by high morbidity and mortality. COPD is characterised by a progressive decline of lung function caused by chronic inflammatory reactions in the lung tissue due to continual exposure to harmful molecules by inhalation. As prevention plays a very important role in COPD, quitting smoking is the most important factor in reducing the decline in lung function. Unfortunately, many people are unable to break their nicotine addiction. This paper summarises current knowledge about combustible cigarettes (CSs) and alternative tobacco products such as heated tobacco products (HTPs) in COPD. The paper focuses on the immunological aspects of COPD and the influence of tobacco products on lung tissue immunology. There are differences in research results between HTPs and CSs in favour of HTPs. More long-term studies are needed to look at the effects of HTPs, especially in COPD. However, there is no doubt that it would be best for patients to give up their nicotine addiction completely.
Collapse
Affiliation(s)
- Justyna Błach
- Department of Clinical Immunology, UCH, Cracow, Poland.
| | - Mateusz Siedliński
- Department of Internal Medicine and Rural Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Wojciech Sydor
- Department of Rheumatology and Immunology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
10
|
Yimam M, Horm T, O’Neal A, Jiao P, Hong M, Brownell L, Jia Q, Lin M, Gauthier A, Wu J, Venkat Mateti K, Yang X, Dial K, Zefi S, Mantell LL. A Standardized Botanical Composition Mitigated Acute Inflammatory Lung Injury and Reduced Mortality through Extracellular HMGB1 Reduction. Molecules 2023; 28:6560. [PMID: 37764336 PMCID: PMC10538186 DOI: 10.3390/molecules28186560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
HMGB1 is a key late inflammatory mediator upregulated during air-pollution-induced oxidative stress. Extracellular HMGB1 accumulation in the airways and lungs plays a significant role in the pathogenesis of inflammatory lung injury. Decreasing extracellular HMBG1 levels may restore innate immune cell functions to protect the lungs from harmful injuries. Current therapies for air-pollution-induced respiratory problems are inadequate. Dietary antioxidants from natural sources could serve as a frontline defense against air-pollution-induced oxidative stress and lung damage. Here, a standardized botanical antioxidant composition from Scutellaria baicalensis and Acacia catechu was evaluated for its efficacy in attenuating acute inflammatory lung injury and sepsis. Murine models of disorders, including hyperoxia-exposed, bacterial-challenged acute lung injury, LPS-induced sepsis, and LPS-induced acute inflammatory lung injury models were utilized. The effect of the botanical composition on phagocytic activity and HMGB1 release was assessed using hyperoxia-stressed cultured macrophages. Analyses, such as hematoxylin-eosin (HE) staining for lung tissue damage evaluation, ELISA for inflammatory cytokines and chemokines, Western blot analysis for proteins, including extracellular HMGB1, and bacterial counts in the lungs and airways, were performed. Statistically significant decreases in mortality (50%), proinflammatory cytokines (TNF-α, IL-1β, IL-6) and chemokines (CINC-3) in serum and bronchoalveolar lavage fluid (BALF), and increased bacterial clearance from airways and lungs; reduced airway total protein, and decreased extracellular HMGB1 were observed in in vivo studies. A statistically significant 75.9% reduction in the level of extracellular HMGB1 and an increase in phagocytosis were observed in cultured macrophages. The compilations of data in this report strongly suggest that the botanical composition could be indicated for oxidative-stress-induced lung damage protection, possibly through attenuation of increased extracellular HMGB1 accumulation.
Collapse
Affiliation(s)
- Mesfin Yimam
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Teresa Horm
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Alexandria O’Neal
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Ping Jiao
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Mei Hong
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Lidia Brownell
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Qi Jia
- Unigen Inc., 2121 South State Street, Suite #400, Tacoma, WA 98405, USA; (T.H.); (A.O.); (P.J.); (M.H.); (L.B.); (Q.J.)
| | - Mosi Lin
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Alex Gauthier
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Jiaqi Wu
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Kranti Venkat Mateti
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Xiaojian Yang
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Katelyn Dial
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Sidorela Zefi
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| | - Lin L. Mantell
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY 11439, USA; (M.L.); (A.G.); (J.W.); (K.V.M.); (X.Y.); (K.D.); (S.Z.); (L.L.M.)
| |
Collapse
|
11
|
Lee HL, Kim JM, Go MJ, Kim TY, Joo SG, Kim JH, Lee HS, Kim HJ, Heo HJ. Protective Effect of Lonicera japonica on PM 2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants (Basel) 2023; 12:antiox12040968. [PMID: 37107342 PMCID: PMC10135714 DOI: 10.3390/antiox12040968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to assess the protective effect of an extract of Lonicera japonica against particulate-matter (PM)2.5-induced pulmonary inflammation and fibrosis. The compounds with physiological activity were identified as shanzhiside, secologanoside, loganic acid, chlorogenic acid, secologanic acid, secoxyloganin, quercetin pentoside, and dicaffeoyl quinic acids (DCQA), including 3,4-DCQA, 3,5-DCQA, 4,5-DCQA, and 1,4-DCQA using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MSE). The extract of Lonicera japonica reduced cell death, reactive oxygen species (ROS) production, and inflammation in A549 cells. The extract of Lonicera japonica decreased serum T cells, including CD4+ T cells, CD8+ T cells, and total T helper 2 (Th2) cells, and immunoglobulins, including immunoglobulin G (IgG) and immunoglobulin E (IgE), in PM2.5-induced BALB/c mice. The extract of Lonicera japonica protected the pulmonary antioxidant system by regulating superoxide dismutase (SOD) activity, reduced glutathione (GSH) contents, and malondialdehyde (MDA) levels. In addition, it ameliorated mitochondrial function by regulating the production of ROS, mitochondrial membrane potential (MMP), and ATP contents. Moreover, the extract of Lonicera japonica exhibited a protective activity of apoptosis, fibrosis, and matrix metalloproteinases (MMPs) via TGF-β and NF-κB signaling pathways in lung tissues. This study suggests that the extract of Lonicera japonica might be a potential material to improve PM2.5-induced pulmonary inflammation, apoptosis, and fibrosis.
Collapse
Affiliation(s)
- Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ju Hui Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Ma Y, Zhao G, Wang C, An M, Ma C, Liu Z, Wang J, Yang K. Effects of supplementation with different concentrations of L-citrulline on the plasma amino acid concentration, reproductive hormone concentrations, antioxidant capacity, and reproductive performance of Hu ewes. ANIMAL PRODUCTION SCIENCE 2023; 63:853-861. [DOI: doi.org/10.1071/an22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Context L-citrulline (L-Cit) does not degrade in the rumen and has the ability to form peptide bonds in the body; however, it does not participate in protein synthesis. Aims This study aimed to evaluate the effects of L-Cit on the reproductive performance of Hu ewes. Methods In total, 30 ewes were randomly categorised into five groups. The control group was fed with a basic diet, whereas the Experimental Groups I, II, III, and IV were provided feed supplemented with 5, 10, 15, and 20 g/day of L-Cit respectively. Blood samples of ewes were collected 4 h after feeding on Day 21 of the experiment and before feeding on Day 30. The optimal supplementary feeding dose was selected on the basis of blood biochemical indexes. Overall, ninety 2-year-old ewes were classified into two groups. The control group was fed with a basic diet and the experimental group was fed with a diet supplemented with 10 g/day of L-Cit. After 30 days of supplementary feeding, reproductive performance of ewes was determined. Key results The plasma concentrations of Cit, ornithine, and arginine in ewes increased linearly with an increase in the level of L-Cit supplementation. The plasma concentrations of gonadotropin-releasing hormone, luteinising hormone, and follicle-stimulating hormone in the experimental group increased significantly compared with those in the control group. The plasma total antioxidant capacity and catalase, superoxide dismutase, and glutathione peroxidase in the experimental group were significantly higher than those in the control group, whereas the concentrations of malondialdehyde in all experimental groups were significantly lower than those in the control group. The conception, lambing, and double lambing rates of the experimental group were increased by 28.76%, 15.90%, and 40.21% respectively. Conclusions Supplementation with different doses of L-Cit can improve the concentrations of some plasma amino acids and reproductive hormones as well as antioxidant capacity of ewes. Supplementary feeding with 10 g/day of L-Cit could increase the lambing and double lambing rates of ewes. Implication L-Cit can improve the reproductive performance of ewes.
Collapse
|
13
|
Mermiri M, Mavrovounis G, Kanellopoulos N, Papageorgiou K, Spanos M, Kalantzis G, Saharidis G, Gourgoulianis K, Pantazopoulos I. Effect of PM2.5 Levels on ED Visits for Respiratory Causes in a Greek Semi-Urban Area. J Pers Med 2022; 12:jpm12111849. [PMID: 36579575 PMCID: PMC9696598 DOI: 10.3390/jpm12111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Fine particulate matter that have a diameter of <2.5 μm (PM2.5) are an important factor of anthropogenic pollution since they are associated with the development of acute respiratory illnesses. The aim of this prospective study is to examine the correlation between PM2.5 levels in the semi-urban city of Volos and Emergency Department (ED) visits for respiratory causes. ED visits from patients with asthma, pneumonia and upper respiratory infection (URI) were recorded during a one-year period. The 24 h PM2.5 pollution data were collected in a prospective manner by using twelve fully automated air quality monitoring stations. PM2.5 levels exceeded the daily limit during 48.6% of the study period, with the mean PM2.5 concentration being 30.03 ± 17.47 μg/m3. PM2.5 levels were significantly higher during winter. When PM2.5 levels were beyond the daily limit, there was a statistically significant increase in respiratory-related ED visits (1.77 vs. 2.22 visits per day; p: 0.018). PM2.5 levels were also statistically significantly related to the number of URI-related ED visits (0.71 vs. 0.99 visits/day; p = 0.01). The temperature was negatively correlated with ED visits (r: −0.21; p < 0.001) and age was found to be positively correlated with ED visits (r: 0.69; p < 0.001), while no statistically significant correlation was found concerning humidity (r: 0.03; p = 0.58). In conclusion, PM2.5 levels had a significant effect on ED visits for respiratory causes in the city of Volos.
Collapse
Affiliation(s)
- Maria Mermiri
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
- Department of Anesthesiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
- Correspondence:
| | - Georgios Mavrovounis
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Nikolaos Kanellopoulos
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Konstantina Papageorgiou
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Michalis Spanos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Georgios Kalantzis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, 8 Pedion Areos, 38334 Volos, Greece
| | - Georgios Saharidis
- Department of Mechanical Engineering, University of Thessaly, Leoforos Athinon, 8 Pedion Areos, 38334 Volos, Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| | - Ioannis Pantazopoulos
- Department of Emergency Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa, Greece
| |
Collapse
|
14
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Jia H, Xu J, Ning L, Feng T, Cao P, Gao S, Shang P, Yu X. Ambient air pollution, temperature and hospital admissions due to respiratory diseases in a cold, industrial city. J Glob Health 2022; 12:04085. [PMID: 36243957 PMCID: PMC9569423 DOI: 10.7189/jogh.12.04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The influences of air pollution exposure and temperature on respiratory diseases have become major global health concerns. This study investigated the relationship between ambient air pollutant concentrations and temperature in cold industrial cities that have the risk of hospitalization for respiratory diseases. Methods A time-series study was conducted in Changchun, China, from 2015 to 2019 to analyse the number of daily admissions for respiratory diseases, air pollutant concentrations, and meteorological factors. Time-series decomposition was applied to analyse the trend and characteristics of the number of admissions. Generalized additive models and distributed lag nonlinear models were constructed to explore the effects of air pollutant concentrations and temperature on the number of admissions. Results The number of daily admissions showed an increasing trend, and the seasonal fluctuation was obvious, with more daily admissions in winter and spring than in summer and autumn. There were positive and gradually decreasing lag effects of PM10, PM2.5, NO2, and CO concentrations on the number of admissions, whereas O3 showed a J-shaped trend. The results showed that within the 7-day lag period, 0.5°C was the temperature associated with the lowest relative risk of admission due to respiratory disease, and extremely low and high temperatures (<-18°C, >27°C, respectively) increased the risk of hospitalization for respiratory diseases by 8.3% and 12.1%, respectively. Conclusions From 2015 to 2019, respiratory diseases in Changchun showed an increasing trend with obvious seasonality. The increased concentrations of SO2, NO2, CO, PM2.5, O3 and PM10 lead to an increased risk of hospitalization for respiratory diseases, with a significant lag effect. Both extreme heat and cold could lead to increases in the risk of admission due to respiratory disease.
Collapse
Affiliation(s)
- Huanhuan Jia
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Jiaying Xu
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Liangwen Ning
- School of Public Administration, Jilin University, Changchun City, Jilin Province, China
| | - Tianyu Feng
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Peng Cao
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Shang Gao
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Panpan Shang
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| | - Xihe Yu
- School of Public Health, Jilin University, Changchun City, Jilin Province, China
| |
Collapse
|
16
|
Zhi Y, Chen X, Cao G, Chen F, Seo HS, Li F. The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119826. [PMID: 35932897 DOI: 10.1016/j.envpol.2022.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
Collapse
Affiliation(s)
- Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xinyu Chen
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, 56212, Jeollabuk-do, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
17
|
Honda TJ, Kazemiparkouhi F, Henry TD, Suh HH. Long-term PM 2.5 exposure and sepsis mortality in a US medicare cohort. BMC Public Health 2022; 22:1214. [PMID: 35717154 PMCID: PMC9206363 DOI: 10.1186/s12889-022-13628-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Risk factors contributing to sepsis-related mortality include clinical conditions such as cardiovascular disease, chronic lung disease, and diabetes, all of which have also been shown to be associated with air pollution exposure. However, the impact of chronic exposure to air pollution on sepsis-related mortality has been little studied. Methods In a cohort of 53 million Medicare beneficiaries (228,439 sepsis-related deaths) living across the conterminous United States between 2000 and 2008, we examined the association of long-term PM2.5 exposure and sepsis-related mortality. For each Medicare beneficiary (ages 65–120), we estimated the 12-month moving average PM2.5 concentration for the 12 month before death, for their ZIP code of residence using well validated GIS-based spatio-temporal models. Deaths were categorized as sepsis-related if they have ICD-10 codes for bacterial or other sepsis. We used Cox proportional hazard models to assess the association of long-term PM2.5 exposure on sepsis-related mortality. Models included strata for age, sex, race, and ZIP code and controlled for neighborhood socio-economic status (SES). We also evaluated confounding through adjustment of neighborhood behavioral covariates. Results A 10 μg/m3 increase in 12-month moving average PM2.5 was associated with a 9.1% increased risk of sepsis mortality (95% CI: 3.6–14.9) in models adjusted for age, sex, race, ZIP code, and SES. HRs for PM2.5 were higher and statistically significant for older (> 75), Black, and urban beneficiaries. In stratified analyses, null associations were found for younger beneficiaries (65–75), beneficiaries who lived in non-urban ZIP codes, and those residing in low-SES urban ZIP codes. Conclusions Long-term PM2.5 exposure is associated with elevated risks of sepsis-related mortality.
Collapse
Affiliation(s)
- Trenton J Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | | | - Trenton D Henry
- Division of Public Health, Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT, USA
| | - Helen H Suh
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
18
|
PM2.5 Exposure and Asthma Development: The Key Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3618806. [PMID: 35419163 PMCID: PMC9001082 DOI: 10.1155/2022/3618806] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Oxidative stress is defined as the imbalance between reactive oxygen species (ROS) production and the endogenous antioxidant defense system, leading to cellular damage. Asthma is a common chronic inflammatory airway disease. The presence of asthma tends to increase the production of reactive oxygen species (ROS), and the antioxidant system in the lungs is insufficient to mitigate it. Therefore, asthma can lead to an exacerbation of airway hyperresponsiveness and airway inflammation. PM2.5 exposure increases ROS levels. Meanwhile, the accumulation of ROS will further enhance the oxidative stress response, resulting in DNA, protein, lipid, and other cellular and molecular damage, leading to respiratory diseases. An in-depth study on the relationship between oxidative stress and PM2.5-related asthma is helpful to understand the pathogenesis and progression of the disease and provides a new direction for the treatment of the disease. This paper reviews the research progress of oxidative stress in PM2.5-induced asthma as well as highlights the therapeutic potentials of antioxidant approaches in treatment of asthma.
Collapse
|
19
|
Kumar M, Yano N, Fedulov AV. Gestational exposure to titanium dioxide, diesel exhaust, and concentrated urban air particles affects levels of specialized pro-resolving mediators in response to allergen in asthma-susceptible neonate lungs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:243-261. [PMID: 34802391 PMCID: PMC8785906 DOI: 10.1080/15287394.2021.2000906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Maternal gestational exposures to traffic and urban air pollutant particulates have been linked to increased risk and/or worsening asthma in children; however, mechanisms underlying this vertical transmission are not entirely understood. It was postulated that gestational particle exposure might affect the ability to elicit specialized proresolving mediator (SPM) responses upon allergen encounter in neonates. Lipidomic profiling of 50 SPMs was performed in lungs of neonates born to mice exposed to concentrated urban air particles (CAP), diesel exhaust particles (DEP), or less immunotoxic titanium dioxide particles (TiO2). While asthma-like phenotypes were induced with identical eosinophilia intensity across neonates of all particle-exposed mothers, levels of LXA4, HEPE and HETE isoforms, and HDoHe were only decreased by CAP and DEP only but not by TiO2. However, RvE2 and RvD1 were inhibited by all particles. In contrast, isomers of Maresin1 and Protectin D1 were variably elevated by CAP and DEP, whereas Protectin DX, PGE2, and TxB2 were increased in all groups. Only Protectin D1/DX, MaR1(n-3,DPA), 5(S),15(S)-DiHETE, PGE2, and RvE3 correlated with eosinophilia but the majority of other analytes, elevated or inhibited, showed no marked correlation with inflammation intensity. Evidence indicates that gestational particle exposure leads to both particle-specific and nonspecific effects on the SPM network.
Collapse
Affiliation(s)
- Mohan Kumar
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Naohiro Yano
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| | - Alexey V. Fedulov
- Alpert Medical School of Brown University. Department of Surgery, Rhode Island Hospital. 593 Eddy Street, Providence, RI, USA. 02903
| |
Collapse
|
20
|
Zhao G, Zhao X, Song Y, Haire A, Dilixiati A, Liu Z, Zhao S, Aihemaiti A, Fu X, Wusiman A. Effect of L-citrulline Supplementation on Sperm Characteristics and Hormonal and Antioxidant Levels in Blood and Seminal Plasma of Rams. Reprod Domest Anim 2022; 57:722-733. [PMID: 35262979 DOI: 10.1111/rda.14111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
With the aim of providing a theoretical basis for the application of L-citrulline (L-Cit) in animal husbandry, the effects of L-Cit on reproductive hormone levels, antioxidant capacity, and semen quality of rams were studied by feeding them varying doses of L-Cit. A total of 32 rams were randomly divided into four groups with eight rams each. After all rams were trained to donate sperm normally, the control group was fed a basic diet, whereas the experimental groups I, II, and III were provided with feed supplemented with 4, 8, and 12 g/d of L-Cit, respectively.The experiment was conducted for 70 days, during which blood samples were collected from the jugular vein on days 0, 15, 30, 45, and 60, and semen samples were collected on days 0, 20, 40, and 60. In the same group, 100 µL of semen was used to test for quality, The rest of the semen sample and blood samples were centrifuged at 3500 rpm for 15 min, and the supernatant and serum, respectively, were used to determine the levels reproductive hormones and antioxidant indices. Ram semen samples were also collected on day 70 and used to study sperm plasma membrane, substitution, and mitochondrial membrane potential. Compared with the control group, the groups receiving L-Cit showed an increase in sperm concentration and number of linear motile sperm (P < 0.01); decrease in the number of dead sperm (P < 0.01); increase in sperm viability, particularly in groups II and III (P < 0.01); and increase in sperm mitochondrial membrane potential (P < 0.01). Moreover, groups I, II, and III showed significantly higher levels of serum gonadotropin-releasing hormone (GnRH), glutathione peroxidase (GSH-Px), and nitric oxide (NO) (P < 0.01). Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels increased in groups I (P < 0.05), II (P < 0.05), and III (P < 0.01), whereas testosterone (T), catalase (CAT), and superoxide dismutase (SOD) levels increased in groups I and II (P < 0.01). Serum total antioxidant capacity (T-A) increased (P < 0.05), whereas both hydroxyl radical (·OH) and peroxy radical (O2·-) levels decreased (P < 0.01). Compared with the control, all groups had significantly higher SOD and GSH-Px in their seminal plasma (P < 0.01), and groups I, II (P < 0.05 for both), and III (P < 0.01) had higher levels of GnRH and FSH. LH, CAT, and NO levels increased in group I (P < 0.05), II, and III (P < 0.01 for both); malondialdehyde levels decreased in groups I, II (P < 0.05 for both), and group III (P < 0.01); and O2·- levels decreased in groups I, II, and III (P < 0.01). Under our experimental conditions, GnRH, FSH, LH, T, CAT, SOD, T-A, GSH-PX , and NO levels in the serum and seminal plasma of rams receiving L-Cit increased, whereas Estradiol(E2 ), O2· - and ·OH levels in the seminal plasma decreased; this improved the semen quality of rams supplemented with L-Cit. Moreover, supplementation with 12 g/d gave the best results.
Collapse
Affiliation(s)
- Guodong Zhao
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Xi Zhao
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Yukun Song
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Aerman Haire
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Airixiati Dilixiati
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Zhiqiang Liu
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Shangshang Zhao
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Aikebaier Aihemaiti
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Abulizi Wusiman
- Laboratory of Animal genetic breeding & reproduction, Xinjiang Agricultural University, Xinjiang, Urumqi, 830052, China
| |
Collapse
|
21
|
Shen WT, Yu X, Zhong SB, Ge HR. Population Health Effects of Air Pollution: Fresh Evidence From China Health and Retirement Longitudinal Survey. Front Public Health 2022; 9:779552. [PMID: 35004584 PMCID: PMC8733201 DOI: 10.3389/fpubh.2021.779552] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of air pollution on population health are currently a hot topic. However, few studies have examined the physical and mental health effects of air pollution jointly in China. Using data from the China Health and Retirement Longitudinal Study (CHARLS) in 2015 and 2018, this study explores how air pollution affects the physical and mental health of middle-aged and elderly residents. The empirical results highlight that air pollution can negatively affect both physical and mental health. In terms of physical health, those exposed to chronic shock are likely to suffer more adverse effects from air pollution than those exposed to acute shock. In terms of mental health, those exposed to depression suffer greater adverse effects than those exposed to episodic memory and mental cognition. Besides, heterogeneity analysis also shows that air pollution affects the mental and physical health of males more than females. Furthermore, the increase in air pollution is expected to result in huge hospitalization costs. Therefore, the Chinese government should formulate differentiated public health policies to reduce the effects of air pollution on the health of middle-aged and elderly residents.
Collapse
Affiliation(s)
- Wei-Teng Shen
- Business School, Zhejiang Wanli University, Ningbo, China
| | - Xuan Yu
- Business School, Ningbo University, Ningbo, China
| | - Shun-Bin Zhong
- School of Information, Central University of Finance and Economics, Beijing, China
| | - Hao-Ran Ge
- Business School, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
22
|
Schwartz JD, Yitshak-Sade M, Zanobetti A, Di Q, Requia WJ, Dominici F, Mittleman MA. A self-controlled approach to survival analysis, with application to air pollution and mortality. ENVIRONMENT INTERNATIONAL 2021; 157:106861. [PMID: 34507231 PMCID: PMC8490318 DOI: 10.1016/j.envint.2021.106861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Many studies have reported that long-term air pollution exposure is associated with increased mortality rates. These investigations have been criticized for failure to control for omitted, generally personal, confounders. Study designs that are robust to such confounders can address this issue. METHODS We used a self-controlled design for survival analysis. We stratified on each person in the Medicare cohort between 2000 and 2015 who died, and examined whether PM2.5, O3 and NO2 exposures predicted in which follow-up period the death occurred. We used conditional logistic regression stratified on person and controlled for nonlinear terms in calendar year and age. By design slowly varying covariates such as smoking history, BMI, diabetes and other pre-existing conditions, usual alcohol consumption, sex, race, socioeconomic status, and green space were controlled by matching each person to themselves. RESULTS There were 6,452,618 deaths in the study population in the study period. We observed a 5.37% increase in the mortality rate (95% CI 4.67%, 6.08%) for every 5 μg/m3 increase in PM2.5, a 1.98% (95% CI 1.61%, 2.36%) increase for 5 ppb increment in O3, and a 2.10% decrease (95% CI 1.88%, 2.33%) for a 5 ppb increase in NO2. When restricted to persons whose PM2.5 exposure never exceeded 12 μg/m3 in any year between 2000 and 2015, the effect size increased for PM2.5 (12.71% (11.30, 14.15)), and the signs of O3 and NO2 reversed (-0.26% (-0.88, 0.35) for O3 and 1.77% increase (1.40, 2.13) for NO2). Effect sizes were larger for Blacks (e.g. 7.71% (5.46, 10.02) for PM2.5). CONCLUSION There is strong evidence that the association between annual exposure to PM2.5 and mortality is not confounded by individual or neighborhood covariates, and continues below the standard. The effects of O3 and NO2 are difficult to disentangle.
Collapse
Affiliation(s)
- Joel D Schwartz
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States; Harvard TH Chan School of Public Health, Department of Epidemiology, United States.
| | - Ma'ayan Yitshak-Sade
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Antonella Zanobetti
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Qian Di
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Weeberb J Requia
- Harvard TH Chan School of Public Health, Department of Environmental Health, United States
| | - Francesca Dominici
- Harvard TH Chan School of Public Health, Department of Biostatistics, United States
| | - Murray A Mittleman
- Harvard TH Chan School of Public Health, Department of Epidemiology, United States
| |
Collapse
|
23
|
Croft DP, Burton DS, Nagel DJ, Bhattacharya S, Falsey AR, Georas SN, Hopke PK, Johnston CJ, Kottmann RM, Litonjua AA, Mariani TJ, Rich DQ, Thevenet-Morrison K, Thurston SW, Utell MJ, McCall MN. The effect of air pollution on the transcriptomics of the immune response to respiratory infection. Sci Rep 2021; 11:19436. [PMID: 34593881 PMCID: PMC8484285 DOI: 10.1038/s41598-021-98729-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Combustion related particulate matter air pollution (PM) is associated with an increased risk of respiratory infections in adults. The exact mechanism underlying this association has not been determined. We hypothesized that increased concentrations of combustion related PM would result in dysregulation of the innate immune system. This epidemiological study includes 111 adult patients hospitalized with respiratory infections who underwent transcriptional analysis of their peripheral blood. We examined the association between gene expression at the time of hospitalization and ambient measurements of particulate air pollutants in the 28 days prior to hospitalization. For each pollutant and time lag, gene-specific linear models adjusting for infection type were fit using LIMMA (Linear Models For Microarray Data), and pathway/gene set analyses were performed using the CAMERA (Correlation Adjusted Mean Rank) program. Comparing patients with viral and/or bacterial infection, the expression patterns associated with air pollution exposure differed. Adjusting for the type of infection, increased concentrations of Delta-C (a marker of biomass smoke) and other PM were associated with upregulation of iron homeostasis and protein folding. Increased concentrations of black carbon (BC) were associated with upregulation of viral related gene pathways and downregulation of pathways related to antigen presentation. The pollutant/pathway associations differed by lag time and by type of infection. This study suggests that the effect of air pollution on the pathogenesis of respiratory infection may be pollutant, timing, and infection specific.
Collapse
Affiliation(s)
- Daniel P Croft
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA.
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA.
| | - David S Burton
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - David J Nagel
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Soumyaroop Bhattacharya
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann R Falsey
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, USA
| | - Steve N Georas
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip K Hopke
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Carl J Johnston
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - R Matthew Kottmann
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Augusto A Litonjua
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J Mariani
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - David Q Rich
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Sally W Thurston
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J Utell
- Department of Medicine, Pulmonary and Critical Care Medicine Division, University of Rochester Medical Center, 601 Elmwood Avenue Box 692, Rochester, NY, 14642, USA
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew N McCall
- Environmental Health Science Center, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Lee EK, Romeiko XX, Zhang W, Feingold BJ, Khwaja HA, Zhang X, Lin S. Residential Proximity to Biorefinery Sources of Air Pollution and Respiratory Diseases in New York State. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10035-10045. [PMID: 34232029 DOI: 10.1021/acs.est.1c00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding potential health risks associated with biofuel production is critical to sustainably combating energy insecurity and climate change. However, the specific health impacts associated with biorefinery-related emissions are not yet well characterized. We evaluated the relationship between respiratory emergency department (ED) visits (2011-2015) and residential exposure to biorefineries by comparing 15 biorefinery sites to 15 control areas across New York (NY) State. We further examined these associations by biorefinery types (e.g., corn, wood, or soybean), seasons, and lower respiratory disease subtypes. We measured biorefinery exposure using residential proximity in a cross-sectional study and estimation of biorefinery emission via AERMOD-simulated modeling. After controlling for multiple confounders, we consistently found that respiratory ED visit rates among residents living within 10 km of biorefineries were significantly higher (rate ratios (RRs) range from 1.03 to 3.64) than those in control areas across our two types of exposure indices. This relationship held across biorefinery types (higher in corn and soybean biorefineries), seasons (higher in spring and winter), air pollutant types (highest for NO2), and respiratory subtypes (highest for emphysema). Further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Eun Kyung Lee
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
- Mary Ann Swetland Center for Environmental Health, Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, 11000 Cedar Avenue, Cleveland, Ohio 44106, United States
| | - Xiaobo Xue Romeiko
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
| | - Wangjian Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
| | - Beth J Feingold
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
| | - Haider A Khwaja
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, United States
| | - Xuesong Zhang
- Joint Global Change Research Institute, Pacific Northwest National Laboratory, 5825 University Research Court, College Park, Maryland 20740, United States
- Earth System Sciences Interdisciplinary Center, University of Maryland, 5825 University Research Court, College Park, Maryland 20740, United States
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, New York 12144, United States
| |
Collapse
|
25
|
A Direct Estimate of the Impact of PM2.5, NO2, and O3 Exposure on Life Expectancy Using Propensity Scores. Epidemiology 2021; 32:469-476. [PMID: 34042074 PMCID: PMC8162225 DOI: 10.1097/ede.0000000000001354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Many studies have reported associations of air pollutants and death, but fewer examined multiple pollutants, or used causal methods. We present a method for directly estimating changes in the distribution of age at death using propensity scores.
Collapse
|
26
|
Kim DI, Song MK, Lee K. Diesel Exhaust Particulates Enhances Susceptibility of LPS-Induced Acute Lung Injury through Upregulation of the IL-17 Cytokine-Derived TGF-β 1/Collagen I Expression and Activation of NLRP3 Inflammasome Signaling in Mice. Biomolecules 2021; 11:67. [PMID: 33419073 PMCID: PMC7825418 DOI: 10.3390/biom11010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diesel exhaust particulates (DEP) adversely affect the respiratory system and exacerbate lung diseases, resulting in high mortality rates. However, its pathogenesis is complicated, and the mechanisms involved are incompletely understood. We investigated the effects of DEP pre-exposure on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and identified the roles of interleukin (IL)-17 in mice. Mice were divided into vehicle control, DEP, LPS, and DEP pre-exposed and LPS-instilled groups. Pre-exposure to DEP enhanced the number of total cells, neutrophils, and lymphocytes in the BAL fluid of LPS-instilled mice. Pre-exposure to DEP synergistically exacerbated pulmonary acute lung inflammation and granulomatous inflammation/pulmonary fibrosis, concomitant with the enhanced expression of inflammatory cytokines in the BAL fluid and of collagen I and TGF-β1 in the lungs of LPS-instilled mice. The number of TGF-β1-positive cells in the DEP pre-exposed and LPS-instilled group was higher than that in the LPS group. The expression of NLR family pyrin domain containing 3 (NLRP3) inflammasome components was markedly increased in the DEP pre-exposed and LPS-instilled group. IL-17 levels in the BAL fluid and IL-17-positive cells in the lungs were significantly increased by pre-exposure to DEP in the LPS-induced group compared to that in the DEP or LPS group. These results suggest that DEP predominantly contributes to fibrotic lung disease in LPS-related acute lung injury by upregulating IL-17 cytokine-mediated collagen I and TGF-β1 and, at least in part, by activating LPS-induced NLRP3 inflammasome signaling. The study should be useful in devising better strategies for prevention and management of ALI.
Collapse
Affiliation(s)
- Dong Im Kim
- National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup 56212, Korea; (D.I.K.); (M.-K.S.)
| | - Mi-Kyung Song
- National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup 56212, Korea; (D.I.K.); (M.-K.S.)
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation of Respiratory Disease Products, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup 56212, Korea; (D.I.K.); (M.-K.S.)
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea
| |
Collapse
|
27
|
Short-Term Exposure to Fine Particulate Matter and Hospitalizations for Acute Lower Respiratory Infection in Korean Children: A Time-Series Study in Seven Metropolitan Cities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010144. [PMID: 33379204 PMCID: PMC7795137 DOI: 10.3390/ijerph18010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022]
Abstract
Although several studies have evaluated the association between fine particulate matter (PM2.5) and acute lower respiratory infection (ALRI) in children, their results were inconsistent Therefore, we aimed to evaluate the association between short-term exposure to PM2.5 and ALRI hospitalizations in children (0–5 years) living in seven metropolitan cities of Korea. The ALRI hospitalization data of children living in seven metropolitan cities of Korea from 2008 to 2016 was acquired from a customized database constructed based on National Health Insurance data. The time-series data in a generalized additive model were used to evaluate the relationship between ALRI hospitalization and 7-day moving average PM2.5 exposure after adjusting for apparent temperature, day of the week, and time trends. We performed a meta-analysis using a two-stage design method. The estimates for each city were pooled to generate an average estimate of the associations. The average PM2.5 concentration in 7 metropolitan cities was 29.0 μg/m3 and a total of 713,588 ALRI hospitalizations were observed during the 9-year study period. A strong linear association was observed between PM2.5 and ALRI hospitalization. A 10 μg/m3 increase in the 7-day moving average of PM2.5 was associated with a 1.20% (95% CI: 0.71, 1.71) increase in ALRI hospitalization. While we found similar estimates in a stratified analysis by sex, we observed stronger estimates of the association in the warm season (1.71%, 95% CI: 0.94, 2.48) compared to the cold season (0.31%, 95% CI: −0.51, 1.13). In the two-pollutant models, the PM2.5 effect adjusted by SO2 was attenuated more than in the single pollutant model. Our results suggest a positive association between PM2.5 exposure and ALRI hospitalizations in Korean children, particularly in the warm season. The children need to refrain from going out on days when PM2.5 is high.
Collapse
|
28
|
Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42390-42404. [PMID: 32870429 DOI: 10.1007/s11356-020-10574-w] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Air pollution is an important cause of non-communicable diseases globally with particulate matter (PM) as one of the main air pollutants. PM is composed of microscopic particles that contain a mixture of chemicals and biological elements that can be harmful to human health. The aerodynamic diameter of PM facilitates their deposition when inhaled. For instance, coarse PM having a diameter of < 10 μm is deposited mainly in the large conducting airways, but PM of < 2.5 μm can cross the alveolar-capillary barrier, traveling to other organs within the body. Epidemiological studies have shown the association between PM exposure and risk of disease, namely those of the respiratory system such as lung cancer, asthma, and chronic obstructive pulmonary disease (COPD). However, cardiovascular and neurological diseases have also been reported, including hypertension, atherosclerosis, acute myocardial infarction, stroke, loss of cognitive function, anxiety, and Parkinson's and Alzheimer's diseases. Inflammation is a common hallmark in the pathogenesis of many of these diseases associated with exposure to a variety of air pollutants, including PM. This review focuses on the main effects of PM on human health, with an emphasis on the role of inflammation.
Collapse
Affiliation(s)
- Rubén D Arias-Pérez
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Natalia A Taborda
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana M Gómez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
| | - Jhon Fredy Narvaez
- Grupo de Investigaciones Ingeniar, Facultad de Ingenierías, Corporación Universitaria Remington, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellín, Colombia
| | - Juan C Hernandez
- Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia.
| |
Collapse
|
29
|
Pompilio A, Di Bonaventura G. Ambient air pollution and respiratory bacterial infections, a troubling association: epidemiology, underlying mechanisms, and future challenges. Crit Rev Microbiol 2020; 46:600-630. [PMID: 33059504 DOI: 10.1080/1040841x.2020.1816894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The World Health Organization attributed more than four million premature deaths to ambient air pollution in 2016. Numerous epidemiologic studies demonstrate that acute respiratory tract infections and exacerbations of pre-existing chronic airway diseases can result from exposure to ambient (outdoor) air pollution. In this context, the atmosphere contains both chemical and microbial pollutants (bioaerosols), whose impact on human health remains unclear. Therefore, this review: summarises the findings from recent studies on the association between exposure to air pollutants-especially particulate matter and ozone-and onset or exacerbation of respiratory infections (e.g. pneumonia, cystic fibrosis lung infection, and tuberculosis); discusses the mechanisms underlying the relationship between air pollution and respiratory bacterial infections, which is necessary to define prevention and treatment strategies; demonstrates the relevance of air pollution modelling in investigating and preventing the impact of exposure to air pollutants on human health; and outlines future actions required to improve air quality and reduce morbidity and mortality related to air pollution.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
30
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, Murrieta-Aguttes M, Zaitoun FH, Irani C, Karam MR, Bousquet J. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J 2020; 13:100467. [PMID: 33042360 PMCID: PMC7534666 DOI: 10.1016/j.waojou.2020.100467] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Air pollution causes significant morbidity and mortality in patients with inflammatory airway diseases (IAD) such as allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma, and chronic obstructive pulmonary disease (COPD). Oxidative stress in patients with IAD can induce eosinophilic inflammation in the airways, augment atopic allergic sensitization, and increase susceptibility to infection. We reviewed emerging data depicting the involvement of oxidative stress in IAD patients. We evaluated biomarkers, outcome measures and immunopathological alterations across the airway mucosal barrier following exposure, particularly when accentuated by an infectious insult.
Collapse
Key Words
- AR, Allergic rhinitis
- Air pollution
- Antioxidant
- COPD, Chronic obstructive pulmonary disease
- CRS, Chronic rhinosinusitis
- DEP, Diesel exhaust particles
- IAD, Inflammatory airway diseases
- IL, Interleukin
- ILC, Innate lymphoid cells
- Inflammatory airway disease
- NOx, Nitrogen oxides
- Oxidative stress biomarkers
- PAH, Polycyclic aromatic hydrocarbons
- PM, Particulate matter
- ROS, Reactive oxygen species
- TBS, Tobacco smoke
- TLR, Toll-like receptors
- Tobacco smoke
- Treg, Regulatory T cell
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Robert M. Naclerio
- Johns Hopkins University Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD, USA
| | - David B. Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| | | | - Sandra Nora Gonzalez-Diaz
- University Autonoma de Nuevo Leon Facultad de Medicina y Hospital Universitario U.A.N.L, Monterrey, NL, c.p. 64460, México
| | | | - Juan Carlos Ivancevich
- Faculty of Medicine, Universidad del Salvador, Buenos Aires, Argentina and Head of Allergy and Immunology at the Santa Isabel Clinic, Buenos Aires, Argentina
| | - Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center Amsterdam, The Netherlands - Department Otorhinolaryngology, University Hospital Ghent, Belgium
| | | | - Fares H. Zaitoun
- LAUMC Rizk Hospital, Otolaryngology-Allergy Department, Beirut, Lebanon
| | - Carla Irani
- Department of Internal Medicine and Infectious Diseases, St Joseph University, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Marilyn R. Karam
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Liang Z, Xu C, Ji AL, Liang S, Kan HD, Chen RJ, Lei J, Li YF, Liang ZQ, Cai TJ. Effects of short-term ambient air pollution exposure on HPV infections: A five-year hospital-based study. CHEMOSPHERE 2020; 252:126615. [PMID: 32443276 DOI: 10.1016/j.chemosphere.2020.126615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Human papillomavirus (HPV) infections are common sexually-transmitted diseases among reproductive-aged women with increasing concern. Until now, there are no prior study about the association between HPV infections and ambient air pollution. This study aimed to explore the relationship between short-term exposure to ambient pollutants and daily outpatient visits for HPV infections in China. Data of daily outpatient visits for HPV infections were obtained from January 1, 2014 to December 31, 2018 (1826 days). Over-dispersed Poisson generalized additive models were applied by adjusting weather conditions and day of the week. We identified a total of 39,746 cases for HPV infections. A 10 μg/m3 increase of PM10, PM2.5, SO2, and NO2 or a 0.1 mg/m3 rise of CO in concurrent day (lag 0) concentrations was related to an elevation of 0.822% (95% Cl: 0.282%, 1.36%), 1.05% (95% Cl: 0.280%, 1.81%), 5.72% (95% Cl: 1.79%, 9.65%), 5.02% (95% Cl: 3.45%, 6.60%), and 2.40% (95% Cl: 1.43%, 3.37%) in daily outpatient-visits for HPV infections, respectively. The association was more significant in those women aged 41 or over. As for 10 μg/m3 increase of O3, a -1.33% (95% Cl: -2.13%, -0.530%) change was observed on the lag 03 and such effects appeared to be more obvious in the aged 18-40 group. Our results provided the first evidence that short-term exposure to ambient pollutants was related to, which may be indirectly, the increased risk of HPV infections while O3 may act as a "protective" factor.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Troop 94498 of PLA, Nanyang, 474350, China
| | - Ai-Ling Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Shi Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Brigham Young University Provo, UT 84602, 801-422-4636, USA
| | - Hai-Dong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ren-Jie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Jie Lei
- Department of Internal Medicine, Hui Long-Ba Town Hospital, Chongqing, 401335, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhi-Qing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
32
|
PM2.5 compromises antiviral immunity in influenza infection by inhibiting activation of NLRP3 inflammasome and expression of interferon-β. Mol Immunol 2020; 125:178-186. [PMID: 32717666 DOI: 10.1016/j.molimm.2020.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
PM2.5, a major component of air pollutants, has caused severe health problems. It has been reported that PM2.5 index is closely associated with severity of influenza A virus (IAV) infection. However, the underlying mechanisms have not been addressed. NLRP3 inflammasome and type I interferon signaling regulate host defense against influenza infection. The present study investigated the potential effects of air pollutants on host defense against influenza infection in vitro and in vivo. In this study, different concentrations of PM2.5 were pre-exposed to macrophages and mice before IAV infection to assess the negative effects of air pollutants in virus infection. We found that exposure to PM2.5 deteriorated influenza virus infection via compromising innate immune responses manifested by a decrease IL-1β and IFN-β production in vitro. Meanwhile, mice exposed with PM2.5 were susceptible to PR8 virus infection due to down-regulation of IL-1β and IFN-β. Mechanistically, PM 2.5 exposure suppressed the NLRP3 inflammasome activation and the AHR-TIPARP signaling pathway, by which compromised the anti-influenza immunity. Thus, our study revealed that PM2.5 could alter macrophage inflammatory responses by suppressing LPS-induced activation of NLRP3 inflammasome and expression of IFN-β during influenza infection. These findings provided us new insights in understanding that PM2.5 combining with influenza infection could enhance the severity of pneumonia.
Collapse
|
33
|
Milton LA, White AR. The potential impact of bushfire smoke on brain health. Neurochem Int 2020; 139:104796. [PMID: 32650032 DOI: 10.1016/j.neuint.2020.104796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
Smoke from bushfires (also known as wildfires or forest fires) has blanketed large regions of Australia during the southern hemisphere summer of 2019/2020, potentially endangering residents who breathe the polluted air. While such air pollution is known to cause respiratory irritation and damage, its effect on the brain is not well described. In this review, we aim to outline the potentially damaging effects of bushfire smoke on brain health. We also describe the composition of air pollution, including ambient particulate matter (PM) and bushfire PM, before covering the general health effects of each. The investigated entry routes for ambient PM and postulated entry routes for bushfire PM are discussed, along with epidemiological and experimental evidence of the effect of both PMs in the brain. It appears that bushfire PM may be more toxic than ambient PM, and that it may enter the brain through extrapulmonary or olfactory routes to cause inflammation and oxidative stress. Ultimately, this review highlights the desperate requirement of greater research into the effects of bushfire PM on brain health.
Collapse
Affiliation(s)
- Laura A Milton
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia
| | - Anthony R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia.
| |
Collapse
|
34
|
Yang L, Li C, Tang X. The Impact of PM 2.5 on the Host Defense of Respiratory System. Front Cell Dev Biol 2020; 8:91. [PMID: 32195248 PMCID: PMC7064735 DOI: 10.3389/fcell.2020.00091] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The harm of fine particulate matter (PM2.5) to public health is the focus of attention around the world. The Global Burden of Disease (GBD) Study 2015 (GBD 2015 Risk Factors Collaborators, 2016) ranked PM2.5 as the fifth leading risk factor for death, which caused 4.2 million deaths and 103.1 million disability-adjusted life-years (DALYs) loss, representing 7.6% of total global deaths and 4.2% of global DALYs. Epidemiological studies have confirmed that exposure to PM2.5 increases the incidence and mortality of respiratory infections. The host defense dysfunction caused by PM2.5 exposure may be the key to the susceptibility of respiratory system infection. Thus, this review aims to assess the impact of PM2.5 on the host defense of respiratory system. Firstly, we elaborated the epidemiological evidence that exposure to PM2.5 increases the risk of respiratory infections. Secondly, we summarized the experimental evidence that PM2.5 exposure increases the susceptibility of different pathogens (including bacteria and viruses) in respiratory system. Furthermore, here we discussed the underlying host defense mechanisms by which PM2.5 exposure increases the risk of respiratory infections as well as future perspectives.
Collapse
Affiliation(s)
- Liyao Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiao Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
35
|
Mandarino A, Gregory DJ, McGuire CC, Leblanc BW, Witt H, Rivera LM, Godleski JJ, Fedulov AV. The effect of talc particles on phagocytes in co-culture with ovarian cancer cells. ENVIRONMENTAL RESEARCH 2020; 180:108676. [PMID: 31785414 PMCID: PMC8722446 DOI: 10.1016/j.envres.2019.108676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Talc and titanium dioxide are naturally occurring water-insoluble mined products usually available in the form of particulate matter. This study was prompted by epidemiological observations suggesting that perineal use of talc powder is associated with increased risk of ovarian cancer, particularly in a milieu with higher estrogen. We aimed to test the effects of talc vs. control particles on the ability of prototypical macrophage cell lines to curb the growth of ovarian cancer cells in culture in the presence of estrogen. We found that murine ovarian surface epithelial cells (MOSEC), a prototype of certain forms of ovarian cancer, were present in larger numbers after co-culture with macrophages treated to a combination of talc and estradiol than to either agent alone or vehicle. Control particles (titanium dioxide, concentrated urban air particulates or diesel exhaust particles) did not have this effect. Co-exposure of macrophages to talc and estradiol has led to increased production of reactive oxygen species and changes in expression of macrophage genes pertinent in cancer development and immunosurveillance. These findings suggest that in vitro exposure to talc, particularly in a high-estrogen environment, may compromise immunosurveillance functions of macrophages and prompt further studies to elucidate this mechanism.
Collapse
Affiliation(s)
- Angelo Mandarino
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - David J Gregory
- Harvard Medical School, Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | - Connor C McGuire
- University of Rochester Medical Center, Department of Environmental Medicine, Rochester, NY, USA
| | - Brian W Leblanc
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - Hadley Witt
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - Loreilys Mejias Rivera
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - John J Godleski
- John J. Godleski, MD, PLLC, Milton, MA, USA; Harvard Medical School, Department of Pathology (Emeritus), Boston, MA, USA; Department of Environmental Health, Harvard TH Chan School of Public Health (Retired), Boston, MA, USA
| | - Alexey V Fedulov
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA; Department of Environmental Health, Harvard TH Chan School of Public Health (Retired), Boston, MA, USA.
| |
Collapse
|
36
|
Zhang L, Yang Y, Li Y, Qian ZM, Xiao W, Wang X, Rolling CA, Liu E, Xiao J, Zeng W, Liu T, Li X, Yao Z, Wang H, Ma W, Lin H. Short-term and long-term effects of PM 2.5 on acute nasopharyngitis in 10 communities of Guangdong, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:136-142. [PMID: 31229811 DOI: 10.1016/j.scitotenv.2019.05.470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVES We aimed to assess the effects of short-term and long-term exposure to ambient fine particle matter (PM2.5) on acute nasopharyngitis. METHODS A total of 9468 participants aged 18 years and above were recruited from 10 communities in four cities of Guangdong, China during the baseline survey in 2014, and they were followed-up from January 2015 to December 2016. Air pollution exposure was assessed based on the daily concentrations (short-term) and annual concentrations (long-term) of the nearby air monitoring station and the survey date. A mixed-effect logistic model and Cox proportional hazards model were used to quantify the short-term and long-term associations after adjustment for potential confounding factors. RESULTS Significantly positive associations were found between both short-term and long-term exposures of PM2.5 and acute nasopharyngitis. The adjusted odds ratio was 1.15 (95% CI: 1.07, 1.23) for each 10 μg/m3 increase in daily PM2.5 at lag2 day (short-term effects), and the hazard risk was 1.18 (95% CI: 1.10, 1.25) for each 10 μg/m3 increase in annual PM2.5 (long-term effects). Stronger associations between short-term PM2.5 exposure and acute nasopharyngitis were observed among men (OR = 1.10; 95% CI: 1.04, 1.17) and participants aged above 65 years (OR = 1.13; 95% CI: 1.04, 1.23) in the stratified analyses. No significant association was found in women (OR = 1.00; 95% CI: 0.92, 1.10) or young participants ≤65 years (OR = 0.96; 95% CI: 0.88, 1.04). However, for the long-term exposure, the hazard risk was higher for participants younger than 65 years (OR = 1.22; 95% CI: 1.12, 1.32) than the older group (OR = 1.11; 95% CI: 1.00, 1.24). CONCLUSION This study indicates that both short-term and long-term exposures to higher concentrations of PM2.5 could increase the risk of acute nasopharyngitis.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China; School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510220, PR China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yanhong Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Zhengmin Min Qian
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Wanli Xiao
- Weifang University of Science and Technology, Shouguang 62700, PR China
| | - Xiaojie Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510220, PR China
| | - Craig A Rolling
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Echu Liu
- College for Public Health & Social Justice, Saint Louis University, St. Louis, MO 63104, United States of America
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, PR China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, PR China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, PR China; General Practice Center, Nanhai Hospital, South Medical University, Foshan 528200, PR China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, PR China
| | - Zhenjiang Yao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510220, PR China
| | - Hao Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510220, PR China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangzhou 511430, PR China; General Practice Center, Nanhai Hospital, South Medical University, Foshan 528200, PR China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
37
|
Change in PM 2.5 exposure and mortality among Medicare recipients: Combining a semi-randomized approach and inverse probability weights in a low exposure population. Environ Epidemiol 2019; 3:e054. [PMID: 31538135 PMCID: PMC6693932 DOI: 10.1097/ee9.0000000000000054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/19/2019] [Indexed: 01/20/2023] Open
Abstract
The association between PM2.5 and mortality is well established; however, confounding by unmeasured factors is always an issue. In addition, prior studies do not tell us what the effect of a sudden change in exposure on mortality is. We consider the sub-population of Medicare enrollees who moved residence from one ZIP Code to another from 2000 to 2012. Because the choice of new ZIP Code is unlikely to be related with any confounders, restricting to the population of movers allows us to have a study design that incorporates randomization of exposure. Over 10 million Medicare participants moved. We calculated change in exposure by subtracting the annual exposure at original ZIP Code from exposure at the new ZIP Code using a validated model. We used Cox proportional hazards models stratified on original ZIP Code with inverse probability weights (IPW) to control for individual and ecological confounders at the new ZIP Code. The distribution of covariates appeared to be randomized by change in exposure at the new locations as standardized differences were mostly near zero. Randomization of measured covariates suggests unmeasured covariates may be randomized also. Using IPW, per 10 µg/m3 increase in PM2.5, the hazard ratio was 1.21 (95% confidence interval [CI] = 1.20, 1.22] among whites and 1.12 (95% CI = 1.08, 1.15) among blacks. Hazard ratios increased for whites and decreased for blacks when restricting to exposure levels below the current standard of 12 µg/m3. This study provides evidence of likely causal effects at concentrations below current limits of PM2.5.
Collapse
|
38
|
Effects of Air Pollution on Lung Innate Lymphoid Cells: Review of In Vitro and In Vivo Experimental Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132347. [PMID: 31269777 PMCID: PMC6650824 DOI: 10.3390/ijerph16132347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
Outdoor air pollution is associated with respiratory infections and allergies, yet the role of innate lymphoid cells (ILCs) in pathogen containment and airway hyperresponsiveness relevant to effects of air pollutants on ILCs is poorly understood. We conducted a systematic review to evaluate the available evidence on the effect of outdoor air pollutants on the lung type 1 (ILC1) and type 2 ILCs (ILC2) subsets. We searched five electronic databases (up to Dec 2018) for studies on the effect of carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), diesel exhaust particles (DEP), ozone (O3), and particulate matter (PM) on respiratory ILCs. Of 2209 identified citations, 22 full-text papers were assessed for eligibility, and 12 articles describing experimental studies performed in murine strains (9) and on human blood cells (3) were finally selected. Overall, these studies showed that exposure to PM, DEP, and high doses of O3 resulted in a reduction of interferon gamma (IFN-γ) production and cytotoxicity of ILC1. These pollutants and carbon nanotubes stimulate lung ILC2s, produce high levels of interleukin (IL)-5 and IL-13, and induce airway hyperresponsiveness. These findings highlight potential mechanisms by which human ILCs react to air pollution that increase the susceptibility to infections and allergies.
Collapse
|
39
|
Abplanalp W, Haberzettl P, Bhatnagar A, Conklin DJ, O'Toole TE. Carnosine Supplementation Mitigates the Deleterious Effects of Particulate Matter Exposure in Mice. J Am Heart Assoc 2019; 8:e013041. [PMID: 31234700 PMCID: PMC6662354 DOI: 10.1161/jaha.119.013041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Background Exposure to fine airborne particulate matter ( PM 2.5) induces quantitative and qualitative defects in bone marrow-derived endothelial progenitor cells of mice, and similar outcomes in humans may contribute to vascular dysfunction and the cardiovascular morbidity and mortality associated with PM 2.5 exposure. Nevertheless, mechanisms underlying the pervasive effects of PM 2.5 are unclear and effective interventional strategies to mitigate against PM 2.5 toxicity are lacking. Furthermore, whether PM 2.5 exposure affects other types of bone marrow stem cells leading to additional hematological or immunological dysfunction is not clear. Methods and Results Mice given normal drinking water or that supplemented with carnosine, a naturally occurring, nucleophilic di-peptide that binds reactive aldehydes, were exposed to filtered air or concentrated ambient particles. Mice drinking normal water and exposed to concentrated ambient particles demonstrated a depletion of bone marrow hematopoietic stem cells but no change in mesenchymal stem cells. However, HSC depletion was significantly attenuated when the mice were placed on drinking water containing carnosine. Carnosine supplementation also increased the levels of carnosine-propanal conjugates in the urine of CAPs-exposed mice and prevented the concentrated ambient particles-induced dysfunction of endothelial progenitor cells as assessed by in vitro and in vivo assays. Conclusions These results suggest that exposure to PM 2.5 has pervasive effects on different bone marrow stem cell populations and that PM 2.5-induced hematopoietic stem cells depletion, endothelial progenitor cell dysfunction, and defects in vascular repair can be mitigated by excess carnosine. Carnosine supplementation may be a viable approach for preventing PM 2.5-induced immune dysfunction and cardiovascular injury in humans.
Collapse
Affiliation(s)
- Wesley Abplanalp
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
| | - Petra Haberzettl
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Aruni Bhatnagar
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Daniel J. Conklin
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| | - Timothy E. O'Toole
- Department of MedicineDiabetes and Obesity CenterUniversity of LouisvilleKY
- Envirome InstituteUniversity of LouisvilleKY
| |
Collapse
|
40
|
Liu J, Chen X, Dou M, He H, Ju M, Ji S, Zhou J, Chen C, Zhang D, Miao C, Song Y. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J Thorac Dis 2019; 11:2617-2627. [PMID: 31372298 DOI: 10.21037/jtd.2019.05.77] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Airborne particulate matter (PM) is associated with increasing susceptibility to respiratory bacterial infection. Tight junctions (TJs) are protein complexes that form airway epithelial barrier against infection. This study aimed to investigate the effects of PM on the airway TJs in response to infection. Methods The cytotoxicity of PM to BEAS-2B was evaluated. The reactive oxygen species (ROS) production was measured by the flow cytometry. Colony forming units (CFUs) assay and confocal microscopy were utilized to evaluate the number of bacteria. Immunofluorescence and western blot assay were conducted to detect the expressions of TJs proteins. Animal models were used to investigate the role of TJs in PM-induced lung injury upon bacterial infection. Results In vitro, PM decreased cell viability, increased ROS production, and increased the number of intracellular bacteria accompanying by the degradation of TJs. N-acetylcysteine (NAC) significantly reversed the PM-induced bacterial invasion and PM-induced disruption of TJs. In vivo, PM increases bacteria-infected lung injury, lung bacteria burden and blood bacterial dissemination, which was closely correlated to the degradation of TJs. Conclusions PM disrupts TJs via oxidative stress to promote bacterial infection.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Xiaoyan Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Maosen Dou
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mohan Ju
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Donghui Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China.,Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Shanghai 200032, China
| |
Collapse
|
41
|
Wang L, Cheng H, Wang D, Zhao B, Zhang J, Cheng L, Yao P, Di Narzo A, Shen Y, Yu J, Li Y, Xu S, Chen J, Fan L, Lu J, Jiang J, Zhou Y, Wang C, Zhang Z, Hao K. Airway microbiome is associated with respiratory functions and responses to ambient particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:269-277. [PMID: 30342360 PMCID: PMC6257984 DOI: 10.1016/j.ecoenv.2018.09.079] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 07/21/2023]
Abstract
BACKGROUND Ambient particulate matter (PM) exposure has been associated with respiratory function decline in epidemiological studies. We hypothesize that a possible underlying mechanism is the perturbation of airway microbiome by PM exposure. METHODS During October 2016-October 2017, on two human cohorts (n = 115 in total) in Shanghai China, we systematically collected three categories of data: (1) respiratory functions, (2) airway microbiome from sputum, and (3) PM2.5 (PM of ≤ 2.5 µm in diameter) level in ambient air. We investigated the impact of PM2.5 on airway microbiome as well as the link between airway microbiome and respiratory functions using linear mixed regression models. RESULTS The respiratory function of our primary interest includes forced vital capacity (FVC) and forced expiratory volume in 1st second (FEV1). FEV1/FVC, an important respiratory function trait and key diagnosis criterion of COPD, was significantly associated with airway bacteria load (p = 0.0038); and FEV1 was associated with airway microbiome profile (p = 0.013). Further, airway microbiome was significantly influenced by PM2.5 exposure (p = 4.48E-11). CONCLUSIONS To our knowledge, for the first time, we demonstrated the impact of PM2.5 on airway microbiome, and reported the link between airway microbiome and respiratory functions. The results expand our understanding on the scope of PM2.5 exposure's influence on human respiratory system, and point to novel etiological mechanism of PM2.5 exposure induced diseases.
Collapse
Affiliation(s)
- Liping Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongbin Wang
- School of Environment, Tsinghua University, Beijing, China
| | - Bo Zhao
- School of Life Sciences, Tongji University, Shanghai, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Long Cheng
- School of Software Engineering, Tongji University, Shanghai, China
| | - Pengfei Yao
- School of Software Engineering, Tongji University, Shanghai, China
| | - Antonio Di Narzo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Department of Psychiatry, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Jianwei Lu
- School of Software Engineering, Tongji University, Shanghai, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing, China
| | - Yang Zhou
- School of Life Sciences, Tongji University, Shanghai, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ke Hao
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; College of Environmental Science and Engineering, Tongji University, Shanghai, China; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Liu T, Zhang P, Ling Y, Hu G, Gu J, Yang H, Wei J, Wang A, Jin H. Protective Effect of Colla corii asini against Lung Injuries Induced by Intratracheal Instillation of Artificial Fine Particles in Rats. Int J Mol Sci 2018; 20:ijms20010055. [PMID: 30583600 PMCID: PMC6337124 DOI: 10.3390/ijms20010055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Environmental issues pose huge threats to public health, particularly the damage caused by fine particulate matter (PM2.5). However, the mechanisms of injury require further investigation and medical materials that can protect the lungs from PM2.5 are needed. We have found that Colla corii asini, a traditional Chinese medicine that has long been used to treat various ailments, is a good candidate to serve this purpose. To understand the mechanisms of PM2.5-induced lung toxicity and the protective effects of Colla corii asini, we established a rat model of lung injury via intratracheal instillation of artificial PM2.5 (aPM2.5). Our results demonstrated that Colla corii asini significantly protected against lung function decline and pathologic changes. Inflammation was ameliorated by suppression of Arg-1 to adjust the disturbed metabolic pathways induced by aPM2.5, such as arginine and nitrogen metabolism and aminoacyl-tRNA biosynthesis, for 11 weeks. Our work found that metabolomics was a useful tool that contributed to further understanding of PM2.5-induced respiratory system damage and provided useful information for further pharmacological research on Colla corii asini, which may be valuable for therapeutic intervention.
Collapse
Affiliation(s)
- Tiantian Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Piaopiao Zhang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Yahao Ling
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jianjun Gu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Shandong 252299, China.
| | - Hong Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jinfeng Wei
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| | - Aiping Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical, Sciences & Peking Union Medical College, Beijing 100050, China.
- Beijing Union-Genius Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
| |
Collapse
|
43
|
Rush B, Wiskar K, Fruhstorfer C, Celi LA, Walley KR. The Impact of Chronic Ozone and Particulate Air Pollution on Mortality in Patients With Sepsis Across the United States. J Intensive Care Med 2018; 35:1002-1007. [PMID: 30295138 DOI: 10.1177/0885066618804497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The impact of chronic exposure to air pollution on mortality in patients with sepsis is unknown. We attempted to quantify the relationship between air pollution, notably excess ozone, and particulate matter (PM), with in-hospital mortality in patients with sepsis nationwide. METHODS The 2011 Nationwide Inpatient Sample (NIS) was linked with ambient air pollution data from the Environmental Protection Agency for both 8-hour ozone exposure and annual mean 2.5-micron PM (PM2.5) pollution levels. A validated severity of illness model for sepsis using administrative data was used to control for sepsis severity. RESULTS The records of 8 023 590 hospital admissions from the 2011 NIS sample were analyzed. Of these, there were 444 928 patients who met the Angus definition of sepsis, treated in hospitals for which air pollution data were available. The cohort had an overall mortality of 11.2%. After adjustment for severity of sepsis, increasing exposure to ozone pollution was associated with increased risk of mortality (odds ratio [OR]: 1.04 for each 0.01 ppm increase, 95% confidence interval [CI]: 1.03-1.05; P < .01). Particulate matter was not associated with mortality (OR: 0.99 for each 5 µg/m3 increase, 95% CI: 0.97-1.01; P = .28). When stratified by sepsis source, ozone pollution had a higher impact on patients with pneumonia (OR: 1.06, 95% CI: 1.04-1.08; P < .01) compared to those patients without pneumonia (OR: 1.02, 95% CI: 1.01-1.03; P < .01). CONCLUSION Exposure to increased levels of ozone but not particulate air pollution was associated with higher risk of mortality in patients with sepsis. This association was strongest in patients with pneumonia but persisted in all sources of sepsis. Further work is needed to understand the relationship between ambient ozone air pollution and sepsis outcomes.
Collapse
Affiliation(s)
- Barret Rush
- Division of Critical Care Medicine, Department of Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Heart Lung Innovation (HLI), University of British Columbia, Vancouver, British Columbia, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Katie Wiskar
- Division of General Internal Medicine, Department of Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Clark Fruhstorfer
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leo Anthony Celi
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Keith R Walley
- Division of Critical Care Medicine, Department of Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Center for Heart Lung Innovation (HLI), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
The association of ambient PM 2.5 with school absence and symptoms in schoolchildren: a panel study. Pediatr Res 2018; 84:28-33. [PMID: 29795198 PMCID: PMC6581566 DOI: 10.1038/s41390-018-0004-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/01/2018] [Accepted: 03/10/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Children are a susceptible population to exposure of ambient fine particulate air pollution (PM2.5), and the associated symptoms are sensitive prevalent indicators of morbidity. However, few studies to date investigate the association between PM2.5 exposure and school absence and symptoms. METHODS In a panel study including 20,291 observations in 615 schoolchildren 8-13 years of age, we asked the participants to record their school absence and symptoms on every school day from 17 November to 31 December 2014 in Jinan, China. We used the generalized linear mixed effects models to examine the adverse effects of ambient PM2.5 on school absence and symptoms, adjusting for covariates including meteorological and individual factors. RESULTS The 3-day moving average of PM2.5 was significantly associated with school absence (1.37; 95% CI: 1.07-1.74) and increases in symptoms of the throat (1.03; 95% CI: 1.00-1.05), nose (1.03; 95% CI: 1.01-1.06), and skin (1.09; 95% CI: 1.06-1.12). High PM2.5 exposure also increased the risks of individual symptoms, especially for cough (1.02; 95% CI: 1.00-1.04), sneezing (1.03; 95% CI: 1.00-1.07), and stuffy nose (1.09; 95% CI: 1.02-1.17). CONCLUSION High PM2.5 exposure is a risk factor for the health of schoolchildren. Allocation of medical resources for children should take into account the ambient PM2.5 concentrations and be proportioned accordingly.
Collapse
|
45
|
Chen X, Liu J, Zhou J, Wang J, Chen C, Song Y, Pan J. Urban particulate matter (PM) suppresses airway antibacterial defence. Respir Res 2018; 19:5. [PMID: 29310642 PMCID: PMC5759166 DOI: 10.1186/s12931-017-0700-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/13/2017] [Indexed: 08/30/2023] Open
Abstract
Background Epidemiological studies have shown that urban particulate matter (PM) increases the risk of respiratory infection. However, the underlying mechanisms are poorly understood. PM has been postulated to suppress the activation of airway epithelial innate defence in response to infection. Methods The effects of PM on antibacterial defence were studied using an in vitro infection model. The levels of antimicrobial peptides were measured using RT-PCR and ELISA. In addition to performing colony-forming unit counts and flow cytometry, confocal microscopy was performed to directly observe bacterial invasion upon PM exposure. Results We found that PM PM increased bacterial invasion by impairing the induction of β-defensin-2 (hBD-2), but not the other antimicrobial peptides (APMs) secreted by airway epithelium. PM further increases bacteria-induced ROS production, which is accompanied by an accelerated cell senescence and a decrease in bacteria-induced hBD-2 production, and the antioxidant NAC treatment attenuates these effects. The PM exposure further upregulated the expression of IL-8 but downregulated the expression of IL-13 upon infection. Conclusions PM promotes bacterial invasion of airway epithelial cells by attenuating the induction of hBD-2 via an oxidative burst. These findings associate PM with an increased susceptibility to infection. These findings provide insight into the underlying mechanisms regarding the pathogenesis of particulate matter.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
46
|
Findlay F, Pohl J, Svoboda P, Shakamuri P, McLean K, Inglis NF, Proudfoot L, Barlow PG. Carbon Nanoparticles Inhibit the Antimicrobial Activities of the Human Cathelicidin LL-37 through Structural Alteration. THE JOURNAL OF IMMUNOLOGY 2017; 199:2483-2490. [PMID: 28814602 DOI: 10.4049/jimmunol.1700706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/22/2017] [Indexed: 01/16/2023]
Abstract
Host defense peptides, also known as antimicrobial peptides, are key elements of innate host defense. One host defense peptide with well-characterized antimicrobial activity is the human cathelicidin, LL-37. LL-37 has been shown to be upregulated at sites of infection and inflammation and is regarded as one of the primary innate defense molecules against bacterial and viral infection. Human exposure to combustion-derived or engineered nanoparticles is of increasing concern, and the implications of nanomaterial exposure on the human immune response is poorly understood. However, it is widely acknowledged that nanoparticles can interact strongly with several immune proteins of biological significance, with these interactions resulting in structural and functional changes of the proteins involved. This study investigated whether the potent antibacterial and antiviral functions of LL-37 were inhibited by exposure to, and interaction with, carbon nanoparticles, together with characterizing the nature of the interaction. LL-37 was exposed to carbon black nanoparticles in vitro, and the antibacterial and antiviral functions of the peptide were subsequently assessed. We demonstrate a substantial loss of antimicrobial function when the peptide was exposed to low concentrations of nanomaterials, and we further show that the nanomaterial-peptide interaction resulted in a significant change in the structure of the peptide. The human health implications of these findings are significant, as, to our knowledge, this is the first evidence that nanoparticles can alter host defense peptide structure and function, indicating a new role for nanoparticle exposure in increased disease susceptibility.
Collapse
Affiliation(s)
- Fern Findlay
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom
| | - Jan Pohl
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333; and
| | - Pavel Svoboda
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333; and
| | - Priyanka Shakamuri
- Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333; and
| | - Kevin McLean
- Moredun Proteomics Facility, Moredun Research Institute, Penicuik EH26 0PZ, United Kingdom
| | - Neil F Inglis
- Moredun Proteomics Facility, Moredun Research Institute, Penicuik EH26 0PZ, United Kingdom
| | - Lorna Proudfoot
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh EH11 4BN, United Kingdom;
| |
Collapse
|
47
|
Shan W, Lu Y, Guo Y, Li Y, Xu L, Cao L. Short-term association between particular matter air pollution and pediatric clinical visits for wheezing in a subarea of Shanghai. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19201-19211. [PMID: 27351879 DOI: 10.1007/s11356-016-7066-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
To assess the association between the concentration of ambient particulate matter (PM) and the pediatric clinical visits for wheezing among children under 3 years old, data of daily air pollutants (PM2.5, PM10, NO2, SO2, CO), meteorological reports, along with the number of daily clinical visits of the children with wheezing at the Pediatric Department of Shanghai Renji Hospital (South Campus) were collected from January through December 2014. Correlation between the levels of air pollutants and the number of clinical patients for wheezing were analyzed by a time series analysis with a generalized addictive model (GAM). During the study period, the daily average concentrations of PM2.5, PM10, NO2, SO2, and CO were 51.84 ± 32.51, 72.69 ± 41.15, 43.25 ± 18.07, 17.45 ± 10.42, and 0.82 ± 0.26 μg/m(3), respectively, which were abnormally higher compared to the standard defined by the Chinese Ministry of Environment Protection. The average number of daily clinical patients with wheezing was 23 ± 14 persons/day. The number of clinical visit by children with wheezing was significantly correlated with concentration of PM2.5 or PM10 when the effect of SO2 and NO2 was adjusted (P < 0.05). It was also found that exposure-response relationship was a linear non-threshold mode when it was analyzed by the GAM, and the percent of the clinical visits of children with wheezing increased from 0 to nearly 20 % with every interquartile increase of PM2.5. The visiting number of children at a pediatric outpatient clinic increased due to the increase of PM2.5 in Pujiang, Shanghai, China.
Collapse
Affiliation(s)
- Wenjie Shan
- Department of Pediatrics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201112, China
| | - Yanming Lu
- Department of Pediatrics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201112, China.
| | - Yinshi Guo
- Department of Allergy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yaqin Li
- Department of Pediatrics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201112, China
| | - Lingyun Xu
- Department of Pediatrics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201112, China
| | - Lanfang Cao
- Department of Pediatrics, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201112, China
| |
Collapse
|
48
|
Zhao Q, Chen H, Yang T, Rui W, Liu F, Zhang F, Zhao Y, Ding W. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim Biophys Acta Gen Subj 2016; 1860:2835-43. [PMID: 27041089 DOI: 10.1016/j.bbagen.2016.03.033] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/16/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Exposure of atmospheric particulate matter with an aerodynamic diameter less than 2.5μm (PM2.5) is epidemiologically associated with illnesses. Potential effects of air pollutants on innate immunity have raised concerns. As the first defense line, macrophages are able to induce inflammatory response. However, whether PM2.5 exposure affects macrophage polarizations remains unclear. METHODS We used freshly isolated macrophages as a model system to demonstrate effects of PM2.5 on macrophage polarizations. The expressions of cytokines and key molecular markers were detected by real-time PCR, and flow cytometry. The specific inhibitors and gene deletion technologies were used to address the molecular mechanisms. RESULTS PM2.5 increased the expression of pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor alpha (TNFα). PM2.5 also enhanced the lipopolysaccharide (LPS)-induced M1 polarization even though there was no evidence in the change of cell viability. However, PM2.5 significantly decreased the number of mitochondria in a dose dependent manner. Pre-treatment with NAC, a scavenger of reactive oxygen species (ROS), prevented the increase of ROS and rescued the PM2.5-impacted M1 but not M2 response. However, mTOR deletion partially rescued the effects of PM2.5 to reduce M2 polarization. CONCLUSIONS PM2.5 exposure significantly enhanced inflammatory M1 polarization through ROS pathway, whereas PM2.5 exposure inhibited anti-inflammatory M2 polarization through mTOR-dependent pathway. GENERAL SIGNIFICANCE The present studies suggested that short-term exposure of PM2.5 acts on the balance of inflammatory M1 and anti-inflammatory M2 macrophage polarizations, which may be involved in air pollution-induced immune disorders and diseases. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Qingjie Zhao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tao Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Rui
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
49
|
Abstract
Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.
Collapse
Affiliation(s)
- Yu-Fei Xing
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yue-Hua Xu
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Min-Hua Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yi-Xin Lian
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
50
|
Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis 2016. [PMID: 26904255 DOI: 10.3978/j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Recently, many researchers paid more attentions to the association between air pollution and respiratory system disease. In the past few years, levels of smog have increased throughout China resulting in the deterioration of air quality, raising worldwide concerns. PM2.5 (particles less than 2.5 micrometers in diameter) can penetrate deeply into the lung, irritate and corrode the alveolar wall, and consequently impair lung function. Hence it is important to investigate the impact of PM2.5 on the respiratory system and then to help China combat the current air pollution problems. In this review, we will discuss PM2.5 damage on human respiratory system from epidemiological, experimental and mechanism studies. At last, we recommend to the population to limit exposure to air pollution and call to the authorities to create an index of pollution related to health.
Collapse
Affiliation(s)
- Yu-Fei Xing
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yue-Hua Xu
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Min-Hua Shi
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yi-Xin Lian
- Department of Respiratory Medicine, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|