1
|
Duan Z, Shi R, Gao B, Cai J. N-linked glycosylation of PD-L1/PD-1: an emerging target for cancer diagnosis and treatment. J Transl Med 2024; 22:705. [PMID: 39080767 PMCID: PMC11290144 DOI: 10.1186/s12967-024-05502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
During tumorigenesis and progression, the immune checkpoint programmed death-1 (PD-1) and its ligand programmed death ligand-1 (PD-L1) play critical roles in suppressing T cell-mediated anticancer immune responses, leading to T-cell exhaustion and subsequent tumor evasion. Therefore, anti-PD-L1/PD-1 therapy has been an attractive strategy for treating cancer over the past decade. However, the overall efficacy of this approach remains suboptimal, revealing an urgent need for novel insights. Interestingly, increasing evidence indicates that both PD-L1 on tumor cells and PD-1 on tumor-specific T cells undergo extensive N-linked glycosylation, which is essential for the stability and interaction of these proteins, and this modification promotes tumor evasion. In various preclinical models, targeting the N-linked glycosylation of PD-L1/PD-1 was shown to significantly increase the efficacy of PD-L1/PD-1 blockade therapy. Furthermore, deglycosylation of PD-L1 strengthens the signal intensity in PD-L1 immunohistochemistry (IHC) assays, improving the diagnostic and therapeutic relevance of this protein. In this review, we provide an overview of the regulatory mechanisms underlying the N-linked glycosylation of PD-L1/PD-1 as well as the crucial role of N-linked glycosylation in PD-L1/PD-1-mediated immune evasion. In addition, we highlight the promising implications of targeting the N-linked glycosylation of PD-L1/PD-1 in the clinical diagnosis and treatment of cancer. Our review identifies knowledge gaps and sheds new light on the cancer research field.
Collapse
Affiliation(s)
- Zhiyun Duan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Runhan Shi
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
- Department of Ophthalmology and Vision Science, Shanghai Eye Ear Nose and Throat Hospital, Fudan University, Shanghai, 200031, P.R. China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, P.R. China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Liver Cancer Institute, Fudan University, Shanghai, 200032, P.R. China.
- Department of Liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
2
|
Huang M, Park J, Seo J, Ko S, Yang YH, Lee Y, Kim HJ, Lee BS, Lee YS, Ko BJ, Jung ST, Park D, Yoo TH, Kim CH. An epidermal growth factor receptor-targeting immunotoxin based on IgG shows potent antitumor activity against head and neck cancer. FASEB J 2024; 38:e23759. [PMID: 38949635 DOI: 10.1096/fj.202301968r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 07/02/2024]
Abstract
The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.
Collapse
Affiliation(s)
- Mei Huang
- Department of Medical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jisoo Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Jina Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sanghwan Ko
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Yoon Hee Yang
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yeaji Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Republic of Korea
| | - Sang Teak Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
- Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Deachan Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Advanced College of Bio-convergence Engineering, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
Besleaga M, Zimmermann C, Ebner K, Mach RL, Mach-Aigner AR, Geier M, Glieder A, Spadiut O, Kopp J. Bi-directionalized promoter systems allow methanol-free production of hard-to-express peroxygenases with Komagataella Phaffii. Microb Cell Fact 2024; 23:177. [PMID: 38879507 PMCID: PMC11179361 DOI: 10.1186/s12934-024-02451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.
Collapse
Affiliation(s)
- Mihail Besleaga
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Christian Zimmermann
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Katharina Ebner
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Martina Geier
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Anton Glieder
- bisy GmbH, Wünschendorf 292, Hofstätten an der Raab, 8200, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria
| | - Julian Kopp
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Integrated Bioprocess Development, Gumpendorfer Straße 1a, Vienna, 1060, Austria.
| |
Collapse
|
4
|
Krishna S, Jung ST, Lee EY. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. Crit Rev Biotechnol 2024:1-23. [PMID: 38797692 DOI: 10.1080/07388551.2024.2342969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/18/2024] [Indexed: 05/29/2024]
Abstract
Owing to the unmet demand, the pharmaceutical industry is investigating an alternative host to mammalian cells to produce antibodies for a variety of therapeutic and research applications. Regardless of some disadvantages, Escherichia coli and Pichia pastoris are the preferred microbial hosts for antibody production. Despite the fact that the production of full-length antibodies has been successfully demonstrated in E. coli, which has mostly been used to produce antibody fragments, such as: antigen-binding fragments (Fab), single-chain fragment variable (scFv), and nanobodies. In contrast, Pichia, a eukaryotic microbial host, is mostly used to produce glycosylated full-length antibodies, though hypermannosylated glycan is a major challenge. Advanced strategies, such as the introduction of human-like glycosylation in endotoxin-edited E. coli and cell-free system-based glycosylation, are making progress in creating human-like glycosylation profiles of antibodies in these microbes. This review begins by explaining the structural and functional requirements of antibodies and continues by describing and analyzing the potential of E. coli and P. pastoris as hosts for providing a favorable environment to create a fully functional antibody. In addition, authors compare these microbes on certain features and predict their future in antibody production. Briefly, this review analyzes, compares, and highlights E. coli and P. pastoris as potential hosts for antibody production.
Collapse
Affiliation(s)
- Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
5
|
Yang J, Ostafe R, Bruening ML. In-Membrane Enrichment and Peptic Digestion to Facilitate Analysis of Monoclonal Antibody Glycosylation. Anal Chem 2024; 96:6347-6355. [PMID: 38607313 PMCID: PMC11283323 DOI: 10.1021/acs.analchem.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The number of therapeutic monoclonal antibodies (mAbs) is growing rapidly due to their widespread use for treating various diseases and health conditions. Assessing the glycosylation profile of mAbs during production is essential to ensuring their safety and efficacy. This research aims to rapidly isolate and digest mAbs for liquid chromatography-tandem mass spectrometry (LC-MS/MS) identification of glycans and monitoring of glycosylation patterns, potentially during manufacturing. Immobilization of an Fc region-specific ligand, oFc20, in a porous membrane enables the enrichment of mAbs from cell culture supernatant and efficient elution with an acidic solution. Subsequent digestion of the mAb eluate occurred in a pepsin-modified membrane within 5 min. The procedure does not require alkylation and desalting, greatly shortening the sample preparation time. Subsequent LC-MS/MS analysis identified 11 major mAb N-glycan proteoforms and assessed the relative peak areas of the glycosylated peptides. This approach is suitable for the glycosylation profiling of various human IgG mAbs, including biosimilars and different IgG subclasses. The total time required for this workflow is less than 2 h, whereas the conventional enzymatic release and labeling of glycans can take much longer. Thus, the integrated membranes are suitable for facilitating the analysis of mAb glycosylation patterns.
Collapse
Affiliation(s)
- Junyan Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Raluca Ostafe
- Molecular Evolution, Protein Engineering and Production Facility; Purdue Institute for Inflammation, Immunology and Infection Diseases, Purdue University, West Lafayette, IN 47907, United States
| | - Merlin L. Bruening
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
6
|
Kuravsky M, Gibbons GF, Joyce C, Scott-Tucker A, Macpherson A, Lawson ADG. Modular design of bi- and multi-specific knob domain fusions. Front Immunol 2024; 15:1384467. [PMID: 38605965 PMCID: PMC11008599 DOI: 10.3389/fimmu.2024.1384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction The therapeutic potential of bispecific antibodies is becoming widely recognised, with over a hundred formats already described. For many applications, enhanced tissue penetration is sought, so bispecifics with low molecular weight may offer a route to enhanced potency. Here we report the design of bi- and tri-specific antibody-based constructs with molecular weights as low as 14.5 and 22 kDa respectively. Methods Autonomous bovine ultra-long CDR H3 (knob domain peptide) modules have been engineered with artificial coiled-coil stalks derived from Sin Nombre orthohantavirus nucleocapsid protein and human Beclin-1, and joined in series to produce bi- and tri-specific antibody-based constructs with exceptionally low molecular weights. Results Knob domain peptides with coiled-coil stalks retain high, independent antigen binding affinity, exhibit exceptional levels of thermal stability, and can be readily joined head-to-tail yielding the smallest described multi-specific antibody format. The resulting constructs are able to bind simultaneously to all their targets with no interference. Discussion Compared to existing bispecific formats, the reduced molecular weight of the knob domain fusions may enable enhanced tissue penetration and facilitate binding to cryptic epitopes that are inaccessible to conventional antibodies. Furthermore, they can be easily produced at high yield as recombinant products and are free from the heavy-light chain mispairing issue. Taken together, our approach offers an efficient route to modular construction of minimalistic bi- and multi-specifics, thereby further broadening the therapeutic scope for knob domain peptides.
Collapse
|
7
|
Dehghan R, Parikhani AB, Cohan RA, Shokrgozar MA, Mirabzadeh E, Ajdary S, Zeinali S, Ghaderi H, Talebkhan Y, Behdani M. Specific Targeting of Zinc Transporter LIV-1 with Immunocytokine Containing Anti-LIV-1 VHH and Human IL-2 and Evaluation of its In vitro Antitumor Activity. Curr Pharm Des 2024; 30:868-876. [PMID: 38482625 DOI: 10.2174/0113816128295195240305060103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/16/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Interleukin 2 (IL-2) is a vital cytokine in the induction of T and NK cell responses, the proliferation of CD8+ T cells, and the effective treatment of human cancers such as melanoma and renal cell carcinoma. However, widespread use of this cytokine is limited due to its short half-life, severe toxicity, lack of specific tumor targeting, and activation of Treg cells mediated by high-affinity interleukin-2 receptors. OBJECTIVE In this study, a tumor-targeting LIV-1 VHH-mutIL2 immunocytokine with reduced CD25 (α chain of the high-affinity IL-2 receptor) binding activity was developed to improve IL-2 half-life by decreasing its renal infiltration in comparison with wild and mutant IL-2 molecules. METHODS The recombinant immunocytokine was designed and expressed. The biological activity of the purified fusion protein was investigated in in vitro and in vivo experiments. RESULTS The fusion protein represented specific binding to MCF7 (the breast cancer cell line) and more efficient cytotoxicity than wild-type IL-2 and mutant IL-2. The PK parameters of the recombinant immunocytokine were also improved in comparison to the IL-2 molecules. CONCLUSION The observed results showed that LIV1-mIL2 immunocytokine could be considered as an effective agent in the LIV-1-targeted treatment of cancers due to its longer half-life and stronger cytotoxicity.
Collapse
Affiliation(s)
- Rada Dehghan
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Arezoo Beig Parikhani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Esmat Mirabzadeh
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Sirous Zeinali
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Hajarossadat Ghaderi
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Dubey KK, Kumar A, Baldia A, Rajput D, Kateriya S, Singh R, Nikita, Tandon R, Mishra YK. Biomanufacturing of glycosylated antibodies: Challenges, solutions, and future prospects. Biotechnol Adv 2023; 69:108267. [PMID: 37813174 DOI: 10.1016/j.biotechadv.2023.108267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Traditionally, recombinant protein production has been done in several expression hosts of bacteria, fungi, and majorly CHO (Chinese Hamster Ovary) cells; few have high production costs and are susceptible to harmful toxin contamination. Green algae have the potential to produce recombinant proteins in a more sustainable manner. Microalgal diversity leads to offer excellent opportunities to produce glycosylated antibodies. An antibody with humanized glycans plays a crucial role in cellular communication that works to regulate cells and molecules, to control disease, and to stimulate immunity. Therefore, it becomes necessary to understand the role of abiotic factors (light, temperature, pH, etc.) in the production of bioactive molecules and molecular mechanisms of product synthesis from microalgae which would lead to harnessing the potential of algal bio-refinery. However, the potential of microalgae as the source of bio-refinery has been less explored. In the present review, omics approaches for microalgal engineering, methods of humanized glycoproteins production focusing majorly on N-glycosylation pathways, light-based regulation of glycosylation machinery, and production of antibodies with humanized glycans in microalgae with a major emphasis on modulation of post-translation machinery of microalgae which might play a role in better understanding of microalgal potential as a source for antibody production along with future perspectives.
Collapse
Affiliation(s)
- Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Kumar
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anshu Baldia
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepanshi Rajput
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400 Sønderborg, Denmark.
| |
Collapse
|
9
|
Zelenovic N, Filipovic L, Popovic M. Recent Developments in Bioprocessing of Recombinant Antibody Fragments. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1191-1204. [PMID: 37770388 DOI: 10.1134/s0006297923090018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.
Collapse
Affiliation(s)
- Nevena Zelenovic
- Center for Chemistry, Institute for Chemistry, Technology, and Metallurgy, National Institute of Republic of Serbia, University of Belgrade, Belgrade, 11000, Serbia
| | - Lidija Filipovic
- Innovative Centre, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Milica Popovic
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Belgrade, 11000, Serbia.
| |
Collapse
|
10
|
Alves-Mondini C, Beltramino M, Jiacomini IG, Karim-Silva S, Dos Santos Antunes N, de Moura J, Aubrey N, Billiald P, Machado-de-Ávila RA, Alvarenga LM, Becker-Finco A. Identification of a common epitope in knottins and phospholipases D present in Loxosceles sp venom by a monoclonal antibody. Int J Biol Macromol 2023; 246:125588. [PMID: 37399872 DOI: 10.1016/j.ijbiomac.2023.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.
Collapse
Affiliation(s)
- Camila Alves-Mondini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Martina Beltramino
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Isabella Gizzi Jiacomini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil; Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Sabrina Karim-Silva
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolle Dos Santos Antunes
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Juliana de Moura
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolas Aubrey
- Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Philippe Billiald
- LVTS, INSERM UMR S1148, Paris & Université Paris-Saclay, School of Pharmacy, 91400 Orsay, France
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000 Criciúma, Santa Catarina, Brazil
| | - Larissa M Alvarenga
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil.
| | - Alessandra Becker-Finco
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| |
Collapse
|
11
|
Juengsanguanpornsuk W, Poopanee N, Krittanai S, Sakamoto S, Tanaka H, Putalun W, Yusakul G. Immunoaffinity separation of miroestrol and deoxymiroestrol from Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham using fragment antigen-binding antibody produced via Escherichia coli. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:632-640. [PMID: 37254639 DOI: 10.1002/pca.3251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Miroestrol and deoxymiroestrol are potent phytoestrogens and are oestrogen markers of Pueraria candollei var. mirifica. However, purifying these compounds is difficult because they only exist in trace amounts. OBJECTIVES Active fragment antigen-binding (Fab) antibodies were produced via Escherichia coli SHuffle® T7 and used to selectively separate these compounds. MATERIALS AND METHODS Two immunoaffinity separation approaches were developed, namely the immunoaffinity column (IAC) and a cell-based method. Group-specific Fab antibodies against miroestrol and deoxymiroestrol (anti-MD Fab) were used as biological binding reagents for selective separation. RESULTS The Fab-based IAC effectively separated miroestrol and deoxymiroestrol (0.65 and 2.24 μg per 2 mL of resin, respectively) from P. mirifica root extract. When P. mirifica extract was added to E. coli cultures during Fab expression via a cell-based method, the target compound accumulated in intracellular compartments and, thus, were separated from E. coli cells after the removal of other compounds. A yield of 1.07 μg of miroestrol per gram of cell pellet weight was obtained. Miroestrol and deoxymiroestrol were successfully purified from P. mirifica extract using anti-MD Fab via the IAC and an intracellular cell-based method. CONCLUSION The proposed methods can simplify the miroestrol and deoxymiroestrol extraction process and provide a basis for applications utilising recombinant antibodies to separate target compounds.
Collapse
Affiliation(s)
| | - Nut Poopanee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Supaluk Krittanai
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tanaka
- Department of Pharmacognosy and Kampo, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
12
|
Shen AM, Malekshah OM, Pogrebnyak N, Minko T. Plant-derived single domain COVID-19 antibodies. J Control Release 2023; 359:1-11. [PMID: 37225092 PMCID: PMC10231691 DOI: 10.1016/j.jconrel.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
13
|
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, Del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LDC. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023; 11:1610. [PMID: 37371712 DOI: 10.3390/biomedicines11061610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibodies are among the most effective tools for detecting tumor-associated antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic antibodies for developing novel alternative therapies that have significant success rates in fighting cancer. However, some functional limitations have been described, such as their access to solid tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The small size of scFv can be advantageous for treatment due to its short half-life and other characteristics related to the structural and functional aspects of the antibodies. Therefore, the main objective of this review was to describe the current situation regarding the mechanisms of action, applications, and limitations of monoclonal antibodies and scFv in the treatment of cancer.
Collapse
Affiliation(s)
- Cynthia Rodríguez-Nava
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Proteínas y Ácidos Nucleicos, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | | | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Karen Cortés-Sarabia
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| |
Collapse
|
14
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
15
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
16
|
Khilji SK, Op 't Hoog C, Warschkau D, Lühle J, Goerdeler F, Freitag A, Seeberger PH, Moscovitz O. Smaller size packs a stronger punch - Recent advances in small antibody fragments targeting tumour-associated carbohydrate antigens. Theranostics 2023; 13:3041-3063. [PMID: 37284439 PMCID: PMC10240822 DOI: 10.7150/thno.80901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies.
Collapse
Affiliation(s)
- Sana Khan Khilji
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Charlotte Op 't Hoog
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Graduate School of Life Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
| | - David Warschkau
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jost Lühle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Freitag
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
17
|
Li Y, Xie S, Chen M, Li H, Wang Y, Fan Y, An K, Wu Y, Xiao W. Development of an antibody-ligand fusion protein scFvCD16A -sc4-1BBL in Komagataella phaffii with stimulatory activity for Natural Killer cells. Microb Cell Fact 2023; 22:67. [PMID: 37041591 PMCID: PMC10091686 DOI: 10.1186/s12934-023-02082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.
Collapse
Affiliation(s)
- Yangyang Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Siqi Xie
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Minhua Chen
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Hao Li
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yehai Wang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yan Fan
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kang An
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yu Wu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weihua Xiao
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
18
|
Kambouris ME. Global Catastrophic Biological Risks in the Post-COVID-19 World: Time to Act Is Now. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:153-170. [PMID: 36946656 DOI: 10.1089/omi.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global Catastrophic Biological Risks (GCBRs) refer to events with biological agents that can result in unprecedented or catastrophic disasters that are beyond the collective response-abilities of nation-states and the existing governance instruments of global governance and international affairs. This article offers a narrative review, with a view to new hypothesis development to rethink GCBRs after coronavirus disease 2019 (COVID-19) so as to better prepare for future pandemics and ecological crises, if not to completely prevent them. To determine GCBRs' spatiotemporal contexts, define causality, impacts, differentiate the risk and the event, would improve theorization of GCBRs compared to the impact-centric current definition. This could in turn lead to improvements in preparedness, response, allocation of resources, and possibly deterrence, while actively discouraging lack of due biosecurity diligence. Critical governance of GCBRs in ways that unpack the political power-related dimensions could be particularly valuable because the future global catastrophic events might be different in quality, scale, and actors. Theorization of GCBRs remains an important task going forward in the 21st century in ways that draw from experiences in the field, while integrating flexibility, versatility, and critically informed responses to GCBRs.
Collapse
|
19
|
Srila W, Min TT, Sumphanapai T, Rangnoi K, Berkmen M, Yamabhai M. Production and applications of fluorobody from redox-engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:1959-1970. [PMID: 36729226 PMCID: PMC10050041 DOI: 10.1007/s00253-023-12395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Efficient selection and production of antibody fragments in microbial systems remain to be a challenging process. To optimize microbial production of single-chain variable fragments (scFvs), we have chosen five model targets, 1) a hapten, Zearalenone (ZEN) mycotoxin, along with infectious agents 2) rabies virus, 3) Propionibacterium acnes, 4) Pseudomonas aeruginosa, and a cancer cell 5) acute myeloid leukemia cell line (HL-60). The scFv binders were affinity selected from a non-immunized human phage display scFv antibody library and genetically fused to the N-terminus of emerald green fluorescent protein (EmGFP). The scFv-EmGFP fusion constructs were subcloned into an expression vector, under the control of T7 promoter, C-terminally tagged with hexa-histidine and expressed in different Escherichia coli (E. coli) hosts. This enabled the detection of cells that expressed the correct scFv-EmGFP fusion, termed fluorobody, via bright fluorescent signal in the cytoplasm. Among the three E. coli hosts tested, an engineered E. coli B strain called SHuffle B that promotes disulfide bond formation in the cytoplasm appeared to be the most appropriate host. The recombinant fluorobodies were well expressed (2-8 mg/L), possessed the fluorescence property of EmGFP, and retained the ability to bind to their cognate targets. Their specific bindings were demonstrated by ELISA, fluorescence-linked immunosorbent assay (FLISA), flow cytometry, and fluorescent microscope imaging. The fluorobody expression platform in this study could be further adopted as a one-step immunostaining technique based on scFv, isolated from phage display library to numerous desired targets. KEY POINTS: • E. coli SHuffle express T7 is a suitable expression host for scFv-EmGFP (fluorobody) • Only the clones harboring scFv-EmGFP plasmid will show bright fluorescent signal • This platform can be used to produce fluorobodies for numerous purposes.
Collapse
Affiliation(s)
- Witsanu Srila
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thae Thae Min
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kuntalee Rangnoi
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | | | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
20
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
21
|
Maleki R, Rahimpour A, Rajabibazl M. Construction and evaluation of wild and mutant ofatumumab scFvs against the human CD20 antigen. Prep Biochem Biotechnol 2023; 53:239-246. [PMID: 35579623 DOI: 10.1080/10826068.2022.2073598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several monoclonal antibodies targeting the CD20 have been produced and Ofatumumab is a case in point. Although whole antibodies target cancer cells effectively, their applications are restricted in some ways. Single-chain fragment variable antibodies, rather than employing the entire structure of antibodies, have proven a practical approach for creating completely functional antigen-binding fragments. In current research, the DNA coding sequence of VL and VH of the wild and mutant forms of ofatumumab were joined with a flexible linker (GGGGS)3 separately. Using the E. coli BL21 (DE3) expression system, the VL-linker-VH genes were cloned into the pET-28 a (+), and the associated recombinant proteins were produced. Purified and refolded scFvs (scFv-C and scFv-V3) represented a concentration of around 0.7 mg/ml from 1 L of initial E. coli culture with a molecular weight of about 27 kDa. Affinity measurement disclosed anti-CD20 scFv-V3 possesses a higher affinity constant compared to anti-CD20 scFv-C. The recombinant scFvs exclusively attach to Raji cells but not to Jurkat cells, according to a cell-ELISA analysis. The MTT test signified anti-CD20 scFvs could affect cell viability in Raji cells but had no impact on Jurkat cells and also, Raji cells viability was affected more significantly by anti-CD20 scFv-V3.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Mayer F, Cserjan-Puschmann M, Haslinger B, Shpylovyi A, Sam C, Soos M, Hahn R, Striedner G. Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes. Biotechnol J 2023; 18:e2200152. [PMID: 36442862 DOI: 10.1002/biot.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.
Collapse
Affiliation(s)
- Florian Mayer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Haslinger
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anton Shpylovyi
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Sam
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Praha, Czech Republic
| | - Rainer Hahn
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
23
|
Guliy OI, Evstigneeva SS, Dykman LA. The Use of Phage Antibodies for Microbial Cell Detection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
24
|
Gätjen D, Wieczorek M, Listek M, Tomszak F, Nölle V, Hanack K, Droste M. A switchable secrete-and-capture system enables efficient selection of Pichia pastoris clones producing high yields of Fab fragments. J Immunol Methods 2022; 511:113383. [PMID: 36356896 DOI: 10.1016/j.jim.2022.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) represents a commonly used expression system in the biotech industry. High clonal variation of transformants, however, typically results in a broad range of specific productivities for secreted proteins. To isolate rare clones with exceedingly high product titers, an extensive number of clones need to be screened. In contrast to high-throughput screenings of P. pastoris clones in microtiter plates, secrete-and-capture methodologies have the potential to efficiently isolate high-producer clones among millions of cells through fluorescence-activated cell sorting (FACS). Here, we describe a novel approach for the non-covalent binding of fragment antigen-binding (Fab) proteins to the cell surface for the isolation of high-producing clones. Eight different single-chain variable fragment (scFv)-based capture matrices specific for the constant part of the Fabs were fused to the Saccharomyces cerevisiae alpha-agglutinin (SAG1) anchor protein for surface display in P. pastoris. By encoding the capture matrix on an episomal plasmid harboring inherently unstable autonomously replicating sequences (ARS), this secrete-and-capture system offers a switchable scFv display. Efficient plasmid clearance upon removal of selective pressure enabled the direct use of isolated clones for subsequent Fab production. Flow-sorted clones (n = 276) displaying high amounts of Fabs showed a significant increase in median Fab titers detected in the cell-free supernatant (CFS) compared to unsorted clones (n = 276) when cells were cultivated in microtiter plates (factor in the range of ∼21-49). Fab titers of clones exhibiting the highest product titer observed for each of the two approaches were increased by up to 8-fold for the sorted clone. Improved Fab yields of sorted cells vs. unsorted cells were confirmed in an upscaled shake flask cultivation of selected candidates (factor in the range of ∼2-3). Hence, the developed display-based selection method proved to be a valuable tool for efficient clone screening in the early stages of our bioprocess development.
Collapse
Affiliation(s)
- Dominic Gätjen
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany; Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Martin Listek
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Florian Tomszak
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Volker Nölle
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| | - Miriam Droste
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany.
| |
Collapse
|
25
|
Tang D, Gunson J, Tran E, Lam C, Shen A, Snedecor B, Barnard G, Misaghi S. Expressing antigen binding fragments with high titers in a targeted integration CHO host by optimizing expression vector gene copy numbers and position: A case study. Biotechnol Prog 2022; 38:e3290. [PMID: 36537257 DOI: 10.1002/btpr.3290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022]
Abstract
Antigen binding fragments (Fab) are a promising class of therapeutics as they maintain high potency while having significantly smaller size relative to full-length antibodies. Because Fab molecules are aglycosylated, many expression platforms, including prokaryotic, yeast, and mammalian cells, have been developed for their expression, with Escherichia coli being the most commonly used Fab expression system. In this study, we have examined production of a difficult to express Fab molecule in a targeted integration (TI) Chinese Hamster Ovary (CHO) host. Without a need for extensive host or process optimization, as is usually required for E. coli, by simply using different vector configurations, clones with very high Fab expression titers were obtained. In this case, by increasing heavy chain (HC) gene copy numbers, clones with titers of up to 7.4 g/L in the standard fed-batch production culture were obtained. Our findings suggest that having a predetermined transgene integration site, as well as the option to optimize gene copy number/dosage, makes CHO TI hosts an effective system for expression of Fab molecules, allowing Fab expression using platform process and without significant process development efforts.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA.,Protein Sciences, Proteologix US Inc., Redwood Shores, California, USA
| | - Jane Gunson
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Eric Tran
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Gavin Barnard
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
26
|
Zahrl RJ, Prielhofer R, Ata Ö, Baumann K, Mattanovich D, Gasser B. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion. Metab Eng 2022; 74:36-48. [PMID: 36057427 DOI: 10.1016/j.ymben.2022.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022]
Abstract
Yeasts and especially Pichia pastoris (syn Komagataella spp.) are popular microbial expression systems for the production of recombinant proteins. One of the key advantages of yeast host systems is their ability to secrete the recombinant protein into the culture media. However, secretion of some recombinant proteins is less efficient. These proteins include antibody fragments such as Fabs or scFvs. We have recently identified translocation of nascent Fab fragments from the cytosol into the endoplasmic reticulum (ER) as one major bottleneck. Conceptually, this bottleneck requires engineering to increase the flux of recombinant proteins at the translocation step by pushing on the cytosolic side and pulling on the ER side. This engineering strategy is well-known in the field of metabolic engineering. To apply the push-and-pull strategy to recombinant protein secretion, we chose to modulate the cytosolic and ER Hsp70 cycles, which have a key impact on the translocation process. After identifying the relevant candidate factors of the Hsp70 cycles, we combined the push-and-pull factors in a single strain and achieved synergistic effects for antibody fragment secretion. With this concept we were able to successfully engineer strains and improve protein secretion up to 5-fold for different model protein classes. Overall, titers of more than 1.3 g/L Fab and scFv were reached in bioreactor cultivations.
Collapse
Affiliation(s)
- Richard J Zahrl
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Roland Prielhofer
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Özge Ata
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Kristin Baumann
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- ACIB GmbH, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology (IMMB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
27
|
Mayer F, Cserjan-Puschmann M, Haslinger B, Shpylovyi A, Dalik T, Sam C, Hahn R, Striedner G. Strain specific properties of Escherichia coli can prevent non-canonical amino acid misincorporation caused by scale-related process heterogeneities. Microb Cell Fact 2022; 21:170. [PMID: 35999607 PMCID: PMC9396823 DOI: 10.1186/s12934-022-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Escherichia coli is one of the most important hosts for production of recombinant proteins in biopharmaceutical industry. However, when selecting a suitable production strain, it is often not considered that a lot of different sub-species exist, which can differ in their genotypes and phenotypes. Another important development step is the scale-up of bioprocesses with the particular challenge that heterogeneities and gradients occur at production scale. These in turn can affect the production organism and can have negative impact on the process and the product quality. Therefore, researchers developed scale-down reactors, which are used to mimic manufacturing conditions in laboratory scale. The main objectives of this study were to determine the extent to which scale-related process inhomogeneities affect the misincorporation of non-canonical amino acids into the recombinant target protein, which is an important quality attribute, and whether strain specific properties may have an impact. RESULTS We investigated two industrially relevant E. coli strains, BL21(DE3) and HMS174(DE3), which produced an antigen binding fragment (Fab). The cells were cultivated in high cell density fed-batch mode at laboratory scale and under scale-down conditions. We demonstrated that the two host strains differ significantly with respect to norleucine misincorporation into the target protein, especially under heterogeneous cultivation conditions in the scale-down reactor. No norleucine misincorporation was observed in E. coli BL21(DE3) for either cultivation condition. In contrast, norleucine incorporation into HMS174(DE3) was already detectable in the reference process and increased dramatically in scale-down experiments. Norleucine incorporation was not random and certain positions were preferred over others, even though only a single codon exists. Differences in biomass and Fab production between the strains during scale-down cultivations could be observed as well. CONCLUSIONS This study has shown that E. coli BL21(DE3) is much more robust to scale-up effects in terms of norleucine misincorporation than the K12 strain tested. In this respect, BL21(DE3) enables better transferability of results at different scales, simplifies process implementation at production scale, and helps to meet regulatory quality guidelines defined for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Florian Mayer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Benedikt Haslinger
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Anton Shpylovyi
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Thomas Dalik
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christian Sam
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1120, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
28
|
Borde C, Dillard C, L’Honoré A, Quignon F, Hamon M, Marchand CH, Faccion RS, Costa MGS, Pramil E, Larsen AK, Sabbah M, Lemaire SD, Maréchal V, Escargueil AE. The C-Terminal Acidic Tail Modulates the Anticancer Properties of HMGB1. Int J Mol Sci 2022; 23:ijms23147865. [PMID: 35887213 PMCID: PMC9319070 DOI: 10.3390/ijms23147865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Energy metabolism reprogramming was recently listed as a hallmark of cancer. In this process, the switch from pyruvate kinase isoenzyme type M1 to pyruvate kinase isoenzyme type M2 (PKM2) is believed to play a crucial role. Interestingly, the activity of the active form of PKM2 can efficiently be inhibited by the high-mobility group box 1 (HMGB1) protein, leading to a rapid blockage of glucose-dependent aerobic respiration and cancer cell death. HMGB1 is a member of the HMG protein family. It contains two DNA-binding HMG-box domains and an acidic C-terminal tail capable of positively or negatively modulating its biological properties. In this work, we report that the deletion of the C-terminal tail of HMGB1 increases its activity towards a large panel of cancer cells without affecting the viability of normal immortalized fibroblasts. Moreover, in silico analysis suggests that the truncated form of HMGB1 retains the capacity of the full-length protein to interact with PKM2. However, based on the capacity of the cells to circumvent oxidative phosphorylation inhibition, we were able to identify either a cytotoxic or cytostatic effect of the proteins. Together, our study provides new insights in the characterization of the anticancer activity of HMGB1.
Collapse
Affiliation(s)
- Chloé Borde
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Clémentine Dillard
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Aurore L’Honoré
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005 Paris, France;
| | - Frédérique Quignon
- Sorbonne Université, CNRS UMR 144, Institut Curie Centre de Recherche, F-75248 Paris, France;
| | - Marion Hamon
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
| | - Christophe H. Marchand
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, Plateforme de Protéomique, FR550, F-75005 Paris, France; (M.H.); (C.H.M.)
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Roberta Soares Faccion
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Hospital do Câncer I, Centro de Pesquisas do Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA), Praça da Cruz Vermelha 23/6° andar, Rio de Janeiro 20230-130, Brazil
| | - Maurício G. S. Costa
- Fundação Oswaldo Cruz, Programa de Computação Científica, Vice-Presidência de Educação, Informação e Comunicação, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-900, Brazil;
| | - Elodie Pramil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Alliance for Research in Cancerology-APREC, Tenon Hospital, F-75020 Paris, France
| | - Annette K. Larsen
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Michèle Sabbah
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
| | - Stéphane D. Lemaire
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Paris-Seine, UMR7238, Laboratory of Computational and Quantitative Biology, F-75005 Paris, France;
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Physico-Chimique, UMR8226, F-75005 Paris, France
| | - Vincent Maréchal
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| | - Alexandre E. Escargueil
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM) U938, Centre de Recherche Saint-Antoine, F-75012 Paris, France; (C.B.); (C.D.); (R.S.F.); (E.P.); (A.K.L.); (M.S.)
- Correspondence: (V.M.); (A.E.E.); Tel.: +33-(0)-1-44-27-31-53 (V.M.); +33-(0)-1-49-28-46-44 (A.E.E.)
| |
Collapse
|
29
|
Khatib SE, Salla M. The mosaic puzzle of the therapeutic monoclonal antibodies and antibody fragments - A modular transition from full-length immunoglobulins to antibody mimetics. Leuk Res Rep 2022; 18:100335. [PMID: 35832747 PMCID: PMC9272380 DOI: 10.1016/j.lrr.2022.100335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 01/07/2023] Open
Abstract
The use of monoclonal antibodies represents an important and efficient diagnostic and therapeutic tool in disease management and modern science but remains limited by several factors including the uneven distribution in diseased tissues as well as undesired activation of side immune reactions. Major scientific advancements including Recombinant DNA Technology, Hybridoma Technology, and Polymerase Chain Reaction have considerably impacted the use of monoclonal antibodies providing technical and effective solutions to overcome the shortcomings encountered with conventional antibodies. Initially, the introduction of antibody fragments allowed a more uniform and deeper penetration of the targeted tissue and reduced unwanted activation of Fc-mediated immune reactions. On another level, the immunogenicity of murine-derived antibodies was overcome by humanizing their encoding genes with specific sequences of human origin andtransgenic mice able to synthesize fully human antibodies were successfully created. Moreover, the advancement of genetic engineering techniques supported by the modular structure of antibody coding genes paved the way for the development of a new generation of antibody fragments with a wide spectrum of monospecific and bispecific agents. These later could be monovalent, bivalent, or multivalent, and either expressed as a single chain, assembled in multimeric forms or stringed in tandem. This has conferred improved affinity, stability, and solubility to antibody targetting. Lately, a new array of monoclonal antibody fragments was introduced with the engineering of nanobody and antibody mimetics as non-immunoglobulin-derived fragments with promising diagnostic and therapeutic applications. In this review, we decipher the molecular basis of monoclonal antibody engineering with a detailed screening of the antibody derivatives that provides new perspectives to expand the use of monoclonal fragments into previously unexplored fields.
Collapse
Affiliation(s)
- Sami El Khatib
- Lebanese International University, Department of Biomedical Sciences, Bekaa Campus, Khiyara, West Bekaa, Lebanon
| | - Mohamed Salla
- University of Alberta. Biochemistry Department, Faculty of Medicine and Dentistry,116St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
30
|
Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2394:377-432. [PMID: 35094338 DOI: 10.1007/978-1-0716-1811-0_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic code expansion has allowed for extraordinary advances in enhancing protein chemical diversity and functionality, but there remains a critical need for understanding and engineering genetic code expansion systems for improved efficiency. Incorporation of noncanonical amino acids (ncAAs) at stop codons provides a site-specific method for introducing unique chemistry into proteins, though often at reduced yields compared to wild-type proteins. A powerful platform for ncAA incorporation supports both the expression and evaluation of chemically diverse proteins for a broad range of applications. In yeast, ncAAs have been used to study dynamic cellular processes such as protein-protein interactions and also allow for exploration of eukaryotic-specific biology such as epigenetics. Furthermore, yeast display is an advantageous technology for engineering and screening the properties of proteins in high throughput. The protocols presented in this chapter describe detailed methods for the yeast-based genetic encoding of ncAAs in proteins intracellularly or on the yeast surface. In addition, methods are presented for modifying proteins on the yeast surface using bioorthogonal chemical reactions and evaluating reaction efficiency. Finally, protocols are included for the preparation of libraries that involve genetic code expansion. Libraries of proteins that contain ncAAs or libraries of the cellular machinery required to encode ncAAs can be constructed and screened in high throughput for many biological and chemical applications. Efficient incorporation of ncAAs facilitates elucidation of fundamental eukaryotic biology and advances tools for enzyme and genome engineering to evolve host cells that are better able to accommodate alternative genetic codes.
Collapse
|
31
|
Arshavsky‐Graham S, Heuer C, Jiang X, Segal E. Aptasensors versus immunosensors-Which will prevail? Eng Life Sci 2022; 22:319-333. [PMID: 35382545 PMCID: PMC8961048 DOI: 10.1002/elsc.202100148] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Since the invention of the first biosensors 70 years ago, they have turned into valuable and versatile tools for various applications, ranging from disease diagnosis to environmental monitoring. Traditionally, antibodies have been employed as the capture probes in most biosensors, owing to their innate ability to bind their target with high affinity and specificity, and are still considered as the gold standard. Yet, the resulting immunosensors often suffer from considerable limitations, which are mainly ascribed to the antibody size, conjugation chemistry, stability, and costs. Over the past decade, aptamers have emerged as promising alternative capture probes presenting some advantages over existing constraints of immunosensors, as well as new biosensing concepts. Herein, we review the employment of antibodies and aptamers as capture probes in biosensing platforms, addressing the main aspects of biosensor design and mechanism. We also aim to compare both capture probe classes from theoretical and experimental perspectives. Yet, we highlight that such comparisons are not straightforward, and these two families of capture probes should not be necessarily perceived as competing but rather as complementary. We, thus, elaborate on their combined use in hybrid biosensing schemes benefiting from the advantages of each biorecognition element.
Collapse
Affiliation(s)
- Sofia Arshavsky‐Graham
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Christopher Heuer
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Institute of Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xin Jiang
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| | - Ester Segal
- Faculty of Biotechnology and Food EngineeringTechnion ‐ Israel Institute of TechnologyHaifaIsrael
- Russell Berrie Nanotechnology InstituteTechnion ‐ Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
32
|
Cis Elements: Added Boost to the Directed Evolution of Plant Genes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To increase the expression of a native/foreign plant/bacterial gene, the complete network of cis-elements must be excavated to increase its biosynthetic yield, especially under industrial stress conditions. For selecting the best set of cis-elements for a foreign gene and aiding the workflow of researchers, often untrained in bioinformatics methodologies, we developed a modular PERL script for their identification and localization. The script is functional on any operating system. It localizes the cis element network of a gene. It aids an easy customization, as per the required analysis, and provides robust strategy, unlike the usually used databases where several applied calculations often become a tricky task. The script allows an uncomplicated analysis of multiplicity of cis elements along with their relative distances, making it easier for designing the more beneficial network of genes for directed evolution experiments. Through a batched scrutiny of several functionally similar genes, it would aid an easy extraction of their evolutionarily favored network of cis elements. It would be extremely helpful to develop the crop plants that are better adapted to the stressful conditions.
Collapse
|
33
|
Vazulka S, Schiavinato M, Wagenknecht M, Cserjan-Puschmann M, Striedner G. Interaction of Periplasmic Fab Production and Intracellular Redox Balance in Escherichia coli Affects Product Yield. ACS Synth Biol 2022; 11:820-834. [PMID: 35041397 PMCID: PMC8859853 DOI: 10.1021/acssynbio.1c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody fragments such as Fab's require the formation of disulfide bonds to achieve a proper folding state. During their recombinant, periplasmic expression in Escherichia coli, oxidative folding is mediated by the DsbA/DsbB system in concert with ubiquinone. Thereby, overexpression of Fab's is linked to the respiratory chain, which is not only immensely important for the cell's energy household but also known as a major source of reactive oxygen species. However, the effects of an increased oxidative folding demand and the consequently required electron flux via ubiquinone on the host cell have not been characterized so far. Here, we show that Fab expression in E. coli BL21(DE3) interfered with the intracellular redox balance, thereby negatively impacting host cell performance. Production of four different model Fab's in lab-scale fed-batch cultivations led to increased oxygen consumption rates and strong cell lysis. An RNA sequencing analysis revealed transcription activation of the oxidative stress-responsive soxS gene in the Fab-producing strains. We attributed this to the accumulation of intracellular superoxide, which was measured using flow cytometry. An exogenously supplemented ubiquinone analogue improved Fab yields up to 82%, indicating that partitioning of the quinone pool between aerobic respiration and oxidative folding limited ubiquinone availability and hence disulfide bond formation capacity. Combined, our results provide a more in-depth understanding of the profound effects that periplasmic Fab expression and in particular disulfide bond formation has on the host cell. Thereby, we show new possibilities to elaborate cell engineering and process strategies for improved host cell fitness and process outcome.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
34
|
Tellechea-Luzardo J, Otero-Muras I, Goñi-Moreno A, Carbonell P. Fast biofoundries: coping with the challenges of biomanufacturing. Trends Biotechnol 2022; 40:831-842. [PMID: 35012773 DOI: 10.1016/j.tibtech.2021.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Biofoundries are highly automated facilities that enable the rapid and efficient design, build, test, and learn cycle of biomanufacturing and engineering biology, which is applicable to both research and industrial production. However, developing a biofoundry platform can be expensive and time consuming. A biofoundry should grow organically, starting from a basic platform but with a vision for automation, equipment interoperability, and efficiency. By thinking about strategies early in the process through process planning, simulation, and optimization, bottlenecks can be identified and resolved. Here, we provide a survey of technological solutions in biofoundries and their advantages and limitations. We explore possible pathways towards the creation of a functional, early-phase biofoundry, and strategies towards long-term sustainability.
Collapse
Affiliation(s)
- Jonathan Tellechea-Luzardo
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politécnica de València (UPV), 46022 València, Spain
| | - Irene Otero-Muras
- Institute for Integrative Systems Biology I2SysBio, Universitat de València-CSIC, Catedrático Agustín Escardino Benlloch 9, Paterna, 46980 València, Spain
| | - Angel Goñi-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pablo Carbonell
- Institute of Industrial Control Systems and Computing (AI2), Universitat Politécnica de València (UPV), 46022 València, Spain.
| |
Collapse
|
35
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
36
|
Feghhi-najafabadi S, Shafiee F. Recombinant Production of a Mutant Form of Soluble IL-6 Receptor with Inhibitory Effects against Interleukin-6. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3021. [PMID: 35891958 PMCID: PMC9284238 DOI: 10.30498/ijb.2021.278685.3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Interleukin-6 (IL-6) has undeniable roles in inflammatory processes due to autoimmune diseases. In this regard, soluble receptors are considered a potential approach to mitigate its inflammatory effects and modulate its physiological effects by reducing the IL-6 binding to cell surface-specific receptors. Objective This study aimed to produce IL-6 receptor (IL-6R) in soluble form with enhanced affinity to IL-6 without signal transduction ability. Materials and Methods The 3D structure of IL-6R with the selective mutations for enhancing the IL-6 binding, with minimum ability to signal transduction (mIL-6R), was predicted using Modeller 9.19. This mutated form was docked to IL-6 and gp130 (a part of the native IL-6 receptor involved in signal transduction) by the HADDOCK2.2 web server. The expression of mIL-6R was performed in E. coli BL21 (DE3), using pTWIN-1 plasmid as its linkage to the Ssp Intein. IMPACT system manual was used to purify the protein at 25 °C overnight. Next, ELISA was performed to compare the affinity of mutated and native IL-6R to IL-6. Finally, A549 cells were used to compare the inhibition of cytotoxic effects of native and mutated IL-6R. Results In the silico section, results established the stability of mutant's structure with more and less affinity to IL-6 and gp130, respectively. The expression and purification results showed bands of about 50 and 23 kDa, representing the correct size of the Intein1-mIL-6R fusion protein and cleavaged mIL-6R in SDS-PAGE, respectively. Furthermore, a significant enhancement in the affinity of mutated IL-6R to IL-6 was observed compared to the native receptor. Finally, A549 cells showed more cytotoxic effects followed by treating with mutated IL-6R in comparison to cells treated with native soluble IL-6R. Conclusion The recombinant production of a mutated form of IL-6R with the potential ability to antagonize the IL-6 inflammatory effects confirmed with in silico studies was successfully performed for the first time to create a new drug candidate for suppressing the inflammatory effects of IL-6.
Collapse
Affiliation(s)
- Saba Feghhi-najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran,
Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
37
|
Microbial protein cell factories fight back? Trends Biotechnol 2021; 40:576-590. [PMID: 34924209 DOI: 10.1016/j.tibtech.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 01/26/2023]
Abstract
The biopharmaceutical market is growing faster than ever, with two production systems competing for market dominance: mammalian cells and microorganisms. In recent years, based on the rise of antibody-based therapies, new biotherapeutic approvals have favored mammalian hosts. However, not only has extensive research elevated our understanding of microbes to new levels, but emerging therapeutic molecules also facilitate their use; thus, is it time for microbes to fight back? In this review, we answer this timely question by cross-comparing four microbial production hosts and examining the innovations made to both their secretion and post-translational modification (PTM) capabilities. Furthermore, we discuss the impact of tools, such as omics and systems biology, as well as alternative production systems and emerging biotherapeutics.
Collapse
|
38
|
Zalai D, Kopp J, Kozma B, Küchler M, Herwig C, Kager J. Microbial technologies for biotherapeutics production: Key tools for advanced biopharmaceutical process development and control. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:9-24. [PMID: 34895644 DOI: 10.1016/j.ddtec.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Current trends in the biopharmaceutical market such as the diversification of therapies as well as the increasing time-to-market pressure will trigger the rethinking of bioprocess development and production approaches. Thereby, the importance of development time and manufacturing costs will increase, especially for microbial production. In the present review, we investigate three technological approaches which, to our opinion, will play a key role in the future of biopharmaceutical production. The first cornerstone of process development is the generation and effective utilization of platform knowledge. Building processes on well understood microbial and technological platforms allows to accelerate early-stage bioprocess development and to better condense this knowledge into multi-purpose technologies and applicable mathematical models. Second, the application of verified scale down systems and in silico models for process design and characterization will reduce the required number of large scale batches before dossier submission. Third, the broader availability of mathematical process models and the improvement of process analytical technologies will increase the applicability and acceptance of advanced control and process automation in the manufacturing scale. This will reduce process failure rates and subsequently cost of goods. Along these three aspects we give an overview of recently developed key tools and their potential integration into bioprocess development strategies.
Collapse
Affiliation(s)
- Denes Zalai
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany.
| | - Julian Kopp
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bence Kozma
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Michael Küchler
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Julian Kager
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
39
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
40
|
Hanyu Y, Kato M. High-yield expression of periplasmic single-chain variable fragments by solid Escherichia coli cultures. Biotechniques 2021; 72:29-32. [PMID: 34841891 DOI: 10.2144/btn-2021-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
High-yield expression of quality antibody fragments is indispensable for research and diagnosis. Most recombinant antibody fragments are expressed in Escherichia coli using liquid cultures; however, their yields and quality are often poor. Here the authors expressed a single-chain variable fragment in E. coli cultivated on the wet surface of a solid support. Compared with a liquid culture, the authors obtained 2.5-times more single-chain variable fragments with membrane-cultivated E. coli. This method has two important advantages: it enables high yields of periplasmic single-chain variable fragments compared with liquid culture and offers simple and rapid expression and extraction.
Collapse
Affiliation(s)
- Yoshiro Hanyu
- Biomaterials Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8566, Japan
| | - Mieko Kato
- Department of Biochemistry, Bio-Peak Co., Ltd., 584-70 Shimonojo, Takasaki, 370-0854, Japan
| |
Collapse
|
41
|
MacDonald MA, Nöbel M, Roche Recinos D, Martínez VS, Schulz BL, Howard CB, Baker K, Shave E, Lee YY, Marcellin E, Mahler S, Nielsen LK, Munro T. Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications. Crit Rev Biotechnol 2021; 42:1099-1115. [PMID: 34844499 DOI: 10.1080/07388551.2021.1998821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,CSL Limited, Parkville, Melbourne, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Benjamin L Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | | | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lars Keld Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,National Biologics Facility, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
42
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: A new era of cancer therapy. J Control Release 2021; 338:1-7. [PMID: 34391833 DOI: 10.1016/j.jconrel.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most important mortality in the world. The major drawbacks of chemotherapy are the poor absorption of drugs into tumor tissues and development of resistance against anti-cancer agents. To overcome these limitations, the use of microorganisms has been extensively considered in the treatment of cancer. Microorganisms (bacteria/Archaea) secrete different bioactive compounds that can efficiently inhibit cancer cells growth. Biological nanocarriers derived from microorganisms including outer membrane vesicles (OMVs), bacterial ghosts (BGs) and archaeosomes have also been considered as drug delivery systems. Conjugation of drug loaded nanocarriers to bacteria strongly kills the cancer cells after internalization through the bacteria. Merging of microbiology and nanotechnology may provide versatile microbial nano-hybrids for promising treatment of cancer. This strategy causes more amount of drug to enter into cancer cells. In this review, we present evidence that microorganism, their derivatives as well as their intervention with nanotechnology can be a powerful vehicle for eradication cancer.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Abedishirehjin
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Wang Y, Li X, Chen X, Nielsen J, Petranovic D, Siewers V. Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microb Cell Fact 2021; 20:134. [PMID: 34261490 PMCID: PMC8278646 DOI: 10.1186/s12934-021-01624-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
Monoclonal antibodies, antibody fragments and fusion proteins derived thereof have revolutionized the practice of medicine. Major challenges faced by the biopharmaceutical industry are however high production costs, long processing times and low productivities associated with their production in mammalian cell lines. The yeast Saccharomyces cerevisiae, a well-characterized eukaryotic cell factory possessing the capacity of post-translational modifications, has been industrially exploited as a secretion host for production of a range of products, including pharmaceuticals. However, due to the incompatible surface glycosylation, few antibody molecules have been functionally expressed in S. cerevisiae. Here, three non-glycosylated antibody fragments from human and the Camelidae family were chosen for expression in a S. cerevisiae strain (HA) previously evolved for high α-amylase secretion. These included the Fab fragment Ranibizumab (Ran), the scFv peptide Pexelizumab (Pex), and a nanobody consisting of a single V-type domain (Nan). Both secretion and biological activities of the antibody fragments were confirmed. In addition, the secretion level of each protein was compared in the wild type (LA) and two evolved strains (HA and MA) with different secretory capacities. We found that the secretion of Ran and Nan was positively correlated with the strains' secretory capacity, while Pex was most efficiently secreted in the parental strain. To investigate the mechanisms for different secretion abilities in these selected yeast strains for the different antibody fragments, RNA-seq analysis was performed. The results showed that several bioprocesses were significantly enriched for differentially expressed genes when comparing the enriched terms between HA.Nan vs. LA.Nan and HA.Pex vs. LA.Pex, including amino acid metabolism, protein synthesis, cell cycle and others, which indicates that there are unique physiological needs for each antibody fragment secretion.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xin Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
45
|
Expression and characterization of a novel single-chain anti-vascular endothelial growth factor antibody in the goat milk. J Biotechnol 2021; 338:52-62. [PMID: 34224759 DOI: 10.1016/j.jbiotec.2021.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/10/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) has essential functions in angiogenesis, endothelial cell proliferation, migration, and tumor invasion. Different approaches have been developed to suppress tumor angiogenesis, which is considered a hallmark of cancer. Anti-VEGF monoclonal antibodies constitute an important strategy for cancer immunotherapy, which has been produced on several platforms. In this study, a novel single-chain anti-VEGF monoclonal antibody (scVEGFmAb) was produced in the goat mammary gland by adenoviral transduction. scVEGFmAb was purified by affinity chromatography. N-glycans were analyzed by exoglycosidase digestion and hydrophilic interaction ultra-performance liquid chromatography coupled to electrospray ionization mass spectrometry. The biological activity of scVEGFmAb was assessed by scratch and mouse aortic ring assays. scVEGFmAb was produced at 0.61 g/L in the goat milk, and its purification rendered 95 % purity. N-glycans attached to scVEGFmAb backbone were mainly neutral biantennary core fucosylated with Galβ1,4GlcNAc motif, and charged structures were capped with Neu5Ac and Neu5Gc. The chimeric molecule significantly prevented cell migration and suppressed microvessel sprouting. These results demonstrated for the first time the feasibility of producing an anti-VEGF therapeutic antibody in the milk of non-transgenic goats with the potential to counteract tumor angiogenesis.
Collapse
|
46
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
47
|
Xu J, Yang X, Mao Y, Mei J, Wang H, Ding J, Hua D. Removal of N-Linked Glycosylation Enhances PD-L1 Detection in Colon Cancer: Validation Research Based on Immunohistochemistry Analysis. Technol Cancer Res Treat 2021; 20:15330338211019442. [PMID: 34060360 PMCID: PMC8173990 DOI: 10.1177/15330338211019442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In recent years, immunotherapies have emerged as effective therapeutic strategies for treating human cancers. However, accumulating evidence has revealed an inconsistency between the response to immune checkpoint inhibitors and programmed death ligand 1 (PD-L1) expression status detected by immunohistochemistry staining. Recent research has revealed that the removal of N-Linked glycosylation significantly enhanced PD-L1 detection, resulting in both more accurate PD-L1 quantification and clinical outcome prediction. In the present study, we evaluated natural and deglycosylated PD-L1 expression in colon cancer using the PD-L1 28–8 antibody. The results of the present study validated the hypothesis that PD-L1 had a higher expression in colon cancer tissues compared with normal tissues. Additionally, colon tumors with defective mismatch repair tended to express higher PD-L1 than those without. Most importantly, the results of the present study indicated that the removal of N-linked glycosylation remarkably enhanced PD-L1 detection. Moreover, the PD-L1 signal intensity of samples with a low natural PD-L1 signal was enhanced more remarkably than that of samples with high signal intensity. Overall, our research provides an improved strategy for patient stratification for anti-PD-1/PD-L1 therapy, which deepens the clinical significance of this established strategy for treatment of colon cancer.
Collapse
Affiliation(s)
- Junying Xu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Xuejing Yang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jie Mei
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Junli Ding
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Dong Hua
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu Province, China
| |
Collapse
|
48
|
Abstract
In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools.
Collapse
|
49
|
Liu X, Xie X, Du H, Sanganyado E, Wang W, Aslam M, Chen J, Chen W, Liang H. Bioinformatic analysis and genetic engineering approaches for recombinant biopharmaceutical glycoproteins production in microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Monoclonal Antibody Monitoring: Clinically Relevant Aspects, A Systematic Critical Review. Ther Drug Monit 2021; 42:45-56. [PMID: 31365482 DOI: 10.1097/ftd.0000000000000681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monoclonal antibody (mAb) therapy does not usually lead to a clinical response in all patients and resistance may increase over time after repeated mAb administration. This lack or loss of response to the treatment may originate from different and little-known epigenetic, biomolecular, or pathophysiological mechanisms, although an inadequate serum concentration is perhaps the most likely cause, even if not widely recognized and investigated yet. Patient factors that influence the pharmacokinetics (PK) of a mAb should be taken into account. Multiple analyses of patient-derived PK data have identified various factors influencing the clearance of mAbs. These factors include the presence of antidrug antibodies, low serum albumin, high serum levels of C-reactive protein, high body weight, and gender differences among others. The same clearance processes involved in systemic clearance after intravenous administration are also involved in local first-pass catabolism after subcutaneous administration of mAbs. Therapeutic drug monitoring has been proposed as a way to understand and respond to the variability in clinical response and remission. For both classes of mAbs with anti-inflammatory and antitumor effects, dose-guided optimization based on the measurement of serum concentrations in individual patients could be the next step for a personalized and targeted mAb therapy.
Collapse
|