1
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
2
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
3
|
Increasing Dosage of Leucovorin Results in Pharmacokinetic and Gene Expression Differences When Administered as Two-Hour Infusion or Bolus Injection to Patients with Colon Cancer. Cancers (Basel) 2022; 15:cancers15010258. [PMID: 36612253 PMCID: PMC9818718 DOI: 10.3390/cancers15010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The combination of 5-fluorouracil (5-FU) and leucovorin (LV) forms the chemotherapy backbone for patients with colorectal cancer. However, the LV administration is often standardized and not based on robust scientific data. To address these issues, a randomized pharmacokinetics study was performed in patients with colon cancer. Thirty patients were enrolled, receiving 60, 200 or 500 mg/m2 LV as a single two-hour infusion. Blood, tumor, mucosa, and resection margin biopsies were collected. Folate concentrations were analyzed with LC-MS/MS and gene expression with qPCR. Data from a previous study where patients received LV as bolus injections were used as comparison. Saturation of methylenetetrahydrofolate (MeTHF) and tetrahydrofolate (THF) levels was seen after two-hour infusion and polyglutamated MeTHF + THF levels in tumors decreased with increasing LV dosage. The decrease was associated with decreased FPGS and increased GGH expression, which was not observed after LV bolus injection. In the bolus group, results indicate activation of a metabolic switch possibly promoting TYMS inhibition in response to 5-FU. Different metabolic mechanisms appear to be induced when LV is administered as infusion and bolus injection. Since maximal inhibition of TYMS by the 5-FU metabolite 5-fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) requires excess polyglutamated MeTHF, the results point in favor of the bolus regimen.
Collapse
|
4
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Bai Y, Wang R, Yang Y, Li R, Wu X. Folic Acid Absorption Characteristics and Effect on Cecal Microbiota of Laying Hens. Front Vet Sci 2021; 8:720851. [PMID: 34485442 PMCID: PMC8416075 DOI: 10.3389/fvets.2021.720851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023] Open
Abstract
This experiment was conducted to investigate the characteristics of folic acid (FA) absorption in laying hens and the effect of FA supplementation on cecal microbiota. A total of 432 healthy hens (30-week-old) were randomly assigned to four diets supplemented with FA: 0, 1, 6, and 24 mg/kg of feed for 8 w. Blood, duodenum, jejunum, ileum, cecum, and cecal chyme samples (six samples per treatment) were collected from the hens at the end of the feeding trial. Expression profiles of folate transport and transformation genes in intestine and cecal microbiota were detected. Results showed that serum folate level significantly increased (P < 0.01) with an increase in dietary FA supplementation, reaching a plateau at 6 mg/kg FA supplementation. The expression of FA transport and transformation genes was not affected in the cecum (P > 0.05) by dietary FA supplementation; however, it was affected in the duodenum, jejunum, and ileum and mostly showed a downward trend in treatment groups (P < 0.05). The genes affected include duodenal folate receptor (Folr) and dihydrofolate reductase (Dhfr), jejunal proton-coupled folate transporter (Pcft) and reduced folate carrier (Rfc), and ileal ATP binding cassette subfamily C member (Abcc2), Abcc3, Rfc, Folr, and Dhfr. Furthermore, according to the operational taxonomic unit classification and taxonomic position identification, the cecal microbiota population of the hens was not affected by dietary FA supplementation at the phylum, class, order, family, genus, and species levels (P > 0.05). However, the relative abundance of some microbiota was affected by dietary FA supplementation (P < 0.05). In conclusion, FA transport from the intestinal lumen into enterocytes, and then into the bloodstream, is strictly regulated, which may be associated with the regulation of the expression profiles of genes involved in FA absorption. Pathogenic bacteria decreased in the cecum, especially at 24 mg/kg supplementation, but the beneficial bacteria (Bifidobacteriaceae) decreased at this level, too. Overall, FA supplementation at 6 mg/kg, which was selected for folate-enriched egg production, did not affect the health and metabolism of laying hens negatively.
Collapse
Affiliation(s)
- Yan Bai
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Rui Wang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China.,Department of Life Sciences, Luliang University, Luliang, China
| | - Yu Yang
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Ruirui Li
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Xiaotian Wu
- Laboratory of Poultry Production, College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| |
Collapse
|
6
|
Wang JQ, Yang Y, Cai CY, Teng QX, Cui Q, Lin J, Assaraf YG, Chen ZS. Multidrug resistance proteins (MRPs): Structure, function and the overcoming of cancer multidrug resistance. Drug Resist Updat 2021; 54:100743. [PMID: 33513557 DOI: 10.1016/j.drup.2021.100743] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate the ATP-driven translocation of structurally and mechanistically distinct substrates against steep concentration gradients. Among the seven human ABC subfamilies namely ABCA-ABCG, ABCC is the largest subfamily with 13 members. In this respect, 9 of the ABCC members are termed "multidrug resistance proteins" (MRPs1-9) due to their ability to mediate cancer multidrug resistance (MDR) by extruding various chemotherapeutic agents or their metabolites from tumor cells. Furthermore, MRPs are also responsible for the ATP-driven efflux of physiologically important organic anions such as leukotriene C4, folic acid, bile acids and cAMP. Thus, MRPs are involved in important regulatory pathways. Blocking the anticancer drug efflux function of MRPs has shown promising results in overcoming cancer MDR. As a result, many novel MRP modulators have been developed in the past decade. In the current review, we summarize the structure, tissue distribution, biological and pharmacological functions as well as clinical insights of MRPs. Furthermore, recent updates in MRP modulators and their therapeutic applications in clinical trials are also discussed.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China; Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY, 11794, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
7
|
Odin E, Sondén A, Carlsson G, Gustavsson B, Wettergren Y. Folate pathway genes linked to mitochondrial biogenesis and respiration are associated with outcome of patients with stage III colorectal cancer. Tumour Biol 2019; 41:1010428319846231. [PMID: 31223065 DOI: 10.1177/1010428319846231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
5-fluorouracil in combination with the folate leucovorin is the cornerstone in treatment of colorectal cancer. Transport of leucovorin into cells, and subsequent metabolic action, require expression of several genes. The aim was to analyze if tumoral expression of genes putatively involved in leucovorin transport, polyglutamation, or metabolism was associated with outcome of patients with stage III colorectal cancer treated with adjuvant chemotherapy. A total of 363 stage III colorectal cancer patients who received adjuvant bolus 5-fluorouracil + leucovorin alone, or in combination with oxaliplatin according to Nordic bolus regimes were included. Expression of 11 folate pathway genes was determined in tumors using quantitative real-time polymerase chain reaction and related to disease-free survival. The median follow-up time was 5 years. During follow-up, 114 (31%) patients suffered from recurrent disease. A high tumoral expression of the genes SLC46A1/PCFT, SLC19A1/RFC-1, ABCC3/MRP3, GGH, and MTHFD1L, which are involved in folate transport, polyglutamation, or metabolism, was associated with longer disease-free survival of the patients. Each of these genes either encodes mitochondrial enzymes or is being regulated by mitochondrial transcription factors. Expression of the SLC46A1/PCFT gene was most strongly associated with disease-free survival, regardless of treatment regimen. In conclusion, the results show that expression of folate pathway genes are associated with outcome of colorectal cancer patients treated with adjuvant 5-fluorouracil in combination with leucovorin. A prospective study needs to be conducted to determine if expression of these genes can be used to predict response to leucovorin and other folates that are now being tested in clinical studies. Moreover, there seems to be a link between folate metabolism and mitochondrial biogenesis and respiration that deserves further exploration.
Collapse
Affiliation(s)
- Elisabeth Odin
- 1 Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Arvid Sondén
- 2 Bioinformatics Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Carlsson
- 1 Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustavsson
- 1 Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Wettergren
- 1 Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
Gervasini G, Mota-Zamorano S. Clinical Implications of Methotrexate Pharmacogenetics in Childhood Acute Lymphoblastic Leukaemia. Curr Drug Metab 2019; 20:313-330. [DOI: 10.2174/1389200220666190130161758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Background:In the past two decades, a great body of research has been published regarding the effects of genetic polymorphisms on methotrexate (MTX)-induced toxicity and efficacy. Of particular interest is the role of this compound in childhood acute lymphoblastic leukaemia (ALL), where it is a pivotal drug in the different treatment protocols, both at low and high doses. MTX acts on a variety of target enzymes in the folates cycle, as well as being transported out and into of the cell by several transmembrane proteins.Methods:We undertook a structured search of bibliographic databases for peer-reviewed research literature using a focused review question.Results:This review has intended to summarize the current knowledge concerning the clinical impact of polymorphisms in enzymes and transporters involved in MTX disposition and mechanism of action on paediatric patients with ALL.Conclusion:In this work, we describe why, in spite of the significant research efforts, pharmacogenetics findings in this setting have not yet found their way into routine clinical practice.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| | - Sonia Mota-Zamorano
- Department of Medical & Surgical Therapeutics, Medical School, University of Extremadura, Av. Elvas s/n 06006, Badajoz, Spain
| |
Collapse
|
10
|
Taflin H, Odin E, Derwinger K, Carlsson G, Gustavsson B, Wettergren Y. Relationship between folate concentration and expression of folate-associated genes in tissue and plasma after intraoperative administration of leucovorin in patients with colorectal cancer. Cancer Chemother Pharmacol 2018; 82:987-997. [PMID: 30269276 PMCID: PMC6267663 DOI: 10.1007/s00280-018-3690-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/24/2018] [Indexed: 01/06/2023]
Abstract
Purpose The aim of study was to investigate the relationship between folate concentration and expression of folate-associated genes in tumour, mucosa and plasma of patients with colorectal cancer, after intraoperative administration of bolus leucovorin (LV). Methods Eighty patients were randomized into four groups to receive 0, 60, 200, or 500 mg/m2 LV, respectively. Tissue and plasma folate concentrations were assessed by LC–MS/MS. Gene expression of ABCC3/MRP3, FPGS, GGH, MTHFD1L, SLC46A1/PCFT, and SLC19A1/RFC-1 was determined using quantitative PCR. Results The folate concentration in tumour increased with increasing dosage of LV. Half of the patients treated with 60 mg/m2 did not reach a level above the levels of untreated patients. A significant correlation between folate concentration in tumour and mucosa was found in untreated patients, and in the group treated with 60 mg/m2 LV. The 5-MTHF/LV ratio correlated negatively with folate concentration in mucosa, whereas a positive correlation was found in tumour of patients who received 200 or 500 mg/m2 LV. A positive correlation was found between folate concentration and expression of all genes, except MTHFD1L, in patients who received LV. There was a negative correlation between 5-MTHF concentration in plasma of untreated patients and expression of GGH and SLC46A1/PCFT in tumour. Conclusions The results indicate the possibility of using the individual plasma 5-MTHF/LV ratio after LV injection as a surrogate marker for tissue folate concentration. Expression of several folate-associated genes is associated with folate concentration in tissue and plasma and may become useful when predicting response to LV treatment. Electronic supplementary material The online version of this article (10.1007/s00280-018-3690-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helena Taflin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden.
| | - Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden
| | - Kristoffer Derwinger
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden
| | - Göran Carlsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, 41685, Gothenburg, Sweden
| |
Collapse
|
11
|
Mazumdar M. Does arsenic increase the risk of neural tube defects among a highly exposed population? A new case-control study in Bangladesh. Birth Defects Res 2018; 109:92-98. [PMID: 27801974 DOI: 10.1002/bdra.23577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/01/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neural tube defects are debilitating birth defects that occur when the developing neural plate fails to close in early gestation. Arsenic induces neural tube defects in animal models, but whether environmental arsenic exposure increases risk of neural tube defects in humans is unknown. METHODS We describe a new case-control study in Bangladesh, a country currently experiencing an epidemic of arsenic poisoning through contaminated drinking water. We plan to understand how arsenic influences risk of neural tube defects in humans through mechanisms that include disruption of maternal glucose and folate metabolism, as well as epigenetic effects. We also investigate whether sweat chloride concentration, a potential new biomarker for arsenic toxicity, can be used to identify women at higher risk for having a child affected by neural tube defect. We will collect dural tissue from cases, obtained at the time of surgical closure of the defect, and believe investigation of these samples will provide insight into the epigenetic mechanisms by which prenatal arsenic exposure affects the developing nervous system. CONCLUSION These studies explore mechanisms by which arsenic may increase risk of neural tube defects in humans and use a unique population with high arsenic exposure to test hypotheses. If successful, these studies may assist countries with high arsenic exposure such as Bangladesh to identify populations at high risk of neural tube defects, as well as direct development of novel screening strategies for maternal risk.Birth Defects Research 109:92-98, 2017.© 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maitreyi Mazumdar
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
12
|
Gao X, Finnell RH, Wang H, Zheng Y. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid. Birth Defects Res 2018; 110:982-993. [PMID: 29732722 DOI: 10.1002/bdr2.1336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are clinically significant congenital malformations which are known to be folic acid (FA) responsive, such that supplementation significantly reduces the prevalence of NTDs. Nonetheless, some individuals fail to respond to FA supplementation; hence NTDs remain a significant public health concern. The mechanisms that underlie the beneficial effects of FA supplementation remain poorly understood. Mouse models have been used extensively to study the mechanisms driving neural tube closure (NTC). METHODS Microarray data of GSE51285 was downloaded from the NCBI GEO database, which contains the RNA expression profiles of livers from five NTD mouse mutants (heterozygous females) and their corresponding wildtype (WT) controls. Those five NTD mutants have different responsiveness to FA supplementation. The differentially expressed genes (DEGs) between NTD heterozygous and WT mice, as well as the DEGs between FA-responsive and FA-resistant mutants were carefully examined. Weighted gene correlation network analysis (WGCNA) was performed in order to identify genes with high correlations to either FA responsiveness or NTDs, respectively. RESULTS In total, we identified 18 genes related to the pathogenesis of NTDs, as well as 55 genes related to FA responsiveness. Eight more candidate genes (Abcc3, Gsr, Gclc, Mthfd1, Gart, Bche, Slc25a32, and Slc44a2) were identified by examining the DEGs of those genes involved in the extended folate metabolic pathway between FA-responsive and FA-resistant mutants. CONCLUSIONS Those genes are involved in mitochondrial choline metabolism, de novo purine synthesis, and glutathione generation, suggesting that formate, choline, and manipulating antioxidant levels may be effective interventions in FA-resistant NTDs.
Collapse
Affiliation(s)
- Xiaoya Gao
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Richard H Finnell
- Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas.,Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yufang Zheng
- Institute of Developmental Biology & Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhitomirsky B, Farber H, Assaraf YG. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance. J Cell Mol Med 2018; 22:2131-2141. [PMID: 29377455 PMCID: PMC5867146 DOI: 10.1111/jcmm.13485] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023] Open
Abstract
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).
Collapse
Affiliation(s)
- Benny Zhitomirsky
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hodaya Farber
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Gervasini G, de Murillo SG, Jiménez M, de la Maya MD, Vagace JM. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene 2017; 628:72-77. [DOI: 10.1016/j.gene.2017.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
|
15
|
Ishiguro L, Yang M, Sohn KJ, Streutker CJ, Grin A, Croxford R, Kim YI. Folic Acid Supplementation Adversely Affects Chemosensitivity of Colon Cancer Cells to 5-fluorouracil. Nutr Cancer 2016; 68:780-90. [DOI: 10.1080/01635581.2016.1170168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|
17
|
Odin E, Sondén A, Gustavsson B, Carlsson G, Wettergren Y. Expression of Folate Pathway Genes in Stage III Colorectal Cancer Correlates with Recurrence Status Following Adjuvant Bolus 5-FU-Based Chemotherapy. Mol Med 2015; 21:597-604. [PMID: 26193446 DOI: 10.2119/molmed.2014.00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer is commonly treated with 5-fluorouracil and 5-formyltetrahydrofolate (leucovorin). Metabolic action of leucovorin requires several enzymatic steps that are dependent on expression of corresponding coding genes. To identify folate pathway genes with possible impact on leucovorin metabolism, a retrospective study was performed on 193 patients with stage III colorectal cancer. Relative expression of 22 genes putatively involved in leucovorin transport, polyglutamation and metabolism was determined in tumor and mucosa samples using quantitative real-time polymerase chain reaction. After surgery, patients received adjuvant 5-fluorouracil-based bolus chemotherapy with leucovorin during six months, and were followed for 3 to 5 years. Cox regression analysis showed that high tumoral expression of the genes SLC46A1/PCFT (proton-coupled folate transporter) and SLC19A1/RFC-1 (reduced folate carrier 1) correlated significantly (p < 0.001 and p < 0.01, respectively) with a decreased risk of recurrent disease, measured as disease-free survival (DFS). These two genes are involved in the transport of folates into the cells and each functions optimally at a different pH. We conclude that SLC46A1/PCFT and SLC19A1/RFC-1 are associated with DFS of patients with colorectal cancer and hypothesize that poor response to 5-fluorouracil plus leucovorin therapy in some patients may be linked to low expression of these genes. Such patients might need a more intensified therapeutic approach than those with high gene expression. Future prospective studies will determine if the expression of any of these genes can be used to predict response to leucovorin.
Collapse
Affiliation(s)
- Elisabeth Odin
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Arvid Sondén
- Genomics and Bioinformatics Core Facilities, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Göran Carlsson
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska University Hospital/Östra, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Abstract
The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described.
Collapse
Affiliation(s)
- Michele Visentin
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461; , , ,
| | | | | | | |
Collapse
|
19
|
Hooijberg JH, Jansen G, Kathmann I, Pieters R, Laan AC, van Zantwijk I, Kaspers GJL, Peters GJ. Folates provoke cellular efflux and drug resistance of substrates of the multidrug resistance protein 1 (MRP1). Cancer Chemother Pharmacol 2014; 73:911-7. [PMID: 24595806 DOI: 10.1007/s00280-014-2421-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
Abstract
Cellular folate concentration was earlier reported to be a critical factor in the activity and expression of the multidrug resistance protein MRP1 (ABCC1). Since MRP1 mediates resistance to a variety of therapeutic drugs, we investigated whether the cellular folate concentration influences the MRP1-mediated cellular resistance against drugs. As a model system, we used the human ovarian carcinoma cell line 2008wt, and its stably MRP1/ABCC1-transfected subline 2008/MRP1. These cell types have a moderate and high expression of MRP1, respectively. In folate-deprived 2008/MRP1 cells, the MRP1-mediated efflux of its model substrate calcein decreased to ~55 % of the initial efflux rate under folate-rich conditions. In 2008wt cells, only a small decrease in efflux was observed. Folate depletion for 5-10 days markedly increased (~500 %) cellular steady-state accumulation of calcein in 2008/MRP1 cells and moderately in 2008wt cells. A subsequent short (24 h) exposure to 2.3 μM L-leucovorin decreased calcein levels again in MRP1-overexpressing cells. Folate deprivation markedly increased growth inhibitory effects of the established MRP1 substrates daunorubicin (~twofold), doxorubicin (~fivefold), and methotrexate (~83-fold) in MRP1-overexpressing cells, proportional to MRP1 expression. In conclusion, this study demonstrates that increased cellular folate concentrations induce MRP1/ABCC1-related drug efflux and drug resistance. These results have important implications in the understanding of the role of MRP1 and its homologs in clinical drug resistance.
Collapse
Affiliation(s)
- Jan Hendrik Hooijberg
- Department of Clinical Chemistry, Slotervaartziekenhuis Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Veringa SJE, Biesmans D, van Vuurden DG, Jansen MHA, Wedekind LE, Horsman I, Wesseling P, Vandertop WP, Noske DP, Kaspers GJL, Hulleman E. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS One 2013; 8:e61512. [PMID: 23637844 PMCID: PMC3639279 DOI: 10.1371/journal.pone.0061512] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/09/2013] [Indexed: 12/04/2022] Open
Abstract
Pediatric high-grade gliomas (pHGG), including diffuse intrinsic pontine gliomas (DIPG), are the leading cause of cancer-related death in children. While it is clear that surgery (if possible), and radiotherapy are beneficial for treatment, the role of chemotherapy for these tumors is still unclear. Therefore, we performed an in vitro drug screen on primary glioma cells, including three DIPG cultures, to determine drug sensitivity of these tumours, without the possible confounding effect of insufficient drug delivery. This screen revealed a high in vitro cytotoxicity for melphalan, doxorubicine, mitoxantrone, and BCNU, and for the novel, targeted agents vandetanib and bortezomib in pHGG and DIPG cells. We subsequently determined the expression of the drug efflux transporters P-gp, BCRP1, and MRP1 in glioma cultures and their corresponding tumor tissues. Results indicate the presence of P-gp, MRP1 and BCRP1 in the tumor vasculature, and expression of MRP1 in the glioma cells themselves. Our results show that pediatric glioma and DIPG tumors per se are not resistant to chemotherapy. Treatment failure observed in clinical trials, may rather be contributed to the presence of drug efflux transporters that constitute a first line of drug resistance located at the blood-brain barrier or other resistance mechanism. As such, we suggest that alternative ways of drug delivery may offer new possibilities for the treatment of pediatric high-grade glioma patients, and DIPG in particular.
Collapse
Affiliation(s)
- Susanna J. E. Veringa
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis Biesmans
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dannis G. van Vuurden
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc H. A. Jansen
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Laurine E. Wedekind
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Ilona Horsman
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - David P. Noske
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - GertJan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neuro-Oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
21
|
Placental ABC transporters, cellular toxicity and stress in pregnancy. Chem Biol Interact 2013; 203:456-66. [PMID: 23524238 DOI: 10.1016/j.cbi.2013.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Abstract
The human placenta, in addition to its roles as a nutrient transfer and endocrine organ, functions as a selective barrier to protect the fetus against the harmful effects of exogenous and endogenous toxins. Members of the ATP-binding cassette (ABC) family of transport proteins limit the entry of xenobiotics into the fetal circulation via vectorial efflux from the placenta to the maternal circulation. Several members of the ABC family, including proteins from the ABCA, ABCB, ABCC and ABCG subfamilies, have been shown to be functional in the placenta with clinically significant roles in xenobiotic efflux. However, recent findings suggest that these transporters also protect placental tissue by preventing the cellular accumulation of cytotoxic compounds such as lipids, sterols and their derivatives. Such protective functions are likely to be particularly important in pregnancies complicated by inflammatory or oxidative stress, where the generation of toxic metabolites is enhanced. For example, ABC transporters have been shown to protect against the harmful effects of hypoxia and oxidative stress through increased expression and efflux of oxysterols and glutathione conjugated xenobiotics. However, this protective capacity may be diminished in response to the same stressors. Several studies in primary human trophoblast cells and animal models have demonstrated decreased expression and activity of placental ABC transporters with inflammatory, oxidative or metabolic stress. Several clinical studies in pregnancies complicated by inflammatory conditions such as preeclampsia and gestational diabetes support these findings, although further studies are required to determine the clinical relevance of the relationships between placental ABC transporter expression and activity, and placental function in stressed pregnancies. Such studies are necessary to fully understand the consequences of pregnancy disorders on placental function and viability in order to optimise pregnancy care and maximise fetal growth and health.
Collapse
|
22
|
Wang X, Cabrera RM, Li Y, Miller DS, Finnell RH. Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J 2012; 27:1167-75. [PMID: 23212123 DOI: 10.1096/fj.12-218495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Folate deficiency has been associated with many adverse clinical manifestations. The blood-brain barrier (BBB), formed by brain capillary endothelial cells, protects the brain from exposure to neurotoxicants. The function of BBB is modulated by multiple ABC transporters, particularly P-glycoprotein. A proton-coupled folate transporter (PCFT)-deficient mouse has been previously described as a model for systemic folate deficiency. Herein, we demonstrate that exposing mouse brain capillaries to the antiepileptic drug, valproic acid (VPA; 5 μM), significantly increased P-glycoprotein transport function in the wild-type animals. A ligand to the aryl hydrocarbon receptor, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), produced a similar induction of P-glycoprotein, which tightened the BBB, thereby increasing the neuroprotection. However, VPA- or TCDD-induced P-glycoprotein transport was blocked in the PCFT-nullizygous mice, indicating that multiple neuroprotective mechanisms are compromised under folate-deficient conditions. Brain capillaries from S-folinic acid (SFA; 40 mg/kg)-treated PCFT-nullizygous mice exhibited increased P-glycoprotein transport following VPA exposure. This suggests that SFA supplementation restored the normal BBB function. In addition, we show that tight-junction proteins are disintegrated in the PCFT mutant mice. Taken together, these findings strongly suggest that folate deficiency disrupts the BBB function by targeting the transporter and tight junctions, which may contribute to the development of neurological disorders.
Collapse
Affiliation(s)
- Xueqian Wang
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | | | | | | | | |
Collapse
|
23
|
Gonen N, Assaraf YG. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist Updat 2012; 15:183-210. [DOI: 10.1016/j.drup.2012.07.002] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/25/2012] [Accepted: 07/11/2012] [Indexed: 01/19/2023]
|
24
|
Williams PJ, Mistry HD, Morgan L. Folate transporter expression decreases in the human placenta throughout pregnancy and in pre-eclampsia. Pregnancy Hypertens 2012; 2:123-31. [PMID: 26105097 DOI: 10.1016/j.preghy.2011.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/01/2011] [Accepted: 12/14/2011] [Indexed: 12/17/2022]
Abstract
The transport of folate across the placenta involves a number of different receptors including folate receptor-alpha (FR-α), reduced folate carrier (RFC) and proton coupled folate transporter (PCFT). In addition there are a number of ATP-dependent transporters which have also recently been shown to be involved in folate transport; these include ABCB1, ABCC2 and BCRP (ABCG2). The aim of the current study was to characterise the placental mRNA and protein expression of these folate transporters throughout gestation and also to see if expression is altered in pre-eclampsia. Placental tissue was collected from women undergoing termination of pregnancy (TOP) and from women undergoing elective Caesarean section. To investigate mRNA expression quantitative real time PCR was used with gene specific oligonucleotide primers to FR-α, RFC, PCFT, ABCB1, ABCC2, BCRP and the reference gene YWHAZ. Protein expression was also characterised using immunohistochemistry of paraffin embedded placental tissue. Both protein and mRNA expression of all transporters examined decreased as the gestation progressed. Expression of FR-α and PCFT mRNA and protein were decreased in pre-eclampsia compared with normal term pregnancy. The higher levels of expression of FR-α, RFC, PCFT, ABCB1, ABCC2 and BCRP in early pregnancy indicate that these transporters may have an important role in the establishment and development of the placenta, with expression reducing in preparation for parturition. Reductions in FR-α and PCFT in pre-eclampsia may be a mechanism involved in the pathogenesis of pre-eclampsia by limiting placental folate uptake resulting in reduced levels of angiogenesis, cell proliferation and antioxidant protection.
Collapse
Affiliation(s)
- Paula Juliet Williams
- Human Genetics, School of Molecular and Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | - Hiten D Mistry
- Division of Women's Health, King's College London, Women's Health Academic Centre, KHP, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Linda Morgan
- Human Genetics, School of Molecular and Medical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
25
|
Zhao R, Diop-Bove N, Visentin M, Goldman ID. Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011; 31:177-201. [PMID: 21568705 DOI: 10.1146/annurev-nutr-072610-145133] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered.
Collapse
Affiliation(s)
- Rongbao Zhao
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
26
|
Held-Kuznetsov V, Rotem S, Assaraf YG, Mor A. Host‐defense peptide mimicry for novel antitumor agents. FASEB J 2009; 23:4299-307. [DOI: 10.1096/fj.09-136358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Viktoria Held-Kuznetsov
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| | - Shahar Rotem
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory Faculty of Biology Technion-Israel Institute of Technology Haifa Israel
| | - Amram Mor
- Department of Biotechnology and Food Engineering Technion-Israel Institute of Technology Haifa Israel
| |
Collapse
|
27
|
Multidrug resistance proteins in rheumatoid arthritis, role in disease‐modifying antirheumatic drug efficacy and inflammatory processes: an overview. Scand J Rheumatol 2009. [DOI: 10.1080/03009740310004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Selection for methotrexate resistance in mammalian cells bearing a Drosophila dihydrofolate reductase transgene: Methotrexate resistance in transgenic mammalian cells. Cell Biol Toxicol 2009; 26:117-26. [PMID: 19337845 DOI: 10.1007/s10565-009-9122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
Antifolates, such as methotrexate (MTX), are the treatment of choice for numerous cancers. MTX inhibits dihydrofolate reductase (DHFR), which is essential for cell growth and proliferation. Mammalian cells can acquire resistance to antifolate treatment through a variety of mechanisms but decreased antifolate titers due to changes in drug efflux or influx, or alternatively, the amplification of the DHFR gene are the most commonly acquired resistance mechanisms. In Drosophila, however, a resistant phenotype has only been observed to occur by mutation resulting in a MTX-resistant DHFR. It is unclear if differences in gene structure and/or genome organization between Drosophila and mammals contribute to the observed differences in acquired drug resistance. To investigate if gene structure is involved, Drosophila Dhfr cDNA was transfected into a line of CHO cells that do not express endogenous DHFR. These transgenic cells, together with wild-type CHO cells, were selected for 19 months for resistance to increasing concentrations of MTX, from 50- to 200-fold over the initial concentration. Since Drosophila Dhfr appears to have been amplified several fold in the selected transgenic mammalian cells, a difference in genome organization may contribute to the mechanism of MTX resistance.
Collapse
|
29
|
Hamid A, Wani NA, Kaur J. New perspectives on folate transport in relation to alcoholism-induced folate malabsorption--association with epigenome stability and cancer development. FEBS J 2009; 276:2175-91. [PMID: 19292860 DOI: 10.1111/j.1742-4658.2009.06959.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Folates are members of the B-class of vitamins, which are required for the synthesis of purines and pyrimidines, and for the methylation of essential biological substances, including phospholipids, DNA, and neurotransmitters. Folates cannot be synthesized de novo by mammals; hence, an efficient intestinal absorption process is required. Intestinal folate transport is carrier-mediated, pH-dependent and electroneutral, with similar affinity for oxidized and reduced folic acid derivatives. The various transporters, i.e. reduced folate carrier, proton-coupled folate transporter, folate-binding protein, and organic anion transporters, are involved in the folate transport process in various tissues. Any impairment in uptake of folate can lead to a state of folate deficiency, the most prevalent vitamin deficiency in world, affecting 10% of the population in the USA. Such impairments in folate transport occur in a variety of conditions, including chronic use of ethanol, some inborn hereditary disorders, and certain diseases. Among these, ethanol ingestion has been the major contributor to folate deficiency. Ethanol-associated folate deficiency can develop because of dietary inadequacy, intestinal malabsorption, altered hepatobiliary metabolism, enhanced colonic metabolism, and increased renal excretion. Ethanol reduces the intestinal and renal uptake of folate by altering the binding and transport kinetics of folate transport systems. Also, ethanol reduces the expression of folate transporters in both intestine and kidney, and this might be a contributing factor for folate malabsorption, leading to folate deficiency. The maintenance of intracellular folate homeostasis is essential for the one-carbon transfer reactions necessary for DNA synthesis and biological methylation reactions. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, in chromosomal modifications, and in the development of mutations. Ethanol, a toxin that is consumed regularly, has been found to affect the methylation of DNA. In addition to its effect on DNA methylation due to folate deficiency, ethanol could directly exert its effect through its interaction with one-carbon metabolism, impairment of methyl group synthesis, and affecting the enzymes regulating the synthesis of S-adenosylmethionine, the primary methyl group donor for most biological methylation reactions. Thus, ethanol plays an important role in the pathogenesis of several diseases through its potential ability to modulate the methylation of biological molecules. This review discusses the underlying mechanism of folate malabsorption in alcoholism, the mechanism of methylation-associated silencing of genes, and how the interaction between ethanol and folate deficiency affects the methylation of genes, thereby modulating epigenome stability and the risk of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | | | | |
Collapse
|
30
|
Lemos C, Kathmann I, Giovannetti E, Beliën JAM, Scheffer GL, Calhau C, Jansen G, Peters GJ. Cellular folate status modulates the expression of BCRP and MRP multidrug transporters in cancer cell lines from different origins. Mol Cancer Ther 2009; 8:655-64. [PMID: 19240161 DOI: 10.1158/1535-7163.mct-08-0768] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As cellular folate levels seem to have a different effect on cancer cells from different origins, we extended our initial study to a broader panel of cancer cells. BCRP and MRP1-5 expression was determined in KB, OVCAR-3, IGROV-1, ZR75-1/R/MTX, SCC-11B, SCC-22B, and WiDr either grown in standard RPMI 1640 containing 2.3 micromol/L supraphysiologic concentration of folic acid [high folate (HF)] or adapted to more physiologic concentrations [1-5 nmol/L folic acid or leucovorin; low folate (LF)]. Compared with the HF counterparts, KB LF cells displayed 16.1-fold increased MRP3 and OVCAR-3 LF cells showed 4.8-fold increased MRP4 mRNA levels along with increased MRP3 and MRP4 protein expression, respectively. A marked increase on BCRP protein and mRNA expression was observed in WiDr LF cells. These cells acquired approximately 2-fold resistance to mitoxantrone compared with the HF cell line, a phenotype that could be reverted by the BCRP inhibitor Ko143. Of note, WiDr cells expressed BCRP in the intracellular compartment, similarly to what we have described for Caco-2 cells. Our results provide further evidence for an important role of cellular folate status in the modulation of the expression of multidrug resistance transporters in cancer cells. We show that up-regulation of intracellularly localized BCRP in response to adaptation to LF conditions may be a common feature within a panel of colon cancer cell lines. Under these circumstances, folate supplementation might improve the efficacy of chemotherapeutic drugs by decreasing BCRP expression.
Collapse
Affiliation(s)
- Clara Lemos
- Department of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Alemdaroglu NC, Dietz U, Wolffram S, Spahn-Langguth H, Langguth P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: potential risk of diminished folic acid bioavailability. Biopharm Drug Dispos 2008; 29:335-48. [PMID: 18551467 DOI: 10.1002/bdd.617] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous in vitro studies using Caco-2 cell monolayers suggested a possible interaction between green and black tea and folic acid at the level of intestinal absorption. The main purpose of the present study was to investigate a possible pharmacokinetic interaction between tea and folic acid in healthy volunteers. In an open-labeled randomized cross-over study, the pharmacokinetic interaction between tea and folic acid (0.4 mg and 5 mg) was investigated in healthy volunteers. Water was used as the reference drink. Subjects ingested 0.4 mg folic acid tablets with water, green or black tea (0.3 g extract/250 ml) or 5 mg folic acid tablets with water or green tea (0.3 g extract/250 ml). Blood samples were collected over a period of 8 h. Serum folate analysis was carried out by a competitive immunoassay which uses direct chemiluminescent technology. At the 0.4 mg folic acid dose, green and black tea reduced the mean C(max) of serum folate by 39.2% and 38.6%, and the mean AUC(0 --> infinity) by 26.6% and 17.9%, respectively. At the 5 mg folic acid dose, the mean C(max) of serum folate was reduced by 27.4% and the mean AUC(0 --> infinity) was decreased significantly by 39.9% by the co-application of green tea. The present results suggest an in vivo interaction between tea and folic acid with even low concentrations of green and black tea extracts yielding decreased bioavailabilities of folic acid.
Collapse
|
32
|
Lemos C, Kathmann I, Giovannetti E, Dekker H, Scheffer GL, Calhau C, Jansen G, Peters GJ. Folate deprivation induces BCRP (ABCG2) expression and mitoxantrone resistance in Caco-2 cells. Int J Cancer 2008; 123:1712-20. [PMID: 18623116 DOI: 10.1002/ijc.23677] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Folates can induce the expression and activity of the breast-cancer-resistance-protein (BCRP) and the multidrug-resistance-protein-1 (MRP1). Our aim was to study the time-dependent effect of folate deprivation/supplementation on (i) BCRP and MRP expression and (ii) on drug resistance mediated by these transporters. Therefore Caco-2 colon cancer cells usually grown in standard RPMI-medium containing supraphysiological folic acid (FA) concentrations (2.3 muM; high-folate, HF) were gradually adapted to more physiological folate concentrations (1 nM leucovorin (LV) or 1 nM FA; low-folate, LF), resulting in the sublines Caco-2-LF/LV and Caco-2-LF/FA. Caco-2-LF/LV and LF/FA cells exhibited a maximal increase of 5.2- and 9.6-fold for BCRP-mRNA and 3.9- and 5.7-fold for BCRP protein expression, respectively, but no major changes on MRP expression. Overexpression of BCRP in the LF-cells resulted in 3.6- to 6.3-fold resistance to mitoxantrone (MR), which was completely reverted by the BCRP inhibitor Ko143. On the other hand, LF-adapted cells were markedly more sensitive to methotrexate than the HF-counterpart, both after 4-hr (9,870- and 23,923-fold for Caco-2-LF/LV and LF/FA, respectively) and 72-hr (11- and 22-fold for Caco-2-LF/LV and LF/FA, respectively) exposure. Immunofluorescent staining observed with a confocal-laser-scan-microscope revealed that in Caco-2 cells (both HF and LF), BCRP is mainly located in the cytoplasm. In conclusion, folate deprivation induces BCRP expression associated with MR resistance in Caco-2 cells. The intracellular localization of BCRP in these cells suggests that this transporter is not primarily extruding its substrates out of the cell, but rather to an intracellular compartment where folates can be kept as storage.
Collapse
Affiliation(s)
- Clara Lemos
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ifergan I, Assaraf YG. Chapter 4 Molecular Mechanisms of Adaptation to Folate Deficiency. FOLIC ACID AND FOLATES 2008; 79:99-143. [DOI: 10.1016/s0083-6729(08)00404-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
34
|
Kang HC, Lee ES, Na K, Bae YH. Stimuli-Sensitive Nanosystems: For Drug and Gene Delivery. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/978-0-387-76554-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
35
|
Keating E, Gonçalves P, Lemos C, Costa F, Campos I, Smith SB, Bridges CC, Martel F. Progesterone Inhibits Folic Acid Transport in Human Trophoblasts. J Membr Biol 2007; 216:143-52. [PMID: 17687501 DOI: 10.1007/s00232-007-9057-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/18/2007] [Indexed: 11/28/2022]
Abstract
The aim of this work was to test the putative involvement of members of the ABC superfamily of transporters on folic acid (FA) cellular homeostasis in the human placenta. [(3)H]FA uptake and efflux in BeWo cells were unaffected or hardly affected by multidrug resistance 1 (MDR1) inhibition (with verapamil), multidrug resistance protein (MRP) inhibition (with probenecid) or breast cancer resistance protein (BCRP) inhibition (with fumitremorgin C). However, [(3)H]FA uptake and efflux were inhibited by progesterone (200 microM). An inhibitory effect of progesterone upon [(3)H]FA uptake and efflux was also observed in human cytotrophoblasts. Moreover, verapamil and ss-estradiol also reduced [(3)H]FA efflux in these cells. Inhibition of [(3)H]FA uptake in BeWo cells by progesterone seemed to be very specific since other tested steroids (beta-estradiol, corticosterone, testosterone, aldosterone, estrone and pregnanediol) were devoid of effect. However, efflux was also inhibited by beta-estradiol and corticosterone and stimulated by estrone. Moreover, the effect of progesterone upon the uptake of [(3)H]FA by BeWo cells was concentration-dependent (IC(50 )= 65 [range 9-448] microM) and seems to involve competitive inhibition. Also, progesterone (1-400 microM) did not affect either [(3)H]FA uptake or efflux at an external acidic pH. Finally, inhibition of [(3)H]FA uptake by progesterone was unaffected by either 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), a known inhibitor of the reduced folate carrier (RFC), or an anti-RFC antibody. These results suggest that progesterone inhibits RFC. In conclusion, our results show that progesterone, a sterol produced by the placenta, inhibits both FA uptake and efflux in BeWo cells and primary cultured human trophoblasts.
Collapse
Affiliation(s)
- Elisa Keating
- Department of Biochemistry (U38-FCT), Faculty of Medicine of Porto, University of Porto, Porto 4200-319, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2007; 2:351-66. [PMID: 16863439 DOI: 10.1517/17425255.2.3.351] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The multi-drug resistance protein 2 (MRP2; ABCC2) is an ATP-binding cassette transporter playing an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, glucuronate and sulfate, which are collectively known as phase II products of biotransformation. In addition, MRP2 can also transport uncharged compounds in cotransport with glutathione, and thus can modulate the pharmacokinetics of many drugs. The other way around, its expression and activity are also altered by certain drugs and disease states. Unlike other members of the MRP/ABCC family, MRP2 is specifically expressed on the apical membrane domain of polarised cells as hepatocytes, renal proximal tubular cells, enterocytes and syncytiotrophoblasts of the placenta. Several naturally occurring mutations leading to the absence of functional MRP2 protein from the apical membrane have been described causing the human Dubin-Johnson syndrome associated with conjugated hyperbilirubinaemia. Experimental mutation studies have revealed critical amino acids for substrate binding in the MRP2 molecule. This review is, therefore, focused on the structure and function of MRP2, the substrates transported and the clinical relevance of MRP2.
Collapse
Affiliation(s)
- Gabriele Jedlitschky
- Research Center of Pharmacology and Experimental Therapeutics, Department of Pharmacology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Loeffler-Str. 23d, 17487 Greifswald, Germany.
| | | | | |
Collapse
|
37
|
Yamasaki D, Tsujimoto M, Ohdo S, Ohtani H, Sawada Y. Possible Mechanisms for the Pharmacokinetic Interaction Between Phenytoin and Folinate in Rats. Ther Drug Monit 2007; 29:404-11. [PMID: 17667793 DOI: 10.1097/ftd.0b013e318074dcf3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The plasma concentration of phenytoin (PHT) is decreased by coadministration of folinate (leucovorin; LV), a folate (FA) analogue. The aim of this study was to examine the effect of LV on the pharmacokinetics of PHT in rats in vivo and to investigate the mechanism of the interaction. LV (50 mg/kg) was administered orally to rats concomitantly given intravenous PHT (50 mg/kg) to evaluate the effect of LV on the pharmacokinetics of PHT. The effect of LV on the plasma protein binding of PHT was investigated by using plasma from rats that had received oral LV. We also examined the effects of LV on the uptake of PHT into isolated rat hepatocytes and on the metabolism of PHT in isolated rat hepatocytes and rat hepatic microsomes. LV significantly increased the systemic clearance (2-fold) and liver-to-blood partition coefficient (1.24-fold) of PHT. However, it did not affect the plasma protein binding or hepatic uptake of PHT. LV increased the metabolism of PHT in isolated rat hepatocytes, with a significant 1.41-fold increase in the maximum rate of metabolism and a decrease in the Michaelis-Menten constant. On the other hand, 5-methyltetrahydrofolate (5-MTHF), a primary metabolite of LV and FA, significantly increased p-hydroxylation of PHT in rat hepatic microsomes, whereas LV and FA themselves had no effect. In conclusion, these results suggest that, in rats, LV, an FA analogue, decreases the plasma concentration of PHT by increasing the hepatic metabolism of PHT, and the increase in the PHT metabolism is, at least in part, attributable to 5-MTHF.
Collapse
Affiliation(s)
- Daisuke Yamasaki
- Department of Medico-Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
38
|
Affleck JG, Walker VK. Transgenic rescue of methotrexate-induced teratogenicity in Drosophila melanogaster. Toxicol Sci 2007; 99:522-31. [PMID: 17519396 DOI: 10.1093/toxsci/kfm123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The folic acid analog methotrexate (MTX), a competitive inhibitor of dihydrofolate reductase (DHFR), is used to treat a variety of cancers and autoimmune disorders. However, MTX also causes a wide range of toxic effects in healthy cells and is an established teratogen. Efforts to "rescue" the defects caused by MTX by administering a folate analog or by transgenic expression of a DHFR with an altered affinity for MTX have been attempted in a variety of mammals but limited protection was conferred. As a result, our understanding of the effect of MTX at the molecular genetic level remains incomplete and, in addition, continued mammalian sacrifice is not ideal. Due to the similarity of teratogenic effects produced by MTX in Drosophila melanogaster these insects were transformed with DHFR alleles to determine if rescue could be achieved. The resulting "MTX-resistant" flies were subsequently used to investigate changes in gene expression in response to MTX using semiquantitative reverse transcription PCR. The majority (12/14) of key transcripts that were affected in MTX-exposed females including transcripts involved in cell cycle, defense response, and transport were "rescued" in the "MTX-resistant" transgenic flies. These studies illustrate the utility of this invertebrate model for the investigation of molecular effects of MTX-induced teratogenicity, MTX-resistant DHFRs for gene therapy techniques, and teratogenic protection.
Collapse
Affiliation(s)
- Joslynn G Affleck
- Department of Biology, Biosciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
39
|
Mohajer G, Lee ES, Bae YH. Enhanced intercellular retention activity of novel pH-sensitive polymeric micelles in wild and multidrug resistant MCF-7 cells. Pharm Res 2007; 24:1618-27. [PMID: 17385015 DOI: 10.1007/s11095-007-9277-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The purpose of this work was to demonstrate the advantage of using pH-sensitive polymeric mixed micelles (PHSM) composed of poly(L: -histidine) (polyHis)/poly(ethylene glycol) (PEG) and poly(L: -lactic acid) (pLLA)/PEG block copolymers with folate conjugation to increase drug retention in wild-type and MDR tumor cells. MATERIALS AND METHODS Both wild-type and multidrug resistant (MDR) human breast adenocarcinoma (MCF-7) cell lines were used to investigate the accumulation and elimination of doxorubicin (DOX), PHSM with folate (PHSM/f), and pH-insensitive micelles composed of pLLA/PEG block copolymer with folate (PHIM/f). RESULTS Cells treated with PHSM/f showed decelerated elimination kinetics compared to cells treated with PHIM/f. MDR cells treated with drug-containing PHSM/f for 30 min retained 80% of doxorubicin (DOX) even after incubation for 24 h in the absence of drug. On the other hand, cells treated with drug-containing PHIM/f retained only 40% of DOX within the same period of time. Flow cytometry and confocal microscopy confirmed these results. CONCLUSIONS Cellular entry of the micelles occurred via receptor-mediated endocytosis using folate receptors. The pH-induced destabilization of PHSM/f led to rapid distribution of drug and polymer throughout the cells, most likely due to polyHis-mediated endosomal disruption. This reduced the likelihood of drug efflux via exocytosis from resistant tumor cells.
Collapse
Affiliation(s)
- Ghazal Mohajer
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 421 Wakara Way, Suite 315, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
40
|
Oh KT, Yin H, Lee ES, Bae YH. Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b707142f] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Martel F, Gonçalves P, Azevedo I. Absorption of folate by Caco-2 cells is not affected by high glucose concentration. Eur J Pharmacol 2006; 551:19-26. [PMID: 17034785 DOI: 10.1016/j.ejphar.2006.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 10/24/2022]
Abstract
The aim of this work was to investigate the effect of high glucose exposure on the absorption of folate by Caco-2 cells. We verified that apical high glucose did not affect the apical uptake of [(3)H]folate. Both different concentrations of glucose (10-45 mM) and different exposure times (10 min-24 h) were tested. Furthermore, apical high glucose (30 mM) did not affect the intracellular steady-state levels of [(3)H]folate, and simultaneous apical and basolateral high glucose (30 mM) did not change the apical-to-basolateral apparent permeability (P(app)) to [(3)H]folate. Both the apical uptake and the steady-state intracellular levels of [(3)H]folate were strongly reduced by 5-methyltetrahydrofolate, methotrexate, SITS (4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid), DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid) and indomethacin, but were not affected or only hardly affected by p-aminohippuric acid and fumitremorgin C. Moreover, DIDS and indomethacin significantly reduced (by 50-60%) the apical-to-basolateral P(app) to [(3)H]folate, but [(3)H]folate present in the cells at the end of the experiment was higher in the case of indomethacin. Fumitremorgin C had no effect. The effect of the drugs tested was not changed or only hardly changed by high glucose. In conclusion, absorption of [(3)H]folate is not modulated by either apical or basolateral high glucose exposure in Caco-2 cells. Moreover, our results suggest that the apical uptake of [(3)H]folate by Caco-2 cells involves the Reduced Folate Transporter (but not the Organic Anion Transporter), and that Multidrug Resistance Protein and/or Organic Anion Transporter (but not Breast Cancer Resistance Protein) may mediate apical efflux of [(3)H]folate.
Collapse
Affiliation(s)
- Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | | | | |
Collapse
|
42
|
Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 2006; 9:227-46. [PMID: 17092765 DOI: 10.1016/j.drup.2006.09.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 12/28/2022]
Abstract
Members of the ATP-binding cassette (ABC) transporters including P-glycoprotein (Pgp/ABCB1), multidrug resistance proteins (MRPs/ABCC) as well as breast cancer resistance protein (BCRP/ABCG2) function as ATP-dependent drug efflux transporters, which form a unique defense network against multiple chemotherapeutic drugs and cellular toxins. Among antitumor agents is the important group of folic acid antimetabolites known as antifolates. Antifolates such as methotrexate (MTX), pemetrexed and raltitrexed exert their cytotoxic activity via potent inhibition of folate-dependent enzymes essential for purine and pyrimidine nucleotide biosynthesis and thereby block DNA replication. Overexpression of MRPs and BCRP confers resistance upon malignant cells to various hydrophilic and lipophilic antifolates. Apart from their central role in mediating resistance to antifolates and other anticancer drugs, MRPs and BCRP have been recently shown to transport naturally occurring reduced folates. This was inferred from various complementary systems as follows: (a) Cell-free systems including ATP-dependent uptake of radiolabeled folate/MTX into purified inside-out membrane vesicles from stable transfectants and/or cells overexpressing these transporters, (b) Decreased accumulation of radiolabeled folate/MTX in cultured tumor cells overexpressing these transporters, as well as (c) In vivo rodent models such as Eisi hyperbillirubinemic rats (EHBR) that hereditarily lack MRP2 in their canalicular membrane and thereby display a bile that is highly deficient in various reduced folate cofactors and MTX, when compared with wild type Sprague-Dawley (SD) rats. In all cases, these folate/antifolate transporters functioned as high capacity, low affinity ATP-driven exporters. While the mechanism of cellular retention of (anti)folates is mediated via (anti)folylpolyglutamylation, certain efflux transporters including MRP5 (ABCC5) and BCRP were shown to transport both mono-, di- as well as triglutamate derivatives of MTX and folic acid. Furthermore, overexpression of MRPs and BCRP has been shown to result in decreased cellular folate pools, whereas loss of ABC transporter expression brought about a significant expansion in the intracellular reduced folate pool. The latter finding has important implications to antifolate-based chemotherapy as an augmented cellular folate pool results in a significant level of resistance to certain antifolates. Hence, the aims of the present review are: (a) To summarize and discuss the cumulative evidence supporting a functional role for various multidrug resistance efflux transporters of the ABC superfamily which mediate resistance to hydrophilic and lipophilic antifolates, (b) To describe and evaluate the recent data suggesting a role for these efflux transporters in regulation of cellular folate homeostasis under folate replete and deplete conditions. Furthermore, novel developments and future perspectives regarding the identification of novel antifolate target proteins and mechanisms of action, as well as rationally designed emerging drug combinations containing antifolates along with receptor tyrosine kinase inhibitors are being discussed.
Collapse
Affiliation(s)
- Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
43
|
Badagnani I, Castro RA, Taylor TR, Brett CM, Huang CC, Stryke D, Kawamoto M, Johns SJ, Ferrin TE, Carlson EJ, Burchard EG, Giacomini KM. Interaction of methotrexate with organic-anion transporting polypeptide 1A2 and its genetic variants. J Pharmacol Exp Ther 2006; 318:521-9. [PMID: 16702441 DOI: 10.1124/jpet.106.104364] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is used in patients with malignant and autoimmune diseases. This drug is primarily excreted unchanged in the urine, and its net excretion occurs via active secretory and reabsorptive processes. We characterized the interaction of MTX with human organic-anion transporting polypeptide transporter (OATP) 1A2, which is expressed in tissues important for MTX disposition and toxicity, such as the intestine, kidney, liver, and endothelial cells of the blood-brain barrier. In Xenopus laevis oocytes expressing OATP1A2, the uptake of the model substrate, estrone-3-sulfate (ES), was enhanced 30-fold compared with uninjected oocytes. MTX uptake in oocytes expressing OATP1A2 was saturable (Km = 457 +/- 118 microM; Vmax = 17.5 +/- 4.9 pmol/oocyte/60 min) and sensitive to extracellular pH. That is, acidic pHs stimulated MTX uptake by as much as 7-fold. Seven novel protein-altering variants were identified in 270 ethnically diverse DNA samples. Four protein-altering variants in OATP1A2 exhibited altered transport of ES and/or MTX. The common variant, protein reference sequence (p.) Ile13Thr, was hyperfunctional for ES and MTX and showed a 2-fold increase in the V(max) for ES. The common variant, p. Glu172Asp, exhibited reduced maximal transport capacity for ES and MTX. p. Arg168Cys was hypofunctional, and p. Asn277DEL was nonfunctional. Because of its expression on the apical membrane of the distal tubule and in tissues relevant to MTX disposition and toxicity, these findings suggest that OATP1A2 may play a role in active tubular reabsorption of MTX and in MTX-induced toxicities. Furthermore, genetic variation in OATP1A2 may contribute to variation in MTX disposition and response.
Collapse
Affiliation(s)
- Ilaria Badagnani
- Department of Biopharmaceutical Sciences, University of California, 1550 4th Street, Box 2911, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affleck JG, Al-Batayneh KM, Neumann K, Cole SPC, Walker VK. Drosophila dihydrofolate reductase mutations confer antifolate resistance to mammalian cells. Eur J Pharmacol 2006; 529:71-8. [PMID: 16325803 DOI: 10.1016/j.ejphar.2005.10.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 10/18/2005] [Accepted: 10/26/2005] [Indexed: 11/22/2022]
Abstract
Antifolates, such as methotrexate, are used to inhibit dihydrofolate reductase (DHFR), an enzyme essential for the biosynthesis of thymidylate, purines, and several amino acids. DHFR sequences corresponding to mutations found in a methotrexate resistant Drosophila S3 cell line (L30Q), a methotrexate resistant fly population (K31P, Q134K), as well as predicted in silico (L22R) were expressed in Chinese Hamster Ovary (CHO) cells. The L30Q and L22R DHFRs both conferred resistance to methotrexate. L22R DHFR provided approximately 200-fold resistance to methotrexate when compared to wild-type Drosophila DHFR allowing CHO(L22R) cells to divide in 10 microM methotrexate, a level of resistance not previously observed in any mammalian system. Constructs using this substitution in combination with other Drosophila DHFR specific residues would make excellent candidates for gene therapy and genetic markers in the treatment of certain human disorders.
Collapse
Affiliation(s)
- Joslynn G Affleck
- Department of Biology, Biosciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | |
Collapse
|
45
|
Hooijberg JH, de Vries NA, Kaspers GJL, Pieters R, Jansen G, Peters GJ. Multidrug resistance proteins and folate supplementation: therapeutic implications for antifolates and other classes of drugs in cancer treatment. Cancer Chemother Pharmacol 2005; 58:1-12. [PMID: 16362298 DOI: 10.1007/s00280-005-0141-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 10/12/2005] [Indexed: 11/25/2022]
Abstract
Over the past decades, numerous reports have covered the crucial role of multidrug resistance (MDR) transporters in the efficacy of various chemotherapeutic drugs. Specific cell membrane-associated transporters mediate drug resistance by effluxing a wide spectrum of toxic agents. Although several excellent reviews have addressed general aspects of drug resistance, this current review aims to highlight implications for the efficacy of folate-based and other types of chemotherapeutic drugs. Folates are vitamins that are daily required for many biosynthetic processes. Folate supplementation in our diet may convey protective effects against several diseases, including cancers, but folate supplementation also makes up an essential part of several current cancer chemotherapeutic regimens. Traditionally, the folate leucovorin, for instance, is used to reduce antifolate toxicity in leukemia or to enhance the effect of the fluoropyrimidine 5-fluorouracil in some solid tumors. More recently, it has also been noted that folic acid has the ability to increase antitumor activity of several structurally unrelated regimens, such as alimta/pemetrexed and cisplatin. Moreover, studies from our laboratory demonstrated that folates could modulate the expression and activity of at least two members of the MDR transporters: MRP1/ABCC1, and the breast cancer resistance protein BCRP/ABCG2. Thus, folate supplementation may have differential effects on chemotherapy: (1) reduction of toxicity, (2) increase of antitumor activity, and (3) induction of MRP1 and BCRP associated cellular drug resistance. In this review the role of MDR proteins is discussed in further detail for each of these three items from the perspective to optimally exploit folate supplementation for enhanced chemotherapeutic efficacy of both antifolate-based chemotherapy and other classes of chemotherapeutic drugs.
Collapse
Affiliation(s)
- J H Hooijberg
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Perry WL, Shepard RL, Sampath J, Yaden B, Chin WW, Iversen PW, Jin S, Lesoon A, O'Brien KA, Peek VL, Rolfe M, Shyjan A, Tighe M, Williamson M, Krishnan V, Moore RE, Dantzig AH. Human splicing factor SPF45 (RBM17) confers broad multidrug resistance to anticancer drugs when overexpressed--a phenotype partially reversed by selective estrogen receptor modulators. Cancer Res 2005; 65:6593-600. [PMID: 16061639 DOI: 10.1158/0008-5472.can-03-3675] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The splicing factor SPF45 (RBM17) is frequently overexpressed in many solid tumors, and stable expression in HeLa cells confers resistance to doxorubicin and vincristine. In this study, we characterized stable transfectants of A2780 ovarian carcinoma cells. In a 3-day cytotoxicity assay, human SPF45 overexpression conferred 3- to 21-fold resistance to carboplatin, vinorelbine, doxorubicin, etoposide, mitoxantrone, and vincristine. In addition, resistance to gemcitabine and pemetrexed was observed at the highest drug concentrations tested. Knockdown of SPF45 in parental A2780 cells using a hammerhead ribozyme sensitized A2780 cells to etoposide by approximately 5-fold relative to a catalytically inactive ribozyme control and untransfected cells, suggesting a role for SPF45 in intrinsic resistance to some drugs. A2780-SPF45 cells accumulated similar levels of doxorubicin as vector-transfected and parental A2780 cells, indicating that drug resistance is not due to differences in drug accumulation. Efforts to identify small molecules that could block SPF45-mediated drug resistance revealed that the selective estrogen receptor (ER) modulators tamoxifen and LY117018 (a raloxifene analogue) partially reversed SPF45-mediated drug resistance to mitoxantrone in A2780-SPF45 cells from 21-fold to 8- and 5-fold, respectively, but did not significantly affect the mitoxantrone sensitivity of vector control cells. Quantitative PCR showed that ERbeta but not ERalpha was expressed in A2780 transfectants. Coimmunoprecipitation experiments suggest that SPF45 and ERbeta physically interact in vivo. Thus, SPF45-mediated drug resistance in A2780 cells may result in part from effects of SPF45 on the transcription or alternate splicing of ERbeta-regulated genes.
Collapse
Affiliation(s)
- William L Perry
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Łania-Pietrzak B, Michalak K, Hendrich AB, Mosiadz D, Grynkiewicz G, Motohashi N, Shirataki Y. Modulation of MRP1 protein transport by plant, and synthetically modified flavonoids. Life Sci 2005; 77:1879-91. [PMID: 15916776 DOI: 10.1016/j.lfs.2005.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 04/10/2005] [Indexed: 11/30/2022]
Abstract
The influence of novel synthetic and plant origin flavonoids on activity of multidrug resistance-associated protein (MRP1) was investigated in human erythrocytes used as a cell model expressing MRP1 in plasma membrane. The fluorescent probe, BCPCF (2', 7'-bis-(3-carboxy-propyl)-5-(and-6)-carboxyfluorescein), was applied as a substrate for MRP1 multidrug resistance transporter. The effect of compounds belonging to different classes of natural flavonoids: flavone, flavonol, isoflavones and flavanolignan was compared with action of new synthetic derivatives of genistein. Most of the flavonoids showed strong or moderate ability to inhibit transport carried out by MRP1. Inhibitory properties of flavonoids were compared to the effects of indomethacin, probenecid and MK-571 known as MRP1 inhibitors. Studying the influence of new synthetic genistein derivatives on BCPCF transport we have found that the presence of hydrophobic groups substituting hydrogen of hydroxyl group at the position 4' in ring B of isoflavone is more important for inhibitory properties than hydrophobic substitution at the position 7 in ring A. In case of naturally occurring isoflavones the replacement of hydrogen at position 4' by hydrophobic ring structure seems also to be favourable for inhibition potency.
Collapse
Affiliation(s)
- Barbara Łania-Pietrzak
- Department of Biophysics, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
48
|
Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 2005; 204:216-37. [PMID: 15845415 DOI: 10.1016/j.taap.2004.10.012] [Citation(s) in RCA: 1017] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/20/2004] [Indexed: 12/21/2022]
Abstract
In tumor cell lines, multidrug resistance is often associated with an ATP-dependent decrease in cellular drug accumulation which is attributed to the overexpression of certain ATP-binding cassette (ABC) transporter proteins. ABC proteins that confer drug resistance include (but are not limited to) P-glycoprotein (gene symbol ABCB1), the multidrug resistance protein 1 (MRP1, gene symbol ABCC1), MRP2 (gene symbol ABCC2), and the breast cancer resistance protein (BCRP, gene symbol ABCG2). In addition to their role in drug resistance, there is substantial evidence that these efflux pumps have overlapping functions in tissue defense. Collectively, these proteins are capable of transporting a vast and chemically diverse array of toxicants including bulky lipophilic cationic, anionic, and neutrally charged drugs and toxins as well as conjugated organic anions that encompass dietary and environmental carcinogens, pesticides, metals, metalloids, and lipid peroxidation products. P-glycoprotein, MRP1, MRP2, and BCRP/ABCG2 are expressed in tissues important for absorption (e.g., lung and gut) and metabolism and elimination (liver and kidney). In addition, these transporters have an important role in maintaining the barrier function of sanctuary site tissues (e.g., blood-brain barrier, blood-cerebral spinal fluid barrier, blood-testis barrier and the maternal-fetal barrier or placenta). Thus, these ABC transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, excretion, and toxicity of xenobiotics. In this review, the role of these four ABC transporter proteins in protecting tissues from a variety of toxicants is discussed. Species variations in substrate specificity and tissue distribution of these transporters are also addressed since these properties have implications for in vivo models of toxicity used for drug discovery and development.
Collapse
Affiliation(s)
- Elaine M Leslie
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
49
|
Folates and antifolates in the treatment of cancer; role of folic acid supplementation on efficacy of folate and non-folate drugs. Trends Food Sci Technol 2005. [DOI: 10.1016/j.tifs.2005.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Kager L, Cheok M, Yang W, Zaza G, Cheng Q, Panetta JC, Pui CH, Downing JR, Relling MV, Evans WE. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest 2005; 115:110-7. [PMID: 15630450 PMCID: PMC539195 DOI: 10.1172/jci22477] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 10/19/2004] [Indexed: 11/17/2022] Open
Abstract
The ability of leukemia cells to accumulate methotrexate polyglutamate (MTXPG) is an important determinant of the antileukemic effects of methotrexate (MTX). We measured in vivo MTXPG accumulation in leukemia cells from 101 children with acute lymphoblastic leukemia (ALL) and established that B-lineage ALL with either TEL-AML1 or E2A-PBX1 gene fusion, or T-lineage ALL, accumulates significantly lower MTXPG compared with B-lineage ALL without these genetic abnormalities or compared with hyperdiploid (fewer than 50 chromosomes) ALL. To elucidate mechanisms underlying these differences in MTXPG accumulation, we used oligonucleotide microarrays to analyze expression of 32 folate pathway genes in diagnostic leukemia cells from 197 children. This revealed ALL subtype-specific patterns of folate pathway gene expression that were significantly related to MTXPG accumulation. We found significantly lower expression of the reduced folate carrier (SLC19A1, an MTX uptake transporter) in E2A-PBX1 ALL, significantly higher expression of breast cancer resistance protein (ABCG2, an MTX efflux transporter) in TEL-AML1 ALL, and lower expression of FPGS (which catalyzes formation of MTXPG) in T-lineage ALL, consistent with lower MTXPG accumulation in these ALL subtypes. These findings reveal distinct mechanisms of subtype-specific differences in MTXPG accumulation and point to new strategies to overcome these potential causes of treatment failure in childhood ALL.
Collapse
Affiliation(s)
- Leo Kager
- Hematological Malignancies Program, and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|