1
|
Galaud JP, Genin S, Aldon D. Pathogen effectors hijack calcium signaling to promote virulence. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00280-2. [PMID: 39523142 DOI: 10.1016/j.tplants.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Calcium signaling is a cornerstone of plant defense responses. In this opinion article we explore how pathogens exploit this pathway by targeting calcium sensors such as calmodulin (CaM) and calmodulin-like proteins (CMLs) with their secreted effectors. We illustrate different mechanisms by which effectors manipulate calcium homeostasis, cytoskeletal dynamics, metabolism, hormone biosynthesis, gene regulation, and chloroplast function to suppress plant immunity and enhance virulence. Targeting calcium signaling to thwart or weaken host defenses appears to be a common strategy among pathogens infecting animal cells, and we present here selected examples of this convergence. Understanding these strategies provides valuable insights into the interactions between plants and pathogens, and should pave the way for the development of new disease control strategies.
Collapse
Affiliation(s)
- Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France.
| | - Stéphane Genin
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, UMR 5546, Université de Toulouse, CNRS-UPS-INP, 31320, Auzeville-Tolosane, France
| |
Collapse
|
2
|
Ding Q, Huang Z, Wang Z, Jian S, Zhang M. Identifying Calmodulin and Calmodulin-like Protein Members in Canavalia rosea and Exploring Their Potential Roles in Abiotic Stress Tolerance. Int J Mol Sci 2024; 25:11725. [PMID: 39519274 PMCID: PMC11545983 DOI: 10.3390/ijms252111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Calmodulins (CaMs) and calmodulin-like proteins (CMLs) belong to families of calcium-sensors that act as calcium ion (Ca2+) signal-decoding proteins and regulate downstream target proteins. As a tropical halophyte, Canavalia rosea shows great resistance to multiple abiotic stresses, including high salinity/alkalinity, extreme drought, heat, and intense sunlight. However, investigations of calcium ion signal transduction involved in the stress responses of C. rosea are limited. The CaM and CML gene families have been identified and characterized in many other plant species. Nevertheless, there is limited available information about these genes in C. rosea. In this study, a bioinformatic analysis, including the gene structures, conserved protein domains, phylogenetic relationships, chromosome distribution, and gene synteny, was comprehensively performed to identify and characterize CrCaMs and CrCMLs. A spatio-temporal expression assay in different organs and environmental conditions was then conducted using the RNA sequencing technique. Additionally, several CrCaM and CrCML members were then cloned and functionally characterized using the yeast heterogeneous expression system, and some of them were found to change the tolerance of yeast to heat, salt, alkalinity, and high osmotic stresses. The results of this study provide a foundation for understanding the possible roles of the CrCaM and CrCML genes, especially for halophyte C. rosea's natural ecological adaptability for its native habitats. This study also provides a theoretical basis for further study of the physiological and biochemical functions of plant CaMs and CMLs that are involved in tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zengwang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Wei S, Chen M, Wang F, Tu Y, Xu Y, Fu L, Zeng F, Zhang G, Wu D, Shen Q. OsCaM1-1 Is Responsible for Salt Tolerance by Regulating Na +/K + Homoeostasis in Rice. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39445791 DOI: 10.1111/pce.15212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Calmodulin, a highly conserved calcium-binding protein, plays a crucial role in response to salt stress. Previous studies investigated sequence and function of calmodulin members in some plants, but their roles in rice have not been fully elucidated. Three OsCaM1 genes namely OsCaM1-1/2/3 encode the same OsCaM1 protein. Here, we found that OsCaM1-1 had significantly higher expression than the other two genes under salt stress. After 4 weeks of exposure to 75 mM NaCl, OsCaM1-1 overexpressed mutants showed higher salt tolerance, while knocked-out mutants exhibited lower salt tolerance, compared to the wild type. Moreover, the oscam1-1 mutants had higher Na+ concentration and Na+/K+ ratio in both shoots and roots, less instantaneous K+ and Ca2+ fluxes in roots, compared to wild type under salt stress, indicating the involvement of OsCaM1-1 in regulation of Na+ and K+ homoeostasis via Ca2+ signal. RNA-seq analysis identified 452 differentially expressed genes (DEGs) regulated by OsCaM1-1 and salt stress, and they were mainly enriched in nucleus DNA-binding activities, including ABI5, WRKY76, WRKY48 and bHLH120 transcription factors. Knockout of OsCaM1-1 also modulated the expression of Na+ transporters, including HKT1;1, HKT1;5, SOS1, NHX1 and NHX4. In conclusion, OsCaM1-1 positively regulates salt tolerance in rice through mediating ion homoeostasis.
Collapse
Affiliation(s)
- Siqi Wei
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mingjiong Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengyue Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yishan Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunfeng Xu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Liangbo Fu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Fanrong Zeng
- School of Agriculture, Yangtze University, Jingzhou, China
| | - Guoping Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| | - Dezhi Wu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Changsha, China
- Yuelushan Laboratory, Changsha, China
| | - Qiufang Shen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhongyuan Institute, Zhejiang University, Zhengzhou, China
| |
Collapse
|
4
|
Symonds K, Smith MA, Esme O, Plaxton WC, Snedden WA. Characterization of Arabidopsis aldolases AtFBA4, AtFBA5, and their inhibition by morin and interaction with calmodulin. FEBS Lett 2024; 598:1864-1876. [PMID: 38997224 DOI: 10.1002/1873-3468.14979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Fructose bisphosphate aldolases (FBAs) catalyze the reversible cleavage of fructose 1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. We analyzed two previously uncharacterized cytosolic Arabidopsis FBAs, AtFBA4 and AtFBA5. Based on a recent report, we examined the interaction of AtFBA4 with calmodulin (CaM)-like protein 11 (AtCML11). AtFBA4 did not bind AtCML11; however, we found that CaM bound AtFBA5 in a Ca2+-dependent manner with high specificity and affinity (KD ~ 190 nm) and enhanced its stability. AtFBA4 and AtFBA5 exhibited Michaelis-Menten kinetics with Km and Vmax values of 180 μm and 4.9 U·mg-1 for AtFBA4, and 6.0 μm and 0.30 U·mg-1 for AtFBA5, respectively. The flavonoid morin inhibited both isozymes. Our study suggests that Ca2+ signaling and flavanols may influence plant glycolysis/gluconeogenesis.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen's University, Kingston, Canada
| | - Milena A Smith
- Department of Biology, Queen's University, Kingston, Canada
| | - Oona Esme
- Department of Biology, Queen's University, Kingston, Canada
| | | | | |
Collapse
|
5
|
Yuan S, Wang Y, Hu D, Xiao D, Wang J, Hou X, Li Y. BcWRKY1 confers Botrytis cinerea susceptibility via inhibiting JA biosynthesis. PHYSIOLOGIA PLANTARUM 2024; 176:e14432. [PMID: 38981735 DOI: 10.1111/ppl.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
WRKYs play important roles in plant stress resistance. However, the role of WRKYs in non-heading Chinese cabbage (Brassica campestris ssp. chinensis) against Botrytis cinerea (B. cinerea) remains poorly understood. Herein, the expression of BcWRKY1 was induced by B. cinerea. Further, the role of BcWRKY1 in B. cinerea infection was identified. Silencing of BcWRKY1 in non-heading Chinese cabbage enhanced plant resistance to B. cinerea. After B. cinerea inoculation, BcWRKY1-silencing plants exhibited lower reactive oxygen species (ROS) content, higher jasmonic acid (JA) content, and the expression level of JA biosynthesis genes, BcOPR3, BcLOX3-1 and BcLOX3-2 were upregulated. Overexpression of BcWRKY1 in Arabidopsis exhibited a complementary phenotype. By directly targeting W-boxes in the promoter of BcLOX3-2, BcWRKY1 inhibited the transcription of this gene. In addition, 13 candidate interacting proteins of BcWRKY1 were identified by yeast two-hybrid (Y2H) screening, and the interaction between BcWRKY1 and BcCaM6 weakened the inhibition of BcLOX3-2. In summary, our findings suggest that BcWRKY1 interacts with BcCaM6 to negatively regulate disease resistance.
Collapse
Affiliation(s)
- Shuilin Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, Jiangsu Province, China
| | - Yuan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Die Hu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
- Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Jianjun Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| |
Collapse
|
6
|
Luo G, Li L, Yang X, Yu Y, Gao L, Mo B, Chen X, Liu L. MicroRNA1432 regulates rice drought stress tolerance by targeting the CALMODULIN-LIKE2 gene. PLANT PHYSIOLOGY 2024; 195:1954-1968. [PMID: 38466155 DOI: 10.1093/plphys/kiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.
Collapse
Affiliation(s)
- Guangyu Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Yu
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
7
|
Zhang C, Li Z, Sun T, Zang S, Wang D, Su Y, Wu Q, Que Y. Sugarcane ScCAX4 is a Negative Regulator of Resistance to Pathogen Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13205-13216. [PMID: 38809782 DOI: 10.1021/acs.jafc.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.
Collapse
Affiliation(s)
- Chang Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Yi F, Li Y, Song A, Shi X, Hu S, Wu S, Shao L, Chu Z, Xu K, Li L, Tran LP, Li W, Cai Y. Positive roles of the Ca 2+ sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13483. [PMID: 38829344 PMCID: PMC11146148 DOI: 10.1111/mpp.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Feifei Yi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Yuzhe Li
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Aosong Song
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Xinying Shi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shanci Hu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shuang Wu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Lili Shao
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Zongyan Chu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Kun Xu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Liangliang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Lam‐Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ResistanceTexas Tech UniversityLubbockTexasUSA
| | - Weiqiang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yingfan Cai
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| |
Collapse
|
9
|
Zhu Q, Tan Q, Gao Q, Zheng S, Chen W, Galaud J, Li X, Zhu X. Calmodulin-like protein CML15 interacts with PP2C46/65 to regulate papaya fruit ripening via integrating calcium, ABA and ethylene signals. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1703-1723. [PMID: 38319003 PMCID: PMC11123395 DOI: 10.1111/pbi.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
It is well known that calcium, ethylene and abscisic acid (ABA) can regulate fruit ripening, however, their interaction in the regulation of fruit ripening has not yet been fully clarified. The present study found that the expression of the papaya calcium sensor CpCML15 was strongly linked to fruit ripening. CpCML15 could bind Ca2+ and served as a true calcium sensor. CpCML15 interacted with CpPP2C46 and CpPP2C65, the candidate components of the ABA signalling pathways. CpPP2C46/65 expression was also related to fruit ripening and regulated by ethylene. CpCML15 was located in the nucleus and CpPP2C46/65 were located in both the nucleus and membrane. The interaction between CpCML15 and CpPP2C46/65 was calcium dependent and further repressed the activity of CpPP2C46/65 in vitro. The transient overexpression of CpCML15 and CpPP2C46/65 in papaya promoted fruit ripening and gene expression related to ripening. The reduced expression of CpCML15 and CpPP2C46/65 by virus-induced gene silencing delayed fruit colouring and softening and repressed the expression of genes related to ethylene signalling and softening. Moreover, ectopic overexpression of CpCML15 in tomato fruit also promoted fruit softening and ripening by increasing ethylene production and enhancing gene expression related to ripening. Additionally, CpPP2C46 interacted with CpABI5, and CpPP2C65 interacted with CpERF003-like, two transcriptional factors in ABA and ethylene signalling pathways that are closely related to fruit ripening. Taken together, our results showed that CpCML15 and CpPP2Cs positively regulated fruit ripening, and their interaction integrated the cross-talk of calcium, ABA and ethylene signals in fruit ripening through the CpCML15-CpPP2Cs-CpABI5/CpERF003-like pathway.
Collapse
Affiliation(s)
- Qiunan Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinqin Tan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Qiyang Gao
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Senlin Zheng
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Jean‐Philippe Galaud
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPSCastanet‐TolosanFrance
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
10
|
Yu S, Li S, Wang W, Tang D. OsCAMTA3 Negatively Regulates Disease Resistance to Magnaporthe oryzae by Associating with OsCAMTAPL in Rice. Int J Mol Sci 2024; 25:5049. [PMID: 38732268 PMCID: PMC11084498 DOI: 10.3390/ijms25095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Rice (Oryza sativa) is one of the most important staple foods worldwide. However, rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, seriously affects the yield and quality of rice. Calmodulin-binding transcriptional activators (CAMTAs) play vital roles in the response to biotic stresses. In this study, we showed that OsCAMTA3 and CAMTA PROTEIN LIKE (OsCAMTAPL), an OsCAMTA3 homolog that lacks the DNA-binding domain, functioned together in negatively regulating disease resistance in rice. OsCAMTA3 associated with OsCAMTAPL. The oscamta3 and oscamtapl mutants showed enhanced resistance compared to wild-type plants, and oscamta3/pl double mutants showed more robust resistance to M. oryzae than oscamta3 or oscamtapl. An RNA-Seq analysis revealed that 59 and 73 genes, respectively, were differentially expressed in wild-type plants and oscamta3 before and after inoculation with M. oryzae, including OsALDH2B1, an acetaldehyde dehydrogenase that negatively regulates plant immunity. OsCAMTA3 could directly bind to the promoter of OsALDH2B1, and OsALDH2B1 expression was decreased in oscamta3, oscamtapl, and oscamta3/pl mutants. In conclusion, OsCAMTA3 associates with OsCAMTAPL to regulate disease resistance by binding and activating the expression of OsALDH2B1 in rice, which reveals a strategy by which rice controls rice blast disease and provides important genes for resistance breeding holding a certain positive impact on ensuring food security.
Collapse
Affiliation(s)
| | | | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Y.); (S.L.)
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Y.); (S.L.)
| |
Collapse
|
11
|
Symonds K, Teresinski HJ, Hau B, Dwivedi V, Belausov E, Bar-Sinai S, Tominaga M, Haraguchi T, Sadot E, Ito K, Snedden WA. Functional characterization of calmodulin-like proteins, CML13 and CML14, as novel light chains of Arabidopsis class VIII myosins. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2313-2329. [PMID: 38280207 PMCID: PMC11272076 DOI: 10.1093/jxb/erae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Myosins are important motor proteins that associate with the actin cytoskeleton. Structurally, myosins function as heteromeric complexes where smaller light chains, such as calmodulin (CaM), bind to isoleucine-glutamine (IQ) domains in the neck region to facilitate mechano-enzymatic activity. We recently identified Arabidopsis CaM-like (CML) proteins CML13 and CML14 as interactors of proteins containing multiple IQ domains, including a myosin VIII. Here, we demonstrate that CaM, CML13, and CML14 bind the neck region of all four Arabidopsis myosin VIII isoforms. Among CMLs tested for binding to myosins VIIIs, CaM, CML13, and CML14 gave the strongest signals using in planta split-luciferase protein interaction assays. In vitro, recombinant CaM, CML13, and CML14 showed specific, high-affinity, calcium-independent binding to the IQ domains of myosin VIIIs. CaM, CML13, and CML14 co-localized to plasma membrane-bound puncta when co-expressed with red fluorescent protein-myosin fusion proteins containing IQ and tail domains of myosin VIIIs. In vitro actin motility assays using recombinant myosin VIIIs demonstrated that CaM, CML13, and CML14 function as light chains. Suppression of CML13 or CML14 expression using RNA silencing resulted in a shortened-hypocotyl phenotype, similar to that observed in a quadruple myosin mutant, myosin viii4KO. Collectively, our data indicate that Arabidopsis CML13 and CML14 are novel myosin VIII light chains.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Bryan Hau
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | - Vikas Dwivedi
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Sefi Bar-Sinai
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Motoki Tominaga
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takeshi Haraguchi
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Einat Sadot
- Institute of Plant Sciences, Volcani Institute, ARO, Rishon LeZion 7528809, Israel
| | - Kohji Ito
- Department of Biology, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Wayne A Snedden
- Department of Biology, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
12
|
Symonds K, Teresinski H, Hau B, Chiasson D, Benidickson K, Plaxton W, Snedden WA. Arabidopsis CML13 and CML14 Have Essential and Overlapping Roles in Plant Development. PLANT & CELL PHYSIOLOGY 2024; 65:228-242. [PMID: 37946525 DOI: 10.1093/pcp/pcad142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Calmodulin (CaM)-like proteins (CMLs) are the largest family of calcium-binding proteins in plants, yet the functions of most CMLs are unknown. Arabidopsis CML13 and CML14 are closely related paralogs that interact with the isoleucine-glutamine (IQ) domains of myosins, IQ-domain proteins and CaM-binding transcription activators (CAMTAs). Here, we explored the physiological roles of CML13 and CML14 during development by using dexamethasone (Dex)-inducible RNA silencing to suppress either CML13 or CML14 transcript levels. In the absence of inducible suppression, CML13- and CML14-RNA-interference lines were indistinguishable from wild-type (WT) plants throughout development. In contrast, induction of silencing treatment led to rapid increases in RNA-hairpin production that correlated with a targeted reduction in CML13 or CML14 transcript levels and a range of developmental and morphological effects. RNA-suppression treatment did not impair the germination of CML13- or 14-RNA-interference lines, but these seedlings were chlorotic, displayed high mortality and failed to achieve seedling establishment. Under Dex treatment, seeds of CML13- and CML14-RNA-interference lines exhibited differential sensitivity to exogenous ABA compared to WT seeds. Induced RNA suppression of mature plants led to reduced silique length, shorter roots and rapid leaf senescence in CML13- and 14-RNA-interference plants, which correlated with increased gene expression of the senescence marker Senescence-Associated Gene13 (SAG13). Plants induced for RNA suppression at 2 weeks post-germination exhibited a much stronger phenotype than treatment of 3-, 4- or 5-week-old plants. Collectively, our data indicate that both CML13 and CML14 are essential for normal development and function across a broad range of tissues and developmental stages.
Collapse
Affiliation(s)
- Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - David Chiasson
- Department of Biology, St. Mary's University, Halifax, NS B3H 3C3, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
13
|
Hau B, Symonds K, Teresinski H, Janssen A, Duff L, Smith M, Benidickson K, Plaxton W, Snedden WA. Arabidopsis Calmodulin-like Proteins CML13 and CML14 Interact with Calmodulin-Binding Transcriptional Activators and Function in Salinity Stress Response. PLANT & CELL PHYSIOLOGY 2024; 65:282-300. [PMID: 38036467 DOI: 10.1093/pcp/pcad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Collapse
Affiliation(s)
- Bryan Hau
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Kyle Symonds
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Howard Teresinski
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Abby Janssen
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Liam Duff
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Milena Smith
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | | | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON K7L 4L8, Canada
| |
Collapse
|
14
|
Ahmed R, Dey KK, Senthil-Kumar M, Modi MK, Sarmah BK, Bhorali P. Comparative transcriptome profiling reveals differential defense responses among Alternaria brassicicola resistant Sinapis alba and susceptible Brassica rapa. FRONTIERS IN PLANT SCIENCE 2024; 14:1251349. [PMID: 38304451 PMCID: PMC10831657 DOI: 10.3389/fpls.2023.1251349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Alternaria blight is a devastating disease that causes significant crop losses in oilseed Brassicas every year. Adoption of conventional breeding to generate disease-resistant varieties has so far been unsuccessful due to the lack of suitable resistant source germplasms of cultivated Brassica spp. A thorough understanding of the molecular basis of resistance, as well as the identification of defense-related genes involved in resistance responses in closely related wild germplasms, would substantially aid in disease management. In the current study, a comparative transcriptome profiling was performed using Illumina based RNA-seq to detect differentially expressed genes (DEGs) specifically modulated in response to Alternaria brassicicola infection in resistant Sinapis alba, a close relative of Brassicas, and the highly susceptible Brassica rapa. The analysis revealed that, at 48 hpi (hours post inoculation), 3396 genes were upregulated and 23239 were downregulated, whereas at 72 hpi, 4023 genes were upregulated and 21116 were downregulated. Furthermore, a large number of defense response genes were detected to be specifically regulated as a result of Alternaria infection. The transcriptome data was validated using qPCR-based expression profiling for selected defense-related DEGs, that revealed significantly higher fold change in gene expression in S. alba when compared to B. rapa. Expression of most of the selected genes was elevated across all the time points under study with significantly higher expression towards the later time point of 72 hpi in the resistant germplasm. S. alba activates a stronger defense response reaction against the disease by deploying an array of genes and transcription factors involved in a wide range of biological processes such as pathogen recognition, signal transduction, cell wall modification, antioxidation, transcription regulation, etc. Overall, the study provides new insights on resistance of S. alba against A. brassicicola, which will aid in devising strategies for breeding resistant varieties of oilseed Brassica.
Collapse
Affiliation(s)
- Reshma Ahmed
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Kuntal Kumar Dey
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | | | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
- Department of Biotechnology - Northeast Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Priyadarshini Bhorali
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| |
Collapse
|
15
|
Wu X, Zhu J, Zhu L, Tang Y, Hao Z, Zhang J, Shi J, Cheng T, Lu L. Genome-wide analyses of calmodulin and calmodulin-like proteins in the halophyte Nitraria sibirica reveal their involvement in response to salinity, drought and cold stress. Int J Biol Macromol 2023; 253:127442. [PMID: 37844818 DOI: 10.1016/j.ijbiomac.2023.127442] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
The calmodulin (CaM) and calmodulin-like (CML) proteins are major calcium sensors that play a critical role in environmental stimulus response in plants. Nevertheless, the CaM/CML proteins from the specific plants with extreme tolerance to abiotic stresses remained so far uncharacterized. In this study, 66 candidate proteins (three NsCaMs and sixty-three NsCMLs) were identified from the halophyte Nitraria sibirica, which can withstand an extreme salinity. Bioinformatic analysis of upstream cis-acting elements predicted the potential involvement of NsCaM/CMLs in abiotic stress responses and various hormone responses. Additionally, the Nitraria sibirica transcriptome revealed that 17 and 7 NsCMLs were significantly upregulated under 100 mM or 400 mM NaCl treatment. Transcription of most salt-responsive genes was similarly upregulated under cold stress, yet downregulated under drought treatment. Moreover, predictive subcellular localization analysis suggested that the stress-responsive NsCML proteins mainly localize at the cellular membrane and within the nucleus. Furthermore, transgenic overexpression of two NsCMLs (NISI03G1136 and NISI01G1645) was found to mitigate H2O2 accumulation caused by salt stress. These results provide insights into the potential function of Nitraria sibirica CaM/CML proteins, which could aid the investigation of molecular mechanisms of extreme tolerance to abiotic stresses in halophytes.
Collapse
Affiliation(s)
- Xinru Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Junjie Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Yao Tang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou, Inner Mongolia, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Lin R, Song J, Tang M, Wang L, Yu J, Zhou Y. CALMODULIN6 negatively regulates cold tolerance by attenuating ICE1-dependent stress responses in tomato. PLANT PHYSIOLOGY 2023; 193:2105-2121. [PMID: 37565524 DOI: 10.1093/plphys/kiad452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Chilling temperatures induce an increase in cytoplasmic calcium (Ca2+) ions to transmit cold signals, but the precise role of Calmodulins (CaMs), a type of Ca2+ sensor, in plant tolerance to cold stress remains elusive. In this study, we characterized a tomato (Solanum lycopersicum) CaM gene, CALMODULIN6 (CaM6), which responds to cold stimulus. Overexpressing CaM6 increased tomato sensitivity to cold stress whereas silencing CaM6 resulted in a cold-insensitive phenotype. We showed that CaM6 interacts with Inducer of CBF expression 1 (ICE1) in a Ca2+-independent process and ICE1 contributes to cold tolerance in tomato plants. By integrating RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) assays, we revealed that ICE1 directly altered the expression of 76 downstream cold-responsive (COR) genes that potentially confer cold tolerance to tomato plants. Moreover, the physical interaction of CaM6 with ICE1 attenuated ICE1 transcriptional activity during cold stress. These findings reveal that CaM6 attenuates the cold tolerance of tomato plants by suppressing ICE1-dependent COR gene expression. We propose a CaM6/ICE1 module in which ICE1 is epistatic to CaM6 under cold stress. Our study sheds light on the mechanism of plant response to cold stress and reveals CaM6 is involved in the regulation of ICE1.
Collapse
Affiliation(s)
- Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Lingyu Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| |
Collapse
|
18
|
Li Q, Gao L, Yu F, Lü S, Yang P. Evolution and diversification of CaM/CML gene family in green plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107922. [PMID: 37573794 DOI: 10.1016/j.plaphy.2023.107922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are crucial Ca2+ sensors, which are widely involved in different biological processes of plants, including their growth and development, and stress responses. However, the origin and evolution of the CaM/CML gene family in plants remain elusive. In this study, 2133 CaM and 23094 CML genes were identified from the 1000 plants project (1 KP) species and the sequenced plants, covering algae, mosses, monilophytes, lycophytes, flowering plants, and all other green plant branches. Analysis showed that the size of the CML subfamily was correlated with the genome size of corresponding plant species, as well as the total gene number in the genome. Moreover, with the evolution from algae to angiosperms, the number of CML genes in plants increased gradually which could have been driven mainly by genome-wide segmental duplication events, while the number of CaMs remained basically stable at 2-3. Phylogenetic analysis demonstrated that CaM first appeared in green algae, while CML appeared earlier and has already been presented in dinoflagellates. Further analysis showed that the number and sequence of EF-hand domain in CaMs are highly conserved, while those of CMLs are diverse among different plant taxa. Expression analysis revealed that the expression level of CaMs was generally higher than that of CMLs, indicating that the high-expression genes have essential functions, while the low-expression genes are the main reasons for the functional diversity of the CaM/CML gene family in plants. The results might contribute to understanding the evolution of CaM/CML genes as well as their molecular functions.
Collapse
Affiliation(s)
- Qinghua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Li Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430026, China.
| |
Collapse
|
19
|
Li L, Guo N, Cao Y, Zhai X, Fan G. Genome-Wide Characterization of Calmodulin and Calmodulin-like Protein Gene Families in Paulownia fortunei and Identification of Their Potential Involvement in Paulownia Witches' Broom. Genes (Basel) 2023; 14:1540. [PMID: 37628592 PMCID: PMC10454933 DOI: 10.3390/genes14081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
As significant Ca2+ sensors, calmodulin (CaM) and calmodulin-like proteins (CML), have been associated with a variety of environmental conditions in plants. However, whether CaMs/CMLs are related to the stress of phytoplasma infection has not been reported in Paulownia fortunei. In the current study, 5 PfCaMs and 58 PfCMLs were detected through a genome-wide investigation. The number of EF-hand motifs in all PfCaMs/CMLs varied. Bioinformatics analyses, including protein characteristics, conserved domain, gene structure, cis-elements, evolutionary relationship, collinearity, chromosomal location, post-translation modification site, subcellular localization and expression pattern analyses, represented the conservation and divergence of PfCaMs/CMLs. Furthermore, some PfCaMs/CMLs might be involved in plants' reaction to phytoplasma infection and exogenous calcium therapy, indicating these genes may play a role in abiotic as well as biotic stress responses. In addition, subcellular localization analysis showed that PfCML10 was located in the cell membrane and nucleus. In summary, these findings establish a stronger platform for their subsequent functional investigation in trees and further characterize their roles in Paulownia witches' broom (PaWB) occurrence.
Collapse
Affiliation(s)
- Lijiao Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Na Guo
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yabing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (L.L.); (N.G.); (Y.C.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
20
|
Zhang L, Wu Y, Yu Y, Zhang Y, Wei F, Zhu QH, Zhou J, Zhao L, Zhang Y, Feng Z, Feng H, Sun J. Acetylation of GhCaM7 enhances cotton resistance to Verticillium dahliae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1405-1424. [PMID: 36948889 DOI: 10.1111/tpj.16200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Protein lysine acetylation is an important post-translational modification mechanism involved in cellular regulation in eukaryotes. Calmodulin (CaM) is a ubiquitous Ca2+ sensor in eukaryotes and is crucial for plant immunity, but it is so far unclear whether acetylation is involved in CaM-mediated plant immunity. Here, we found that GhCaM7 is acetylated upon Verticillium dahliae (V. dahliae) infection and a positive regulator of V. dahliae resistance. Overexpressing GhCaM7 in cotton and Arabidopsis enhances V. dahliae resistance and knocking-down GhCaM7 makes cotton more susceptible to V. dahliae. Transgenic Arabidopsis plants overexpressing GhCaM7 with mutation at the acetylation site are more susceptible to V. dahliae than transgenics overexpressing the wild-type GhCaM7, implying the importance of the acetylated GhCaM7 in response to V. dahliae infection. Yeast two-hybrid, bimolecular fluorescent complementation, luciferase complementation imaging, and coimmunoprecipitation assays demonstrated interaction between GhCaM7 and an osmotin protein GhOSM34 that was shown to have a positive role in V. dahliae resistance. GhCaM7 and GhOSM34 are co-localized in the cell membrane. Upon V. dahliae infection, the Ca2+ content reduces almost instantly in plants with downregulated GhCaM7 or GhOSM34. Down regulating GhOSM34 enhances accumulation of Na+ and increases cell osmotic pressure. Comparative transcriptomic analyses between cotton plants with an increased or reduced expression level of GhCaM7 and wild-type plants indicate the involvement of jasmonic acid signaling pathways and reactive oxygen species in GhCaM7-enabled disease resistance. Together, these results demonstrate the involvement of CaM protein in the interaction between cotton and V. dahliae, and more importantly, the involvement of the acetylated CaM in the interaction.
Collapse
Affiliation(s)
- Lei Zhang
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yajie Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yongang Yu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, Henan, China
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
21
|
Xue N, Sun M, Gai Z, Bai M, Sun J, Sai S, Zhang L. Genome-Wide Identification and Expression Analysis of Calmodulin (CaM) and Calmodulin-Like (CML) Genes in the Brown Algae Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1934. [PMID: 37653850 PMCID: PMC10222329 DOI: 10.3390/plants12101934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Calmodulins (CaMs) and Calmodulin-like proteins (CMLs) are vital in plant growth, development, and stress responses. However, CaMs and CMLs have not been fully identified and characterized in brown algae, which has been evolving independently of the well-studied green plant lineage. In this study, whole-genome searches revealed one SjCaM and eight SjCMLs in Saccharina japonica, and one EsCaM and eleven EsCMLs in Ectocarpus sp. SjCaM and EsCaM encoded identical protein products and shared 88.59-89.93% amino acid identities with Arabidopsis thaliana AtCaMs, thereby indicating that brown algae CaMs retained a similar Ca2+ sensors function as in plants. The phylogenetic and gene structure analysis results showed that there was significant divergence in the gene sequences among brown algae CMLs. Furthermore, evolutionary analysis indicated that the function of brown alga CMLs was relatively conserved, which may be related to the fact that brown algae do not need to face complex environments like terrestrial plants. Regulatory elements prediction and the expression analysis revealed the probable functioning of SjCaM/CML genes in gametophyte development and the stress response in S. japonica. In addition, the SjCaM/SjCMLs interacting proteins and chemicals were preliminarily predicted, suggesting that SjCaM/SjCMLs might play putative roles in Ca2+/CaM-mediated growth and development processes and stimulus responses. Therefore, these results will facilitate our understanding of the evolution of brown algae CaMs/CMLs and the functional identification of SjCaM/SjCMLs.
Collapse
Affiliation(s)
- Nianchao Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Minghui Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Gai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Meihan Bai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Juan Sun
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Shan Sai
- National Engineering Science Research & Development Center of Algae and Sea Cucumbers of China, Shandong Technology Innovation Center of Algae and Sea Cucumber, Provincial Key Laboratory of Genetic Improvement & Efficient Culture of Marine Algae of Shandong, Shandong Oriental Ocean Sci-Tech Co., Ltd., Yantai 264003, China
| | - Linan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
22
|
Hanano A, Blée E, Murphy DJ. Caleosin/peroxygenases: multifunctional proteins in plants. ANNALS OF BOTANY 2023; 131:387-409. [PMID: 36656070 PMCID: PMC10072107 DOI: 10.1093/aob/mcad001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Caleosin/peroxygenases (CLO/PXGs) are a family of multifunctional proteins that are ubiquitous in land plants and are also found in some fungi and green algae. CLO/PXGs were initially described as a class of plant lipid-associated proteins with some similarities to the oleosins that stabilize lipid droplets (LDs) in storage tissues, such as seeds. However, we now know that CLO/PXGs have more complex structures, distributions and functions than oleosins. Structurally, CLO/PXGs share conserved domains that confer specific biochemical features, and they have diverse localizations and functions. SCOPE This review surveys the structural properties of CLO/PXGs and their biochemical roles. In addition to their highly conserved structures, CLO/PXGs have peroxygenase activities and are involved in several aspects of oxylipin metabolism in plants. The enzymatic activities and the spatiotemporal expression of CLO/PXGs are described and linked with their wider involvement in plant physiology. Plant CLO/PXGs have many roles in both biotic and abiotic stress responses in plants and in their responses to environmental toxins. Finally, some intriguing developments in the biotechnological uses of CLO/PXGs are addressed. CONCLUSIONS It is now two decades since CLO/PXGs were first recognized as a new class of lipid-associated proteins and only 15 years since their additional enzymatic functions as a new class of peroxygenases were discovered. There are many interesting research questions that remain to be addressed in future physiological studies of plant CLO/PXGs and in their recently discovered roles in the sequestration and, possibly, detoxification of a wide variety of lipidic xenobiotics that can challenge plant welfare.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| | - Elizabeth Blée
- Former Head of Phyto-oxylipins laboratory, Institute of Plant Molecular Biology, University of Strasbourg, France
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Treforest, UK
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
23
|
Yang M, Chen J, Liu T, Xiang L, Zhou BF. Genome-Wide Identification and Expression Analysis of Calmodulin-Like Gene Family in Paspalums vaginatium Revealed Their Role in Response to Salt and Cold Stress. Curr Issues Mol Biol 2023; 45:1693-1711. [PMID: 36826054 PMCID: PMC9954852 DOI: 10.3390/cimb45020109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The calmodulin-like (CML) family is an important calcium (Ca2+) sensor in plants and plays a pivotal role in the response to abiotic and biotic stresses. As one of the most salt-tolerant grass species, Paspalums vaginatum is resistant to multiple abiotic stresses, such as salt, cold, and drought. However, investigations of PvCML proteins in P. vaginatum have been limited. Based on the recently published P. vaginatum genome, we identified forty-nine PvCMLs and performed a comprehensive bioinformatics analysis of PvCMLs. The main results showed that the PvCMLs were unevenly distributed on all chromosomes and that the expansion of PvCMLs was shaped by tandem and segmental duplications. In addition, cis-acting element analysis, expression profiles, and qRT-PCR analysis revealed that PvCMLs were involved in the response to salt and cold stress. Most interestingly, we found evidence of a tandem gene cluster that independently evolved in P. vaginatum and may participate in cold resistance. In summary, our work provides important insight into how grass species are resistant to abiotic stresses such as salt and cold and could be the basis of further gene function research on CMLs in P. vaginatum.
Collapse
Affiliation(s)
- Meizhen Yang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingjin Chen
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Liu
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Leilei Xiang
- Guangdong Engineering Research Center for Grassland Science, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Biao-Feng Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Correspondence: ; Tel.: +86-17665141041
| |
Collapse
|
24
|
Iosip AL, Scherzer S, Bauer S, Becker D, Krischke M, Al-Rasheid KAS, Schultz J, Kreuzer I, Hedrich R. DYSCALCULIA, a Venus flytrap mutant without the ability to count action potentials. Curr Biol 2023; 33:589-596.e5. [PMID: 36693369 DOI: 10.1016/j.cub.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
The Venus flytrap Dionaea muscipula estimates prey nutrient content by counting trigger hair contacts initiating action potentials (APs) and calcium waves traveling all over the trap.1,2,3 A first AP is associated with a subcritical rise in cytosolic calcium concentration, but when the second AP arrives in time, calcium levels pass the threshold required for fast trap closure. Consequently, memory function and decision-making are timed via a calcium clock.3,4 For higher numbers of APs elicited by the struggling prey, the Ca2+ clock connects to the networks governed by the touch hormone jasmonic acid (JA), which initiates slow, hermetic trap sealing and mining of the animal food stock.5 Two distinct phases of trap closure can be distinguished within Dionaea's hunting cycle: (1) very fast trap snapping requiring two APs and crossing of a critical cytosolic Ca2+ level and (2) JA-dependent slow trap sealing and prey processing induced by more than five APs. The Dionaea mutant DYSC is still able to fire touch-induced APs but does not snap close its traps and fails to enter the hunting cycle after prolonged mechanostimulation. Transcriptomic analyses revealed that upon trigger hair touch/AP stimulation, activation of calcium signaling is largely suppressed in DYSC traps. The observation that external JA application restored hunting cycle progression together with the DYSC phenotype and its transcriptional landscape indicates that DYSC cannot properly read, count, and decode touch/AP-induced calcium signals that are key in prey capture and processing.
Collapse
Affiliation(s)
- Anda-Larisa Iosip
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany; Center for Computational and Theoretical Biology, University of Würzburg, Clara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Sonja Bauer
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, Clara-Oppenheimer-Weg 32, 97074 Würzburg, Germany
| | - Ines Kreuzer
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany.
| |
Collapse
|
25
|
Wang H, Feng M, Zhong X, Yu Q, Que Y, Xu L, Guo J. Identification of Saccharum CaM gene family and function characterization of ScCaM1 during cold and oxidant exposure in Pichia pastoris. Genes Genomics 2023; 45:103-122. [PMID: 35608775 DOI: 10.1007/s13258-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Calmodulin (CaM) plays an essential role in binding calcium ions and mediating the interpretation of Ca2+ signals in plants under various stresses. However, the evolutionary relationship of CaM family proteins in Saccharum has not been elucidated. OBJECTIVE To deduce and explore the evolution and function of Saccharum CaM family. METHODS A total of 104 typical CaMs were obtained from Saccharum spontaneum and other 18 plant species. The molecular characteristics and evolution of those CaM proteins were analyzed. A typical CaM gene, ScCaM1, was subsequently cloned from sugarcane (Saccharum spp. hybrid). Its expression patterns in different tissues and under various abiotic stresses were assessed by quantitative real-time PCR. Then the green fluorescent protein was used to determine the subcellular localization of ScCaM1. Finally, the function of ScCaM1 was evaluated via heterologous yeast expression systems. RESULTS Three typical CaM members (SsCaM1, SsCaM2, and SsCaM3) were identified from the S. spontaneum genome database. CaMs were originated from the two last common ancestors before the origin of angiosperms. The number of CaM family members did not correlate to the genome size but correlated with allopolyploidization events. The ScCaM1 was more highly expressed in buds and roots than in other tissues. The expression patterns of ScCaM1 suggested that it was involved in responses to various abiotic stresses in sugarcane via different hormonal signaling pathways. Noteworthily, its expression levels appeared relatively stable during the cold exposure in the cold-tolerant variety but significantly suppressed in the cold-susceptible variety. Moreover, the recombinant yeast (Pichia pastoris) overexpressing ScCaM1 grew better than the wild-type yeast strain under cold and oxidative stresses. It was revealed that the ScCaM1 played a positive role in reactive oxygen species scavenging and conferred enhanced cold and oxidative stress tolerance to cells. CONCLUSION This study provided comprehensive information on the CaM gene family in Saccharum and would facilitate further investigation of their functional characterization.
Collapse
Affiliation(s)
- Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meichang Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqiang Zhong
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Yu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Liu Y, Chen W, Liu L, Su Y, Li Y, Jia W, Jiao B, Wang J, Yang F, Dong F, Chai J, Zhao H, Lv M, Li Y, Zhou S. Genome-wide identification and expression analysis of calmodulin and calmodulin-like genes in wheat ( Triticum aestivum L.). PLANT SIGNALING & BEHAVIOR 2022; 17:2013646. [PMID: 35034573 PMCID: PMC8959510 DOI: 10.1080/15592324.2021.2013646] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/25/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) genes are widely involved in plant growth and development and mediating plant stress tolerance. However, the whole genome scale studies about CaM and CML gene families have not been done in wheat, and the possible functions of most wheat CaM/CML gene members are still unknown. In this study, a total of 18 TaCaM and 230 TaCML gene members were identified in wheat genome. Among these genes, 28 TaCaM/CML gene members have 74 duplicated copies, while 21 genes have 48 transcript variants, resulting in 321 putative TaCaM/CML transcripts totally. Phylogenetic tree analysis showed that they can be classified into 7 subfamilies. Similar gene structures and protein domains can be found in members of the same gene cluster. The TaCaM/CML genes were spread among all 21 chromosomes with unbalanced distributions, while most of the gene clusters contained 3 homoeologous genes located in the same homoeologous chromosome group. Synteny analysis showed that most of TaCaM/CMLs gene members can be found with 1-4 paralogous genes in T. turgidum and Ae. Tauschii. High numbers of cis-acting elements related to plant hormones and stress responses can be observed in the promoters of TaCaM/CMLs. The spatiotemporal expression patterns showed that most of the TaCaM/TaCML genes can be detected in at least one tissue. The expression levels of TaCML17, 21, 30, 50, 59 and 75 in the root or shoot can be up-regulated by abiotic stresses, suggesting that TaCML17, 21, 30, 50, 59 and 75 may be related with responses to abiotic stresses in wheat. The spatiotemporal expression patterns of TaCaM/CML genes indicated they may be involved widely in wheat growth and development. Our results provide important clues for exploring functions of TaCaMs/CMLs in growth and development as well as responses to abiotic stresses in wheat in the future.
Collapse
Affiliation(s)
- Yongwei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Wenye Chen
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | | | - Yuhuan Su
- Handan Academy of Agricultural Sciences, Handan, China
| | - Yuan Li
- Hebei Seed Station, Shijiazhuang, China
| | - Weizhe Jia
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fan Yang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Fushuang Dong
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Jianfang Chai
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - He Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Mengyu Lv
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Yanyi Li
- NCPC GeneTech Biotechnology Co. Ltd, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
27
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
28
|
Carpentier S, Aldon D, Berthomé R, Galaud JP. Is there a specific calcium signal out there to decode combined biotic stress and temperature elevation? FRONTIERS IN PLANT SCIENCE 2022; 13:1004406. [PMID: 36407594 PMCID: PMC9669060 DOI: 10.3389/fpls.2022.1004406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Sarah Carpentier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Richard Berthomé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
29
|
Zhang X, Zhou Y, Dhanasekaran S, Wang J, Zhou H, Gu X, Li B, Zhao L, Zhang H. Insights into the defense mechanisms involved in the induction of resistance against black spot of cherry tomatoes by Pichia caribbica. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
31
|
Parmagnani AS, Maffei ME. Calcium Signaling in Plant-Insect Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2689. [PMID: 36297718 PMCID: PMC9609891 DOI: 10.3390/plants11202689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In plant-insect interactions, calcium (Ca2+) variations are among the earliest events associated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS), Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission, whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin, Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic interactions requires innovative imaging techniques based on sensitive sensors and using genetically encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory and reviews the most recent Ca2+ imaging techniques and methods.
Collapse
|
32
|
Attri K, Zhang Z, Singh A, Sharrock RA, Xie Z. Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants. THE NEW PHYTOLOGIST 2022; 235:1082-1095. [PMID: 35485957 PMCID: PMC9322595 DOI: 10.1111/nph.18185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
MicroRNA (miRNA)-directed posttranscriptional gene silencing (miR-PTGS) is an integral component of gene regulatory networks governing plant development and responses to the environment. The sequence homology between Sly-miR4376, a miRNA common to Solanaceae and reported to target autoinhibited Ca2+ -ATPase 10 (ACA10) messenger RNA (mRNA) in tomato, and Arabidopsis miR391 (Ath-miR391), previously annotated as a nonconserved member of the deeply conserved miR390 family, has prompted us to revisit the function of Ath-miR391, as well as its regulatory conservation. A combination of genetic, molecular, and bioinformatic analyses revealed a hidden conservation for miR-PTGS of ACA10 homologs in spermatophytes. We found that the Arabidopsis ACA10 mRNA undergoes miR391-directed cleavage in vivo. Furthermore, transgenic overexpression of miR391 recapitulated the compact inflorescence (cif) phenotypes characteristic of ACA10 loss-of-function mutants, due to miR391-directed PTGS of ACA10. Significantly, comprehensive data mining revealed robust evidence for widespread PTGS of ACA10 homologs directed by a superfamily of related miRNAs sharing a conserved sequence core. Intriguingly, the ACA-targeting miRNAs in Poaceae also direct PTGS for calmodulin-like proteins which are putative Ca2+ sensors. The PTGS of ACA10 homologs is therefore directed by a miRNA superfamily that is of ancient origin and has undergone rapid sequence diversification associated with functional innovation.
Collapse
Affiliation(s)
- Komal Attri
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Zijie Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Atinder Singh
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Robert A. Sharrock
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717USA
| | - Zhixin Xie
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
33
|
Fu M, Wu C, Li X, Ding X, Guo F. Genome-Wide Identification and Expression Analysis of CsCaM/CML Gene Family in Response to Low-Temperature and Salt Stresses in Chrysanthemum seticuspe. PLANTS 2022; 11:plants11131760. [PMID: 35807712 PMCID: PMC9268918 DOI: 10.3390/plants11131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM) and calmodulin-like proteins (CML) act as significant Ca2+ sensors binding Ca2+ with EF-hand motifs and have been reported to be involved in various environmental stresses in plants. In this study, calmodulin CsCaM/CML gene family members were identified based on the genome of Chrysanthemum seticuspe published recently; a phylogenetic tree was constructed; gene structures and chromosomal locations of CsCaM/CML were depicted; cis-acting regulatory elements were predicted; collinearity and duplicate events of CaM/CML were analyzed using MCScanX software; and the expression levels of CsCaM/CML in response to abiotic stress were analyzed, based on the published RNA-seq data. We identified 86 CsCaM/CML (4 CsCaMs and 82 CsCMLs) genes in total. Promoter sequences of CsCaM/CML contained elements related to abiotic stresses (including low-temperature and anaerobic stresses) and plant hormones (including abscisic acid (ABA), MeJA, and salicylic acid). CsCaM/CML genes were distributed on nine chromosomes unevenly. Collinearity analysis indicated that recent segmental duplications significantly enlarged the scale of the CML family in C. seticuspe. Four CsCMLs (CsCML14, CsCML50, CsCML65, and CsCML79) were statistically differentially regulated under low-temperature and salt stress compared with those in the normal condition. These results indicate diverse roles of CsCaM/CML in plant development and in response to environmental stimuli in C. seticuspe.
Collapse
Affiliation(s)
| | | | | | | | - Fangqi Guo
- Correspondence: Correspondence: ; Tel.: +86-0571-8640-4013
| |
Collapse
|
34
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
35
|
Characterization of the Calmodulin/Calmodulin-like Protein (CAM/CML) Family in Ginkgo biloba, and the Influence of an Ectopically Expressed GbCML Gene (Gb_30819) on Seedling and Fruit Development of Transgenic Arabidopsis. PLANTS 2022; 11:plants11111506. [PMID: 35684283 PMCID: PMC9183014 DOI: 10.3390/plants11111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/05/2022]
Abstract
Calmodulins (CAMs) and calmodulin-like proteins (CMLs) can participate in the regulation of various physiological processes via sensing and decoding Ca2+ signals. To reveal the characteristics of the CAM/CML family in Ginkgo biloba, a comprehensive analysis was performed at the genome-wide level. A total of 26 CAMs/CMLs, consisting of 5 GbCAMs and 21 GbCMLs, was identified on 11 out of 12 chromosomes in G. biloba. They displayed a certain degree of multiplicity in their sequences, albeit with conserved EF hands. Collinearity analysis suggested that tandem rather than segmental or whole-genome duplications were likely to play roles in the evolution of the Ginkgo CAM/CML family. Furthermore, GbCAMs/GbCMLs were grouped into higher, lower, and moderate expression in magnitude. The cis-acting regulatory elements involved in phytohormone-responsiveness within GbCAM/GbCML promotors may explain their varied expression profiles. The ectopic expression of a GbCML gene (Gb_30819) in transgenic Arabidopsis led to phenotypes with significantly shortened root length and seedling height, and decreased yields of both pods and seeds. Moreover, an electrophoresis mobility shift assay demonstrated the Ca2+-binding activity of Gb_30819 in vitro. Altogether, these results contribute to insights into the characteristics of the evolution and expression of GbCAMs/GbCMLs, as well as evidence for Ca2+-CAM/CML pathways functioning within the ancient gymnosperm G. biloba.
Collapse
|
36
|
Wang X, Kang W, Wu F, Miao J, Shi S. Comparative Transcriptome Analysis Reveals New Insight of Alfalfa ( Medicago sativa L.) Cultivars in Response to Abrupt Freezing Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:798118. [PMID: 35432429 PMCID: PMC9010130 DOI: 10.3389/fpls.2022.798118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 05/04/2023]
Abstract
Freezing stress is a major limiting environmental factor that affects the productivity and distribution of alfalfa (Medicago sativa L.). There is growing evidence that enhancing freezing tolerance through resistance-related genes is one of the most efficient methods for solving this problem, whereas little is known about the complex regulatory mechanism of freezing stress. Herein, we performed transcriptome profiling of the leaves from two genotypes of alfalfa, freezing tolerance "Gannong NO.3" and freezing-sensitive "WL326GZ" exposure to -10°C to investigate which resistance-related genes could improve the freezing tolerance. Our results showed that a total of 121,366 genes were identified, and there were 7,245 differentially expressed genes (DEGs) between the control and treated leaves. In particular, the DEGs in "Gannong NO.3" were mainly enriched in the metabolic pathways and biosynthesis of secondary metabolites, and most of the DEGs in "WL326GZ" were enriched in the metabolic pathways, the biosynthesis of secondary metabolites, and plant-pathogen interactions. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that ATP-binding cassette (ABC) C subfamily genes were strongly impacted by freezing stress, indicating that ABCC8 and ABCC3 are critical to develop the freezing tolerance. Moreover, our data revealed that numerous Ca2+ signal transduction and CBF/DREB1 pathway-related genes were severely impacted by the freezing resistance, which is believed to alleviate the damage caused by freezing stress. Altogether, these findings contribute the comprehensive information to understand the molecular mechanism of alfalfa adaptation to freezing stress and further provide functional candidate genes that can adapt to abiotic stress.
Collapse
Affiliation(s)
| | | | | | - Jiamin Miao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
37
|
Jethva J, Schmidt RR, Sauter M, Selinski J. Try or Die: Dynamics of Plant Respiration and How to Survive Low Oxygen Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020205. [PMID: 35050092 PMCID: PMC8780655 DOI: 10.3390/plants11020205] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/09/2023]
Abstract
Fluctuations in oxygen (O2) availability occur as a result of flooding, which is periodically encountered by terrestrial plants. Plant respiration and mitochondrial energy generation rely on O2 availability. Therefore, decreased O2 concentrations severely affect mitochondrial function. Low O2 concentrations (hypoxia) induce cellular stress due to decreased ATP production, depletion of energy reserves and accumulation of metabolic intermediates. In addition, the transition from low to high O2 in combination with light changes-as experienced during re-oxygenation-leads to the excess formation of reactive oxygen species (ROS). In this review, we will update our current knowledge about the mechanisms enabling plants to adapt to low-O2 environments, and how to survive re-oxygenation. New insights into the role of mitochondrial retrograde signaling, chromatin modification, as well as moonlighting proteins and mitochondrial alternative electron transport pathways (and their contribution to low O2 tolerance and survival of re-oxygenation), are presented.
Collapse
Affiliation(s)
- Jay Jethva
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, D-33615 Bielefeld, Germany;
| | - Margret Sauter
- Department of Plant Developmental Biology and Plant Physiology, Faculty of Mathematics and Natural Sciences, Botanical Institute, Christian-Albrechts University, D-24118 Kiel, Germany; (J.J.); (M.S.)
| | - Jennifer Selinski
- Department of Plant Cell Biology, Botanical Institute, Faculty of Mathematics and Natural Sciences, Christian-Albrechts University, D-24118 Kiel, Germany
- Correspondence: ; Tel.: +49-(0)431-880-4245
| |
Collapse
|
38
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
39
|
Tao X, Liu M, Yuan Y, Liu R, Qi K, Xie Z, Bao J, Zhang S, Shiratake K, Tao S. Transcriptome provides potential insights into how calcium affects the formation of stone cell in Pyrus. BMC Genomics 2021; 22:831. [PMID: 34789145 PMCID: PMC8600858 DOI: 10.1186/s12864-021-08161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background The content of stone cells in pears has a great influence on taste. Stone cells are formed by the accumulation of lignin. The treatment of exogenous calcium can affect the lignin synthesis, but this Ca-mediated mechanism is still unclear. In this study, the author performed a comparative transcriptomic analysis of callus of pears (Pyrus x bretschneideri) treated with calcium nitrate Ca (NO3)2 to investigate the role of calcium in lignin synthesis. Results There were 2889 differentially expressed genes (DEGs) detected between the Control and Ca (NO3)2 treatment in total. Among these 2889 DEGs, not only a large number of genes related to Ca single were found, but also many genes were enriched in secondary metabolic pathway, especially in lignin synthesis. Most of them were up-regulated during the development of callus after Ca (NO3)2 treatment. In order to further explore how calcium nitrate treatment affects lignin synthesis, the author screened genes associated with transduction of calcium signal in DEGs, and finally found CAM, CML, CDPK, CBL and CIPK. Then the author identified the PbCML3 in pears and conducted relevant experiments finding the overexpression of PbCML3 would increase the content of pear stone cells, providing potential insights into how Ca treatment enhances the stone cell in pears. Conclusions Our deep analysis reveals the effects of exogenous calcium on calcium signal and lignin biosynthesis pathway. The function of PbCML3 on stone cells formation was verified in pear. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08161-5.
Collapse
Affiliation(s)
- Xingyu Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yazhou Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Ala'er, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Shutian Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
40
|
Tong T, Li Q, Jiang W, Chen G, Xue D, Deng F, Zeng F, Chen ZH. Molecular Evolution of Calcium Signaling and Transport in Plant Adaptation to Abiotic Stress. Int J Mol Sci 2021; 22:12308. [PMID: 34830190 PMCID: PMC8618852 DOI: 10.3390/ijms222212308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptation to unfavorable abiotic stresses is one of the key processes in the evolution of plants. Calcium (Ca2+) signaling is characterized by the spatiotemporal pattern of Ca2+ distribution and the activities of multi-domain proteins in integrating environmental stimuli and cellular responses, which are crucial early events in abiotic stress responses in plants. However, a comprehensive summary and explanation for evolutionary and functional synergies in Ca2+ signaling remains elusive in green plants. We review mechanisms of Ca2+ membrane transporters and intracellular Ca2+ sensors with evolutionary imprinting and structural clues. These may provide molecular and bioinformatics insights for the functional analysis of some non-model species in the evolutionarily important green plant lineages. We summarize the chronological order, spatial location, and characteristics of Ca2+ functional proteins. Furthermore, we highlight the integral functions of calcium-signaling components in various nodes of the Ca2+ signaling pathway through conserved or variant evolutionary processes. These ultimately bridge the Ca2+ cascade reactions into regulatory networks, particularly in the hormonal signaling pathways. In summary, this review provides new perspectives towards a better understanding of the evolution, interaction and integration of Ca2+ signaling components in green plants, which is likely to benefit future research in agriculture, evolutionary biology, ecology and the environment.
Collapse
Affiliation(s)
- Tao Tong
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Qi Li
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310030, China; (Q.L.); (G.C.)
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434022, China; (T.T.); (W.J.); (F.D.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith 2751, Australia
| |
Collapse
|
41
|
Ding H, Qian Y, Fang Y, Ji Y, Sheng J, Ge C. Characteristics of SlCML39, a Tomato Calmodulin-like Gene, and Its Negative Role in High Temperature Tolerance of Arabidopsis thaliana during Germination and Seedling Growth. Int J Mol Sci 2021; 22:ijms222111479. [PMID: 34768907 PMCID: PMC8584099 DOI: 10.3390/ijms222111479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Calmodulin-like (CML) proteins are primary calcium sensors and function in plant growth and response to stress stimuli. However, so far, the function of plant CML proteins, including tomato, is still unclear. Previously, it was found that a tomato (Solanum lycopersicum) CML, here named SlCML39, was significantly induced by high temperature (HT) at transcription level, but its biological function is scarce. In this study, the characteristics of SlCML39 and its role in HT tolerance were studied. SlCML39 encodes a protein of 201 amino acids containing four EF hand motifs. Many cis-acting elements related to plant stress and hormone response appear in the promoter regions of SlCML39. SlCML39 is mainly expressed in the root, stem, and leaf and can be regulated by HT, cold, drought, and salt stresses as well as ABA and H2O2. Furthermore, heterologous overexpression of SlCML39 reduces HT tolerance in Arabidopsis thaliana at the germination and seedling growth stages. To better understand the molecular mechanism of SlCML39, the downstream gene network regulated by SlCML39 under HT was analyzed by RNA-Seq. Interestingly, we found that many genes involved in stress responses as well as ABA signal pathway are down-regulated in the transgenic seedlings under HT stress, such as KIN1, RD29B, RD26, and MAP3K18. Collectively, these data indicate that SlCML39 acts as an important negative regulator in response to HT stress, which might be mediated by the ABA signal pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| | - Ying Qian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yifang Fang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Yurong Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Jiarong Sheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (Y.Q.); (Y.F.); (Y.J.); (J.S.)
- Correspondence: (H.D.); (C.G.); Tel./Fax: +86-514-8797-9204
| |
Collapse
|
42
|
Ying S. Genome-Wide Identification and Transcriptional Analysis of Arabidopsis DUF506 Gene Family. Int J Mol Sci 2021; 22:11442. [PMID: 34768874 PMCID: PMC8583954 DOI: 10.3390/ijms222111442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The Domain of unknown function 506 (DUF506) family, which belongs to the PD-(D/E)XK nuclease superfamily, has not been functionally characterized. In this study, 266 DUF506 domain-containing genes were identified from algae, mosses, and land plants showing their wide occurrence in photosynthetic organisms. Bioinformatics analysis identified 211 high-confidence DUF506 genes across 17 representative land plant species. Phylogenetic modeling classified three groups of plant DUF506 genes that suggested functional preservation among the groups based on conserved gene structure and motifs. Gene duplication and Ka/Ks evolutionary rates revealed that DUF506 genes are under purifying positive selection pressure. Subcellular protein localization analysis revealed that DUF506 proteins were present in different organelles. Transcript analyses showed that 13 of the Arabidopsis DUF506 genes are ubiquitously expressed in various tissues and respond to different abiotic stresses and ABA treatment. Protein-protein interaction network analysis using the STRING-DB, AtPIN (Arabidopsis thaliana Protein Interaction Network), and AI-1 (Arabidopsis Interactome-1) tools indicated that AtDUF506s potentially interact with iron-deficiency response proteins, salt-inducible transcription factors, or calcium sensors (calmodulins), implying that DUF506 genes have distinct biological functions including responses to environmental stimuli, nutrient-deficiencies, and participate in Ca(2+) signaling. Current results provide insightful information regarding the molecular features of the DUF506 family in plants, to support further functional characterizations.
Collapse
Affiliation(s)
- Sheng Ying
- Noble Research Institute LLC, Ardmore, OK 73401, USA
| |
Collapse
|
43
|
Jia Y, Li Q, Li Y, Zhai W, Jiang G, Li C. Inducible Enrichment of Osa-miR1432 Confers Rice Bacterial Blight Resistance through Suppressing OsCaML2. Int J Mol Sci 2021; 22:ijms222111367. [PMID: 34768797 PMCID: PMC8583624 DOI: 10.3390/ijms222111367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) handle immune response to pathogens by adjusting the function of target genes in plants. However, the experimentally documented miRNA/target modules implicated in the interplay between rice and Xanthomonas oryzae pv. oryzae (Xoo) are still in the early stages. Herein, the expression of osa-miR1432 was induced in resistant genotype IRBB5, but not susceptible genotype IR24, under Xoo strain PXO86 attack. Overexpressed osa-miR1432 heightened rice disease resistance to Xoo, indicated by enhancive enrichment of defense marker genes, raised reactive oxygen species (ROS) levels, repressed bacterial growth and shortened leaf lesion length, whilst the disruptive accumulation of osa-miR1432 accelerated rice susceptibility to Xoo infection. Noticeably, OsCaML2 (LOC_Os03g59770) was experimentally confirmed as a target gene of osa-miR1432, and the overexpressing OsCaML2 transgenic plants exhibited compromised resistance to Xoo infestation. Our results indicate that osa-miR1432 and OsCaML2 were differently responsive to Xoo invasion at the transcriptional level and fine-tune rice resistance to Xoo infection, which may be referable in resistance gene discovery and valuable in the pursuit of improving Xoo resistance in rice breeding.
Collapse
|
44
|
Du B, Chen N, Song L, Wang D, Cai H, Yao L, Li X, Guo C. Alfalfa (Medicago sativa L.) MsCML46 gene encoding calmodulin-like protein confers tolerance to abiotic stress in tobacco. PLANT CELL REPORTS 2021; 40:1907-1922. [PMID: 34322731 DOI: 10.1007/s00299-021-02757-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/15/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE MsCML46 enhances tolerance to abiotic stresses through alleviating osmotic stress and oxidative damage by regulating the expression of stress-related genes to optimize osmolytes levels and antioxidant enzyme activity in transgenic tobacco. Abiotic stresses are major environmental factors that constraint crop productivity worldwide. Various stimuli regulate intracellular calcium levels and calcium-mediated signal transduction, and cellular responses. Ca2+ signals are perceived by different Ca2+ receptors. Calmodulin-like protein (CML) is one of the best-characterized Ca2+ sensors which shares sequence similarity with highly conserved calmodulin (CaM) ubiquitously expressed in plants. Currently, the molecular and physiological functions of CMLs are largely unknown. In this study, the MsCML46 was characterized in alfalfa (Medicago sativa cv. Zhaodong) under freezing stress. Results showed that MsCML46 was localized to the cytoplasm of Arabidopsis, and its expression was strongly elevated by cold, drought, salt, saline-alkali, and ABA treatments. Overexpressing MsCML46 in tobacco enhanced tolerance to freezing, drought, and salt stresses as evidenced by improved contents of osmotic regulatory solutes and antioxidant enzyme activity but decreased reactive oxygen species (ROS) accumulation. Furthermore, cold, drought, and salt stresses increased the expression of stress-related genes in transgenic tobacco. MsCML46 binds free Ca2+ to promote signal transduction and maintain higher K+/Na+ ratio. In this way, it protects intracellular homeostasis under sodium ion toxicity. These results suggest that MsCML46 plays a crucial role in resisting abiotic stresses and can be exploited in genetic engineering for crops.
Collapse
Affiliation(s)
- Binghao Du
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Naiyu Chen
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Lili Song
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Dan Wang
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Hongsheng Cai
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Lin Yao
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China.
| |
Collapse
|
45
|
Yan Y, He M, Guo J, Zeng H, Wei Y, Liu G, Hu W, Shi H. The CBL1/9-CIPK23-AKT1 complex is essential for low potassium response in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:430-437. [PMID: 34411782 DOI: 10.1016/j.plaphy.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Cassava is a food crop and an important energy crop worldwide. However, its yield and quality are easily affected by low K+ stress, and the molecular mechanism of potassium channel is unknown in cassava. Herein, we revealed that calcineurin B-like 1/9 (MeCBL1/9)-CBL-interacting protein kinase 23 (MeCIPK23)-K+ TRANSPORTER1 (MeAKT1) complex plays an important role in low potassium response in cassava. Firstly, this study verified the in vivo role of MeAKT1 in K+ uptake in yeast. Secondly, we found that MeCBL1, MeCBL9, MeCIPK23 and MeAKT1 are involved in the absorption of K+ in cassava, and MeCBL1/9-CIPK23 complex is essential for MeAKT1-mediated K+ uptake. Moreover, MeCBL1/9-MeCIPK23-MeAKT1 showed different expression in different cassava varieties contrasting in the resistance to low K+ stress. Taken together, this study provides new insights into further improvement of K+ uptake in cassava.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Mei He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou, Hainan province, 571101, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, College of Forestry, Hainan University, Haikou, Hainan province, 570228, China.
| |
Collapse
|
46
|
Tu Y, Fu L, Wang F, Wu D, Shen Q, Zhang G. GWAS and transcriptomic integrating analysis reveals key salt-responding genes controlling Na + content in barley roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:596-606. [PMID: 34464826 DOI: 10.1016/j.plaphy.2021.08.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Salt stress is one of the major environmental restricts for crop production and food safety. Barley (Hordeum vulgare L.) is the most salt-tolerant cereal crop, which could be the pioneer for shifting agricultural crop production to marginal saline lands. However, probably due to high genetic complexity of salinity tolerance trait, the progress in the identification of salt-tolerant locus or genes of barley roots moves slowly. Here, we determined physiological and ionic changes in mini-core barley accessions under salt conditions. Na+ content was lower in whole-plant but higher in roots of the salt tolerant genotypes than sensitive ones under salt stress. Genome-wide association study (GWAS) analysis identified 43 significant SNPs out of 12,564 SNPs and 215 candidate genes (P < 10-3) in the roots of worldwide barley accessions, highly associated with root relative dry weight (RDW) and Na+ content after hydroponic salinity in greenhouse and growth chamber. Meanwhile, transcriptomic analysis (RNA-Seq) identified 3217 differentially expression genes (DEGs) in barley roots induced by salt stress, mainly enriched in metabolism and transport processes. After GWAS and RNA-Seq integrating analysis, 39 DEGs were verified by qRT-PCR as salt-responding genes, including CYPs, LRR-KISS and CML genes, mostly related to the signal regulation. Taken together, current results provide genetic map-based genes or new locus useful for improving salt tolerance in crop and contributing to the utilization of saline soils.
Collapse
Affiliation(s)
- Yishan Tu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Fengyue Wang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
47
|
The Same against Many: AtCML8, a Ca 2+ Sensor Acting as a Positive Regulator of Defense Responses against Several Plant Pathogens. Int J Mol Sci 2021; 22:ijms221910469. [PMID: 34638807 PMCID: PMC8508799 DOI: 10.3390/ijms221910469] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Calcium signals are crucial for the activation and coordination of signaling cascades leading to the establishment of plant defense mechanisms. Here, we studied the contribution of CML8, an Arabidopsis calmodulin-like protein in response to Ralstonia solanacearum and to pathogens with different lifestyles, such as Xanthomonas campestris pv. campestris and Phytophtora capsici. We used pathogenic infection assays, gene expression, RNA-seq approaches, and comparative analysis of public data on CML8 knockdown and overexpressing Arabidopsis lines to demonstrate that CML8 contributes to defense mechanisms against pathogenic bacteria and oomycetes. CML8 gene expression is finely regulated at the root level and manipulated during infection with Ralstonia, and CML8 overexpression confers better plant tolerance. To understand the processes controlled by CML8, genes differentially expressed at the root level in the first hours of infection have been identified. Overexpression of CML8 also confers better tolerance against Xanthomonas and Phytophtora, and most of the genes differentially expressed in response to Ralstonia are differentially expressed in these different pathosystems. Collectively, CML8 acts as a positive regulator against Ralstonia solanaceraum and against other vascular or root pathogens, suggesting that CML8 is a multifunctional protein that regulates common downstream processes involved in the defense response of plants to several pathogens.
Collapse
|
48
|
Sun X, Wang Y, Pan B, Xu W, Zhang S. Transcriptome Analysis of Pear Leaves in Response to Calcium Treatment During Botryosphaeria dothidea Infection. PHYTOPATHOLOGY 2021; 111:1638-1647. [PMID: 33471562 DOI: 10.1094/phyto-10-20-0458-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pear (Pyrus bretschneideri), one of the most widely planted fruit trees in the world, is infected by pear ring rot disease, which is triggered by Botryosphaeria dothidea. Previous research has shown that exogenous calcium enhanced pear resistance to B. dothidea. To explore the molecular mechanism of calcium in pear pathogen resistance, we searched the differentially expressed genes (DEGs) between calcium and H2O treatment with B. dothidea inoculation in pear by using RNA-seq data. On the basis of the standard of a proportion of calcium/H2O fold change >2, and the false discovery rate (FDR) <0.05, 2,812 and 572 genes with significant differential expression were identified between the H2O and calcium treatments under B. dothidea inoculation at 2 days postinoculation (dpi) (D2) and 8 dpi (D8), respectively, indicating that significantly more genes in D2 responded to calcium treatment. Results of the gene annotation showed that DEGs were focused on plant-pathogen interactions, hormone signal transduction, and phenylpropanoid biosynthesis in D2. Moreover, transient silencing of PbrCML30 (pear calmodulin-like proteins 30), which had significantly higher expression in response to calcium than H2O treatments, conferred compromised resistance to B. dothidea. Exogenous calcium treatment slightly alleviated the symptoms of TRV2-PbrCML30 leaves compared with TRV2 leaves under inoculation, supporting its key role in pear resistance to B. dothidea. Overall, the information obtained in this study provides a possible mechanism of calcium in regulating pear resistance to B. dothidea.
Collapse
Affiliation(s)
- Xun Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bisheng Pan
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyu Xu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
Raina M, Kumar A, Yadav N, Kumari S, Yusuf MA, Mustafiz A, Kumar D. StCaM2, a calcium binding protein, alleviates negative effects of salinity and drought stress in tobacco. PLANT MOLECULAR BIOLOGY 2021; 106:85-108. [PMID: 33629224 DOI: 10.1007/s11103-021-01131-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/09/2021] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Overexpression of StCaM2 in tobacco promotes plant growth and confers increased salinity and drought tolerance by enhancing the photosynthetic efficiency, ROS scavenging, and recovery from membrane injury. Calmodulins (CaMs) are important Ca2+ sensors that interact with effector proteins and drive a network of signal transduction pathways involved in regulating the growth and developmental pattern of plants under stress. Herein, using in silico analysis, we identified 17 CaM isoforms (StCaM) in potato. Expression profiling revealed different temporal and spatial expression patterns of these genes, which were modulated under abiotic stress. Among the identified StCaM genes, StCaM2 was found to have the largest number of abiotic stress responsive promoter elements. In addition, StCaM2 was upregulated in response to some of the selected abiotic stress in potato tissues. Overexpression of StCaM2 in transgenic tobacco plants enhanced their tolerance to salinity and drought stress. Accumulation of reactive oxygen species was remarkably decreased in transgenic lines compared to that in wild type plants. Chlorophyll a fluorescence analysis suggested better performance of photosystem II in transgenic plants under stress compared to that in wild type plants. The increase in salinity stress tolerance in StCaM2-overexpressing plants was also associated with a favorable K+/Na+ ratio. The enhanced tolerance to abiotic stresses correlated with the increase in the activities of anti-oxidative enzymes in transgenic tobacco plants. Overall, our results suggest that StCaM2 can be a novel candidate for conferring salt and drought tolerance in plants.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Nikita Yadav
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India
| | - Sumita Kumari
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir, India
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi, 110021, India.
| | - Deepak Kumar
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Dist- Samba, Jammu and Kashmir, 181143, India.
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
50
|
Rikiishi K, Sugimoto M, Maekawa M. Transcriptomic analysis of developing seeds in a wheat ( Triticum aestivum L.) mutant RSD32 with reduced seed dormancy. BREEDING SCIENCE 2021; 71:155-166. [PMID: 34377063 PMCID: PMC8329890 DOI: 10.1270/jsbbs.20016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/11/2020] [Indexed: 06/13/2023]
Abstract
Seed dormancy, a major factor regulating pre-harvest sprouting, can severely hinder wheat cultivation. Reduced Seed Dormancy 32 (RSD32), a wheat (Triticum aestivum L.) mutant with reduced seed dormancy, is derived from the pre-harvest sprouting tolerant cultivar, 'Norin61'. RSD32 is regulated by a single recessive gene and mutant phenotype expressed in a seed-specific manner. Gene expressions in embryos of 'Norin61' and RSD32 were compared using RNA sequencing (RNA-seq) analysis at different developmental stages of 20, 30, and 40 days after pollination (DAP). Numbers of up-regulated genes in RSD32 are equivalent in all developmental stages. However, down-regulated genes in RSD32 are more numerous on DAP20 and DAP30 than on DAP40. In central components affecting the circadian clock, homologues to the morning-expressed genes are expressed at lower levels in RSD32. However, higher expressions of homologues acting as evening-expressed genes are observed in RSD32. Homologues of Ca2+ signaling pathway related genes are specifically expressed on DAP20 in 'Norin61'. Lower expression is shown in RSD32. These results suggest that RSD32 mutation expresses on DAP20 and earlier seed developmental stages and suggest that circadian clock regulation and Ca2+ signaling pathway are involved in the regulation of wheat seed dormancy.
Collapse
Affiliation(s)
- Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|