1
|
Aoki Y, Walker NM, Misumi K, Mimura T, Vittal R, McLinden AP, Fitzgerald L, Combs MP, Lyu D, Osterholzer JJ, Pinsky DJ, Lama VN. The mitigating effect of exogenous carbon monoxide on chronic allograft rejection and fibrosis post-lung transplantation. J Heart Lung Transplant 2023; 42:317-326. [PMID: 36522238 DOI: 10.1016/j.healun.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/22/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Small airway inflammation and fibrosis or bronchiolitis obliterans (BO) is the predominant presentation of chronic lung allograft dysfunction (CLAD) post-lung transplantation. Carbon monoxide (CO) is a critical endogenous signaling transducer with known anti-inflammatory and anti-fibrotic effects but its therapeutic potential in CLAD remains to be fully elucidated. METHODS Here we investigate the effect of inhaled CO in modulating chronic lung allograft rejection pathology in a murine orthotopic lung transplant model of BO (B6D2F1/J→DBA/2J). Additionally, the effects of CO on the activated phenotype of mesenchymal cells isolated from human lung transplant recipients with CLAD were studied. RESULTS Murine lung allografts treated with CO (250 ppm × 30 minutes twice daily from days 7 to 40 post-transplantation) demonstrated decreased immune cell infiltration, fibrosis, and airway obliteration by flow cytometry, trichrome staining, and morphometric analysis, respectively. Decreased total collagen, with levels comparable to isografts, was noted in CO-treated allografts by quantitative hydroxyproline assay. In vitro, CO (250 ppm × 16h) was effective in reversing the fibrotic phenotype of human CLAD mesenchymal cells with decreased collagen I and β-catenin expression as well as an inhibitory effect on ERK1/2 MAPK, and mTORC1/2 signaling. Sildenafil, a phosphodiesterase 5 inhibitor, partially mimicked the effects of CO on CLAD mesenchymal cells and was partially effective in decreasing collagen deposition in murine allografts, suggesting the contribution of cGMP-dependent and -independent mechanisms in mediating the effect of CO. CONCLUSION These results suggest a potential role for CO in alleviating allograft fibrosis and mitigating chronic rejection pathology post-lung transplant.
Collapse
Affiliation(s)
- Yoshiro Aoki
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Natalie M Walker
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Keizo Misumi
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Takeshi Mimura
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Ragini Vittal
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Aidan P McLinden
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Linda Fitzgerald
- Department of Pharmacy Services, University of Michigan Health System, Ann Arbor, Michigan
| | - Michael P Combs
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Dennis Lyu
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - John J Osterholzer
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan; Pulmonary Section, VA Ann Arbor Health System, Ann Arbor, Michigan
| | - David J Pinsky
- Cardiology, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Vibha N Lama
- Divisions of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Schlundt née Göderz A, Hemmersbach L, Romanski S, Neudörfl JM, Schmalz HG. Vinylogous Winstein Rearrangement: Unexpected Isomerization of an Azide-Substituted Cyclohexadiene–Fe(CO) 3 Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Lars Hemmersbach
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany
| | - Steffen Romanski
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany
| | - Jörg-Martin Neudörfl
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939 Köln, Germany
| |
Collapse
|
3
|
Choi HI, Zeb A, Kim MS, Rana I, Khan N, Qureshi OS, Lim CW, Park JS, Gao Z, Maeng HJ, Kim JK. Controlled therapeutic delivery of CO from carbon monoxide-releasing molecules (CORMs). J Control Release 2022; 350:652-667. [PMID: 36063960 DOI: 10.1016/j.jconrel.2022.08.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/06/2023]
Abstract
Carbon monoxide (CO) has been regarded as a "silent killer" for its toxicity toward biological systems. However, a low concentration of endogenously produced CO has shown a number of therapeutic benefits such as anti-inflammatory, anti-proliferative, anti-apoptosis, and cytoprotective activities. Carbon monoxide-releasing molecules (CORMs) have been developed as alternatives to direct CO inhalation, which requires a specialized setting for strict dose control. CORMs are efficient CO donors, with central transition metals (such as ruthenium, iron, cobalt, and manganese) surrounded by CO as a ligand. CORMs can stably store and subsequently release their CO payload in the presence of certain triggers including solvent, light, temperature, and ligand substitution. However, CORMs require appropriate delivery strategies to improve short CO release half-life and target specificity. Herein, we highlighted the therapeutic potential of inhalation and CORMs-delivered CO. The applications of conjugate and nanocarrier systems for controlling CO release and improving therapeutic efficacy of CORMs are also described in detail. The review concludes with some of the hurdles that limit clinical translation of CORMs. Keeping in mind the tremendous potential and growing interest in CORMs, this review would be helpful for designing controlled CO release systems for clinical applications.
Collapse
Affiliation(s)
- Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea; Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Min-Su Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Isra Rana
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Omer Salman Qureshi
- Department of Pharmacy, Faculty of Natural Sciences, Forman Christian College University, Lahore, Pakistan
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Institute of Drug Research and Development, Chungnam National University, Daejeon, Republic of Korea
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
Hemmersbach L, Schreiner Y, Zhang X, Dicke F, Hünemeyer L, Neudörfl J, Fleming T, Yard B, Schmalz H. Synthesis and Biological Evaluation of Water‐Soluble Esterase‐Activated CO‐Releasing Molecules Targeting Mitochondria. Chemistry 2022; 28:e202201670. [PMID: 35771078 PMCID: PMC9543658 DOI: 10.1002/chem.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Lars Hemmersbach
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Yannick Schreiner
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Xinmiao Zhang
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | - Finn Dicke
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | - Leon Hünemeyer
- Department of Chemistry Universität zu Köln Greinstrasse 4 50939 Köln Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry University Hospital of Heidelberg 69120 Heidelberg Germany
- German Center for Diabetes Research (DZD) 85764 Neuherberg Germany
| | - Benito Yard
- Vth Medical Department Medical Faculty Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1–3 68167 Mannheim Germany
| | | |
Collapse
|
5
|
Brenckmann V, Briot R, Ventrillard I, Romanini D, Barbado M, Jaulin K, Trocme C, De Wolf J, Glorion M, Sage É. Continuous Endogenous Exhaled CO Monitoring by Laser Spectrometer in Human EVLP Before Lung Transplantation. Transpl Int 2022; 35:10455. [PMID: 35711322 PMCID: PMC9192958 DOI: 10.3389/ti.2022.10455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022]
Abstract
Endogenous production of carbon monoxide (CO) is affected by inflammatory phenomena and ischemia-reperfusion injury. Precise measurement of exhaled endogenous CO (eCO) is possible thanks to a laser spectrometer (ProCeas® from AP2E company). We assessed eCO levels of human lung grafts during the normothermic Ex-Vivo Lung Perfusion (EVLP). ProCeas® was connected in bypass to the ventilation circuit. The surgical team took the decision to transplant the lungs without knowing eCO values. We compared eCO between accepted and rejected grafts. EVLP parameters and recipient outcomes were also compared with eCO values. Over 7 months, eCO was analyzed in 21 consecutive EVLP grafts. Two pairs of lungs were rejected by the surgical team. In these two cases, there was a tendency for higher eCO values (0.358 ± 0.52 ppm) compared to transplanted lungs (0.240 ± 0.76 ppm). During the EVLP procedure, eCO was correlated with glucose consumption and lactate production. However, there was no association of eCO neither with edema formation nor with the PO2/FiO2 ratio per EVLP. Regarding post-operative data, every patient transplanted with grafts exhaling high eCO levels (>0.235 ppm) during EVLP presented a Primary Graft Dysfunction score of 3 within the 72 h post-transplantation. There was also a tendency for a longer stay in ICU for recipients with grafts exhaling high eCO levels during EVLP. eCO can be continuously monitored during EVLP. It could serve as an additional and early marker in the evaluation of the lung grafts providing relevant information for post-operative resuscitation care.
Collapse
Affiliation(s)
- Vivien Brenckmann
- Emergency Department, Grenoble-Alpes University Hospital, Grenoble, France
- Université Grenoble Alpes, CNRS, TIMC-IMAG, Grenoble, France
| | - Raphael Briot
- Emergency Department, Grenoble-Alpes University Hospital, Grenoble, France
- Université Grenoble Alpes, CNRS, TIMC-IMAG, Grenoble, France
- *Correspondence: Raphael Briot,
| | | | | | - Maud Barbado
- Clinical Investigation Centre for Innovative Technology (CIC-IT), Grenoble-Alpes University Hospital, Grenoble, France
| | | | - Candice Trocme
- Biochemistry Proteins and Enzymes Laboratory, Grenoble-Alpes University Hospital, Grenoble, France
| | - Julien De Wolf
- Department of Thoracic Surgery, Foch Hospital, Suresnes, France
| | | | - Édouard Sage
- Department of Thoracic Surgery, Foch Hospital, Suresnes, France
- UMR 0892, Virologie et Immunologie Moléculaires, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
6
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
7
|
Rezk-Hanna M, Gupta R, Nettle CO, Dobrin D, Cheng CW, Means A, Brecht ML, Tashkin DP, Araujo JA. Differential Effects of Electronic Hookah Vaping and Traditional Combustible Hookah Smoking on Oxidation, Inflammation, and Arterial Stiffness. Chest 2022; 161:208-218. [PMID: 34298007 PMCID: PMC8783031 DOI: 10.1016/j.chest.2021.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Traditional hookah smoking has grown quickly to become a global tobacco epidemic. More recently, electronic hookahs (e-hookahs)-vaped through traditional water pipes-were introduced as healthier alternatives to combustible hookah. With combustible tobacco smoking, oxidative stress, inflammation, and vascular stiffness are key components in the development and progression of atherosclerosis. The comparable effects of hookah are unknown. RESEARCH QUESTION What is the differential acute effect of e-hookah vaping vs combustible hookah smoking on oxidation, inflammation, and arterial stiffness? STUDY DESIGN AND METHODS In a randomized crossover design study, among a cohort of 17 healthy young adult chronic hookah smokers, we investigated the effect of e-hookah vaping and hookah smoking on measures of conduit arterial stiffness, including carotid-femoral pulse wave velocity (PWV), augmentation index-corrected for heart rate before and after a 30-min exposure session. We assessed a panel of circulating biomarkers indicative of inflammation and oxidants and measured plasma nicotine and exhaled carbon monoxide (CO) levels before and after the sessions. RESULTS e-Hookah vaping tended to lead to a larger acute increase in PWV than hookah smoking (mean ± SE: e-hookah, +0.74 ± 0.12 m/s; combustible hookah, +0.57 ± 0.14 m/s [P < .05 for both]), indicative of large artery stiffening. Compared with baseline, only e-hookah vaping induced an acute increase in augmentation index (e-hookah, +5.58 ± 1.54% [P = .004]; combustible hookah, +2.87 ± 2.12% [P = not significant]). These vascular changes were accompanied by elevation of the proinflammatory biomarkers high-sensitivity C-reactive protein, fibrinogen, and tumor necrosis factor α after vaping (all P < .05). No changes in biomarkers of inflammation and oxidants were observed after smoking. Compared with baseline, exhaled CO levels were higher after smoking than after vaping (+36.81 ± 6.70 parts per million vs -0.38 ± 0.22 parts per million; P < .001), whereas plasma nicotine concentrations were comparable (+6.14 ± 1.03 ng/mL vs +5.24 ± 0.96 ng/mL; P = .478). INTERPRETATION Although advertised to be "safe," flavored e-hookah vaping exerts injurious effects on the vasculature that are, at least in part, mediated by inflammation. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03690427; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Mary Rezk-Hanna
- School of Nursing, University of California, Los Angeles, CA.
| | - Rajat Gupta
- Division of Cardiology Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Daniel Dobrin
- School of Nursing, University of California, Los Angeles, CA
| | - Chiao-Wei Cheng
- School of Nursing, University of California, Los Angeles, CA
| | - Angelica Means
- School of Nursing, University of California, Los Angeles, CA
| | | | - Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jesus A Araujo
- Division of Cardiology Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA; Molecular Biology Institute, University of California, Los Angeles, CA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, CA
| |
Collapse
|
8
|
Dugbartey GJ. Emerging role of carbon monoxide in intestinal transplantation. Biomed Pharmacother 2021; 143:112237. [PMID: 34649361 DOI: 10.1016/j.biopha.2021.112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022] Open
Abstract
Intestinal transplantation has become an established therapeutic option that provides improved quality of life to patients with end-stage intestinal failure when total parenteral nutrition fails. Whereas this challenging life-saving intervention has shown exceptional growth over the past decade, illustrating the evolution of this complex and technical procedure from its preclinical origin in the mid-20th century to become a routine clinical practice today with several recent innovations, its success is hampered by multiple hurdles including technical challenges such as surgical manipulation during intestinal graft procurement, graft preservation and reperfusion damage, resulting in poor graft quality, graft rejection, post-operative infectious complications, and ultimately negatively impacting long-term recipient survival. Therefore, strategies to improve current intestinal transplantation protocol may have a significant impact on post-transplant outcomes. Carbon monoxide (CO), previously considered solely as a toxic gas, has recently been shown to be a physiological signaling molecule at low physiological concentrations with therapeutic potentials that could overcome some of the challenges in intestinal transplantation. This review discusses recent knowledge about CO in intestinal transplantation, the underlying molecular mechanisms of protection during intestinal graft procurement, preservation, transplantation and post-transplant periods. A section of the review also discusses clinical translation of CO and its challenges in the field of solid organ transplantation.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
9
|
Li Y, Hemmersbach L, Krause B, Sitnikov N, Schlundt Née Göderz A, Pastene Maldonado DO, Schmalz HG, Yard B. Head-to-Head Comparison of Selected Extra- and Intracellular CO-Releasing Molecules on Their CO-Releasing and Anti-Inflammatory Properties. Chembiochem 2021; 23:e202100452. [PMID: 34643986 PMCID: PMC9298253 DOI: 10.1002/cbic.202100452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Over the past decade, a variety of carbon monoxide releasing molecules (CORMs) have been developed and tested. Some CORMs spontaneously release CO once in solution, while others require a trigger mechanism to release the bound CO from its molecular complex. The modulation of biological systems by CORMs depends largely on the spatiotemporal release of CO, which likely differs among the different types of CORMs. In spontaneously releasing CORMs, CO is released extracellularly and crosses the cell membrane to interact with intracellular targets. Other CORMs can directly release CO intracellularly, which may be a more efficient method to modulate biological systems. In the present study, we compared the efficacy of extracellular and intracellular CO-releasing CORMs that either release CO spontaneously or require an enzymatic trigger. The efficacy of such CORMs to modulate HO-1 and VCAM-1 expression in TNF-α-stimulated human umbilical vein endothelial cells (HUVEC) was evaluated.
Collapse
Affiliation(s)
- Yingchun Li
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | | | | | | | - Diego O Pastene Maldonado
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | | | - Benito Yard
- Vth medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
10
|
Dugbartey GJ. Carbon monoxide as an emerging pharmacological tool to improve lung and liver transplantation protocols. Biochem Pharmacol 2021; 193:114752. [PMID: 34487717 DOI: 10.1016/j.bcp.2021.114752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022]
Abstract
Carbon monoxide (CO) has long been considered purely as a toxic gas. It binds to hemoglobin at high concentrations and displaces oxygen from its binding site, resulting in carboxyhemoglobin formation, which reduces oxygen-carrying capacity of blood and culminates in tissue hypoxia and its associated complications. Recently, however, CO is quickly moving past its historic notorious tag as a poisonous gas to a physiological signaling molecule with therapeutic potentials in several clinical situations including transplant-induced injury. This review discusses current knowledge of CO gas and CO-releasing molecules (CO-RMs) in preclinical models of lung and liver transplantation, and underlying molecular mechanisms of cyto- and organ protection during organ procurement, preservation, implantation and post-transplant periods. In addition, a discussion of the future of CO in clinical organ transplantation is provided.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Center, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, Western University, London Health Sciences Center, Western University, London, Ontario, Canada; Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| |
Collapse
|
11
|
Gautam K, Negi S, Saini V. Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radic Res 2021; 55:655-670. [PMID: 33641567 DOI: 10.1080/10715762.2021.1892091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tuberculosis (TB) is a chronic pulmonary disease caused by Mycobacterium tuberculosis which is a major cause of morbidity and mortality worldwide. Due to the complexity of disease and its continuous global spread, there is an urgent need to improvise the strategies for prevention, diagnosis, and treatment. The current anti-TB regimen lasts for months and warrants strict compliance to clear infection and to minimize the risk of development of multi drug-resistant tuberculosis. This underscores the need to have new and improved therapeutics for TB treatment. Several studies have highlighted the unique ability of Mycobacterium tuberculosis to exploit host factors to support its survival inside the intracellular environment. One of the key players to mycobacterial disease susceptibility and infection are endogenous gases such as oxygen, nitric oxide, carbon monoxide and hydrogen sulfide. Nitric oxide and carbon monoxide as the physiological gaseous messengers are considered important to the outcome of Mycobacterium tuberculosis infection. The role of hydrogen sulfide in human tuberculosis is yet not fully elucidated, but this gas has been shown to play a significant role in bacterial respiration, growth and pathogenesis. This review will focus on the host factors majorly endogenous gaseous signaling molecules which contributes to Mycobacterium tuberculosis survival inside the intracellular environment and highlight the potential therapeutic targets.
Collapse
Affiliation(s)
- Kamini Gautam
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
12
|
Heme Oxygenase-1 as a Pharmacological Target for Host-Directed Therapy to Limit Tuberculosis Associated Immunopathology. Antioxidants (Basel) 2021; 10:antiox10020177. [PMID: 33530574 PMCID: PMC7911872 DOI: 10.3390/antiox10020177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Excessive inflammation and tissue damage are pathological hallmarks of chronic pulmonary tuberculosis (TB). Despite decades of research, host regulation of these clinical consequences is poorly understood. A sustained effort has been made to understand the contribution of heme oxygenase-1 (HO-1) to this process. HO-1 is an essential cytoprotective enzyme in the host that controls inflammation and oxidative stress in many pathological conditions. While HO-1 levels are upregulated in animals and patients infected with Mycobacterium tuberculosis (Mtb), how it regulates host responses and disease pathology during TB remains unclear. This lack of clarity is due in part to contradictory studies arguing that HO-1 induction contributes to both host resistance as well as disease progression. In this review, we discuss these conflicting studies and the role of HO-1 in modulating myeloid cell functions during Mtb disease progression. We argue that HO-1 is a promising target for host-directed therapy to improve TB immunopathology.
Collapse
|
13
|
Therapeutic Potential of Heme Oxygenase-1 and Carbon Monoxide in Acute Organ Injury, Critical Illness, and Inflammatory Disorders. Antioxidants (Basel) 2020; 9:antiox9111153. [PMID: 33228260 PMCID: PMC7699570 DOI: 10.3390/antiox9111153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible stress protein that catalyzes the oxidative conversion of heme to carbon monoxide (CO), iron, and biliverdin (BV), the latter of which is converted to bilirubin (BR) by biliverdin reductase. HO-1 has been implicated as a cytoprotectant in various models of acute organ injury and disease (i.e., lung, kidney, heart, liver). Thus, HO-1 may serve as a general therapeutic target in inflammatory diseases. HO-1 may function as a pleiotropic modulator of inflammatory signaling, via the removal of heme, and generation of its enzymatic degradation-products. Iron release from HO activity may exert pro-inflammatory effects unless sequestered, whereas BV/BR have well-established antioxidant properties. CO, derived from HO activity, has been identified as an endogenous mediator that can influence mitochondrial function and/or cellular signal transduction programs which culminate in the regulation of apoptosis, cellular proliferation, and inflammation. Much research has focused on the application of low concentration CO, whether administered in gaseous form by inhalation, or via the use of CO-releasing molecules (CORMs), for therapeutic benefit in disease. The development of novel CORMs for their translational potential remains an active area of investigation. Evidence has accumulated for therapeutic effects of both CO and CORMs in diseases associated with critical care, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS), mechanical ventilation-induced lung injury, pneumonias, and sepsis. The therapeutic benefits of CO may extend to other diseases involving aberrant inflammatory processes such as transplant-associated ischemia/reperfusion injury and chronic graft rejection, and metabolic diseases. Current and planned clinical trials explore the therapeutic benefit of CO in ARDS and other lung diseases.
Collapse
|
14
|
Kaiser S, Selzner L, Weber J, Schallner N. Carbon monoxide controls microglial erythrophagocytosis by regulating CD36 surface expression to reduce the severity of hemorrhagic injury. Glia 2020; 68:2427-2445. [PMID: 32476210 DOI: 10.1002/glia.23864] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Microglial erythrophagocytosis is crucial in injury response to hemorrhagic stroke. We hypothesized that regulation of microglial erythrophagocytosis via HO-1/CO depends on a pathway involving reactive oxygen species (ROS) and CD36 surface-expression. The microglial BV-2 cell line and primary microglia (PMG) were incubated +/-blood and +/-CO-exposure. PMG isolated from tissue-specific HO-1-deficient (LyzM-Cre-Hmox1 fl/fl ) and CD36 -/- mice or siRNA against AMPK (AMP-activated protein kinase) were used to test our hypothesis. In a murine subarachnoid hemorrhage (SAH) model, we compared neuronal injury in wild-type and CD36 -/- mice. Readouts included vasospasm, microglia activation, neuronal apoptosis, and spatial memory. We observed increased microglial HO-1-expression after blood-exposure. A burst in ROS-production was seen after CO-exposure, which led to increased amounts of phosphorylated AMPK with subsequently enhanced CD36 surface-expression. Naïve PMG from LyzM-Cre-Hmox1 fl/fl mice showed reduced ROS-production and CD36 surface-expression and failed to respond to CO with increased CD36 surface-expression. Lack of HO-1 and CD36 resulted in reduced erythrophagocytosis that could not be rescued with CO. Erythrophagocytosis was enhanced in BV-2 cells in the presence of exogenous CO, which was abolished in cells treated with siRNA to AMPK. CD36 -/- mice subjected to SAH showed enhanced neuronal cell death, which resulted in impaired spatial memory function. We demonstrate that microglial phagocytic function partly depends on a pathway involving HO-1 with changes in ROS-production, phosphorylated AMPK, and surface expression of CD36. CD36 was identified as a crucial component in blood clearance after hemorrhage that ultimately determines neuronal outcome. These results demand further investigations studying the potential neuroprotective properties of CO.
Collapse
Affiliation(s)
- Sandra Kaiser
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Lisa Selzner
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Janick Weber
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology & Critical Care Medicine, Medical Center, University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
15
|
Chen Y, Park HJ, Park J, Song HC, Ryter SW, Surh YJ, Kim UH, Joe Y, Chung HT. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression. FASEB J 2019; 33:13905-13919. [PMID: 31645120 DOI: 10.1096/fj.201901258rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acetaminophen (APAP) is widely used as an antifebrile and analgesic drug at recommended doses, whereas an overdose of APAP can cause severe liver damage. The molecular mechanisms underlying APAP-induced liver damage remain incompletely understood. Carbon monoxide (CO), an end-product of heme oxygenase (HO)-1 activity, can confer anti-inflammatory and antiapoptotic properties in cellular models of toxicity via regulation of mitochondrial function. The objective of this study was to evaluate the effects of CO on APAP-induced hepatotoxicity and CO's relationship to regulation of endoplasmic reticulum (ER) stress and mitochondrial signaling using CO-releasing molecules or low concentrations of CO applied as pretreatment or posttreatment. Using genetic deletion or knockdown approaches in alpha mouse liver cells or primary hepatocytes, respectively, we investigated the role of HO-1 and the mitophagy regulator protein Parkin on APAP-induced expression of the ER stress-associated apoptosis regulator cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein homologous protein (CHOP). We found that CO induced Parkin expression in hepatocytes via the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2-α/activating transcription factor-4 signaling pathway. Additionally, CO gas inhalation significantly alleviated APAP-induced liver damage in vivo and correspondingly reduced serum alanine aminotransferase and aspartate aminotransferase levels as well as proinflammatory cytokines and reduced the expression of CHOP in liver tissues while dramatically increasing hepatic HO-1 and Parkin expression. We found that the protective effects of CO on APAP-induced liver damage were mediated by down-regulation of CHOP at a transcriptional and post-translational level via induction of HO-1 and Parkin, respectively, and associated with decreases in reactive oxygen species production and JNK phosphorylation. We conclude that CO may represent a promising therapeutic agent for APAP-induced liver injury.-Chen, Y., Park, H.-J., Park, J., Song, H.-C., Ryter, S. W., Surh, Y.-J., Kim, U.-H., Joe, Y., Chung, H. T. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression.
Collapse
Affiliation(s)
- Yingqing Chen
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea.,Department of Pharmacology, Dalian University Medical College, Dalian, China
| | - Hyeok-Jun Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyun-Chul Song
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
16
|
Casanova N, Zhou T, Gonzalez-Garay ML, Rosas IO, Goldberg HJ, Ryter SW, Collard HR, El-Chemaly S, Flaherty KR, Hunninghake GM, Lasky JA, Lederer DJ, Machado RF, Martinez FJ, Noth I, Raghu G, Choi AMK, Garcia JGN. Low Dose Carbon Monoxide Exposure in Idiopathic Pulmonary Fibrosis Produces a CO Signature Comprised of Oxidative Phosphorylation Genes. Sci Rep 2019; 9:14802. [PMID: 31615996 PMCID: PMC6794274 DOI: 10.1038/s41598-019-50585-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/10/2019] [Indexed: 01/22/2023] Open
Abstract
Compelling preclinical studies indicate that low-dose carbon monoxide (CO) abrogates experimental lung fibrosis. We recently reported the results of a multicenter, double-blinded, clinical trial of inhaled CO in patients with idiopathic pulmonary fibrosis (IPF). Identifying no significantly changes in metalloproteinase-7 (MMP7) serum concentration, or secondary endpoints of physiologic measurements, hospitalization, death, or patient-reported outcomes. In the present study, we evaluated the effect of low dose CO exposure (100–200 ppm) for 12 weeks on genome-wide gene expression in peripheral blood mononuclear cells (PBMC) derived from these IPF study subjects. We conducted transcriptome profiling on 38 IPF subjects with time points available at 0, 12, and 24 weeks. Total RNA isolated from PBMCs was hybridized onto the Affymetrix Human Gene 2.0 ST Array. We identified 621 genes significantly upregulated in the 24-week CO exposed group compared with the 12-week. Pathway analysis demonstrated association with Oxidative Phosphorylation (adjusted P < 0.05). We identified a clear CO signature dominated with 23 oxidative phosphorylation-related genes (FDR <10%). We confirmed the expression of nine selected gene products using Nanostring’s nCounter analysis system. These findings suggest this signature may serve as a potential genomic biomarker for CO exposure and for potential titration of dosage to allow precision testing of therapies in future low dose CO therapeutic studies in IPF.
Collapse
Affiliation(s)
- Nancy Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | | | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hilary J Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan W Ryter
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Harold R Collard
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph A Lasky
- Pulmonary and Critical Care Medicine Section, Tulane University Medical School, New Orleans, LA, USA
| | - David J Lederer
- Division of Pulmonary and Critical Care Medicine, Columbia University Medical Center, New York, NY, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Indiana University, Indianapolis, IN, USA
| | | | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Ganesh Raghu
- Division of Pulmonary and Critical Care Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Augustine M K Choi
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
17
|
Leake A, Salem K, Madigan MC, Lee GR, Shukla A, Hong G, Zuckerbraun BS, Tzeng E. Systemic vasoprotection by inhaled carbon monoxide is mediated through prolonged alterations in monocyte/macrophage function. Nitric Oxide 2019; 94:36-47. [PMID: 31593762 DOI: 10.1016/j.niox.2019.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) is anti-inflammatory and protective in models of disease. Its actions in vitro are short-lived but are sustained in vivo. We hypothesize that systemic CO can mediate prolonged phenotype changes in vivo, with a focus on macrophages (Mφs). Mφs isolated from CO treated rats responded to lipopolysaccharide (LPS) with increased IL6, IL10 and iNOS expression but decreased TNF. Conditioned media (CM) collected from peritoneal Mφs isolated from CO treated rats stimulated endothelial cell (EC) proliferation versus CM from Mφs from air treated rats. This effect was mediated by Mφ released VEGF and HMGB1. Inhaled CO reduced LPS induced Mφ M1 inflammatory phenotype for up to 5 days. Mitochondrial oxygen consumption in LPS treated Mφs from CO treated mice was preserved compared to LPS treated Mφs from control mice. Finally, transient reduction of inflammatory cells at the time of inhaled CO treatment eliminated the vasoprotective effect of CO in a rodent carotid injury model. Thus, inhaled CO induces a prolonged mixed phenotype change in Mφs, and potentially other inflammatory cells, that contribute to vasoprotection. These findings demonstrate the ability of inhaled CO to modify Mφs in a sustained manner to mediate its therapeutic actions, supporting the translational potential of inhaled CO.
Collapse
Affiliation(s)
- Andrew Leake
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Karim Salem
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Michael C Madigan
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ghee Rye Lee
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Ankur Shukla
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Guiying Hong
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA
| | - Brian S Zuckerbraun
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| | - Edith Tzeng
- Surgery Services, Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, 200 Lothrop Street, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation 2019; 26:e12577. [PMID: 31230399 DOI: 10.1111/micc.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Limb compartment syndrome (CS), a complication of trauma, results in muscle necrosis and cell death; ischemia and inflammation contribute to microvascular dysfunction and parenchymal injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been shown to protect microvascular perfusion and reduce inflammation in animal models of CS. The purpose of the study was to test the effect of CORM-3 in human in vitro CS model, allowing exploration of the mechanism(s) of CO protection and potential development of pharmacologic treatment. METHODS Confluent human vascular endothelial cells (HUVECs) were stimulated for 6 h with serum isolated from patients with CS. Intracellular oxidative stress (production of reactive oxygen species (ROS)) apoptosis, transendothelial resistance (TEER), polymorphonuclear leukocyte (PMN) activation and transmigration across the monolayer in response to the CS stimulus were assessed. All experiments were performed in the presence of CORM-3 (100 μM) or its inactive form, iCORM-3. RESULTS CS serum induced a significant increase in ROS, apoptosis and endothelial monolayer breakdown; it also increased PMN superoxide production, leukocyte rolling and adhesion/transmigration. CORM-3 completely prevented CS-induced ROS production, apoptosis, PMN adhesion, rolling and transmigration, while improving monolayer integrity. CONCLUSION CORM-3 offers potent anti-oxidant and anti-inflammatory effects, and may have a potential application to patients at risk of developing CS.
Collapse
Affiliation(s)
- Aurelia Bihari
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Kyukwang Akira Chung
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David Sanders
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Emil Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| | - Abdel-Rahman Lawendy
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Gonçalves-Ferri WA, Jauregui A, Martins-Celini FP, Sansano I, Fabro AT, Sacramento EMF, Aragon DC, Ochoa JM. Analysis of different levels of positive end-expiratory pressure during lung retrieval for transplantation: an experimental study. ACTA ACUST UNITED AC 2019; 52:e8585. [PMID: 31314854 PMCID: PMC6644527 DOI: 10.1590/1414-431x20198585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022]
Abstract
Atelectasis and inadequate oxygenation in lung donors is a common problem during the retrieval of these organs. Nevertheless, the use of high positive end-expiratory pressure (PEEP) is not habitual during procedures of lung retrieval. Twenty-one Sprague-Dawley male consanguineous rats were used in the study. The animals were divided into 3 groups according to the level of PEEP used: low (2 cmH2O), moderate (5 cmH2O), and high (10 cmH2O). Animals were ventilated with a tidal volume of 6 mL/kg. Before lung removal, the lungs were inspected for the presence of atelectasis. When atelectasis was detected, alveolar recruitment maneuvers were performed. Blood gasometric analysis was performed immediately. Finally, the lungs were retrieved, weighed, and submitted to histological analysis. The animals submitted to higher PEEP showed higher levels of oxygenation with the same tidal volumes PO2=262.14 (PEEP 2), 382.4 (PEEP 5), and 477.0 (PEEP 10). The occurrence of atelectasis was rare in animals with a PEEP of 10 cmH2O, which therefore required less frequent recruitment maneuvers (need for recruitment: PEEP 2=100%, PEEP 5 =100%, and PEEP 10=14.3%). There was no change in hemodynamic stability, occurrence of pulmonary edema, or other histological injuries with the use of high PEEP. The use of high PEEP (10 cmH2O) was feasible and probably a beneficial strategy for the prevention of atelectasis and the optimization of oxygenation during lung retrieval. Clinical studies should be performed to confirm this hypothesis.
Collapse
Affiliation(s)
- W A Gonçalves-Ferri
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A Jauregui
- Department of Thoracic Surgery, Hospital Vall d'Hebron, Barcelona, Spain
| | - F P Martins-Celini
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - I Sansano
- Department of Pathology, Hospital Vall d'Hebron, Barcelona, Spain
| | - A T Fabro
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - E M F Sacramento
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D C Aragon
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J M Ochoa
- Department of Thoracic Surgery, Hospital Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
20
|
Hendriks KD, Maassen H, van Dijk PR, Henning RH, van Goor H, Hillebrands JL. Gasotransmitters in health and disease: a mitochondria-centered view. Curr Opin Pharmacol 2019; 45:87-93. [PMID: 31325730 DOI: 10.1016/j.coph.2019.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/25/2022]
Abstract
Gasotransmitters fulfill important roles in cellular homeostasis having been linked to various pathologies, including inflammation and cardiovascular diseases. In addition to the known pathways mediating the actions of gasotransmitters, their effects in regulating mitochondrial function are emerging. Given that mitochondria are key organelles in energy production, formation of reactive oxygen species and apoptosis, they are important mediators in preserving health and disease. Preserving or restoring mitochondrial function by gasotransmitters may be beneficial, and mitigate pathogenetic processes. In this review we discuss the actions of gasotransmitters with focus on their role in mitochondrial function and their therapeutic potential.
Collapse
Affiliation(s)
- Koen Dw Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter R van Dijk
- Department of Internal Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
21
|
Chen Y, Joe Y, Park J, Song HC, Kim UH, Chung HT. Carbon monoxide induces the assembly of stress granule through the integrated stress response. Biochem Biophys Res Commun 2019; 512:289-294. [PMID: 30885431 DOI: 10.1016/j.bbrc.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/03/2019] [Indexed: 12/18/2022]
Abstract
Stress granules (SGs) are membraneless and phase-dense organelles that form transiently in response to a variety of harmful stimuli, including oxidative, heat, osmotic, ultraviolet light and chemotoxic stresses, and thus providing protective effects, allowing survivals. Carbon monoxide (CO), a gaseous second messenger, is synthesized by heme-oxygenases, and exerts anti-inflammatory, anti-proliferative and anti-apoptotic effects in a variety of cellular- and tissue-injury models. Several reports indicate that low levels of mitochondrial reactive oxygen species (mtROS) generated by CO can selectively activate PERK-eIF2α integrated stress response (ISR) to preserve the cellular homeostasis. Hence, CO can confer protection against cellular stresses. However, the mechanisms underlying the cyto-protective effects of CO against various harmful stimuli remain to be elucidated. Here, we sought to examine whether CO induces the SG assembly, and uncover its molecular mechanisms. We treated WI-38 cells and primary mouse embryonic fibroblasts (MEFs) with CO-releasing molecule 2 (CORM2) or CO gas, and found the SG assemblies were gradually increased in time and dose dependent manners. Next, we used Mito-TEMPO, an mtROS scavenger, to explore if mtROS might be involved in the CO-induced SG assembly. Furthermore, we confirmed the involvement of ISR consisted of PERK-eIF2α signaling pathway induced by CO for the SGs assembly. Finally, the inhibition of SG assembly by ISR inhibitor further verified CO-induced ISR might be responsible for SG. Taken together, in this study, we first demonstrated that CO is a novel SG inducer by activating ISR. Moreover, mtROS might be an initiator for the CO-induced ISR responsible for SG assembly.
Collapse
Affiliation(s)
- Yingqing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea; Department of Pharmacology, Dalian University Medical College, Dalian, 116622, China
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hyun-Chul Song
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca(2+) Signaling Network, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
22
|
Kumada Y, Takahashi T, Shimizu H, Nakamura R, Omori E, Inoue K, Morimatsu H. Therapeutic effect of carbon monoxide-releasing molecule-3 on acute lung injury after hemorrhagic shock and resuscitation. Exp Ther Med 2019; 17:3429-3440. [PMID: 30988722 PMCID: PMC6447800 DOI: 10.3892/etm.2019.7390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 01/14/2023] Open
Abstract
Hemorrhagic shock and resuscitation (HSR) induces a pulmonary inflammatory response and frequently causes acute lung injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been reported to liberate and deliver CO under physiological conditions, which exerts organ-protective effects during systemic insults. The present study aimed to determine whether the administration of CORM-3 following HSR exerts a therapeutic effect against HSR-induced lung injury without any detrimental effects on oxygenation and hemodynamics. To induce hemorrhagic shock, rats were bled to a mean arterial blood pressure of 30 mmHg for 45 min and then resuscitated with the shed blood. CORM-3 or a vehicle was intravenously administered immediately following the completion of resuscitation. The rats were divided into four groups, including sham, HSR, HSR/CORM-3 and HSR/inactive CORM-3 groups. Arterial blood gas parameters and vital signs were recorded during HSR. The histopathological changes to the lungs were evaluated using a lung injury score, while pulmonary edema was evaluated on the basis of the protein concentration in bronchoalveolar lavage fluid and the lung wet/dry ratio. We also investigated the pulmonary expression levels of inflammatory mediators and apoptotic markers such as cleaved caspase-3 and transferase-mediated dUTP-fluorescein isothiocyanate nick-end labeling (TUNEL) staining. Although HSR caused significant lung histopathological damage and pulmonary edema, CORM-3 significantly ameliorated this damage. CORM-3 also attenuated the HSR-induced upregulation of tumor necrosis factor-α, inducible nitric oxide synthase and interleukin-1β genes, and the expression of interleukin-1β and macrophage inflammatory protein-2. In addition, the expression of interleukin-10, an anti-inflammatory cytokine, was inversely enhanced by CORM-3, which also reduced the number of TUNEL-positive cells and the expression of cleaved caspase-3 following HSR. Although CORM-3 was administered during the acute phase of HSR, it did not exert any influence on arterial blood gas analysis data and vital signs during HSR. Therefore, treatment with CORM-3 ameliorated HSR-induced lung injury, at least partially, through anti-inflammatory and anti-apoptotic effects, without any detrimental effects on oxygenation and hemodynamics.
Collapse
Affiliation(s)
- Yuta Kumada
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toru Takahashi
- Faculty of Health and Welfare Science, Okayama Prefectural University, Soja, Okayama 719-1197, Japan
| | - Hiroko Shimizu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ryu Nakamura
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Emiko Omori
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuyoshi Inoue
- Department of Anesthesiology, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - Hiroshi Morimatsu
- Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
23
|
Chawla A, Ray S, Matettore A, Peters MJ. Arterial carboxyhaemoglobin levels in children admitted to PICU: A retrospective observational study. PLoS One 2019; 14:e0209452. [PMID: 30845230 PMCID: PMC6405068 DOI: 10.1371/journal.pone.0209452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
While carbon monoxide (CO) is considered toxic, low levels of endogenously produced CO are protective against cellular injury induced by oxidative stress. Carboxyhaemoglobin (COHb) levels have been associated with outcomes in critically ill adults. We aimed to describe the distribution of carboxyhaemoglobin in critically ill children and the relationship of these levels with clinical outcomes. This retrospective observational study was conducted at a large tertiary paediatric intensive care unit (PICU). We included all children admitted to the PICU over a two-year period who underwent arterial blood gas analysis. We measured the following: (i) Population and age-related differences in COHb distribution; (ii) Change in COHb over the first week of admission using a multi-level linear regression analysis; (iii) Uni- and multivariable relationships between COHb and length of ventilation and PICU survival. Arterial COHb levels were available for 559/2029 admissions. The median COHb level was 1.20% (IQR 1.00-1.60%). Younger children had significantly higher COHb levels (p-value <2 x 10-16). Maximum Carboxyhaemoglobin was associated with survival 1.67 (95% CI: 1.01-2.57; p-value = 0.02) and length of ventilation (OR 5.20, 95% CI: 3.07-7.30; p-value = 1.8 x 10-6) following multi-variable analysis. First measured and minimum COHb values were weakly associated with length of ventilation, but not survival. In conclusion, children have increased COHb levels in critical illness, which are greater in younger children. Higher COHb levels are associated with longer length of ventilation and death in PICU. This may reflect increased oxidative stress in these children.
Collapse
Affiliation(s)
- Ankur Chawla
- Respiratory, Critical Care and Anaesthesia Section, UCL GOSH Institute of Child Health, London, United Kingdom
| | - Samiran Ray
- Respiratory, Critical Care and Anaesthesia Section, UCL GOSH Institute of Child Health, London, United Kingdom
- Paediatric and Neonatal Intensive Care Unit, Great Ormond Street Hospital NHS Trust, London, United Kingdom
- * E-mail:
| | - Adela Matettore
- Paediatric and Neonatal Intensive Care Unit, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| | - Mark J Peters
- Respiratory, Critical Care and Anaesthesia Section, UCL GOSH Institute of Child Health, London, United Kingdom
- Paediatric and Neonatal Intensive Care Unit, Great Ormond Street Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
24
|
Kim DS, Song L, Wang J, Wu H, Gou W, Cui W, Kim JS, Wang H. Carbon Monoxide Inhibits Islet Apoptosis via Induction of Autophagy. Antioxid Redox Signal 2018; 28:1309-1322. [PMID: 28826228 PMCID: PMC5905947 DOI: 10.1089/ars.2016.6979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM Carbon monoxide (CO) functions as a therapeutic molecule in various disease models because of its anti-inflammatory and antiapoptotic properties. We investigated the capacity of CO to reduce hypoxia-induced islet cell death and dysfunction in human and mouse models. RESULTS Culturing islets in CO-saturated medium protected them from hypoxia-induced apoptosis and preserved β cell function by suppressing expression of proapoptotic (Bim, PARP, Cas-3), proinflammatory (TNF-α), and endoplasmic reticulum (ER) stress (glucose-regulated protein 94, grp94, CHOP) proteins. The prosurvival effects of CO on islets were attenuated when autophagy was blocked by specific inhibitors or when either ATG7 or ATG16L1, two essential factors for autophagy, was downregulated by siRNA. In vivo, CO exposure reduced both inflammation and cell death in grafts immediately after transplantation, and enhanced long-term graft survival of CO-treated human and mouse islet grafts in streptozotocin-induced diabetic non-obese diabetic severe combined immunodeficiency (NOD-SCID) or C57BL/6 recipients. INNOVATION These findings underline that pretreatment with CO protects islets from hypoxia and stress-induced cell death via upregulation of ATG16L1-mediated autophagy. CONCLUSION Our results suggested that CO exposure may provide an effective means to enhance survival of grafts in clinical islet cell transplantation, and may be beneficial in other diseases in which inflammation and cell death pose impediments to achieving optimal therapeutic effects. Antioxid. Redox Signal. 28, 1309-1322.
Collapse
Affiliation(s)
- Do-Sung Kim
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Lili Song
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Jingjing Wang
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Hongju Wu
- 2 Department of Medicine, Tulane University , New Orleans, Louisiana
| | - Wenyu Gou
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| | - Wanxing Cui
- 3 Medstar Georgetown University Hospital , Washington DC
| | - Jae-Sung Kim
- 4 Department of Surgery, University of Florida , Gainesville, Florida
| | - Hongjun Wang
- 1 Department of Surgery, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
25
|
Joe Y, Kim S, Kim HJ, Park J, Chen Y, Park HJ, Jekal SJ, Ryter SW, Kim UH, Chung HT. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway. FASEB J 2018; 32:2630-2643. [PMID: 29295856 PMCID: PMC5901375 DOI: 10.1096/fj.201700709rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The prevalence of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease, has rapidly increased, yet the molecular mechanisms underlying the metabolic syndrome, a primary risk factor, remain incompletely understood. The small, gaseous molecule carbon monoxide (CO) has well-known anti-inflammatory, antiproliferative, and antiapoptotic effects in a variety of cellular- and tissue-injury models, whereas its potential effects on the complex pathways of metabolic disease remain unknown. We demonstrate here that CO can alleviate metabolic dysfunction in vivo and in vitro. We show that CO increased the expression and section of the fibroblast growth factor 21 (FGF21) in hepatocytes and liver. CO-stimulated PERK activation and enhanced the levels of FGF21 via the eIF2α–ATF4 signaling pathway. The induction of FGF21 by CO attenuated endoreticulum stress- or diet-induced, obesity-dependent hepatic steatosis. Moreover, CO inhalation lowered blood glucose levels, enhanced insulin sensitivity, and promoted energy expenditure by stimulating the emergence of beige adipose cells from white adipose cells. In conclusion, we suggest that CO acts as a potent inducer of FGF21 expression and that CO critically depends on FGF21 to regulate metabolic homeostasis.—Joe, Y., Kim, S., Kim, H. J., Park, J., Chen, Y., Park, H.-J., Jekal, S.-J., Ryter, S. W., Kim, U. H., Chung, H. T. FGF21 induced by carbon monoxide mediates metabolic homeostasis via the PERK/ATF4 pathway.
Collapse
Affiliation(s)
- Yeonsoo Joe
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sena Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyo Jeong Kim
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yingqing Chen
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyeok-Jun Park
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Seung-Joo Jekal
- Wonkwang Health Science University, Iksan, Jeonbuk, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA; and
| | - Uh Hyun Kim
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Hun Taeg Chung
- Meta-Inflammation Research Institute of Basic Research, School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
26
|
Ryter SW, Ma KC, Choi AMK. Carbon monoxide in lung cell physiology and disease. Am J Physiol Cell Physiol 2017; 314:C211-C227. [PMID: 29118026 DOI: 10.1152/ajpcell.00022.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Carbon monoxide (CO) is an endogenously produced gas that has gained recognition as a biological signal transduction effector with properties similar, but not identical, to that of nitric oxide (NO). CO, which binds primarily to heme iron, may activate the hemoprotein guanylate cyclase, although with lower potency than NO. Furthermore, CO can modulate the activities of several cellular signaling molecules such as p38 MAPK, ERK1/2, JNK, Akt, NF-κB, and others. Emerging studies suggest that mitochondria, the energy-generating organelle of cells, represent a key target of CO action in eukaryotes. Dose-dependent modulation of mitochondrial function by CO can result in alteration of mitochondrial membrane potential, mitochondrial reactive oxygen species production, release of proapoptotic and proinflammatory mediators, as well as the inhibition of respiration at high concentration. CO, through modulation of signaling pathways, can impact key biological processes including autophagy, mitochondrial biogenesis, programmed cell death (apoptosis), cellular proliferation, inflammation, and innate immune responses. Inhaled CO is widely known as an inhalation hazard due to its rapid complexation with hemoglobin, resulting in impaired oxygen delivery to tissues and hypoxemia. Despite systemic and cellular toxicity at high concentrations, CO has demonstrated cyto- and tissue-protective effects at low concentration in animal models of organ injury and disease. These include models of acute lung injury (e.g., hyperoxia, hypoxia, ischemia-reperfusion, mechanical ventilation, bleomycin) and sepsis. The success of CO as a candidate therapeutic in preclinical models suggests potential clinical application in inflammatory and proliferative disorders, which is currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York
| | - Kevin C Ma
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College , New York, New York.,New York Presbyterian Hospital , New York, New York
| |
Collapse
|
27
|
Abstract
Exposure to carbon monoxide (CO) during general anesthesia can result from volatile anesthetic degradation by carbon dioxide absorbents and rebreathing of endogenously produced CO. Although adherence to the Anesthesia Patient Safety Foundation guidelines reduces the risk of CO poisoning, patients may still experience subtoxic CO exposure during low-flow anesthesia. The consequences of such exposures are relatively unknown. In contrast to the widely recognized toxicity of high CO concentrations, the biologic activity of low concentration CO has recently been shown to be cytoprotective. As such, low-dose CO is being explored as a novel treatment for a variety of different diseases. Here, we review the concept of anesthesia-related CO exposure, identify the sources of production, detail the mechanisms of overt CO toxicity, highlight the cellular effects of low-dose CO, and discuss the potential therapeutic role for CO as part of routine anesthetic management.
Collapse
Affiliation(s)
- Richard J Levy
- From the Department of Anesthesiology, Columbia University Medical Center, New York, New York
| |
Collapse
|
28
|
Li M, Li J, Zhang T, Zhao Q, Cheng J, Liu B, Wang Z, Zhao L, Wang C. Syntheses, toxicities and anti-inflammation of H 2S-donors based on non-steroidal anti-inflammatory drugs. Eur J Med Chem 2017. [PMID: 28646655 DOI: 10.1016/j.ejmech.2017.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Three series of H2S donors based on NSAIDs were synthesized and characterized by 1H-NMR, IR and ESI-HRMS. The H2S-release abilities of all compounds were evaluated in the presence of TECP or cysteine. The results show all compounds were fast H2S-releasers, and their half-lives were in range of 0-20 min. Under the same condition, H2S released from compound 9 was more than any other compounds. In cytotoxicity aspect, all compounds but 1 and 2 displayed much lower toxicities to both LO2 and HepG2 cell lines, and the IC50 values of most compounds were over 800 μM. Compounds 1 and 2 had a stronger anti-proliferative activity to both cell lines, but they displayed lower toxicities to LO2 than to HepG2. Based on the cytotoxicity, the developmental toxicities of the compounds were assessed using zebrafish embryos. The results show all tested compounds 2, 9 and 15 had effects on the mortality, hatching rate and spontaneous movements of zebrafish embryos, and caused embryos teratogenesis; and the compounds had dose-dependent toxicities to both embryonic and larval zebrafish. In addition, all compounds had a better anti-inflammatory activity. In the test of anti-inflammatory activities, the tested compounds all reduced the levels of intracellular nitrite and pro-inflammatory cytokines (TNF-α, COX-2), increased the levels of anti-inflammatory cytokines (IL-10, HO-1). All these suggest these H2S donors based on NSAIDs have a potential to be a candidate medicine.
Collapse
Affiliation(s)
- Meng Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jili Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Taofeng Zhang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Jie Cheng
- GLP Lab Centre, School of Basic Medicine of Lanzhou University, Lanzhou 730000, China
| | - Bin Liu
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| | - Zhen Wang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Libo Zhao
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| | - Chenwei Wang
- School of Stomatology of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
29
|
Abo El Gheit R, Emam MN. Targeting heme oxygenase-1 in early diabetic nephropathy in streptozotocin-induced diabetic rats. Physiol Int 2017; 103:413-427. [PMID: 28229631 DOI: 10.1556/2060.103.2016.4.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular diabetic complications. This study was designed to evaluate the possible protective effect and underlying mechanisms of HO-1 induction in streptozotocin (STZ)-induced early DN in rats. The diabetic rats were divided into three groups: STZ-diabetic, cobalt protoporphyrin (CoPP)-treated diabetic, and zinc protoporphyrin IX (ZnPP)-treated diabetic groups. Compared to the STZ-diabetic group, CoPP-induced HO-1 upregulation improved the diabetic state and renal functional parameters, suppressed the renal proinflammatory marker, NF-κB, abrogated the elevated renal hydroxyprolin, and decreased the enhanced renal nicotinamide adenine dinucleotide phosphate oxidase activity with parallel reduction of urinary oxidative stress markers. On the contrary, treatment with ZnPP abrogated HO-1 levels, aggravated the diabetic condition with further increases in renal oxidative stress, fibrotic and inflammatory markers, and exacerbated renal dysfunction in diabetic animals. These findings suggest that the reduced diabetic renal injury upon HO-1 induction implicates the role of HO-1 induction as a potential treatment for DN.
Collapse
Affiliation(s)
- R Abo El Gheit
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| | - M N Emam
- 1 Physiology Department, Faculty of Medicine, Tanta University , Tanta, Egypt
| |
Collapse
|
30
|
Inoue K, Patterson EK, Capretta A, Lawendy AR, Fraser DD, Cepinskas G. Carbon Monoxide-Releasing Molecule-401 Suppresses Polymorphonuclear Leukocyte Migratory Potential by Modulating F-Actin Dynamics. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1121-1133. [PMID: 28320610 DOI: 10.1016/j.ajpath.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 01/13/2023]
Abstract
Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 μg/mL lipopolysaccharide for 6 hours and perfused with 100 μmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.
Collapse
Affiliation(s)
- Ken Inoue
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Eric K Patterson
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Alfredo Capretta
- Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
| | - Abdel R Lawendy
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Douglas D Fraser
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Paediatrics, University of Western Ontario, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
31
|
Abeyrathna N, Washington K, Bashur C, Liao Y. Nonmetallic carbon monoxide releasing molecules (CORMs). Org Biomol Chem 2017; 15:8692-8699. [DOI: 10.1039/c7ob01674c] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent progress on nonmetallic carbon monoxide releasing molecules (CORMs) is reviewed.
Collapse
Affiliation(s)
| | - Kenyatta Washington
- Department of Biomedical Engineering
- Florida Institute of Technology
- Melbourne
- USA
| | - Christopher Bashur
- Department of Biomedical Engineering
- Florida Institute of Technology
- Melbourne
- USA
| | - Yi Liao
- Department of Chemistry
- Florida Institute of Technology
- Melbourne
- USA
| |
Collapse
|
32
|
Yan L, Cao X, Zeng S, Li Z, Lian Z, Wang J, Lv F, Wang Y, Li Y. Associations of proteins relevant to MAPK signaling pathway (p38MAPK-1,HIF-1 and HO-1) with coronary lesion characteristics and prognosis of peri-menopausal women. Lipids Health Dis 2016; 15:187. [PMID: 27821168 PMCID: PMC5100280 DOI: 10.1186/s12944-016-0356-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present study was intended to explore whether three proteins within MAPK signaling pathway (i.e. p38MAPK-1, HIF-1 and HO-1) were correlated with peri-menopausal women's coronary lesion features and prognosis. METHODS Altogether 1449 peri-menopausal women were divided into non-coronary artery disease (CAD) group (n = 860) and CAD group (n = 589), including 167 pre-menopausal CAD populations and 422 post-menopausal CAD populations. General information about CAD risk parameters were gathered, including age, family history of CAD or hypertension or diabetes mellitus, bilirubin, cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) and so on. Coronary angiography results were judged, and CAD score was calculated with application of Genisin scoring method. Besides, detection of MAPK-1 levels was implemented with Strept Avidin-Biotin Complex (SABC) method, while HIF-1 and HO-1 expressions in the serum were determined utilizing ELISA detection kit. Correlations among protein expressions, characteristics of coronary lesions and prognosis of CAD populations were finally evaluated. RESULTS Hypertension, hyperlipoidemia, diabetes and smoking history were more prevalent among postmenopausal CAD women than premenopausal CAD women (P < 0.05). Furthermore, postmenopausal women seemed to be significantly associated with multiple (i.e. double and triple) vessel lesions and severe lesion types (type B and C), when compared with premenopausal CAD group (P < 0.05). Similarly, remarkably elevated expressions of p38MAPK-1, HIF-1 and HO-1 were found within postmenopausal CAD populations in comparison to premenopausal ones (P < 0.05). The internal CysC, hs-CRP, TG and LDL-C concentrations all accorded with the following tendency: postmenopausal CAD women > premenopausal CAD women > non-CAD women. Moreover, p38MAPK-1, HIF-1 and HO-1 expressions were up-regulated with increasing number of vessel lesions and severity of coronary lesions among peri-menopausal women. Besides, among both pre-menopausal and post-menopausal CAD groups, positive correlations could be observed between MAPK-1 and TG (r s = 0.271; r s = 0.476), between HIF-1α and LDL-C (r s = 0.077; r s = 0.470), as well as between HO-1 and CysC (r s = 0.492; r s = 0.190) or hs-CRP (r s = 0.569; r s = 0.542) (all P < 0.05). MAPK-1, HIF-1α and HO-1 were also, respectively, positively correlated with CysC (r s = 0.415), hs-CRP (r s = 0.137), and TG (r s = 0.142), regarding post-menopausal CAD women (all P < 0.05). Finally, only SBP and TG were regarded as independent risk factors for CAD prognosis (i.e. high Genisin score) among premenopausal women (OR = 1.02, 95%CI: 1.01-1.18, P = 0.043; OR = 1.82, 95%CI: 1.01-3.33, P = 0.047). CONCLUSIONS Expressions of p38MAPK-1, HIF-1 and HO-1 could serve as predictive roles for coronary lesions among peri-menopausal women.
Collapse
Affiliation(s)
- Liqiu Yan
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Xufen Cao
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China.
| | - Saitian Zeng
- Department of Gynecology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, 061001, Hebei Province, China
| | - Zhe Li
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Zheng Lian
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Jiawang Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Fengfeng Lv
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Yunfei Wang
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| | - Yanshen Li
- Department of Cardiology, Cangzhou Central Hospital, Hebei Medical University, No. 16 Xinhua West Road, Cangzhou, Hebei Province, 061001, China
| |
Collapse
|
33
|
Levy RJ. Carbon monoxide and anesthesia-induced neurotoxicity. Neurotoxicol Teratol 2016; 60:50-58. [PMID: 27616667 DOI: 10.1016/j.ntt.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
The majority of commonly used anesthetic agents induce widespread neuronal degeneration in the developing mammalian brain. Downstream, the process appears to involve activation of the oxidative stress-associated mitochondrial apoptosis pathway. Targeting this pathway could result in prevention of anesthetic toxicity in the immature brain. Carbon monoxide (CO) is a gas that exerts biological activity in the developing brain and low dose exposures have the potential to provide neuroprotection. In recent work, low concentration CO exposures limited isoflurane-induced neuronal apoptosis in a dose-dependent manner in newborn mice and modulated oxidative stress within forebrain mitochondria. Because infants and children are routinely exposed to low levels of CO during low-flow general endotracheal anesthesia, such anti-oxidant and pro-survival cellular effects are clinically relevant. Here we provide an overview of anesthesia-related CO exposure, discuss the biological activity of low concentration CO, detail the effects of CO in the brain during development, and provide evidence for CO-mediated inhibition of anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, United States.
| |
Collapse
|
34
|
van der Vlies AJ, Inubushi R, Uyama H, Hasegawa U. Polymeric Framboidal Nanoparticles Loaded with a Carbon Monoxide Donor via Phenylboronic Acid-Catechol Complexation. Bioconjug Chem 2016; 27:1500-8. [DOI: 10.1021/acs.bioconjchem.6b00135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- André J. van der Vlies
- Frontier
Research Center, Graduate School of Engineering, ‡Department of Applied
Chemistry, Graduate School of Engineering, and §Frontier Research Base for Young Researchers,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryosuke Inubushi
- Frontier
Research Center, Graduate School of Engineering, ‡Department of Applied
Chemistry, Graduate School of Engineering, and §Frontier Research Base for Young Researchers,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Frontier
Research Center, Graduate School of Engineering, ‡Department of Applied
Chemistry, Graduate School of Engineering, and §Frontier Research Base for Young Researchers,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Urara Hasegawa
- Frontier
Research Center, Graduate School of Engineering, ‡Department of Applied
Chemistry, Graduate School of Engineering, and §Frontier Research Base for Young Researchers,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Ropponen JO, Keränen MA, Raissadati A, Nykänen AI, Krebs R, Lemström KB, Tikkanen JM. Increased myeloid cell hypoxia-inducible factor-1 delays obliterative airway disease in the mouse. J Heart Lung Transplant 2016; 35:671-8. [DOI: 10.1016/j.healun.2015.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
|
36
|
Kaufmann KB, Gothwal M, Schallner N, Ulbrich F, Rücker H, Amslinger S, Goebel U. The anti-inflammatory effects of E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone are mediated via HO-1 induction. Int Immunopharmacol 2016; 35:99-110. [PMID: 27044026 DOI: 10.1016/j.intimp.2016.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/12/2016] [Accepted: 03/15/2016] [Indexed: 10/24/2022]
Abstract
Inflammation plays a central role in the pathophysiology of many diseases. The inducible enzyme heme oxygenase-1 (HO-1) protects cells against inflammation and can be induced by electrophilic compounds like the chalcones (1,3-diphenylprop-2-enones) from the class of α,β-unsaturated carbonyl compounds. We hypothesized that the synthetic chalcone E-α-(p-methoxyphenyl)-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) exerts anti-inflammatory effects in RAW264.7, Jurkat lymphocytes and HK-2 cells via HO-1 induction. RAW264.7 cells were treated with lipopolysaccharide prior to E-α-p-OMe-C6H4-TMC treatment. Subsequently, HO-1 protein induction and activity were analyzed, as well as expression of pro- and anti-inflammatory mediators, transcription factors and mitogen-activated protein kinases to evaluate the possible molecular mechanism. These results were confirmed in human cell lines (Jurkat T-lymphocytes and HK-2 epithelial cells). We found that the E-α-p-OMe-C6H4-TMC exerts significant anti-inflammatory effects in a dose dependent manner, showing no toxic effects in LPS-treated RAW264.7 macrophages. E-α-p-OMe-C6H4-TMC induced HO-1 and SOD-1 protein expression and HO-1 enzyme activity, reduced the upregulation of COX-2 and iNOS, while inducing the translocation of Nrf2. NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment accompanied by the downregulation of proinflammatory cytokines IL-1β, IL-6 and MCP-1. Pretreatment with E-α-p-OMe-C6H4-TMC revealed significant changes in phosphorylation of ERK and p38, but not JNK. These anti-inflammatory effects of E-α-p-OMe-C6H4-TMC were approved in Jurkat and HK-2 cells, furthermore revealing a downregulation of IL-8 and IL-10. In conclusion, it is tempting to speculate about E-α-p-OMe-C6H4-TMC as a new and non-toxic agent, inducing HO-1 in cells. This opens up new opportunities regarding the development of therapeutic agents using beneficial effects of HO-1 and its products.
Collapse
Affiliation(s)
- Kai B Kaufmann
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Monika Gothwal
- Department of Radiation Oncology, University Medical Center Freiburg, Germany
| | - Nils Schallner
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany
| | - Hannelore Rücker
- Institute of Organic Chemistry, University of Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Germany.
| | - Ulrich Goebel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Germany.
| |
Collapse
|
37
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
38
|
Kim M, Kim Y, Lee S, Kuk M, Kim AY, Kim W, Kweon OK. Comparison of viability and antioxidant capacity between canine adipose-derived mesenchymal stem cells and heme oxygenase-1-overexpressed cells after freeze-thawing. J Vet Med Sci 2015; 78:619-25. [PMID: 26725542 PMCID: PMC4873853 DOI: 10.1292/jvms.15-0361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for
cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed
allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and
function of frozen-thawed Ad-MSCs have not been clearly evaluated. The purpose of this
study was to compare the viability and function of Ad-MSCs and heme oxygenase-1
(HO-1)-overexpressed Ad-MSCs in vitro after freeze-thawing. The
viability, proliferation, antioxidant capacity and mRNA gene expression of growth factors
were evaluated. Frozen-thawed cells showed significantly lower viability than fresh cells
(77% for Ad-MSCs and 71% for HO-1 Ad-MSCs, P<0.01). However, the
proliferation rate of frozen-thawed Ad-MSCs increased and did not differ from that of
fresh Ad-MSCs after 3 days of culture. In contrast, the proliferation rate of
HO-1-overexpressed Ad-MSCs was lower than that of Ad-MSCs. The mRNA expression levels of
TGF-β, HGF and VEGF did not differ
between fresh and frozen-thawed Ad-MSCs, but COX-2 and
IL-6 had significantly higher mRNA expression in frozen cells than
fresh cells (P<0.05). Fresh Ad-MSCs exhibited higher
HO-1 mRNA expression than frozen-thawed Ad-MSCs, and fresh
HO-1-overexpressed Ad-MSCs exhibited higher than fresh Ad-MSCs
(P<0.05). However, there was no significant difference between fresh
and frozen HO-1-overexpressed Ad-MSCs. The antioxidant capacity of HO-1-overexpressed
Ad-MSCs was significantly higher than that of Ad-MSCs. Cryopreservation of Ad-MSCs
negatively affects viability and antioxidant capacity, and HO-1-overexpressed Ad-MSCs
might be useful to maximize the effect of Ad-MSCs for cytotherapy.
Collapse
Affiliation(s)
- Mijung Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhao W, Song H, Huo W. Long-term administration of simvastatin reduces ventilator-induced lung injury and upregulates heme oxygenase 1 expression in a rat model. J Surg Res 2015; 199:601-7. [DOI: 10.1016/j.jss.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/07/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
|
40
|
The Cytoprotective Effects of E-α-(4-Methoxyphenyl)-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC)--A Novel and Non-Cytotoxic HO-1 Inducer. PLoS One 2015; 10:e0142932. [PMID: 26565402 PMCID: PMC4643879 DOI: 10.1371/journal.pone.0142932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 01/08/2023] Open
Abstract
Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1), is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2’,3,4,4’-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH) had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS) production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2’-hydroxychalcone, calythropsin and 2’-hydroxy-3,4,4’-trimethoxychalcone) prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl)-2’,3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC) demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264.7 macrophages. The observed cytoprotective effect may partly be related to both, the activation of the Nrf2- and inhibition of the NF-κB pathway.
Collapse
|
41
|
Steiger C, Wollborn J, Gutmann M, Zehe M, Wunder C, Meinel L. Controlled therapeutic gas delivery systems for quality-improved transplants. Eur J Pharm Biopharm 2015; 97:96-106. [PMID: 26527426 DOI: 10.1016/j.ejpb.2015.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 12/15/2022]
Abstract
Therapeutic gases enriched into perfusion solutions have been effectively used for the improvement of organ transplant quality. At present, the enrichment of perfusion solutions with gases requires complex machinery/containers and handling precautions. Alternatively, the gas is generated within the perfusion solution by supplemented carbonylated transition metal complexes with associated toxicological concerns when these metals contact the transplant. Therefore, we developed therapeutic gas releasing systems (TGRSs) allowing for the controlled generation and release of therapeutic gases (carbon monoxide and hydrogen sulfide) from otherwise hermetically sealed containers, such that the perfusion solution for the transplant is saturated with the gas but no other components from the TGRS are liberated in the solution. The release from the TGRS into the perfusion solution can be tailored as a function of the number and thickness of gas permeable membranes leading to release patterns having been linked to therapeutic success in previous trials. Furthermore, the surrogate biomarker HMGB1 was significantly downregulated in ischemic rat liver transplants perfused with enriched CO solution as compared to control. In conclusion, the TGRS allows for easy, reliable, and controlled generation and release of therapeutic gases while removing safety concerns of current approaches, thereby positively impacting the risk benefit profile of using therapeutic gases for transplant quality improvement in the future.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Jakob Wollborn
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Center Freiburg, Hugstetter Str. 55, DE-79106 Freiburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Markus Zehe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Christian Wunder
- Department of Anaesthesia and Critical Care, University of Wuerzburg, Oberduerrbacherstraße 6, DE-97080 Wurzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|
42
|
Cui Y, Liu K, Monzon-Medina ME, Padera RF, Wang H, George G, Toprak D, Abdelnour E, D'Agostino E, Goldberg HJ, Perrella MA, Forteza RM, Rosas IO, Visner G, El-Chemaly S. Therapeutic lymphangiogenesis ameliorates established acute lung allograft rejection. J Clin Invest 2015; 125:4255-68. [PMID: 26485284 DOI: 10.1172/jci79693] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 08/28/2015] [Indexed: 01/13/2023] Open
Abstract
Lung transplantation is the only viable option for patients suffering from otherwise incurable end-stage pulmonary diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Despite aggressive immunosuppression, acute rejection of the lung allograft occurs in over half of transplant recipients, and the factors that promote lung acceptance are poorly understood. The contribution of lymphatic vessels to transplant pathophysiology remains controversial, and data that directly address the exact roles of lymphatic vessels in lung allograft function and survival are limited. Here, we have shown that there is a marked decline in the density of lymphatic vessels, accompanied by accumulation of low-MW hyaluronan (HA) in mouse orthotopic allografts undergoing rejection. We found that stimulation of lymphangiogenesis with VEGF-C156S, a mutant form of VEGF-C with selective VEGFR-3 binding, alleviates an established rejection response and improves clearance of HA from the lung allograft. Longitudinal analysis of transbronchial biopsies from human lung transplant recipients demonstrated an association between resolution of acute lung rejection and decreased HA in the graft tissue. Taken together, these results indicate that lymphatic vessel formation after lung transplantation mediates HA drainage and suggest that treatments to stimulate lymphangiogenesis have promise for improving graft outcomes.
Collapse
|
43
|
Carbon monoxide decreases interleukin-1β levels in the lung through the induction of pyrin. Cell Mol Immunol 2015; 14:349-359. [PMID: 26435068 PMCID: PMC5380940 DOI: 10.1038/cmi.2015.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Carbon monoxide (CO) can act as an anti-inflammatory effector in mouse models of lung injury and disease, through the downregulation of pro-inflammatory cytokines production, though the underlying mechanisms remain unclear. The nucleotide-binding oligomerization domain-, leucine-rich region-, and pyrin domain-containing-3 (NLRP3) inflammasome is a protein complex that regulates the maturation and secretion of pro-inflammatory cytokines, including interleukin-1β (IL-1β). In this report, we show that the CO-releasing molecule (CORM-2) can stimulate the expression of pyrin, a negative regulator of the NLRP3 inflammasome. CORM-2 increased the transcription of pyrin in the human leukemic cell line (THP-1) in the absence and presence of lipopolysaccharide (LPS). In THP-1 cells, CORM-2 treatment dose-dependently reduced the activation of caspase-1 and the secretion of IL-1β, and increased the levels of IL-10, in response to LPS and adenosine 5′-triphosphate (ATP), an NLRP3 inflammasome activation model. Genetic interference of IL-10 by small interfering RNA (siRNA) reduced the effectiveness of CORM-2 in inhibiting IL-1β production and in inducing pyrin expression. Genetic interference of pyrin by siRNA increased IL-1β production in response to LPS and ATP, and reversed CORM-2-dependent inhibition of caspase-1 activation. CO inhalation (250 ppm) in vivo increased the expression of pyrin and IL-10 in lung and spleen, and decreased the levels of IL-1β induced by LPS. Consistent with the induction of pyrin and IL-10, and the downregulation of lung IL-1β production, CO provided protection in a model of acute lung injury induced by intranasal LPS administration. These results provide a novel mechanism underlying the anti-inflammatory effects of CO, involving the IL-10-dependent upregulation of pyrin expression.
Collapse
|
44
|
Jahn N, Lamberts RR, Busch CJ, Voelker MT, Busch T, Koel-Simmelink MJA, Teunissen CE, Oswald DD, Loer SA, Kaisers UX, Weimann J. Inhaled carbon monoxide protects time-dependently from loss of hypoxic pulmonary vasoconstriction in endotoxemic mice. Respir Res 2015; 16:119. [PMID: 26415503 PMCID: PMC4587582 DOI: 10.1186/s12931-015-0274-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022] Open
Abstract
Background Inhaled carbon monoxide (CO) appears to have beneficial effects on endotoxemia-induced impairment of hypoxic pulmonary vasoconstriction (HPV). This study aims to specify correct timing of CO application, it’s biochemical mechanisms and effects on inflammatory reactions. Methods Mice (C57BL/6; n = 86) received lipopolysaccharide (LPS, 30 mg/kg) intraperitoneally and subsequently breathed 50 ppm CO continuously during defined intervals of 3, 6, 12 or 18 h. Two control groups received saline intraperitoneally and additionally either air or CO, and one control group received LPS but breathed air only. In an isolated lung perfusion model vasoconstrictor response to hypoxia (FiO2 = 0.01) was quantified by measurements of pulmonary artery pressure. Pulmonary capillary pressure was estimated by double occlusion technique. Further, inflammatory plasma cytokines and lung tissue mRNA of nitric-oxide-synthase-2 (NOS-2) and heme oxygenase-1 (HO-1) were measured. Results HPV was impaired after LPS-challenge (p < 0.01). CO exposure restored HPV-responsiveness if administered continuously for full 18 h, for the first 6 h and if given in the interval between the 3rd and 6th hour after LPS-challenge (p < 0.05). Preserved HPV was attributable to recovered arterial resistance and associated with significant reduction in NOS-2 mRNA when compared to controls (p < 0.05). We found no effects on inflammatory plasma cytokines. Conclusion Low-dose CO prevented LPS-induced impairment of HPV in a time-dependent manner, associated with a decreased NOS-2 expression.
Collapse
Affiliation(s)
- Nora Jahn
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany.
| | - Regis R Lamberts
- Department of Anaesthesiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.
| | - Cornelius J Busch
- Department of Anaesthesiology, Ruprecht-Karls-University, Heidelberg, Germany.
| | - Maria T Voelker
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany.
| | - Thilo Busch
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany.
| | - Marleen J A Koel-Simmelink
- Department of Clinical Chemistry, Neurological Laboratory and Biobank, VU University Medical Centre, Amsterdam, The Netherlands.
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurological Laboratory and Biobank, VU University Medical Centre, Amsterdam, The Netherlands.
| | - Daniel D Oswald
- Department of Anaesthesiology, Universitätsklinikum, Münster, Germany.
| | - Stephan A Loer
- Department of Anaesthesiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Centre, Amsterdam, The Netherlands.
| | - Udo X Kaisers
- Department of Anaesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany.
| | - Jörg Weimann
- Department of Anaesthesia and Intensive Care Medicine, Sankt Gertrauden-Krankenhaus, Berlin, Germany.
| |
Collapse
|
45
|
Serizawa F, Patterson E, Potter RF, Fraser DD, Cepinskas G. Pretreatment of human cerebrovascular endothelial cells with CO-releasing molecule-3 interferes with JNK/AP-1 signaling and suppresses LPS-induced proadhesive phenotype. Microcirculation 2015; 22:28-36. [PMID: 25098198 DOI: 10.1111/micc.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exogenously administered CO interferes with PMN recruitment to the inflamed organs. The mechanisms of CO-dependent modulation of vascular proadhesive phenotype, a key step in PMN recruitment, are unclear. METHODS We assessed the effects/mechanisms of CO liberated from a water-soluble CORM-3 on modulation of the proadhesive phenotype in hCMEC/D3 in an in vitro model of endotoxemia. To this end, hCMEC/D3 were stimulated with LPS (1 μg/mL) for six hours. In some experiments hCMEC/D3 were pretreated with CORM-3 (200 μmol/L) before LPS-stimulation. PMN rolling/adhesion to hCMEC/D3 were assessed under conditions of laminar shear stress (0.7 dyn/cm(2) ). In parallel, expression of adhesion molecules E-selectin, ICAM-1, and VCAM-1 (qPCR), activation of transcription factors, NF-κB and AP-1 (ELISA), and MAPK-signaling (expression/phosphorylation of p38, ERK1/2, and JNK1/2; western blot) were assessed. RESULTS The obtained results indicate that CORM-3 pretreatment reduces PMN rolling/adhesion to LPS-stimulated hCMEC/D3 (p < 0.05). Decreased PMN rolling/adhesion to hCMEC/D3 was associated with CORM-3-dependent inhibition of MAPK JNK1/2 activation (Tyr-phosphorylation), inhibition of transcription factor, AP-1 (c-Jun phosphorylation), and subsequent suppression of VCAM-1 expression (p < 0.05). CONCLUSIONS These findings indicate that CORM-3 pretreatment interferes with JNK/AP-1 signaling and suppresses LPS-induced upregulation of the proadhesive phenotype in hCMEC/D3.
Collapse
Affiliation(s)
- Fukashi Serizawa
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
Joe Y, Kim SK, Chen Y, Yang JW, Lee JH, Cho GJ, Park JW, Chung HT. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2867-74. [PMID: 26348577 DOI: 10.1016/j.ajpath.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.
Collapse
Affiliation(s)
- Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seul-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yingqing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Hee Lee
- Department of Pathology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
47
|
Fredenburgh LE, Kraft BD, Hess DR, Harris RS, Wolf MA, Suliman HB, Roggli VL, Davies JD, Winkler T, Stenzler A, Baron RM, Thompson BT, Choi AM, Welty-Wolf KE, Piantadosi CA. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L834-46. [PMID: 26320156 DOI: 10.1152/ajplung.00240.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Inhaled carbon monoxide (CO) gas has therapeutic potential for patients with acute respiratory distress syndrome if a safe, evidence-based dosing strategy and a ventilator-compatible CO delivery system can be developed. In this study, we used a clinically relevant baboon model of Streptococcus pneumoniae pneumonia to 1) test a novel, ventilator-compatible CO delivery system; 2) establish a safe and effective CO dosing regimen; and 3) investigate the local and systemic effects of CO therapy on inflammation and acute lung injury (ALI). Animals were inoculated with S. pneumoniae (10(8)-10(9) CFU) (n = 14) or saline vehicle (n = 5); in a subset with pneumonia (n = 5), we administered low-dose, inhaled CO gas (100-300 ppm × 60-90 min) at 0, 6, 24, and/or 48 h postinoculation and serially measured blood carboxyhemoglobin (COHb) levels. We found that CO inhalation at 200 ppm for 60 min is well tolerated and achieves a COHb of 6-8% with ambient CO levels ≤ 1 ppm. The COHb level measured at 20 min predicted the 60-min COHb level by the Coburn-Forster-Kane equation with high accuracy. Animals given inhaled CO + antibiotics displayed significantly less ALI at 8 days postinoculation compared with antibiotics alone. Inhaled CO was associated with activation of mitochondrial biogenesis in the lung and with augmentation of renal antioxidative programs. These data support the feasibility of safely delivering inhaled CO gas during mechanical ventilation and provide preliminary evidence that CO may accelerate the resolution of ALI in a clinically relevant nonhuman primate pneumonia model.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts;
| | - Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Dean R Hess
- Department of Respiratory Care, Massachusetts General Hospital, Boston, Massachusetts; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - R Scott Harris
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Monroe A Wolf
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Hagir B Suliman
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Victor L Roggli
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - John D Davies
- Department of Respiratory Care, Duke University Medical Center, Durham, North Carolina
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alex Stenzler
- 12th Man Technologies, Garden Grove, California; and
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Augustine M Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Karen E Welty-Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Claude A Piantadosi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina; Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
48
|
Meng C, Ma L, Liu J, Cui X, Liu R, Xing J, Zhou H. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury. Exp Biol Med (Maywood) 2015; 241:246-54. [PMID: 26290141 DOI: 10.1177/1535370215600550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen.
Collapse
Affiliation(s)
- Chao Meng
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Liangjuan Ma
- Department of Dermatology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jinfeng Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Xiaoguang Cui
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Rongfang Liu
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Jingchun Xing
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China
| | - Huacheng Zhou
- Department of Anesthesiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150001, China; 150001, China Hei Longjiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine, Harbin 150001, China Department of Anesthesiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| |
Collapse
|
49
|
Schallner N, Pandit R, LeBlanc R, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE, Hanafy KA. Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest 2015; 125:2609-25. [PMID: 26011640 DOI: 10.1172/jci78443] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/27/2015] [Indexed: 12/25/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) carries a 50% mortality rate. The extravasated erythrocytes that surround the brain contain heme, which, when released from damaged red blood cells, functions as a potent danger molecule that induces sterile tissue injury and organ dysfunction. Free heme is metabolized by heme oxygenase (HO), resulting in the generation of carbon monoxide (CO), a bioactive gas with potent immunomodulatory capabilities. Here, using a murine model of SAH, we demonstrated that expression of the inducible HO isoform (HO-1, encoded by Hmox1) in microglia is necessary to attenuate neuronal cell death, vasospasm, impaired cognitive function, and clearance of cerebral blood burden. Initiation of CO inhalation after SAH rescued the absence of microglial HO-1 and reduced injury by enhancing erythrophagocytosis. Evaluation of correlative human data revealed that patients with SAH have markedly higher HO-1 activity in cerebrospinal fluid (CSF) compared with that in patients with unruptured cerebral aneurysms. Furthermore, cisternal hematoma volume correlated with HO-1 activity and cytokine expression in the CSF of these patients. Collectively, we found that microglial HO-1 and the generation of CO are essential for effective elimination of blood and heme after SAH that otherwise leads to neuronal injury and cognitive dysfunction. Administration of CO may have potential as a therapeutic modality in patients with ruptured cerebral aneurysms.
Collapse
|
50
|
The role of type 2 diabetes in neurodegeneration. Neurobiol Dis 2015; 84:22-38. [PMID: 25926349 DOI: 10.1016/j.nbd.2015.04.008] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence links type-2 diabetes (T2D) with dementia and neurodegenerative diseases such as Alzheimer's disease (AD). AD is the most common form of dementia and is characterised neuropathologically by the accumulation of extracellular beta amyloid (Aβ) peptide aggregates and intracellular hyper-phosphorylated tau protein, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. Although the precise mechanism remains unclear, T2D can exacerbate these neurodegenerative processes. Brain atrophy, reduced cerebral glucose metabolism and CNS insulin resistance are features of both AD and T2D. Cell culture and animal studies have indicated that the early accumulation of Aβ may play a role in CNS insulin resistance and impaired insulin signalling. From the viewpoint of insulin resistance and impaired insulin signalling in the brain, these are also believed to initiate other aspects of brain injury, including inflammatory and oxidative stress processes. Here we review the clinical and experimental pieces of evidence that link these two chronic diseases of ageing, and discuss underlying mechanisms. The evaluation of treatments for the management of diabetes in preclinical, and clinical studies and trials for AD will also be discussed.
Collapse
|