1
|
Yan J, Chen Z, Hu D, Ge H, Jiang B, Dong J, Han F, Zhuang S, Liang Z, Wang Y, Cui S. Anaerobic degradation of pesticide wastewater: Improving sludge characteristics and reducing membrane fouling with combined tandem UASB+membrane system with high velocity settlers. WATER RESEARCH 2024; 263:122174. [PMID: 39106624 DOI: 10.1016/j.watres.2024.122174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
In this pilot study, a combined tandem UASB+membrane reactor (R2) with high velocity settlers was proposed for the treatment of pesticide wastewater at different hydraulic retention times (HRT) and compared with a control reactor (R1). The average COD removal efficiencies of the R2 at HRTs of 96, 72, and 48 h were 83.7 %, 82.8 %, and 74.2 %, which are 14 %, 17 %, and 21 % higher than those of the R1, respectively. Throughout the operation, the biogas production of R2 was 33 %, 19 % and 28 % higher than that of R1 at the same stage, respectively, and the methane yield of R2 (0.19-0.26 L CH4/gCODremoved) was improved by 10-17 % compared to that of R1. Mean α values (VFA/ALK) of 0.13∼0.22 indicated that R2 did not undergo acidification. R2 reduced the extracellular polymers (EPS) content in the attached sludge by 56-62 % compared to R1. It also successfully delayed membrane fouling rate by 19-22 %. The results demonstrate that the R2 has a high treatment capacity, stability, and methane recovery, while also effectively reducing membrane fouling.
Collapse
Affiliation(s)
- Jitao Yan
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhaobo Chen
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China.
| | - Dongxue Hu
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Hui Ge
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Bei Jiang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Jian Dong
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Fei Han
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shuya Zhuang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Zhibo Liang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Yifan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| | - Shiming Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 116600, China
| |
Collapse
|
2
|
AbuKhadra D, Dan Grossman A, Al-Ashhab A, Al-Sharabati I, Bernstein R, Herzberg M. The effect of temperature on fouling in anaerobic membrane bioreactor: SMP- and EPS-membrane interactions. WATER RESEARCH 2024; 260:121867. [PMID: 38878312 DOI: 10.1016/j.watres.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Biofouling is the main challenge in the operation of anaerobic membrane bioreactors (AnMBRs). Biofouling strongly depends on temperature; therefore, we hypothesize that the interactions and viscoelastic properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) vary with temperature, consequently influencing membrane permeability. This study compares the performance of an AnMBR operated at a similar permeate flux at two temperatures. The transmembrane pressure (TMP) rose rapidly after 5 ± 2 days at 25 °C but only after 18 ± 2 days at 35 °C, although the reactor's biological performance was similar at both temperatures, in terms of the efficiency of dissolved organic carbon removal and biogas composition, which were obtained by changing the hydraulic retention time. Using confocal laser scanning microscopy (CLSM), a higher biofilm amount was detected at 25 °C than at 35 °C, while quartz crystal microbalance with dissipation (QCM-D) showed a more adhesive, but less viscous and elastic EPS layer. In situ optical coherence tomography (OCT) of an ultra-filtration membrane, fed with the mixed liquor suspended solids (MLSS) at the two temperatures, revealed that while a higher rate of TMP increase was obtained at 25 °C, the attachment of biomass from MLSS was markedly less. Increased EPS adhesion to the membrane can accelerate TMP increase during the operation of both the AnMBR and the OCT filtration cell. EPS's reduced viscoelasticity at 25 °C suggests reduced floc integrity and possible increased EPS penetration into the membrane pores. Analysis of the structures of the microbial communities constituting the AnMBR flocs and membrane biofilms reveals temperature's effects on microbial richness, diversity, and abundance, which likely influence the observed EPS properties and consequent AnMBR fouling.
Collapse
Affiliation(s)
- Diaa AbuKhadra
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Amit Dan Grossman
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Ashraf Al-Ashhab
- The Dead Sea and Arava Science Center, Masada 86190, Israel; Ben-Gurion University of the Negev, Eilat campus, Israel
| | | | - Roy Bernstein
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
3
|
Ahmed MA, Mahmoud SA, Mohamed AA. Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC Adv 2024; 14:18879-18906. [PMID: 38873545 PMCID: PMC11167617 DOI: 10.1039/d4ra01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
Because of its great efficiency and widespread application, reverse osmosis (RO) is a popular tool for water desalination and purification. However, traditional RO membranes have a short lifespan due to membrane fouling, deterioration, decreased salt rejection rate, and the low water flux with aging. As a result, membrane modification has received a lot of attention recently, with nanomaterials being extensively researched to improve membrane efficacy and lifespan. Herein, we present an in-depth analysis of recent advances of RO membranes modification utilizing nanomaterials. An overview of the various nanomaterials used for membrane modification, including metal oxides, zeolites, and carbon nanomaterials, is provided. The synthesis techniques and methods of integrating these nanomaterials into RO membranes are also discussed. The impacts of nanomaterial change on the performance of RO membranes are addressed. The underlying mechanisms responsible for RO membrane enhancements by nanomaterials, such as improved surface hydrophilicity, reduced membrane fouling via surface repulsion and anti-adhesion properties, and enhanced structural stability, are discussed. Furthermore, the review provides a critical analysis of the challenges and limitations associated with the use of nanomaterials to modify RO membranes. Overall, this review provides valuable insights into the modification of RO membranes with nanomaterials, providing a full grasp of the benefits, challenges, and future prospects of this challenging topic.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
- Veolia Water Technologies Cairo 11835 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
4
|
Cheng X, Xu K. Evaluation of autotrophic process influencing extracellular polymeric substances in aerobic membrane bioreactor with expanded ASM model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172207. [PMID: 38583621 DOI: 10.1016/j.scitotenv.2024.172207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
A mathematical model was developed to predict the formation of both the autotrophic and heterotrophic extracellular polymeric substances (EPS) in the aerobic membrane bioreactor (MBR). Batch experimental results and 45-day operation data on a pilot MBR at a sludge retention time (SRT) of 20 d were used to calibrate and validate the model. Simulated MBR setup results demonstrated the key role of the influent COD and NH4+-N in governing the composition of heterotrophic and autotrophic EPS in the MBR. These results also revealed that the autotrophic EPS process was non-ignorable in the system. According to the autotrophic EPS simulation in the MBR, the EPS yield increased with increasing influent COD/NH4+-N ratio towards a constant level. The EPS yield was significantly influenced by the SRT, attributed to the autotrophic process's impact on EPS. Simulation results revealed a slight increase in EPS yield with an SRT of up to 5 days, followed by a rapid decrease beyond that threshold.
Collapse
Affiliation(s)
- Xiaoqiao Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Song W, Kim C, Lee J, Han J, Jiang Z, Kim J, An S, Park Y, Kweon J. Low-biofouling membrane bioreactor: Effects of cis-2-Decenoic acid addition on EPS and biofouling mitigation. CHEMOSPHERE 2024; 358:142110. [PMID: 38657688 DOI: 10.1016/j.chemosphere.2024.142110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.
Collapse
Affiliation(s)
- Wonjung Song
- The Academy of Applied Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chehyeun Kim
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jihoon Lee
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jiwon Han
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Zikang Jiang
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Jaehyeok Kim
- Environmetal & Bio Department, FITI Testing & Research Institute Cheongju-si, Chungcheongbuk-do, 28115, Republic of Korea
| | - Sunkyung An
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea
| | - Yongmin Park
- Operation Business Division, EPS Solution Co.,Ltd, Anyang-si, Gyeonggi-do, 14059, Republic of Korea
| | - Jihyang Kweon
- Department of Environmental Engineering Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Oliva RL, Vogt C, Bublitz TA, Camenzind T, Dyckmans J, Joergensen RG. Galactosamine and mannosamine are integral parts of bacterial and fungal extracellular polymeric substances. ISME COMMUNICATIONS 2024; 4:ycae038. [PMID: 38616925 PMCID: PMC11014887 DOI: 10.1093/ismeco/ycae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Extracellular polymeric substances (EPS) are produced by microorganisms and interact to form a complex matrix called biofilm. In soils, EPS are important contributors to the microbial necromass and, thus, to soil organic carbon (SOC). Amino sugars (AS) are used as indicators for microbial necromass in soil, although the origin of galactosamine and mannosamine is largely unknown. However, indications exist that they are part of EPS. In this study, two bacteria and two fungi were grown in starch medium either with or without a quartz matrix to induce EPS production. Each culture was separated in two fractions: one that directly underwent AS extraction (containing AS from both biomass and EPS), and another that first had EPS extracted, followed then by AS determination (exclusively containing AS from EPS). We did not observe a general effect of the quartz matrix neither of microbial type on AS production. The quantified amounts of galactosamine and mannosamine in the EPS fraction represented on average 100% of the total amounts of these two AS quantified in cell cultures, revealing they are integral parts of the biofilm. In contrast, muramic acid and glucosamine were also quantified in the EPS, but with much lower contribution rates to total AS production, of 18% and 33%, respectively, indicating they are not necessarily part of EPS. Our results allow a meaningful ecological interpretation of mannosamine and galactosamine data in the future as indicators of microbial EPS, and also attract interest of future studies to investigate the role of EPS to SOC and its dynamics.
Collapse
Affiliation(s)
- Rebeca Leme Oliva
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Carla Vogt
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tábata Aline Bublitz
- Soil Biology and Plant Nutrition, University of Kassel, 37213 Witzenhausen, Germany
| | - Tessa Camenzind
- Institute of Biology, Department of Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Dyckmans
- Centre for Stable Isotope Research Analysis, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
7
|
Park H, Shah SSA, Korshin G, Angelidaki I, Choo KH. The impact of sunlight on fouling behaviors and microbial communities in membrane bioreactors. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Sun P, Liu Y, Sun R, Wu Y, Dolfing J. Geographic imprint and ecological functions of the abiotic component of periphytic biofilms. IMETA 2022; 1:e60. [PMID: 38867897 PMCID: PMC10989918 DOI: 10.1002/imt2.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/27/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
We revealed abiotic components (extracellular polymeric substances, EPSs) in the periphytic biofilms. Further, the effect of the microbial community on the EPS, and the geodistribution patterns and ecological functions of the EPS were studied.
Collapse
Affiliation(s)
- Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Zigui Three Gorges Reservoir EcosystemObservation and Research Station of Ministry of Water Resource of the Peoples' Republic of China, Shuitianba, ZiguiYichangChina
| | - Yingyao Liu
- Changwang School of HonorsNanjing University of Information Science and TechnologyNanjingChina
| | - Rui Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Zigui Three Gorges Reservoir EcosystemObservation and Research Station of Ministry of Water Resource of the Peoples' Republic of China, Shuitianba, ZiguiYichangChina
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Zigui Three Gorges Reservoir EcosystemObservation and Research Station of Ministry of Water Resource of the Peoples' Republic of China, Shuitianba, ZiguiYichangChina
| | - Jan Dolfing
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneUK
| |
Collapse
|
9
|
Sengar A, Vijayanandan A. Effects of pharmaceuticals on membrane bioreactor: Review on membrane fouling mechanisms and fouling control strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152132. [PMID: 34863739 DOI: 10.1016/j.scitotenv.2021.152132] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 05/27/2023]
Abstract
Pharmaceuticals have become contaminants of emerging concern due to their toxicity towards aquatic life and pseudo persistent nature in the environment. Membrane bioreactor (MBR) is one such technology that has the potential to act as a barrier against the release of pharmaceuticals into the environment. Fouling is the deposition of the constituents of the mixed liquor on the membrane surface and it limit the world-wide applicability of MBRs. To remove foulant layer, aggressive chemicals and extra cost consideration in terms of energy are required. Extracellular polymeric substances (EPS) and soluble microbial products (SMP) are recognized as principal foulants. Presence of pharmaceuticals has been found to increase the fouling in MBRs. Fouling aggravates in proportion to the concentration of pharmaceuticals. Pharmaceuticals exert chemical stress in microbes, hence forcing them to secrete more EPS/SMP. Pharmaceuticals alter the composition of the foulants and affect microbial metabolism, thereby inflicting direct/indirect effects on fouling. Pharmaceuticals have been found to increase or decrease the size of sludge flocs, however the exact mechanism that govern the floc size change is yet to be understood. Different techniques such as coupling advanced oxidation processes with MBR, adding activated carbon, bioaugmenting MBR with quorum quenching strains have shown to reduce fouling in MBRs treating pharmaceutical wastewater. These fouling mitigation techniques work on reducing the EPS/SMP concentration, thereby alleviating fouling. The present review provides a comprehensive understanding of the effects induced by pharmaceuticals in the activated sludge characteristics and identifying the fouling mechanism. Furthermore, significant knowledge gaps and recent advances in fouling mitigation strategies are discussed. This review has also made an effort to highlight the positive aspect of the foulant layer in retaining pharmaceuticals and antibiotic resistance genes, thereby suggesting a possible delicate trade-off between the flux decline and enhanced removal of pharmaceuticals.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Shao Y, Zhou Z, Jiang J, Jiang LM, Huang J, Zuo Y, Ren Y, Zhao X. Membrane fouling in anoxic/oxic membrane reactors coupled with carrier-enhanced anaerobic side-stream reactor: Effects of anaerobic hydraulic retention time and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Banti DC, Mitrakas M, Samaras P. Membrane Fouling Controlled by Adjustment of Biological Treatment Parameters in Step-Aerating MBR. MEMBRANES 2021; 11:membranes11080553. [PMID: 34436316 PMCID: PMC8399131 DOI: 10.3390/membranes11080553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
A promising solution for membrane fouling reduction in membrane bioreactors (MBRs) could be the adjustment of operating parameters of the MBR, such as hydraulic retention time (HRT), food/microorganisms (F/M) loading and dissolved oxygen (DO) concentration, aiming to modify the sludge morphology to the direction of improvement of the membrane filtration. In this work, these parameters were investigated in a step-aerating pilot MBR that treated municipal wastewater, in order to control the filamentous population. When F/M loading in the first aeration tank (AT1) was ≤0.65 ± 0.2 g COD/g MLSS/d at 20 ± 3 °C, DO = 2.5 ± 0.1 mg/L and HRT = 1.6 h, the filamentous bacteria were controlled effectively at a moderate filament index of 1.5-3. The moderate population of filamentous bacteria improved the membrane performance, leading to low transmembrane pressure (TMP) at values ≤ 2 kPa for a great period, while at the control MBR the TMP gradually increased reaching 14 kPa. Soluble microbial products (SMP), were also maintained at low concentrations, contributing additionally to the reduction of ΤΜP. Finally, the step-aerating MBR process and the selected imposed operating conditions of HRT, F/M and DO improved the MBR performance in terms of fouling control, facilitating its future wider application.
Collapse
Affiliation(s)
- Dimitra C. Banti
- Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
- Correspondence:
| | - Manassis Mitrakas
- Laboratory of Analytical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Petros Samaras
- Laboratory of Technologies of Environmental Protection and Utilization of Food By-Products, Department of Food Science and Technology, International Hellenic University, GR-57400 Thessaloniki, Greece;
| |
Collapse
|
12
|
Noh JH, Park JW, Choi S, Kim S, Maeng SK. Effects of powdered activated carbon and calcium on trihalomethane toxicity of zebrafish embryos and larvae in hybrid membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124530. [PMID: 33243649 DOI: 10.1016/j.jhazmat.2020.124530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/11/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effect of powdered activated carbon and calcium on trihalomethane toxicity in zebrafish embryos and larvae in hybrid membrane bioreactors. Two hybrid membrane bioreactors were configured with the addition of powdered activated carbon or calcium to reduce the trihalomethane formation potential. Trihalomethane formation decreased by approximately 37.2% and 30.3% in membrane bioreactor-powdered activated carbon and membrane bioreactor-calcium, respectively. Additionally, the toxic effect of trihalomethane formation was examined on zebrafish embryos and larvae. About 35% of the embryos exposed to trihalomethanes (800 ppb) showed signs of deformation, with the majority displaying coagulation within 24 h after exposure. Color preference tests, which were conducted to identify any abnormal activities of the embryos, showed an increase in preference from short to longer wavelengths upon exposure to high levels of trihalomethanes. This may indicate damage to the optical organs in zebrafish when exposed to trihalomethanes. Behavioral analysis showed reduced mobility of zebrafish larvae under different trihalomethane concentrations, indicating a decrease in the average activity time with an increasing trihalomethane concentration. The membrane bioreactor effluents were toxic to zebrafish embryos and larvae in the presence of high trihalomethane concentrations. To understand the mechanism behind trihalomethane toxicity, further studies are needed.
Collapse
Affiliation(s)
- Jin Hyung Noh
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Ji Won Park
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Soohoon Choi
- Department of Environmental Engineering, Chungnam University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Sungpyo Kim
- Bio Monitoring Laboratory, Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 30019, Republic of Korea
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 209 Neungdongro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
13
|
Xu M, Zhou W, Chen X, Zhou Y, He B, Tan S. Analysis of the biodegradation performance and biofouling in a halophilic MBBR-MBR to improve the treatment of disinfected saline wastewater. CHEMOSPHERE 2021; 269:128716. [PMID: 33121810 PMCID: PMC7578672 DOI: 10.1016/j.chemosphere.2020.128716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Disinfectant-containing wastewaters have been generated from many places, including marine industries. The synthetic NaClO-containing wastewaters have been effectively treated in a saline MBBR-MBR (moving bed biofilm reactor & membrane bioreactor) system containing marine microorganisms. A low concentration of NaCl (below 100 mg/L) is not enough to kill the microorganisms, but can affect their bioactivity and induce membrane biofouling. A linear relationship has been obtained for the half-life of membrane biofouling as a function of the NaClO concentration (10-100 mg/L): [half-life] = 25-0.12 × [NaClO concentration]. The COD and NH3-N removals are the highest at a salinity of 30 g/L for the marine bioreactors. The behaviour of the typical biofoulants, measured real-timely by fluorescence spectroscopy, can indicate the levels of membrane biofouling and microbial activity, responding to the NaClO and NaCl influences. Based on the behaviour of biofoulants, this work has also proposed a novel strategy of biofoulants monitoring for membrane antifouling, where antifouling responses can be carried out when the concentration of biofoulants significantly increases.
Collapse
Affiliation(s)
- Mengchang Xu
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
| | - Xuncai Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ying Zhou
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, 410219, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
| |
Collapse
|
14
|
Vergine P, Salerno C, Casale B, Berardi G, Pollice A. Role of Mesh Pore Size in Dynamic Membrane Bioreactors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041472. [PMID: 33557423 PMCID: PMC7915341 DOI: 10.3390/ijerph18041472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/19/2022]
Abstract
Two identical bench-scale Self-Forming Dynamic Membrane BioReactors (SFD MBR) were set-up and operated for the treatment of real urban wastewater. The two bioreactors were equipped with meshes of different mesh pore size. Meshes having pore size values of 20 and 50 µm were tested under solid retention time (SRT) of 15 d, whereas meshes with 50 and 100 µm pore sizes were compared under SRT of 50 d. The results of long-term experiments showed very good overall performances by all systems at the steady state. High flux (in the range 61–71 L m−2 h−1) and very good effluent quality were obtained, with average suspended solids and chemical oxygen demanding values below 10 mg L−1 and 35 mg L−1, respectively. The mesh pore size did not have a major influence on the average cleaning frequency. However, the pore size affected the effluent quality in correspondence of two particular conditions: (i) immediately after mesh cleaning; and (ii) during operation under high suction pressures (mesh clogging not promptly removed through cleaning). Moreover, the mesh cleaning frequency was observed to be dependent on the SRT. In tests with 50 d SRT, the cleaning requirements were very low (one every five days), and this limited the influence of the mesh pore size on the effluent quality. In conclusion, in SFD MBR, the role of the mesh pore size on the effluent quality may be more or less relevant depending on the operating conditions that directly influence the Dynamic Membrane formation.
Collapse
|
15
|
Vergine P, Salerno C, Berardi G, Pollice A. Self-Forming Dynamic Membrane BioReactors (SFD MBR) for municipal wastewater treatment: Relevance of solids retention time and biological process stability. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Zhang X, Kim D, Freedman DL, Karanfil T. Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. WATER RESEARCH 2020; 186:116315. [PMID: 32846382 DOI: 10.1016/j.watres.2020.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a probable human carcinogen which forms during chloramination of wastewater-impacted drinking waters. Municipal wastewater effluents are considered as major sources of NDMA precursors affecting downstream water quality. To evaluate the deactivation mechanisms and efficiencies of NDMA precursors during secondary treatment with the activated sludge (AS) process, NDMA formation potentials (FPs) of selected model precursor compounds and sewage components (i.e., blackwaters and greywaters) were monitored in batch AS treatment tests. After 24-h incubation with four different types of AS (i.e., domestic rural, domestic urban, textile and lab-grown AS), NDMA FP of trimethylamine (TMA) and minocycline (MNCL) decreased by 77-100%, while there was only 29-46% reduction in NDMA FP of sumatriptan (SMTR). The reduction in NDMA FP associated with ranitidine (RNTD) varied between 34% and 87%. The decrease in NDMA FP of RNTD depended on the AS type, hydraulic retention time (HRT) and solids retention time (SRT). The domestic AS (rural and urban) achieved higher decreases in NDMA FPs of the tested model precursors than the textile AS or lab-grown AS. Increasing the HRT or SRT enhanced NDMA FP decrease for RNTD. Among different processes tested (i.e., biodegradation, biosorption and volatilization), biosorption was the major mechanism responsible for the NDMA FP decrease of RNTD, MNCL and SMTR, while biodegradation was the major NDMA FP reduction mechanism for TMA. The reduction in NDMA FP of RNTD via biodegradation depended on the AS activity which may vary with sampling seasons and SRT. NDMA FPs in all tested sewage components (i.e., blackwaters and greywaters) decreased after 24-h AS treatment. Urine in blackwater was the predominant (i.e., >90%) contributor to NDMA FP in domestic sewage and AS-treated effluents.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
17
|
Zhu Y, Cao L, Ni L, Wang Y. Insights into fouling behavior in a novel anammox self-forming dynamic membrane bioreactor by the fluorescence EEM-PARAFAC analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40041-40053. [PMID: 32654034 DOI: 10.1007/s11356-020-09944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Fouling behavior of the novel anaerobic ammonium oxidation (anammox) self-forming dynamic membrane bioreactor (SFDMBR) was elucidated, which is using nylon mesh as the filter with controlled fouling and successful anammox process. Properties of anammox sludge and foulants in the anammox SFDMBR and MBR (using PVDF microfiltration membrane) were compared to analyze the alleviated fouling in the SFDMBR, of which transmembrane pressure could be kept below 10 kPa for 50 days in one filtration cycle of 82 days with flux of 12 L m-2 h-1. Colorimetrical determination and excitation emission matrices-parallel factor (EEM-PARAFAC) analysis of the foulants showed that humic acid content in foulants on nylon mesh was obviously lower than that on PVDF membrane. Considering that the small-sized and flexible humic acids prefer to plug into membrane pores, the alleviated irreversible fouling in the SFDMBR could be attributed to the less microbial humic acid content of foulants (8.8 ± 1.0%) compared with the MBR (20.7 ± 2.9%). The adequate efflux of humic-like substances in the operation with nylon mesh was speculated to be the main mechanism of fouling control in the SFDMBR. These findings highlighted the potential of anammox SFDMBR in practical applications, because of the high humic acid contents in real ammonium-laden wastewater. Our study highlights the important role of humic acids in fouling behavior of the novel anammox SFDMBR to provide guidance for fouling control strategies. Graphical abstract.
Collapse
Affiliation(s)
- Yijing Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lijuan Cao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Lingfeng Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
18
|
Effect of Aeration Mode on Microbial Structure and Efficiency of Treatment of TSS-Rich Wastewater from Meat Processing. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study investigated the effect of aeration mode on microbial structure and efficiency of treatment of wastewater with a high concentration of suspended solids (TSS) from meat processing in sequencing batch reactors (R). R1 was constantly aerated, while in R2 intermittent aeration was applied. DNA was isolated from biomass and analyzed using next-generation sequencing (NGS) and real-time PCR. As a result, in R1 aerobic granular sludge was cultivated (SVI30 = 44 mL g−1 MLSS), while in R2 a very well-settling mixture of aerobic granules and activated sludge was obtained (SVI30 = 65 mL g−1 MLSS). Intermittent aeration significantly increased denitrification and phosphorus removal efficiencies (68% vs. 43%, 73% vs. 65%, respectively) but resulted in decomposition of extracellular polymeric substances and worse-settling properties of biomass. In both reactors, microbial structure significantly changed in time; an increase in relative abundances of Arenimonas sp., Rhodobacterace, Thauera sp., and Dokdonella sp. characterized the biomass of stable treatment of meat-processing wastewater. Constant aeration in R1 cycle favored growth of glycogen-accumulating Amaricoccus tamworthensis (10.9%) and resulted in 2.4 times and 1.4 times greater number of ammonia-oxidizing bacteria and full-denitrifiers genes in biomass, respectively, compared to the R2.
Collapse
|
19
|
Lohaus T, Beck J, Harhues T, de Wit P, Benes NE, Wessling M. Direct membrane heating for temperature induced fouling prevention. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Gao M, Liu R, Li B, Wei W, Zhang Y. Characteristics of extracellular polymeric substances and soluble microbial products of activated sludge in a pulse aerated reactor. ENVIRONMENTAL TECHNOLOGY 2020; 41:2500-2509. [PMID: 30669941 DOI: 10.1080/09593330.2019.1573849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to investigate the stratification characteristics of extracellular polymeric substances (EPS) and the properties of soluble microbial products (SMP) of the activated sludge with pulse aeration. The activated sludge was acclimated with aeration on/off time of 5 min/10 min for 60 days. The results showed that both polysaccharides (PS) and proteins (PN) increased in the loosely bound EPS (LB-EPS) and the tightly bound EPS (TB-EPS) with the increase of operational time. Both the PN/PS ratio and the total LB-EPS increased in the later period of the pulse aerated acclimation process. There was an obvious positive correlation between sludge volume index (SVI) and LB-EPS (R 2 = 0.871), mainly due to the PS in LB-EPS which was also significantly correlated with SVI (R 2 = 0.954). A downward trend of SMP concentrations occurred at the end of acclimation which was opposite to the upward change of EPS contents. Two obvious fluorescence peaks were detected respectively in EPS and SMP by 3D-EEM fluorescence spectroscopy. Peak A was detected in both LB-EPS and TB-EPS, which was associated with tryptophan protein-like substances. Peak B representing humus carbon and carboxylic acids was mainly detected in SMP. The release of humus-like components in SMP from activated sludge was mainly in accordance with the dissolution and hydrolysis of PN in TB-EPS.
Collapse
Affiliation(s)
- Ming Gao
- Jiangsu Academy of Environmental Industry and Technology, Nanjing, People's Republic of China
| | - Rong Liu
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Bing Li
- Jiangsu Academy of Environmental Industry and Technology, Nanjing, People's Republic of China
| | - Wei Wei
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yong Zhang
- School of Environment, Nanjing Normal University, Nanjing, People's Republic of China
- Ministry of Education, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Nanjing, People's Republic of China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, People's Republic of China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Abu-Obaid S, Bérubé P, Parker WJ. Characterization of performance of full-scale tertiary membranes under stressed operating conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:571-584. [PMID: 32385211 DOI: 10.2166/wst.2020.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study sought to identify factors responsible for enhanced fouling of ultrafiltration membranes used in tertiary wastewater treatment under challenging conditions of high flow and low temperature. A detailed analysis of full-scale membrane operating data was conducted, and this was supported by data gathered through a field sampling campaign. Higher average fouling rates and average recoveries were observed during periods of highest flows and lowest temperatures. The results demonstrated that the negative impact of seasonal changes on short-term fouling are readily reversible, while hydraulically irreversible fouling, which is responsible for intermediate and long-term fouling rates, is not effectively recovered by maintenance cleans (MCs) but is recovered by recovery cleans (RCs). An examination of membrane feedwater quality revealed that high fouling rates correlated to an increase in dissolved organic carbon (DOC) concentrations, with the biopolymer fraction of the DOC being most important. Increased capillary suction time (CST) values, which indicate reduced sludge dewaterability, were also observed during high fouling events. It was concluded that seasonal variations result in the increased release of extracellular polymeric substances (EPS) by microorganisms, which leads to higher membrane fouling and worsened dewaterability of the activated sludge.
Collapse
Affiliation(s)
- Sara Abu-Obaid
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University West, N2 L 3G1, Waterloo, Ontario, Canada E-mail:
| | - Pierre Bérubé
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, V6T 1Z4, Vancouver, British Columbia, Canada
| | - Wayne J Parker
- Department of Civil and Environmental Engineering, University of Waterloo, 200 University West, N2 L 3G1, Waterloo, Ontario, Canada E-mail:
| |
Collapse
|
22
|
Maqbool T, Cho J, Hur J. Importance of nutrient availability for soluble microbial products formation during a famine period of activated sludge: Evidence from multiple analyses. J Environ Sci (China) 2019; 84:112-121. [PMID: 31284902 DOI: 10.1016/j.jes.2019.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Much remains unknown about compositional variations in soluble microbial products (SMP) with the shift of the substrate condition from a feast to a famine phase in biological treatment systems. This study demonstrated that the formation of SMP could be suppressed by up to 75% during the famine phase with the addition of essential nutrients. In contrast, presence of electron acceptor did not play any significant role during the stress condition, showing the similar amounts of SMP (r = 0.98, p < 0.05) formation between the bioreactors supplied with air and N2. The SMP formed in the famine phase was more bio-refractory in the famine versus the feast phase with a linear correlation shown between the production and their aromatic structures in the composition (R2 > 0.95). The fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) revealed the presence of four different fluorescent components, including two protein-like (C1 and C4), fulvic-like (C2), and humic-like (C3) components, in the SMP and bEPS formed at different conditions. Both C1 and C4 showed increasing trends (R2 > 0.95) with the length of starvation in the bioreactors without essential nutrients. Nutrient availability was found to be a key factor to quench the production of large-sized biopolymers. This study provides a wealth of information on operation conditions of activated sludge treatment systems to minimize large sized SMP molecules (particularly proteins), which typically exert many environmental concerns to effluent organic matter quality.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
23
|
Liu Z, Zhu X, Liang P, Zhang X, Kimura K, Huang X. Distinction between polymeric and ceramic membrane in AnMBR treating municipal wastewater: In terms of irremovable fouling. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Liao K, Hu H, Ma S, Ren H. Effect of microbial activity and microbial community structure on the formation of dissolved organic nitrogen (DON) and bioavailable DON driven by low temperatures. WATER RESEARCH 2019; 159:397-405. [PMID: 31121407 DOI: 10.1016/j.watres.2019.04.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Dissolved organic nitrogen (DON) formed by microbial metabolism in wastewater treatment processes adversely impacts wastewater reuse and receiving waters quality, and microbial metabolism is greatly influenced by temperatures. However, little is known about the effect of microorganisms on DON and bioavailable DON (ABDON) formation under low temperatures. In this study, six reactors were operated at low (8 °C and 15 °C) and room (25 °C) temperatures to evaluate the relationship between microbial activity, microbial communities, and DON and ABDON. Results showed that DON and ABDON concentrations significantly increased at low temperatures (p < 0.05, t-test). DON formation was significantly correlated to microbial activity only, with adenosine triphosphate (negative, r = -0.64) and polysaccharide (positive, r = 0.61) as key indicators; however, ABDON formation was influenced by both microbial activity (polysaccharide > triphenyltetrazolium chloride-dehydrogenases > adenosine triphosphate) and microbial community structure. Short-term tests using the biomass from six reactors were performed at room temperature to further validate the relationship. The distinct differences between these results provide a basis for different strategies on reducing effluent DON and ABDON under low temperatures.
Collapse
Affiliation(s)
- Kewei Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
25
|
Brezinski K, Gorczyca B. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. CHEMOSPHERE 2019; 217:122-139. [PMID: 30414544 DOI: 10.1016/j.chemosphere.2018.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) constitutes the terrestrial and aquatic sources of organic plant like material found in water bodies. As of recently, an ever-increasing amount of effort is being put towards developing better ways of unraveling the heterogeneous nature of NOM. This is important as NOM is responsible for a wide variety of both direct and indirect effects: ranging from aesthetic concerns related to taste and odor, to issues related to disinfection by-product formation and metal mobility. A better understanding of NOM can also provide a better appreciation for treatment design; lending a further understanding of potable water treatment impacts on specific fractions and constituents of NOM. The use of high performance size-exclusion chromatography has shown a growing promise in its various applications for NOM characterization, through the ability to partition ultraviolet absorbing moieties into ill-defined groups of humic acids, hydrolysates of humics, and low molecular weight acids. HPSEC also has the ability of simultaneously measuring absorbance in the UV-visible range (200-350 nm); further providing a spectroscopic fingerprint that is simply unavailable using surrogate measurements of NOM, such as total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254), excitation-emission matrices (EEM), and specific ultraviolet absorbance at 254 nm (SUVA254). This review mainly focuses on the use of HPSEC in the characterization of NOM in a potable water setting, with an additional focus on strong-base ion-exchangers specifically targeted for NOM constituents.
Collapse
Affiliation(s)
- Kenneth Brezinski
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Beata Gorczyca
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Wang H, Li X, Wang X, Ren Y. Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances. J Environ Sci (China) 2019; 76:111-120. [PMID: 30528002 DOI: 10.1016/j.jes.2018.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 06/09/2023]
Abstract
The distribution of metallic elements in a submerged membrane bioreactor (MBR) was revealed at different temperatures using inductively coupled plasma-optical emission spectrometry (ICP-OES), and the role of extracellular polymeric substances (EPS) was probed by integrating scanning electron microscopy (SEM) with confocal laser scanning microscopy (CLSM) over long-term operation. More metallic elements in the influent were captured by suspended sludge and built up in the fouling layer at lower temperature. The concentration of metallic elements in the effluent was 5.60mg/L at 10°C operational temperature, far lower than that in the influent (51.35mg/L). The total contents of metallic elements in suspended sludge and the membrane fouling layer increased to 40.20 and 52.19mg/g at 10°C compared to 35.14 and 32.45mg/g at 30°C, and were dominated by the organically bound fraction. The EPS contents in suspended sludge and membrane fouling layer sharply increased to 37.88 and 101.51mg/g at 10°C, compared to 16.87 and 30.03mg/g at 30°C. The increase in EPS content at lower temperature was responsible for the deposition of more metallic ions. The strong bridging between EPS and metallic elements at lower temperature enhanced the compactness of the fouling layer and further decreased membrane flux. This was helpful for understanding the mechanism of membrane fouling at different operational temperatures and the role of EPS, and also of significance for the design of cleaning strategies for fouled membranes after long-term operation.
Collapse
Affiliation(s)
- He Wang
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China.
| | - Xinhua Wang
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Yueping Ren
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| |
Collapse
|
27
|
Zhang Z, Yu Z, Wang Z, Ma K, Xu X, Alvarezc PJJ, Zhu L. Understanding of aerobic sludge granulation enhanced by sludge retention time in the aspect of quorum sensing. BIORESOURCE TECHNOLOGY 2019; 272:226-234. [PMID: 30342427 DOI: 10.1016/j.biortech.2018.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granular sludge (AGS) reactors with different sludge retention times (SRTs) were established for enhanced functional microorganism enrichment and granular formation. Results showed that higher total nitrogen (TN) removal efficiency and compact granules were achieved in the 6-day-SRT reactor. Also, Xanthomonadaceae, Rhodobacteraceae and Hyphomonadaceae with AHL-producing and EPS-secreting functions also enriched under 6-day SRT. For investigating the enhanced mechanism of sludge granulation, typical quorum sensing signals of acylated-homoserine-lactones (AHLs) and extracellular polymeric substances (EPS) were analyzed. Tryptophan-and-protein-like substances were major EPS components in granules formed at 6-day SRT. Meanwhile, most detected AHLs, i.e. C8-HSL and 3OHC8-HSL, were correlated positively with contents of tryptophan-and-protein-like substances. According to AHLs add-back test, AHLs especially those with 8-carbon sidechains, played important roles in aerobic sludge granulation via secreting special extracellular proteins by functional microbes enrichment.
Collapse
Affiliation(s)
- Zhiming Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhuodong Yu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zihao Wang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Ke Ma
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Pedro J J Alvarezc
- Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
28
|
Zhang Z, Yu Z, Dong J, Wang Z, Ma K, Xu X, Alvarezc PJJ, Zhu L. Stability of aerobic granular sludge under condition of low influent C/N ratio: Correlation of sludge property and functional microorganism. BIORESOURCE TECHNOLOGY 2018; 270:391-399. [PMID: 30243247 DOI: 10.1016/j.biortech.2018.09.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Aerobic granular sludge process treating domestic wastewater with low C/N ratio is necessary to be studied for rapid urbanization in China and other countries. In this study, two parallel reactors with different influent C/N ratio (15 in R1, 5 in R2) were established. Compared to the disintegrated granule in R1 with high influent C/N ratio, granules with large size (650 μm) and compact structure (integrity coefficient <0.1) were stable in R2 along with influent C/N ratio decreased to 5. High-through sequencing illustrated the functional microbes like Thauera and Paracoccus enriched under low influent C/N ratio, and principal component analysis further showed these microbes were positive correlation with tryptophan and protein-like substances in extracellular polymeric substances (EPS) and granular strength. It was indicated that under low influent C/N ratio, several resistant microbes like Thauera (19.5%) enriched and then secreted tryptophan and protein-like substances, and stable granules with multi-functional microbes could be formed finally.
Collapse
Affiliation(s)
- Zhiming Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhuodong Yu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Dong
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zihao Wang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Ke Ma
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Pedro J J Alvarezc
- Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
29
|
Zhang S, Sheng B, Lin W, Meng F. Day/night temperature differences (DNTD) trigger changes in nutrient removal and functional bacteria in membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:1202-1210. [PMID: 29913582 DOI: 10.1016/j.scitotenv.2018.04.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Temperature is a well-known environmental stress that influences both microbial metabolism and community structure in the biological wastewater treatment systems. In this study, responses of biological performance and sludge microbiota to the long-term day/night temperature differences (DNTD) were investigated in membrane bioreactors (MBRs). The results showed that the functional bacteria could sustained their ecological functions at low DNTD (20/30 °C), resulting in relatively stable performance with respect to nutrient removal. However, when the activated sludge was subjected to a high DNTD (17/33 °C), the effluent concentrations of COD, TN and TP were significantly higher in MBR-B than that in MBR-A. In addition, more severe membrane fouling occurred under the perturbation of high DNTD as revealed by the transmembrane pressure (TMP) profile, which was mainly attributed to the accumulation of extracellular polymeric substances (EPS). The results of 16S rRNA gene sequencing showed that DNTD showed negligible effect on the bacterial community structures. Nonetheless, the functional bacteria responded differently to DNTD, which were in accordance with the bioreactor performances. Specifically, Nitrospina (NOB) and Tetrasphaera (PAOs) appeared to be sensitive to both low and high DNTD. In contrast, a low DNTD showed marginal effects on the denitrifiers, while a high DNTD significantly decreased their abundances. More strikingly, filamentous bulking bacteria were found to be well-adapted to DNTD, indicating their tolerance to the daily temperature fluctuation. This study will advance our knowledge regarding the response of microbial ecology of activated sludge to daily temperature variations in full-scale MBRs.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Binbin Sheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Wenting Lin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
30
|
Lee K, Park JS, Iqbal T, Nahm CH, Park PK, Choo KH. Membrane biofouling behaviors at cold temperatures in pilot-scale hollow fiber membrane bioreactors with quorum quenching. BIOFOULING 2018; 34:912-924. [PMID: 30369244 DOI: 10.1080/08927014.2018.1515925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In this study, the seasonality of the biofouling behavior of pilot-scale membrane bioreactors (MBRs) run in parallel with vacant sheets and quorum quenching (QQ) sheets using real municipal wastewater was investigated. QQ media delayed fouling, but low temperatures caused severe biofouling. The greater amount of extracellular polymeric substances (EPSs) produced in cold weather was responsible for the faster biofouling of a membrane, even with QQ media. There were significant negative relationships between EPS levels and water temperature. Cold weather was detrimental to the degradation of quorum sensing signal molecules by QQ sheets, whose activity was restored with a higher dose of QQ bacteria. The QQ bacteria in the sheets experienced a slight loss in activity during the early stage of the field test, but survived in the pilot-scale MBR fed with real wastewater. There were no significant discrepancies in treatment efficiency among conventional, vacant, and QQ MBRs.
Collapse
Affiliation(s)
- Kibaek Lee
- a Advanced Institute of Water Industry , Kyungpook National University , Daegu , Republic of Korea
| | - Jun-Seong Park
- b Department of Environmental Engineering , Kyungpook National University , Daegu , Republic of Korea
| | - Tahir Iqbal
- b Department of Environmental Engineering , Kyungpook National University , Daegu , Republic of Korea
| | - Chang Hyun Nahm
- c Department of Environmental Engineering , Yonsei University , Wonju , Gangwon-do , Republic of Korea
| | - Pyung-Kyu Park
- c Department of Environmental Engineering , Yonsei University , Wonju , Gangwon-do , Republic of Korea
| | - Kwang-Ho Choo
- a Advanced Institute of Water Industry , Kyungpook National University , Daegu , Republic of Korea
- b Department of Environmental Engineering , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
31
|
Yao W, Wang Z, Song P. The cake layer formation in the early stage of filtration in MBR: Mechanism and model. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Pathak N, Li S, Kim Y, Chekli L, Phuntsho S, Jang A, Ghaffour N, Leiknes T, Shon HK. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system. BIORESOURCE TECHNOLOGY 2018; 262:98-106. [PMID: 29702422 DOI: 10.1016/j.biortech.2018.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxicanoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100%) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100%) revealed highest removal followed by atenolol (89-96%) and atrazine (16-40%) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.
Collapse
Affiliation(s)
- Nirenkumar Pathak
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sheng Li
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Youngjin Kim
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Laura Chekli
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Sherub Phuntsho
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia
| | - Am Jang
- Graduate School of Water Resources, Sungkyunkwan University, 2066 Seobu-ro, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological & Environmental Science & Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Post Box 129, Broadway, NSW 2007, Australia.
| |
Collapse
|
33
|
He Z, Xia D, Huang Y, Tan X, He C, Hu L, He H, Zeng J, Xu W, Shu D. 3D MnO 2 hollow microspheres ozone-catalysis coupled with flat-plate membrane filtration for continuous removal of organic pollutants: Efficient heterogeneous catalytic system and membrane fouling control. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:1198-1208. [PMID: 29162299 DOI: 10.1016/j.jhazmat.2017.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
A heterogeneous catalytic ozonation/membrane filtration (HCOMF) system was fabricated by integrating a flat-plate polyvinylidene fluoride (PVDF) membrane module along with a slurry catalytic ozonation reactor. The performance and catalytic activity of HCOMF was evaluated for degradation of model wastewater containing bisphenol A (BPA) and humid acid (HA) under different permeation flux in long-term continuous experiments. The membrane fouling was investigated by trans-membranous pressure (TMP), membrane filtration resistance, scanning electronic microscopy (SEM), and fluorescence spectra. The results showed that HCOMF system exhibited an excellent and stable catalytic activity in long-term continuous experiments owning to integration of 3D MnO2 hollow microsphere ozone-catalysis with flat-plate membrane filtration. The TMP of HCOMF system didn't increase significantly, and the membrane resistance Rp and Rc declined from 4% and 16% to 1% and 4%, respectively, thus, the membrane fouling of HCOMF system was mitigated compared to MF system. The mitigation of membrane fouling in HCOMF system was attributed to the increase of hydrophilicity of membrane surface and change of HA fractions.
Collapse
Affiliation(s)
- Zhuoyan He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yajing Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiuqin Tan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huanjunwa He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiawei Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenjun Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
34
|
Shi BJ, Wang Y, Geng YK, Liu RD, Pan XR, Li WW, Sheng GP. Application of membrane bioreactor for sulfamethazine-contained wastewater treatment. CHEMOSPHERE 2018; 193:840-846. [PMID: 29874757 DOI: 10.1016/j.chemosphere.2017.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/20/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in wastewater has been widely confirmed. Membrane bioreactor (MBR), as an efficient wastewater treatment technology, has attracted increasing interest in its ability to remove antibiotics in recent years. However, its long-term operation stability and the underlying mechanisms for antibiotics removal are still poorly understood. In this study, a hollow fiber MBR was used to treat low concentration sulfamethazine (SMZ) contained wastewater. The long-term effects of various SMZ concentrations on nutrients removal, SMZ degradation, and sludge characteristics were investigated. During the 244 days operation, the overall SMZ removal efficiency could reach 95.4 ± 4.5% under various SMZ concentrations and hydraulic retention times. The reactor exhibited high chemical oxygen demand and NH4+-N removal efficiencies, which reached 93.0% and 96.2%, respectively. A sludge concentration of 4.1 ± 0.3 g/L was maintained in the system without excess sludge discharge. The dosage of SMZ had obvious effect on sludge characteristics. The contents of extracellular polymeric substances (EPS) in MBR decreased after a long-term operation of the reactor under SMZ pressure. The low sludge concentration and the reduced EPS content were also beneficial for mitigating membrane fouling. Thus, this study provides a low-cost, efficient and simple approach to treat SMZ-contained wastewater.
Collapse
Affiliation(s)
- Bing-Jing Shi
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yunkun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China; School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Yi-Kun Geng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ru-Dong Liu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Xin-Rong Pan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
35
|
Zhang W, Liu X, Wang D, Jin Y. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 243:1020-1026. [PMID: 28764112 DOI: 10.1016/j.biortech.2017.07.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH4+-N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function.
Collapse
Affiliation(s)
- Wenjie Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| | - Xiaoning Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Dunqiu Wang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, PR China
| | - Yue Jin
- Guangxi Key Laboratory of New Energy and Building Energy Saving, College of Civil Engineering and Architecture, Guilin University of Technology, Guilin 541004, PR China
| |
Collapse
|
36
|
Song W, You H, Li Z, Liu F, Qi P, Wang F, Li Y. Membrane fouling mitigation in a moving bed membrane bioreactor combined with anoxic biofilter for treatment of saline wastewater from mariculture. BIORESOURCE TECHNOLOGY 2017; 243:1051-1058. [PMID: 28764107 DOI: 10.1016/j.biortech.2017.07.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 06/07/2023]
Abstract
Membrane fouling mitigation in a novel AF-MBMBR system (moving bed membrane bioreactor (10L) coupled with anoxic biofilter (4L)) under high salinity condition (35‰) was systematically investigated. Pre-positioned AF served as a pretreatment induced significant decrease of suspended biomass by 85% and dissolved organic matters by 51.7% in subsequent MBR, which resulted in a reduction of cake layer formation. Based on this, sponge bio-carriers in MBMBR further alleviated the fouling propensity by modifying extracellular polymeric substances (EPS) properties. The protein component in EPS decreased from 181.4 to 116.5mg/g MLSS, with a decline of protein/carbohydrate ratio from 4.6 to 3.4. In particular, elimination of hydrophobic groups like aromatic protein-like substance in EPS was detected. These caused the less biomass deposition on membrane surface, thereby alleviating membrane fouling. In summary, mitigation of membrane fouling in AF-MBMBR should be attributed to contributions from both pre-positioned AF and sponge bio-carriers.
Collapse
Affiliation(s)
- Weilong Song
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Fang Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yizhu Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| |
Collapse
|
37
|
Jørgensen MK, Nierychlo M, Nielsen AH, Larsen P, Christensen ML, Nielsen PH. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. WATER RESEARCH 2017; 120:117-132. [PMID: 28478289 DOI: 10.1016/j.watres.2017.04.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
A range of parameters affecting floc characteristics, sludge composition and filtration properties was investigated by analyzing 29 sludge samples from municipal and industrial conventional activated sludge systems and municipal membrane bioreactors (MBR). Samples were characterized by physico-chemical parameters, composition of ions and EPS, degree of flocculation, settling properties, dewatering properties, and filtration properties. By analyzing the interplay between various metrics instead of single parameters, a unified understanding of the influence of sludge composition and characteristics was developed. From this, a conceptual model was proposed to describe the interplay between sludge composition, characteristics, and filtration properties. The article shows three major results contributing to describe the interplay between sludge characteristics and fouling propensity: First, the degree of flocculation could be quantified by the ratio between floc size and residual turbidity and was a key parameter to assess fouling propensity. Second, extracted EPS to polyvalent cations ratio was used as an indicator of the flocculation. A high ratio combined with a high concentration of EPS resulted in large, loosely bound, and weak flocs that were easily deformed, hence giving compressible fouling layers. Finally, high amounts of carbohydrates in both total and extracted EPS resulted in more pronounced fouling, which may be explained by carbohydrates forming poorer flocs than humic substances and proteins. Accordingly, samples with high humic content showed lower specific resistance to filtration due to better floc structure. The amount of carbohydrates in EPS correlated positively to the influent COD/N ratio, which may explain why systems with high influent COD/N ratio demonstrated higher fouling propensity.
Collapse
Affiliation(s)
- Mads Koustrup Jørgensen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark.
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Asbjørn Haaning Nielsen
- Department of Civil Engineering, Aalborg University, Thomas Manns Vej 23, DK-9220 Aalborg Øst, Denmark
| | - Poul Larsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark; Dansk Miljørådgivning A/S, Fanøgade 17, DK-9740 Jerslev, Denmark
| | - Morten Lykkegaard Christensen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
38
|
Jacquin C, Lesage G, Traber J, Pronk W, Heran M. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR). WATER RESEARCH 2017; 118:82-92. [PMID: 28414963 DOI: 10.1016/j.watres.2017.04.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The goal of this study is to help filling the research gaps linked to the on-line application of fluorescence spectroscopy in wastewater treatment and data processing tools suitable for rapid correction and extraction of data contained in three-dimensional fluorescence excitation-emission matrix (3DEEM) for real-time studies. 3DEEM was evaluated for direct quantification of Effluent Organic Matter (EfOM) fractions in full-scale MBR bulk supernatant and permeate samples. Principal Component Analysis (PCA) was used to investigate possible correlations between conventional Lowry and Dubois methods, Liquid Chromatography coupled to Organic Carbon and Organic Nitrogen Detection (LC-OCD-OND) and 3DEEM. 3DEEM data were analyzed using the volume of fluorescence (Φ) parameter from the Fluorescence Regional Integration (FRI) method. Two mathematical correlations were established between LC-OCD-OND and 3DEEM data to quantify protein-like and humic-like substances. These correlations were validated with supplementary data from the initial full-scale MBR, and were checked with samples from other systems (a second full-scale MBR, a full-scale conventional activated sludge (CAS) and a laboratory-scale MBR). While humic-like correlation showed satisfactory prediction for a second full-scale MBR and a CAS system, further studies are required for protein-like estimation in other systems. This new approach offers interesting perspectives for the on-line application of 3DEEM for EfOM quantification (protein-like and humic-like substances), fouling prediction and MBR process control.
Collapse
Affiliation(s)
- Céline Jacquin
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier, Place E. Bataillon, F- 34095, Montpellier, France
| | - Geoffroy Lesage
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier, Place E. Bataillon, F- 34095, Montpellier, France.
| | - Jacqueline Traber
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, 8600, Dübendorf, Switzerland
| | - Wouter Pronk
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, P.O. Box 611, 8600, Dübendorf, Switzerland.
| | - Marc Heran
- IEM (Institut Européen des Membranes), UMR 5635 (CNRS-ENSCM-UM), Université de Montpellier, Place E. Bataillon, F- 34095, Montpellier, France
| |
Collapse
|
39
|
Effects of the Food-to-Microorganism (F/M) Ratio on N2O Emissions in Aerobic Granular Sludge Sequencing Batch Airlift Reactors. WATER 2017. [DOI: 10.3390/w9070477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Maqbool T, Cho J, Hur J. Dynamic changes of dissolved organic matter in membrane bioreactors at different organic loading rates: Evidence from spectroscopic and chromatographic methods. BIORESOURCE TECHNOLOGY 2017; 234:131-139. [PMID: 28319761 DOI: 10.1016/j.biortech.2017.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/26/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
Excitation emission matrix-parallel factor analysis (EEM-PARAFAC) and size exclusion chromatography (SEC) were utilized to explore the dynamics in extracellular polymeric substances (EPS), soluble microbial products (SMP), and effluent for the membrane bioreactors at two different organic loading rates (OLRs). Combination of three different fluorescent components explained the compositional changes of dissolved organic matter. The lower OLR resulted in a higher production of tryptophan-like component (C1) in EPS, while the opposite trends were found for the other two components (humic-like C2 and tyrosine-like C3), signifying the role of C1 in the endogenous condition. Larger sized molecules were more greatly produced in EPS at the lower OLR. Meanwhile, all the size fractions of SMP were more abundant at the higher OLR particular for the early phase of the operation. Irrespective of the OLR, the higher degrees of the membrane retention were found for relatively large sized and protein-like molecules.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
41
|
Miao Y, Guo X, Jiang W, Zhang XX, Wu B. Mechanisms of microbial community structure and biofouling shifts under multivalent cations stress in membrane bioreactors. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:89-96. [PMID: 28043046 DOI: 10.1016/j.jhazmat.2016.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/04/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
Five lab-scale membrane bioreactors (MBRs) were continuously operated to investigate the mechanisms and linkages of the microbial community and membrane fouling with trivalent metal cations (Fe(III) and Al(III)) and bivalent metal cations (Ca(II) and Mg(II)) shock loads. COD and NH4+-N removals showed recovery trends along with treatment process in the presence of metals. Trivalent metal cations reduced trans-membrane pressure (TMP) as well as fouling rate (dTMP/dt) and extended membrane module replacement period by binding activated sludge extracellular polymeric substance (EPS) and effluent soluble microbial product (SMP) productions. Illunima sequencing of 16S rRNA gene showed that metal stress stimulated specific metal-tolerance bacteria in the MBRs. Canonical correspondence analysis indicated that EPS and SMP made different contributions to the distribution of microbial community structure in Fe(III) and Al (III) systems, respectively. Under bivalent metal conditions, microbial community shifts and Ca(II) binding bridge worked together to inhibit EPS and SMP, while filamentous bacteria stimulated by Mg(II) that mainly controlled membrane fouling. This study has shown that the comparison of tri- and bivalent metals for membrane fouling control with binding bridge and functional microorganisms can provide a strategy for practical membrane bioreactor applications.
Collapse
Affiliation(s)
- Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xuechao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Wei Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
42
|
Lade H, Song WJ, Yu YJ, Ryu JH, Arthanareeswaran G, Kweon JH. Exploring the potential of curcumin for control of N-acyl homoserine lactone-mediated biofouling in membrane bioreactors for wastewater treatment. RSC Adv 2017. [DOI: 10.1039/c6ra28032c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biofouling remains a critical issue in membrane bioreactors (MBRs) for wastewater treatment.
Collapse
Affiliation(s)
- Harshad Lade
- Water Treatment and Membrane Laboratory
- Department of Environmental Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Won Jung Song
- Water Treatment and Membrane Laboratory
- Department of Environmental Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Young Jae Yu
- Water Treatment and Membrane Laboratory
- Department of Environmental Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Jun Hee Ryu
- Water Treatment and Membrane Laboratory
- Department of Environmental Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - G. Arthanareeswaran
- Membrane Research Laboratory
- Department of Chemical Engineering
- National Institute of Technology
- Tiruchirappalli 620015
- India
| | - Ji Hyang Kweon
- Water Treatment and Membrane Laboratory
- Department of Environmental Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| |
Collapse
|
43
|
Tan S, Hou Y, Cui C, Chen X, Li W. Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies. BIORESOURCE TECHNOLOGY 2017; 224:183-187. [PMID: 27839860 DOI: 10.1016/j.biortech.2016.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
This work presents a novel, fast and simple monitoring-responding method at the very early stages of membrane bio-fouling in a membrane bioreactor (MBR) during saline wastewater treatment. The impacts of multiple environmental shocks on membrane fouling were studied. The transmembrane pressure exceeded the critical fouling pressure within 8days in the case of salinity shock or temperature shock. In the case of DO shock, the transmembrane pressure exceeded the critical fouling pressure after 16days, showing the lower impact of DO shock on the MBR. In another study, the membrane fouling was observed within 4days responding to mixed environmental shocks. To decrease the potential of membrane bio-fouling, another bioreactor was integrated immediately with the MBR as a quickly-responded countermeasure, when an early warning of membrane bio-fouling was provided. After the bioreactor enhancement, the time required for membrane fouling increased from 4 to 10days.
Collapse
Affiliation(s)
- Songwen Tan
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China; Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yang Hou
- Department of Biological Science, Hunan Normal University, Changsha 410000, China
| | - Chunzhi Cui
- Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China.
| |
Collapse
|
44
|
Deng L, Guo W, Ngo HH, Zhang H, Wang J, Li J, Xia S, Wu Y. Biofouling and control approaches in membrane bioreactors. BIORESOURCE TECHNOLOGY 2016; 221:656-665. [PMID: 27717560 DOI: 10.1016/j.biortech.2016.09.105] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Membrane fouling (especially biofouling) as a critical issue during membrane reactor (MBR) operation has attracted much attention in recent years. Although previous review papers have presented different aspects of MBR's fouling when treating various wastewaters, the information related to biofouling in MBRs has only simply or partially reviewed. This work attempts to give a more comprehensive and elaborate explanation of biofilm formation, biofouling factors and control approaches by addressing current achievements. This also suggests to a better way in controlling biofouling by developing new integrated MBR systems, novel flocculants and biomass carriers.
Collapse
Affiliation(s)
- Lijuan Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Siqing Xia
- Membrane Bioreactor Centre, College of Environmental Science and Engineering, Tongji University, State Key Lab. of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yun Wu
- School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
45
|
Nguyen VH, Klai N, Nguyen TD, Tyagi RD. Impact of extraction methods on bio-flocculants recovered from backwashed sludge of bio-filtration unit. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 180:344-50. [PMID: 27243923 DOI: 10.1016/j.jenvman.2016.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 05/06/2023]
Abstract
Effect of ten extraction methods on flocculation activity and chemical composition of bio-flocculants recovered from backwashed sludge of bio-filtration unit was studied. The results showed that the chemical method was better than physical method with respect to the extracted BFs weight and its flocculation activity. Cell lysis did not affect to the flocculation activity of BFs. Among ten extraction methods, EDTA (20 g/L) was the best one with extracted BFs dry weight of 6242 mg/L and flocculation activity of 83%. Optimization of EDTA concentration showed that 5 g EDTA/L (or 0.2 g EDTA/g SS) was suitable for recovery of BFs from backwashed sludge. The flocculation activity of BFs was 94% when using 2.4 mg of BFs/g of kaolin. The outcome of this study suggested that backwashed sludge of the bio-filtration unit was a potential source for exploiting bio-flocculants.
Collapse
Affiliation(s)
- Viet Hoang Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Nouha Klai
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Thanh Dong Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | | |
Collapse
|
46
|
Yu W, Brown M, Graham NJD. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation. Sci Rep 2016; 6:30144. [PMID: 27436142 PMCID: PMC4951810 DOI: 10.1038/srep30144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.
Collapse
Affiliation(s)
- Wenzheng Yu
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew Brown
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
47
|
Li K, Cheng Y, Wang J, Zhang J, Liu J, Yu D, Li M, Wei Y. Effects of returning NF concentrate on the MBR-NF process treating antibiotic production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13114-13127. [PMID: 27000117 DOI: 10.1007/s11356-016-6467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
The optimization of the nanofiltration (NF) concentrate backflow ratio (R cb) and the influence of the NF concentrate on the performance of membrane bioreactor-nanofiltration (MBR-NF) process treating antibiotic production wastewater were investigated on a laboratory scale. The R cb was optimized at 60 % based on the removal rates of chemical oxygen demand (COD) and NH4 (+)-N by MBR. Data analyses indicated that salinity brought by NF concentrate is the major driver leading to the decrease of sludge activity, especially at a high R cb. EPS analysis showed that electric conductivity (EC), proteins in soluble microbial products (SMP), and SMP brought by NF concentrate are the dominant factors causing the severe membrane fouling in MBR. Furthermore, undegradable substances including fulvic acid-like and humic acid-like compounds accumulated in NF concentrate showed significant influence on fouling of NF. MBR could well degrade small MW compounds in NF concentrate, which confirmed the enhancement of organic removal efficiency by recycling the NF concentrate to MBR. The MBR-NF process showed a relatively stable performance at the R cb of 60 % (volume reduction factor (VRF) = 5), and the NF permeate could satisfy the water quality standard for fermentation process with a water recovery rate of 90.9 %.
Collapse
Affiliation(s)
- Kun Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutao Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CCID Consulting Co., Ltd., Beijing, 100048, China
| | - Jianxing Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyue Li
- Wuxi Fortune Pharmaceutical Co. Ltd., Wuxi, 214046, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
48
|
Li F, Cheng Q, Tian Q, Yang B, Chen Q. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor. BIORESOURCE TECHNOLOGY 2016; 211:751-758. [PMID: 27089532 DOI: 10.1016/j.biortech.2016.03.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake.
Collapse
Affiliation(s)
- Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Shanghai 201620, China.
| | - Qianxun Cheng
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qing Tian
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Bo Yang
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qianyuan Chen
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Shanghai 201620, China
| |
Collapse
|
49
|
Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor. Appl Microbiol Biotechnol 2016; 100:8507-21. [DOI: 10.1007/s00253-016-7617-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/01/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
50
|
Zarei-Baygi A, Moslemi M, Mirzaei SH. The combination of KMnO4 oxidation and polymeric flocculation for the mitigation of membrane fouling in a membrane bioreactor. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|