1
|
Birtles D, Lee J. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochem Soc Trans 2024; 52:2593-2602. [PMID: 39700018 DOI: 10.1042/bst20240833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Membrane fusion is an essential component of the viral lifecycle that allows the delivery of the genetic information of the virus into the host cell. Specialized viral glycoproteins exist on the surface of mature virions where they facilitate fusion through significant conformational changes, ultimately bringing opposing membranes into proximity until they eventually coalesce. This process can be positively influenced by a number of specific cellular factors such as pH, enzymatic cleavage, divalent ions, and the composition of the host cell membrane. In this review, we have summarized how anionic lipids have come to be involved in viral fusion and how the endosomal resident anionic lipid BMP has become increasingly implicated as an important cofactor for those viruses that fuse via the endocytic pathway.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, U.S.A
| |
Collapse
|
2
|
Rice A, Haldar S, Wang E, Blank PS, Akimov SA, Galimzyanov TR, Pastor RW, Zimmerberg J. Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration. Nat Commun 2022; 13:7336. [PMID: 36470871 PMCID: PMC9722698 DOI: 10.1038/s41467-022-34576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2022] [Indexed: 12/07/2022] Open
Abstract
To infect, enveloped viruses employ spike protein, spearheaded by its amphipathic fusion peptide (FP), that upon activation extends out from the viral surface to embed into the target cellular membrane. Here we report that synthesized influenza virus FPs are membrane active, generating pores in giant unilamellar vesicles (GUV), and thus potentially explain both influenza virus' hemolytic activity and the liposome poration seen in cryo-electron tomography. Experimentally, FPs are heterogeneously distributed on the GUV at the time of poration. Consistent with this heterogeneous distribution, molecular dynamics (MD) simulations of asymmetric bilayers with different numbers of FPs in one leaflet show FP aggregation. At the center of FP aggregates, a profound change in the membrane structure results in thinning, higher water permeability, and curvature. Ultimately, a hybrid bilayer nanodomain forms with one lipidic leaflet and one peptidic leaflet. Membrane elastic theory predicts a reduced barrier to water pore formation when even a dimer of FPs thins the membrane as above, and the FPs of that dimer tilt, to continue the leaflet bending initiated by the hydrophobic mismatch between the FP dimer and the surrounding lipid.
Collapse
Affiliation(s)
- Amy Rice
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Sourav Haldar
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA ,grid.418363.b0000 0004 0506 6543Present Address: Division of Virus Research and Therapeutics, CSIR-Central Drug Research Institute, Lucknow, UP India
| | - Eric Wang
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Paul S. Blank
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Sergey A. Akimov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Timur R. Galimzyanov
- grid.4886.20000 0001 2192 9124A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia ,grid.35043.310000 0001 0010 3972National University of Science and Technology “MISiS”, 4 Leninskiy Prospect, Moscow, Russia
| | - Richard W. Pastor
- grid.94365.3d0000 0001 2297 5165Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Joshua Zimmerberg
- grid.94365.3d0000 0001 2297 5165Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
3
|
Smrt ST, Lorieau JL. Membrane Fusion and Infection of the Influenza Hemagglutinin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 966:37-54. [PMID: 27966108 DOI: 10.1007/5584_2016_174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The influenza virus is a major health concern associated with an estimated 5000 to 30,000 deaths every year (Reed et al. 2015) and a significant economic impact with the development of treatments, vaccinations and research (Molinari et al. 2007). The entirety of the influenza genome is comprised of only eleven coding genes. An enormous degree of variation in non-conserved regions leads to significant challenges in the development of inclusive inhibitors for treatment. The fusion peptide domain of the influenza A hemagglutinin (HA) is a promising candidate for treatment since it is one of the most highly conserved sequences in the influenza genome (Heiny et al. 2007), and it is vital to the viral life cycle. Hemagglutinin is a class I viral fusion protein that catalyzes the membrane fusion process during cellular entry and infection. Impediment of the hemagglutinin's function, either through incomplete post-translational processing (Klenk et al. 1975; Lazarowitz and Choppin 1975) or through mutations (Cross et al. 2001), leads to non-infective virus particles. This review will investigate current research on the role of hemagglutinin in the virus life cycle, its structural biology and mechanism as well as the central role of the hemagglutinin fusion peptide (HAfp) to influenza membrane fusion and infection.
Collapse
Affiliation(s)
- Sean T Smrt
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Justin L Lorieau
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Smrt ST, Draney AW, Lorieau JL. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J Biol Chem 2014; 290:228-38. [PMID: 25398882 DOI: 10.1074/jbc.m114.611657] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The highly conserved N-terminal 23 residues of the hemagglutinin glycoprotein, known as the fusion peptide domain (HAfp23), is vital to the membrane fusion and infection mechanism of the influenza virus. HAfp23 has a helical hairpin structure consisting of two tightly packed amphiphilic helices that rest on the membrane surface. We demonstrate that HAfp23 is a new class of amphipathic helix that functions by leveraging the negative curvature induced by two tightly packed helices on membranes. The helical hairpin structure has an inverted wedge shape characteristic of negative curvature lipids, with a bulky hydrophobic region and a relatively small hydrophilic head region. The F3G mutation reduces this inverted wedge shape by reducing the volume of its hydrophobic base. We show that despite maintaining identical backbone structures and dynamics as the wild type HAfp23, the F3G mutant has an attenuated fusion activity that is correlated to its reduced ability to induce negative membrane curvature. The inverted wedge shape of HAfp23 is likely to play a crucial role in the initial stages of membrane fusion by stabilizing negative curvature in the fusion stalk.
Collapse
Affiliation(s)
- Sean T Smrt
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Adrian W Draney
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| | - Justin L Lorieau
- From the Department of Chemistry, University of Illinois, Chicago, Illinois 60607
| |
Collapse
|
5
|
Delgado CL, Núñez E, Yélamos B, Gómez-Gutiérrez J, Peterson DL, Gavilanes F. Spectroscopic Characterization and Fusogenic Properties of PreS Domains of Duck Hepatitis B Virus. Biochemistry 2012; 51:8444-54. [DOI: 10.1021/bi3008406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmen L. Delgado
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Elena Núñez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Belén Yélamos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Julián Gómez-Gutiérrez
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| | - Darrell L. Peterson
- Department of Biochemistry and
Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, United
States
| | - Francisco Gavilanes
- Departamento de Bioquímica
y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
6
|
Castro BM, de Almeida RFM, Fedorov A, Prieto M. The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chem Phys Lipids 2012; 165:311-9. [PMID: 22405877 DOI: 10.1016/j.chemphyslip.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
The organization of lipids and proteins into domains in cell membranes is currently an established subject within biomembrane research. Fluorescent probes have been used to detect and characterize these membrane lateral heterogeneities. However, a comprehensive understanding of the link between the probes' fluorescence features and membrane lateral organization can only be achieved if their photophysical properties are thoroughly defined. In this work, a systematic characterization of N-(lyssamine Rhodamine B sulfonyl)-1,2-dioleoyl-sn-3-phosphatidylehanolamine (Rhod-DOPE) absorption and fluorescence behavior in gel, liquid-ordered (l(o)) and liquid-disordered (l(d)) model membranes was performed. In agreement with a previous study, it was found that Rhod-DOPE fluorescence lifetimes present a strong sensitivity to lipid phases, becoming significantly shorter in l(o) membranes as the probe membrane concentration increases. The sensitivity of Rhod-DOPE absorption and fluorescence properties to the membrane phase was further explored. In particular, the fluorescence lifetime sensitivity was shown to be a consequence of the enhanced Rhod-DOPE fluorescence dynamic self-quenching, due to the formation of probe-rich membrane domains in these condensed phases that cannot be considered as typical probe aggregates, as excitonic interaction is not observed. The highly efficient dynamic self-quenching was shown to be specific to l(o) phases, pointing to an important effect of membrane dipole potential in this process. Altogether, this work establishes how to use Rhod-DOPE fluorescence properties in the study of membrane lipid lateral heterogeneities, in particular cholesterol-enriched lipid rafts.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química Física-Molecular, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.
| | | | | | | |
Collapse
|
7
|
Desbat B, Lancelot E, Krell T, Nicolaï MC, Vogel F, Chevalier M, Ronzon F. Effect of the β-propiolactone treatment on the adsorption and fusion of influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 virus H1N1 on a dimyristoylphosphatidylcholine/ganglioside GM3 mixed phospholipids monolayer at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13675-13683. [PMID: 21981550 DOI: 10.1021/la2027175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The production protocol of many whole cell/virion vaccines involves an inactivation step with β-propiolactone (BPL). Despite the widespread use of BPL, its mechanism of action is poorly understood. Earlier work demonstrated that BPL alkylates nucleotide bases, but its interaction with proteins has not been studied in depth. In the present study we use ellipsometry to analyze the influence of BPL treatment of two H1N1 influenza strains, A/Brisbane/59/2007 and A/New Caledonia/20/1999, which are used for vaccine production on an industrial scale. Analyses were conducted using a mixed lipid monolayer containing ganglioside GM3, which functions as the viral receptor. Our results show that BPL treatment of both strains reduces viral affinity for the mixed monolayer and also diminishes the capacity of viral domains to self-assemble. In another series of experiments, the pH of the subphase was reduced from 7.4 to 5 to provoke the pH-induced conformational change of hemagglutinin, which occurs following endocytosis into the endosome. In the presence of the native virus the pH decrease caused a reduction in domain size, whereas lipid layer thickness and surface pressure were increased. These observations are consistent with a fusion of the viral membrane with the lipid monolayer. Importantly, this fusion was not observed with adsorbed inactivated virus, which indicates that BPL treatment inhibits the first step of virus-membrane fusion. Our data also indicate that BPL chemically modifies hemagglutinin, which mediates the interaction with GM3.
Collapse
Affiliation(s)
- Bernard Desbat
- CBMN, UMR CNRS 5248, Université Bordeaux, IPB, Allée Geoffroy Saint Hilaire 33600 Pessac, France.
| | | | | | | | | | | | | |
Collapse
|
8
|
Promotion of vesicular stomatitis virus fusion by the endosome-specific phospholipid bis(monoacylglycero)phosphate (BMP). FEBS Lett 2011; 585:865-9. [PMID: 21333650 DOI: 10.1016/j.febslet.2011.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 11/22/2022]
Abstract
Vesicular stomatitis virus (VSV) is a prototypic virus commonly used in studies of endocytosis and membrane trafficking. One proposed mechanism for VSV entry involves initial fusion with internal vesicles of multivesicular endosomes followed by back-fusion of these vesicles into the cytoplasm. One feature of endosomal internal vesicles is that they contain the lipid bis(monoacylglycero)phosphate (BMP). Here, we show that the presence of BMP significantly increases the rate of VSV G-mediated membrane fusion. The increased fusion was selective for VSV and was not evident for another enveloped virus, influenza virus. Our data provide a biological rationale for a two-step infection reaction during VSV entry, and suggest that BMP preferentially affects the ability of VSV G to mediate lipid mixing during membrane fusion.
Collapse
|
9
|
Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog 2010; 6:e1001131. [PMID: 20949067 PMCID: PMC2951369 DOI: 10.1371/journal.ppat.1001131] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 09/03/2010] [Indexed: 12/31/2022] Open
Abstract
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design. Dengue virus infection is a growing public health problem with up to 100 million cases annually, and neither vaccines nor effective therapies are available. To search for the ways of preventing and treating dengue infections we need to better understand their molecular mechanisms. As with many other viruses, dengue virus enters cells by fusion between the viral membrane and the membrane of intracellular vesicles (endosomes). In this work we explored the fusion stage of dengue virus entry in different experimental systems ranging from virus fusion to artificial lipid membranes to fusion inside the cells. While earlier work on dengue virus entry has focused on viral protein that mediates fusion, we found that effective action of this protein requires specific lipid composition of the membrane the virus fuses to. In effect, this lipid dependence allows virus to control intracellular location of the fusion event and, thus, the place of its RNA release by exploiting cell-controlled differences between lipid compositions of different organelles the virus travels through. The essential role of the interactions between dengue virus and its lipid cofactors during viral entry suggests that these interactions may be targeted in drug design.
Collapse
Affiliation(s)
- Elena Zaitseva
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | | | | | | |
Collapse
|
10
|
Bonnafous P, Perrault M, Le Bihan O, Bartosch B, Lavillette D, Penin F, Lambert O, Pécheur EI. Characterization of hepatitis C virus pseudoparticles by cryo-transmission electron microscopy using functionalized magnetic nanobeads. J Gen Virol 2010; 91:1919-1930. [PMID: 20375221 DOI: 10.1099/vir.0.021071-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cell entry and membrane fusion of the hepatitis C virus (HCV) depend on its envelope glycoproteins E1 and E2. HCV pseudotyped particles (HCVpps) are relevant and popular models to study the early steps of the HCV life cycle. However, no structural characterization of HCVpp has been available so far. Using cryo-transmission electron microscopy (cryo-TEM), providing structural information at nanometric resolution, the molecular details of HCVpps and their fusion with liposomes were studied. Cryo-TEM revealed HCVpps as regular 100 nm spherical structures containing the dense retroviral nucleocapsid surrounded by a lipid bilayer. E1-E2 glycoproteins were not readily visible on the membrane surface. Pseudoparticles bearing the E1-E2 glycoproteins of Semliki forest virus looked similar, whereas avian influenza A virus (fowl plague virus) haemagglutinin/neuraminidase-pseudotyped particles exhibited surface spikes. To further characterize HCVpp structurally, a novel method was designed based on magnetic beads covered with anti-HCV antibodies to enrich the samples with particles containing E1-E2. This strategy efficiently sorted HCVpps, which were then directly observed by cryo-TEM in the presence or absence of liposomes at low or neutral pH. After acidification, HCVpps looked the same as at neutral pH and closely contacted the liposomes. These are the first visualizations of early HCV membrane fusion events at the nanometer scale. Furthermore, fluorimetry analysis revealed a relative resistance of HCVpps regarding their fusion capacity when exposed to low pH. This study therefore brings several new molecular details to HCVpp characterization and this efficient strategy of virion immunosorting with magnetic nanobeads is direct, efficient and adaptable to extensive characterization of any virus at a nanometric resolution.
Collapse
Affiliation(s)
- Pierre Bonnafous
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Marie Perrault
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Le Bihan
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Birke Bartosch
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
| | - Dimitri Lavillette
- Ecole Normale Supérieure de Lyon, F-69007 Lyon, France
- INSERM, U758, F-69007 Lyon, France
- Université de Lyon, UCB-Lyon 1, IFR128, F-69007 Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| | - Olivier Lambert
- CBMN, UMR CNRS 5248, Université Bordeaux 1, ENITAB, IECB, Avenue des Facultés, F-33405 Talence, France
| | - Eve-Isabelle Pécheur
- Institut de Biologie et Chimie des Protéines, UMR CNRS 5086, Université Lyon 1, IFR128 Lyon Biosciences Gerland, F-69007 Lyon, France
| |
Collapse
|
11
|
Buranda T, Wu Y, Perez D, Chigaev A, Sklar LA. Real-time partitioning of octadecyl rhodamine B into bead-supported lipid bilayer membranes revealing quantitative differences in saturable binding sites in DOPC and 1:1:1 DOPC/SM/cholesterol membranes. J Phys Chem B 2010; 114:1336-49. [PMID: 20043651 DOI: 10.1021/jp906648q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative analysis of the staining of cell membranes with the cationic amphiphile, octadecyl rhodamine B (R18), is confounded by probe aggregation and changes to the probes' absorption cross section and emission quantum yield. In this paper, flow cytometry, quantum-dot-based fluorescence calibration beads, and FRET were used to examine real-time transfer of R18 from water to two limiting models of the cellular plasma membrane, namely, a single-component disordered membrane, dioleoyl-L-alpha-phosphatidylcholine (DOPC), and a ternary mixture of DOPC, cholesterol, and sphingomyelin (DSC) membranes, reconstituted on spherical and monodisperse glass beads (lipobeads). The quenching of R18 was analyzed as the probe concentration was raised from 0 to 10 mol % in membranes. The data show a > 2-fold enhancement in the quenching level of the probes that were reconstituted in DSC relative to DOPC membranes at the highest concentration of R18. We have parametrized the propagation of concentration-dependent quenching as a function of real-time binding of R18 to lipobeads. In this way, phenomenological kinetics of serum-albumin-mediated transfer of R18 from the aqueous phase to DOPC and DSC membranes could be evaluated under optimal conditions where the critical aggregation concentration (CAC) of the probe is defined as 14 nM. The mass action kinetics of association of R18 with DOPC and DSC lipobeads are shown to be similar. However, the saturable capacity for accepting exogenous probes is found to be 37% higher in DOPC relative to that for DSC membranes. The difference is comparable to the disparity in the average molecular areas of DOPC and DSC membranes. Finally, this analysis shows little difference in the spectral overlap integrals of the emission spectrum of a fluorescein derivative donor and the absorption spectrum of either monomeric or simulated spectrum of dimeric R18. This approach represents a first step toward a nanoscale probing of membrane heterogeneity in living cells by analyzing differential local FRET among sites of unique receptor expression in living cells.
Collapse
Affiliation(s)
- Tione Buranda
- Department of Pathology and Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | |
Collapse
|
12
|
Hernandez R, Paredes A. Sindbis virus as a model for studies of conformational changes in a metastable virus and the role of conformational changes in in vitro antibody neutralisation. Rev Med Virol 2009; 19:257-72. [DOI: 10.1002/rmv.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Haid S, Pietschmann T, Pécheur EI. Low pH-dependent hepatitis C virus membrane fusion depends on E2 integrity, target lipid composition, and density of virus particles. J Biol Chem 2009; 284:17657-67. [PMID: 19411248 DOI: 10.1074/jbc.m109.014647] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus of about 9.6 kb. Like all enveloped viruses, the HCV membrane fuses with the host cell membrane during the entry process and thereby releases the genome into the cytoplasm, initiating the viral replication cycle. To investigate the features of HCV membrane fusion, we developed an in vitro fusion assay using cell culture-produced HCV and fluorescently labeled liposomes. With this model we could show that HCV-mediated fusion can be triggered in a receptor-independent but pH-dependent manner and that fusion of the HCV particles with liposomes is dependent on the viral dose and on the lipid composition of the target membranes. In addition CBH-5, an HCV E2-specific antibody, inhibited fusion in a dose-dependent manner. Interestingly, point mutations in E2, known to abrogate HCV glycoprotein-mediated fusion in a cell-based assay, altered or even abolished fusion in the liposome-based assay. When assaying the fusion properties of HCV particles with different buoyant density, we noted higher fusogenicity of particles with lower density. This could be attributable to inherently different properties of low density particles, to association of these particles with factors stimulating fusion, or to co-flotation of factors enhancing fusion activity in trans. Taken together, these data show the important role of lipids of both the viral and target membranes in HCV-mediated fusion, point to a crucial role played by the E2 glycoprotein in the process of HCV fusion, and reveal an important behavior of HCV of different densities with regard to fusion.
Collapse
Affiliation(s)
- Sibylle Haid
- Department for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture of Hannover Medical School and the Helmholtz-Centre for Infection Research, Hannover 30625, Germany
| | | | | |
Collapse
|
14
|
Ohnishi SI. Chapter 9 Fusion of Viral Envelopes with Cellular Membranes. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 2008; 32:257-296. [PMID: 32287479 PMCID: PMC7146812 DOI: 10.1016/s0070-2161(08)60137-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
This chapter reviews some characteristic features of membrane fusion activity for each virus and discusses the mechanisms of membrane fusion, especially low pH-induced membrane fusion. It concentrates on the interaction of the hydrophobic segment with the target cell membrane lipid bilayer and suggests the entrance of the segment into the lipid bilayer hydrophobic core as a key step in fusion. The envelope is a lipid bilayer membrane with the virus specific glycoproteins spanning it. The bilayer originates from the host cell membrane and has a lipid composition and transbilayer distribution quite similar to the host's. The viral glycoproteins have the functions of binding to the target cell surface and fusion with the cell membranes. The two functions are carried by a single glycoprotein in influenza virus (HA), vesicular stomatitis virus (VSV) G glycoprotein, and Semliki Forest virus SFV E glycoprotein. In Sendai virus (HVJ), the functions are carried by separate glycoproteins, hemagglutinin-neuraminidase (HN) for binding and fusion glycoprotein (F) for fusion. When viruses encounter target cells, they first bind to the cell surface through an interaction of the viral glycoprotein with receptors.
Collapse
Affiliation(s)
- Shun-Ichi Ohnishi
- Department of Biophysics Facurlty of Science Kyoto University Sakyo-ku. Kyoto 606, Japan
| |
Collapse
|
15
|
Wessels L, Elting MW, Scimeca D, Weninger K. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys J 2007; 93:526-38. [PMID: 17449662 PMCID: PMC1896232 DOI: 10.1529/biophysj.106.097485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many enveloped viruses employ low-pH-triggered membrane fusion during cell penetration. Solution-based in vitro assays in which viruses fuse with liposomes have provided much of our current biochemical understanding of low-pH-triggered viral membrane fusion. Here, we extend this in vitro approach by introducing a fluorescence assay using single particle tracking to observe lipid mixing between individual virus particles (influenza or Sindbis) and supported lipid bilayers. Our single-particle experiments reproduce many of the observations of the solution assays. The single-particle approach naturally separates the processes of membrane binding and membrane fusion and therefore allows measurement of details that are not available in the bulk assays. We find that the dynamics of lipid mixing during individual Sindbis fusion events is faster than 30 ms. Although neither virus binds membranes at neutral pH, under acidic conditions, the delay between membrane binding and lipid mixing is less than half a second for nearly all virus-membrane combinations. The delay between binding and lipid mixing lengthened only for Sindbis virus at the lowest pH in a cholesterol-dependent manner, highlighting the complex interaction between lipids, virus proteins, and buffer conditions in membrane fusion.
Collapse
Affiliation(s)
- Laura Wessels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
16
|
Ohki S, Baker GA, Page PM, McCarty TA, Epand RM, Bright FV. Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid. J Membr Biol 2006; 211:191-200. [PMID: 17091213 DOI: 10.1007/s00232-006-0862-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/12/2006] [Indexed: 11/29/2022]
Abstract
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide's tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Loyter A, Citovsky V, Blumenthal R. The use of fluorescence dequenching measurements to follow viral membrane fusion events. METHODS OF BIOCHEMICAL ANALYSIS 2006; 33:129-64. [PMID: 3128721 DOI: 10.1002/9780470110546.ch4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Chang DK, Cheng SF. pH-dependence of intermediate steps of membrane fusion induced by the influenza fusion peptide. Biochem J 2006; 396:557-63. [PMID: 16519629 PMCID: PMC1482821 DOI: 10.1042/bj20051920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Membrane fusion mediated by the influenza-virus fusion protein is activated by low pH via a cascade of reactions. Some processes among them are irreversible, such as helix hairpin formation of the ectodomain, whereas others are reversible, such as exposure of the fusion peptide. Using this property, we attempted to dissect, in temporal order, different stages of the fusion reaction involving the fusion peptide by an acidic-neutral-acidic pH cycle. The fluorescence-quenching data indicated that both insertion depth and self-assembly are pH-reversible. In addition, lipid mixing assay was demonstrated to be arrested by neutral pH. By contrast, membrane leakage was shown to be irreversible with respect to pH. Our results, along with those from other studies on the pH-dependence of membrane fusion, are used to build a model for the virus-mediated fusion event from the perspective of pH-reversibility.
Collapse
Affiliation(s)
- Ding-Kwo Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 115, Republic of China.
| | | |
Collapse
|
19
|
Huang Q, Sivaramakrishna RP, Ludwig K, Korte T, Böttcher C, Herrmann A. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1614:3-13. [PMID: 12873761 DOI: 10.1016/s0005-2736(03)00158-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A conformational change of the homotrimeric glycoprotein hemagglutinin (HA) of influenza virus mediates fusion between the viral envelope and the endosome membrane. The conformational change of the HA ectodomain is triggered by the acidic pH of the endosome lumen. An essential step of the conformational change is the formation of an extended coiled-coil motif exposing the hydrophobic fusion peptide toward the target membrane. The structures of the neutral-pH, non-fusion active conformation of the HA ectodomain and of a fragment of the ectodomain containing the coiled-coil motif are known. However, it is not known by which mechanism protonation triggers the conformational change of the stable neutral-pH conformation of the ectodomain. Here, recent studies on the stability of the HA ectodomain at neutral pH, the energetics of the conformational change toward the fusion-active state and of the unfolding of the HA ectodomain are summarised. A model for the early steps of the conformational change of the HA ectodomain is presented. The model implicates that protonation leads to a partial dissociation of the distal domains of the HA monomers that is driven by electrostatic repulsion. The opening of the ectodomain enables water to enter the ectodomain. The interaction of water with respective sequences originally shielded from contact with water drives the formation of the coiled-coil structure.
Collapse
Affiliation(s)
- Qiang Huang
- Department of Chemistry, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
20
|
Rawat SS, Viard M, Gallo SA, Rein A, Blumenthal R, Puri A. Modulation of entry of enveloped viruses by cholesterol and sphingolipids (Review). Mol Membr Biol 2003; 20:243-54. [PMID: 12893532 DOI: 10.1080/0968768031000104944] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Enveloped animal viruses infect host cells by fusion of viral and target membranes. This crucial fusion event occurs either with the plasma membrane of the host cells at the physiological pH or with the endosomal membranes at low pH and is triggered by specific glycoproteins in the virus envelope. Both lipids and proteins play critical and co-operative roles in the fusion process. Interactions of viral proteins with their receptors direct which membranes fuse and viral fusion proteins then drive the process. These fusion proteins operate on lipid assemblies, whose physical and mechanical properties are equally important to the proper functioning of the process. Lipids contribute to the viral fusion process by virtue of their distinct chemical structure, composition and/or their preferred partitioning into specific microdomains in the plasma membrane called 'rafts'. An involvement of lipid rafts in viral entry and membrane fusion has been examined recently. However, the mechanism(s) by which lipids as dynamic raft components control viral envelope-glycoprotein-triggered fusion is not clear. This paper will review literature findings on the contribution of the two raft-associated lipids, cholesterol and sphingolipids in viral entry.
Collapse
Affiliation(s)
- Satinder S Rawat
- Laboratory of Experimental and Computational Biology, Center for Cancer Research NCI-Frederick, NIH, PO Box B, Bldg. 469, Rm. 211, Miller Drive Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Baljinnyam B, Schroth-Diez B, Korte T, Herrmann A. Lysolipids do not inhibit influenza virus fusion by interaction with hemagglutinin. J Biol Chem 2002; 277:20461-7. [PMID: 11923295 DOI: 10.1074/jbc.m112217200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of a spin-labeled lysophosphatidylcholine analog with intact and bromelain-treated influenza viruses as well as with the bromelain-solubilized hemagglutinin ectodomain has been studied. The inhibition of fusion of influenza viruses with erythrocytes by the lysophosphatidylcholine analog was similar to that observed for non-labeled lysophosphatidylcholine. Only a weak interaction of the lysophosphatidylcholine analog with the hemagglutinin ectodomain was observed even upon triggering the conformational change of the ectodomain at a low pH. A significant interaction of spin-labeled lysophosphatidylcholine with the hemagglutinin ectodomain of intact viruses was observed neither at neutral nor at low pH, whereas a strong interaction of the lipid analog with the viral lipid bilayer was evident. We suggest that the high number of lipid binding sites of the virus bilayer and their affinity compete efficiently with binding sites of the hemagglutinin ectodomain. We conclude that the inhibition of influenza virus fusion by lysolipids is not mediated by binding to the hemagglutinin ectodomain, preventing its interaction with the target membrane. The results unambiguously argue for an inhibition mechanism based on the action of lysolipid inserted into the lipid bilayer.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Molekulare Biophysik, Invalidenstrasse 42, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Remeta DP, Krumbiegel M, Minetti CASA, Puri A, Ginsburg A, Blumenthal R. Acid-induced changes in thermal stability and fusion activity of influenza hemagglutinin. Biochemistry 2002; 41:2044-54. [PMID: 11827552 DOI: 10.1021/bi015614a] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformational and thermal stability of full-length hemagglutinin (HA) of influenza virus (strain X31) has been investigated using a combination of differential scanning calorimetry (DSC), analytical ultracentrifugation, fluorescence, and circular dichroism (CD) spectroscopy as a function of pH. HA sediments as a rosette comprised of 5-6 trimers (31-35 S) over the pH range of 7.4-5.4. The DSC profile of HA in the native state at pH 7.4 is characterized by a single cooperative endotherm with a transition temperature (Tm) of 66 degrees C and unfolding enthalpy (DeltaH(cal)) of 800 kcal x (mol of trimer)(-1). Upon acidification to pH 5.4, there is a significant decrease in the transition temperature (from 66 to 45 degrees C), unfolding enthalpy [from 800 to 260 kcal x (mol of trimer)(-1)], and DeltaH(cal)/DeltaH(vH) ratio (from 3.0 to approximately 1.3). Whereas the far- and near-UV ellipticities are maintained over this pH range, there is an acid-induced increase in surface hydrophobicity and decrease in intrinsic tryptophanyl fluorescence. The major contribution to the DSC endotherm arises from unfolding HA1 domains. The relationship between acid-induced changes in thermal stability and the fusion activity of HA has been examined by evaluating the kinetics and extent of fusion of influenza virus with erythrocytes over the temperature and pH range of the DSC measurements. Surprisingly, X31 influenza virus retains its fusion activity at acidic pH and temperatures significantly below the unfolding transition of HA. This finding is consistent with the notion that the fusion activity of influenza virus may involve structural changes of only a small fraction of HA molecules.
Collapse
Affiliation(s)
- David P Remeta
- Section on Protein Chemistry, Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Room 2339, Bethesda, Maryland 20892-8012, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chang DK, Cheng SF, Trivedi VD. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. Arch Biochem Biophys 2001; 396:89-98. [PMID: 11716466 DOI: 10.1006/abbi.2001.2594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conformations of a 48-mer peptide corresponding to the amino-terminal region of influenza HA2 in aqueous and membranous environments were studied. In aqueous solution the peptide was found to be oligomeric and its helicity was enhanced at higher concentrations. The conformation in phospholipid bilayer and insertion depth into the sodium dodecyl sulfate (SDS) micelle for the fusion peptide were in line with those determined for the amino-terminal 25-mer analog. The turn of residues 28-31 found in the crystal structure of hemagglutinin at neutral pH persisted in the presence of SDS at pH 5.0. Except for the turn, conformational lability of the amino portion of HA2 is suggested by comparison of the secondary structure determined herein with that obtained with the influenza fusion protein crystallized in the aqueous phase at neutral pH. The backbone amide proton exchange experiment suggested an interaction with the micellar surface for the segment carboxy-terminal to the fusion peptide domain.
Collapse
Affiliation(s)
- D K Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 115, Republic of China.
| | | | | |
Collapse
|
24
|
Leikina E, LeDuc DL, Macosko JC, Epand R, Epand R, Shin YK, Chernomordik LV. The 1-127 HA2 construct of influenza virus hemagglutinin induces cell-cell hemifusion. Biochemistry 2001; 40:8378-86. [PMID: 11444985 DOI: 10.1021/bi010466+] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational changes in the HA2 subunit of influenza hemagglutinin (HA) are coupled to membrane fusion. We investigated the fusogenic activity of the polypeptide FHA2 representing 127 amino-terminal residues of the ectodomain of HA2. While the conformation of FHA2 both at neutral and at low pH is nearly identical to the final low-pH conformation of HA2, FHA2 still induces lipid mixing between liposomes in a low-pH-dependent manner. Here, we found that FHA2 induces lipid mixing between bound cells, indicating that the "spring-loaded" energy is not required for FHA2-mediated membrane merger. Although, unlike HA, FHA2 did not form an expanding fusion pore, both acidic pH and membrane concentrations of FHA2, required for lipid mixing, have been close to those required for HA-mediated fusion. Similar to what is observed for HA, FHA2-induced lipid mixing was reversibly blocked by lysophosphatidylcholine and low temperature, 4 degrees C. The same genetic modification of the fusion peptide inhibits both HA- and FHA2-fusogenic activities. The kink region of FHA2, critical for FHA2-mediated lipid mixing, was exposed in the low-pH conformation of the whole HA prior to fusion. The ability of FHA2 to mediate lipid mixing very similar to HA-mediated lipid mixing is consistent with the hypothesis that hemifusion requires just a portion of the energy released in the conformational change of HA at acidic pH.
Collapse
Affiliation(s)
- E Leikina
- Section on Membrane Biology, LCMB, NICHD, National Institutes of Health, Building 10, Room 10D04, 10 Center Drive, Bethesda, Maryland 20892-1855, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Han X, Tamm LK. A host-guest system to study structure-function relationships of membrane fusion peptides. Proc Natl Acad Sci U S A 2000; 97:13097-102. [PMID: 11069282 PMCID: PMC27184 DOI: 10.1073/pnas.230212097] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We designed a host-guest fusion peptide system, which is completely soluble in water and has a high affinity for biological and lipid model membranes. The guest sequences are those of the fusion peptides of influenza hemagglutinin, which are solubilized by a highly charged unstructured C-terminal host sequence. These peptides partition to the surface of negatively charged liposomes or erythrocytes and elicit membrane fusion or hemolysis. They undergo a conformational change from random coil to an obliquely inserted ( approximately 33 degrees from the surface) alpha-helix on binding to model membranes. Partition coefficients for membrane insertion were measured for influenza fusion peptides of increasing lengths (n = 8, 13, 16, and 20). The hydrophobic contribution to the free energy of binding of the 20-residue fusion peptide at pH 5.0 is -7.6 kcal/mol (1 cal = 4.18 J). This energy is sufficient to stabilize a "stalk" intermediate if a typical number of fusion peptides assemble at the site of membrane fusion. The fusion activity of the fusion peptides increases with each increment in length, and this increase strictly correlates with the hydrophobic binding energy and the angle of insertion.
Collapse
Affiliation(s)
- X Han
- Department of Molecular Physiology and Biological Physics and Center for Structural Biology, University of Virginia Health Sciences Center, P.O. Box 800736, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
26
|
Corver J, Ortiz A, Allison SL, Schalich J, Heinz FX, Wilschut J. Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 2000; 269:37-46. [PMID: 10725196 DOI: 10.1006/viro.1999.0172] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We present a kinetic analysis of the membrane fusion activity of tick-borne encephalitis (TBE) virus and TBE-derived recombinant subviral particles (RSPs) in a liposomal model system. Fusion was monitored using a fluorescence assay involving pyrene-labeled phospholipids. Fusion was strictly dependent on low pH, with the optimum being at pH 5.3-5.5 and the threshold at pH 6.8. Fusion did not require a protein or carbohydrate receptor in the target liposomes. Preexposure to low pH of the virus alone resulted in inactivation of its fusion activity. At the optimum pH for fusion and 37 degrees C, the rate and extent of fusion were very high, with more than 50% of the virus fusing within 2 s and the final extent of fusion being 70%. Lowering of the temperature did not result in a significant decrease in the rate and extent of fusion, suggesting that TBE virus fusion is a facile process with a low activation energy, possibly due to the flat orientation of the E glycoprotein on the viral surface facilitating the establishment of direct intermembrane contact. The fusion characteristics of TBE virus and RSPs were similar, indicating that RSPs provide a reliable and convenient model for further study of the membrane fusion properties of TBE virus.
Collapse
Affiliation(s)
- J Corver
- Laboratory of Molecular Virology, University of Groningen and Academic Hospital, Groningen, Ant. Deusinglaan 1, 9713 AV, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Günther-Ausborn S, Schoen P, Bartoldus I, Wilschut J, Stegmann T. Role of hemagglutinin surface density in the initial stages of influenza virus fusion: lack of evidence for cooperativity. J Virol 2000; 74:2714-20. [PMID: 10684287 PMCID: PMC111761 DOI: 10.1128/jvi.74.6.2714-2720.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane fusion mediated by influenza virus hemagglutinin (HA) is believed to proceed via the cooperative action of multiple HA trimers. To determine the minimal number of HA trimers required to trigger fusion, and to assess the importance of cooperativity between these HA trimers, we have generated virosomes containing coreconstituted HAs derived from two strains of virus with different pH dependencies for fusion, X-47 (optimal fusion at pH 5.1; threshold at pH 5.6) and A/Shangdong (optimal fusion at pH 5.6; threshold at pH 6.0), and measured fusion of these virosomes with erythrocyte ghosts by a fluorescence lipid mixing assay. Virosomes with different X-47-to-A/Shangdong HA ratios, at a constant HA-to-lipid ratio, showed comparable ghost-binding activities, and the low-pH-induced conformational change of A/Shangdong HA did not affect the fusion activity of X-47 HA. The initial rate of fusion of these virosomes at pH 5.7 increased directly proportional to the surface density of A/Shangdong HA, and a single A/Shangdong trimer per virosome appeared to suffice to induce fusion. The reciprocal of the lag time before the onset of fusion was directly proportional to the surface density of fusion-competent HA. These results support the notion that there is no cooperativity between HA trimers during influenza virus fusion.
Collapse
Affiliation(s)
- S Günther-Ausborn
- Department of Biophysical Chemistry, Biozentrum of the University of Basel, CH 4056 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
28
|
Smit JM, Bittman R, Wilschut J. Low-pH-dependent fusion of Sindbis virus with receptor-free cholesterol- and sphingolipid-containing liposomes. J Virol 1999; 73:8476-84. [PMID: 10482600 PMCID: PMC112867 DOI: 10.1128/jvi.73.10.8476-8484.1999] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
There is controversy as to whether the cell entry mechanism of Sindbis virus (SIN) involves direct fusion of the viral envelope with the plasma membrane at neutral pH or uptake by receptor-mediated endocytosis and subsequent low-pH-induced fusion from within acidic endosomes. Here, we studied the membrane fusion activity of SIN in a liposomal model system. Fusion was followed fluorometrically by monitoring the dilution of pyrene-labeled lipids from biosynthetically labeled virus into unlabeled liposomes or from labeled liposomes into unlabeled virus. Fusion was also assessed on the basis of degradation of the viral core protein by trypsin encapsulated in the liposomes. SIN fused efficiently with receptor-free liposomes, consisting of phospholipids and cholesterol, indicating that receptor interaction is not a mechanistic requirement for fusion of the virus. Fusion was optimal at pH 5.0, with a threshold at pH 6.0, and undetectable at neutral pH, supporting a cell entry mechanism of SIN involving fusion from within acidic endosomes. Under optimal conditions, 60 to 85% of the virus fused, depending on the assay used, corresponding to all of the virus bound to the liposomes as assessed in a direct binding assay. Preincubation of the virus alone at pH 5.0 resulted in a rapid loss of fusion capacity. Fusion of SIN required the presence of both cholesterol and sphingolipid in the target liposomes, cholesterol being primarily involved in low-pH-induced virus-liposome binding and the sphingolipid catalyzing the fusion process itself. Under low-pH conditions, the E2/E1 heterodimeric envelope glycoprotein of the virus dissociated, with formation of a trypsin-resistant E1 homotrimer, which kinetically preceded the fusion reaction, thus suggesting that the E1 trimer represents the fusion-active conformation of the viral spike.
Collapse
Affiliation(s)
- J M Smit
- University of Groningen, Department of Physiological Chemistry, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
29
|
Martin I, Ruysschaert J, Epand RM. Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Adv Drug Deliv Rev 1999; 38:233-255. [PMID: 10837759 DOI: 10.1016/s0169-409x(99)00031-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is an important biological process that is observed in a wide variety of intra and intercellular events. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion is highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. While the Influenza hemagglutinin is currently the best understand fusion protein, there is still much to be learned about the key events in enveloped virus fusion reactions. This review compares our current understanding of the membrane fusion activity of Influenza and retrovirus viruses. We shall be concerned especially with the studies that lead to interpretations at the molecular level, so we shall concentrate on model membrane systems where the molecular components of the membrane and the environment are strictly controlled.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LCPMI) CP206/2, Université Libre de Bruxelles. 1050, Brussels, Belgium
| | | | | |
Collapse
|
30
|
Schoen P, Chonn A, Cullis PR, Wilschut J, Scherrer P. Gene transfer mediated by fusion protein hemagglutinin reconstituted in cationic lipid vesicles. Gene Ther 1999; 6:823-32. [PMID: 10505107 DOI: 10.1038/sj.gt.3300919] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hemagglutinin, the membrane fusion protein of influenza virus, is known to mediate a low-pH-dependent fusion reaction between the viral envelope and the limiting membrane of the endosomal cell compartment following cellular uptake of the virus particles by receptor-mediated endocytosis. Here we exploited this activity of hemagglutinin to achieve efficient gene delivery to cultured cells. Hemagglutinin was reconstituted in the presence of the monocationic lipid dioleoyldimethylammonium chloride (DODAC) to permit plasmid binding to the virosome surface. Virosomes with 30 mol% DODAC exhibited a distinct binding capacity for plasmid without causing aggregation. The virosome fusion activity was not affected by the cationic lipid DODAC as demonstrated by low-pH-dependent lipid mixing with erythrocyte ghosts. Efficient cell transfection of BHK-21 cells was observed with virosomes containing 30 mol% DODAC and plasmid encoding for beta-galactosidase (pCMV beta-gal) associated to their surface. The transfection activity observed was dependent on the functional activity of hemagglutinin. Contrary to DNA/cationic lipid complexes the transfection was not dependent on the cationic lipid to DNA charge ratio. Importantly, transfection of BHK-21 cells with pCMV beta-gal by DODAC-containing virosomes did not show any significant signs of cytotoxicity that is commonly observed with DNA/cationic lipid complexes. Together with the high levels of expression of the transgene this highlights the potential of DODAC-containing virosomes as a novel approach in nonviral gene transfer.
Collapse
Affiliation(s)
- P Schoen
- Groningen Utrecht Institute for Drug Exploration (GUIDE), Department of Physiological Chemistry, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Nunes-Correia I, Ramalho-Santos J, Nir S, Pedroso de Lima MC. Interactions of influenza virus with cultured cells: detailed kinetic modeling of binding and endocytosis. Biochemistry 1999; 38:1095-101. [PMID: 9894006 DOI: 10.1021/bi9812524] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We performed a detailed kinetic analysis of the uptake of influenza virus (A/PR8/34) by Madin Darby canine kidney (MDCK) cells in culture. Experimental procedures were based on the relief of fluorescence self-quenching of the fluorescent probe octadecylrhodamine B chloride (R18) incorporated in the viral envelope. Equilibrium for binding of influenza virus to MDCK cells (2.5 x 10(6)/mL) was reached quicker with temperature increases due to a faster dynamic mobility of the particles. We deduced that there are two kinds of binding sites for influenza virus in MDCK cells and determined the kinetic parameters of the binding process (adhesion and detachment rate constants), using a mass action kinetic model. As the temperature increases, the number of binding sites for influenza virus decreases, especially the high-affinity binding sites, whereas the value of the affinity constant for virus binding to the binding site, k, increases. Nevertheless, the binding association constant at equilibrium Ki, which is given by Ki = Niki, where Ni is the number of binding sites per cell, declines as the temperature increases. When endocytosis occurs, the total uptake of virions by the cells is larger than that observed in the process of binding at the same temperature, and the uptake proceeds for longer times. Using our mass kinetic model, we determined that at 20 degrees C, the rate constant of endocytosis, epsilon, for influenza virus with this cell line is 2.6 x 10(-)4 s-1, i.e., in the same range as in studies on endocytosis of liposomes.
Collapse
|
32
|
Abstract
Delivery of oligonucleotides and genes to their intracellular targets is a prerequisite for their successful use in medical therapy. Cationic liposomes are among the most commonly used and promising delivery systems for oligonucleotides and genes. Lipid fusion plays an important role in the cationic liposome-mediated delivery of these compounds. Fusion is involved in the complex formation between the nucleotides and the lipids, in the interactions between extracellular materials with the complexes, as well as in the intracellular trafficking of the delivery system and its load. Since lipid fusion is such a crucial factor in polynucleotide delivery, its controlled use is important for the success in oligonucleotide and DNA delivery. In this article we are reviewing the current knowledge on lipid fusion phenomena associated with the delivery of oligonucleotides and genes.
Collapse
|
33
|
Ohki S, Flanagan TD, Hoekstra D. Probe transfer with and without membrane fusion in a fluorescence fusion assay. Biochemistry 1998; 37:7496-503. [PMID: 9585563 DOI: 10.1021/bi972016g] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An analysis of the R18 fusion assay was made during the fusion of the Sendai virus with erythrocyte ghosts. The increase in R18 fluorescence, reflecting the interaction process, was evaluated in terms of the different processes that in principle may contribute to this increase, that is, monomeric probe transfer, hemifusion, and complete fusion. To this end, the kinetics of the R18-labeled lipid mixing were compared to those obtained with an assay in which the fusion-monitoring probe, eosin-maleimide, was attached to the viral surface proteins. The experiments relied on the use of native and fusion-inactive viruses and studies involving viral and target membranes that were modified by the incorporation of the lysophospholipid. The total dequenching signal detected in the R18 assay consists of components from probe transferred without fusion and from fusion itself. At 37 degrees C, the initial rate of dequenching (within two minutes) was predominately from the probe diluted by fusion with little contribution from transfer. The dequenching signal due to the probe transfer without fusion occurred at temperatures as low as 10 degrees C and increased linearly with time. Complete fusion started at about 20-25 degrees C and increased sharply at 30 degrees C. The extent of hemifusion was deduced from the total R18 dequenching data and those of the eosin-maleimide labeled protein dilution method for the limiting cases; the analysis indicates that hemifusion started at about 15 degrees C and increased over the range 20-25 degrees C. The initial rate of dequenching of the R18 assay measured within 2 min gives an accurate measure of membrane fusion above 30 degrees C.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo 14214, USA
| | | | | |
Collapse
|
34
|
Barbosa AT, Luiz MO, Gusmão NP, Couceiro JN. Analysis of viral and cellular parameters which affect the fusion process of influenza viruses. Braz J Med Biol Res 1997; 30:1415-20. [PMID: 9686159 DOI: 10.1590/s0100-879x1997001200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the present investigation we studied the fusogenic process developed by influenza A, B and C viruses on cell surfaces and different factors associated with virus and cell membrane structures. The biological activity of purified virus strains was evaluated in hemagglutination, sialidase and fusion assays. Hemolysis by influenza A, B and C viruses ranging from 77.4 to 97.2%, from 20.0 to 65.0% from 0.2 to 93.7% and from 9.0 to 76.1% was observed when human, chicken, rabbit and monkey erythrocytes, respectively, were tested at pH 5.5. At this pH, low hemolysis indexes for influenza A, B and C viruses were observed if horse erythrocytes were used as target cells for the fusion process, which could be explained by an inefficient receptor binding activity of influenza on N-glycolyl sialic acids. Differences in hemagglutinin receptor binding activity due to its specificity to N-acetyl or N-glycolyl cell surface oligosaccharides, density of these cellular receptors and level of negative charges on the cell surface may possibly explain these results, showing influence on the sialidase activity and the fusogenic process. Comparative analysis showed a lack of dependence between the sialidase and fusion activities developed by influenza B viruses. Influenza A viruses at low sialidase titers (< 2) also exhibited clearly low hemolysis at pH 5.5 (15.8%), while influenza B viruses with similarly low sialidase titers showed highly variable hemolysis indexes (0.2 to 78.0%). These results support the idea that different virus and cell-associated factors such as those presented above have a significant effect on the multifactorial fusion process.
Collapse
Affiliation(s)
- A T Barbosa
- Departamento de Virologia, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
35
|
Hacker JK, Hardy JL. Adsorptive endocytosis of California encephalitis virus into mosquito and mammalian cells: a role for G1. Virology 1997; 235:40-7. [PMID: 9300035 DOI: 10.1006/viro.1997.8675] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The G1 glycoprotein of California encephalitis (CE) virus plays a critical role in the infection of mosquito and mammalian cells. We found that CE virus enters baby hamster kidney (BHK-21) and Aedes albopictus (C6/36) cells by the endocytic pathway. Ammonium chloride, a lysosomotropic amine that prevents release of virus from endosomes, inhibited infection of both cell types when added within 10 min after viral adsorption. In addition, infected cells formed polykaryons when the extracellular pH was lowered to 6.3; optimal fusion occurred at pH 5.8 and 6.0 (C6/36 and BHK-21 cells, respectively). Two neutralizing G1 MAba, 6D5.5 and 7D4.5, inhibited low pH-induced syncytia formation without affecting viral attachment, suggesting a role for G1 in viral entry. Since viral fusion proteins have been demonstrated to undergo conformational changes at low pH, acid-induced changes in G1 and G2 were assessed. While both G1 and G2 demonstrated low pH-induced alterations in detergent binding, only G1 displayed an altered protease cleavage pattern at the fusion pH. These results indicate that the G1 protein of CE virus undergoes conformational changes necessary for low pH-mediated entry into both mosquito and mammalian cells.
Collapse
Affiliation(s)
- J K Hacker
- Department of Infectious Diseases, School of Public Health, University of California at Berkeley 94720, USA. jkh@mendel berkeley.edu
| | | |
Collapse
|
36
|
Kanaseki T, Kawasaki K, Murata M, Ikeuchi Y, Ohnishi S. Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol 1997; 137:1041-56. [PMID: 9166405 PMCID: PMC2136221 DOI: 10.1083/jcb.137.5.1041] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/1997] [Revised: 03/07/1997] [Indexed: 02/04/2023] Open
Abstract
The structure of membrane fusion intermediates between the A/PR/8(H1N1) strain of influenza virus and a liposome composed of egg phosphatidylcholine, cholesterol, and glycophorin was studied using quick-freezing electron microscopy. Fusion by viral hemagglutinin protein was induced at pH 5.0 and 23 degrees C. After a 19-s incubation under these conditions, small protrusions with a diameter of 10-20 nm were found on the fractured convex faces of the liposomal membranes, and small pits complementary to the protrusions were found on the concave faces. The protrusions and pits corresponded to fractured parts of outward bendings of the lipid bilayer or "microprotrusions of the lipid bilayer." At the loci of the protrusions and pits, liposomal membranes had local contacts with viral membranes. In many cases both the protrusions and the pits were aligned in regular polygonal arrangements, which were thought to reflect the array of hemagglutinin spikes on the viral surface. These structures were induced only when the medium was acidic with the virus present. Based on these observations, it was concluded that the microprotrusions of the lipid bilayer are induced by hemagglutinin protein. Furthermore, morphological evidence for the formation of the "initial fusion pore" at the microprotrusion was obtained. The protrusion on the convex face sometimes had a tiny hole with a diameter of <4 nm in the center. The pits transformed into narrow membrane connections <10 nm in width, bridging viruses and liposomes. The structures of the fusion pore and fusion neck with larger sizes were also observed, indicating growth of the protrusions and pits to distinct fusion sites. We propose that the microprotrusion of the lipid bilayer is a fusion intermediate induced by hemagglutinin protein, and suggest that the extraordinarily high curvature of this membrane structure is a clue to the onset of fusion. The possible architecture of the fusion intermediate is discussed with regard to the localization of intramembrane particles at the microprotrusion.
Collapse
Affiliation(s)
- T Kanaseki
- Department of Cell Biology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183, Japan
| | | | | | | | | |
Collapse
|
37
|
Schoen P, Corver J, Meijer DK, Wilschut J, Swart PJ. Inhibition of influenza virus fusion by polyanionic proteins. Biochem Pharmacol 1997; 53:995-1003. [PMID: 9174113 DOI: 10.1016/s0006-2952(96)00876-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Anionic charge-modified human serum albumin (HSA) has previously been shown to exert potent in vitro activity against human immunodeficiency virus type 1 (HIV-1). In these studies, introduction of the additional negative charges was performed by derivatizing the epsilon-amino groups of lysine residues with succinic (Suc-HSA) or cis-aconitic anhydride (Aco-HSA), by which primary amino groups are replaced with carboxylic acids. The anti-HIV-1 activity was related to inhibition of gp41-mediated membrane fusion. Here, we investigated the activity of aconitylated and succinylated proteins on influenza virus membrane fusion, which is mediated by the viral membrane glycoprotein hemagglutinin (HA). Aco-HSA and Suc-HSA markedly inhibited the rates and extents of fusion of fluorescently labeled virosomes bearing influenza HA, with target membranes derived from erythrocytes. The inhibitory activity was dependent on the overall negative-charge density; HSA modified with 36 or less extra negative charges failed to inhibit fusion. The inhibition of fusion showed a certain degree of specificity for the protein carrying the negative charges: polyanionic HSA and beta-lactoglobulin A derivatives had fusion-inhibitory activity, whereas succinylated BSA, lactalbumin, lactoferrin, lysozyme, and transferrin were inactive. Aco60-HSA and Aco-beta-lactoglobulin A inhibited influenza virus membrane fusion in a concentration-dependent manner, IC50 values being about 4 and 10 microg/mL, respectively. HA-mediated membrane fusion is pH dependent. Aco60-HSA did not induce a shift in the pH threshold or in the pH optimum. Fusion with liposomes of another low pH-dependent virus, Semliki Forest virus, was not specifically affected by any of the compounds reported here. In view of some structural and functional similarities between influenza HA and the HIV-1 gp120/gp41 complex, it is tempting to postulate that the current results might have some implications for the anti-HIV-1 mechanism of polyanionic proteins.
Collapse
Affiliation(s)
- P Schoen
- Groningen Utrecht Institute for Drug Exploration (GUIDE), University of Groningen, Department of Physiological Chemistry, Faculty of Medical Sciences, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Ramalho-Santos J, Lima MC, Nir S. Partial fusion activity of influenza virus toward liposomes and erythrocyte ghosts is distinct from viral inactivation. J Biol Chem 1996; 271:23902-6. [PMID: 8798621 DOI: 10.1074/jbc.271.39.23902] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Final extents of fusion of influenza virus (A/PR/8/34 strain) with neutral and partially acidic liposomes were monitored with (i) a fluorescence resonance energy-transfer assay in which the liposomes were labeled and (ii) by the dequenching of octadecylrhodamine, initially incorporated in the viral membrane. The latter assay was also employed in the fusion of influenza virus and Sendai virus with erythrocyte ghosts. In all cases, a phenomenon of partial fusion activity of the virus was observed, which is distinct from low pH inactivation. The unfused influenza or Sendai virions, which were separated by sucrose gradient centrifugation from liposomes or erythrocyte ghosts exhibited again partial fusion activity toward freshly added liposomes or ghosts, respectively. The conclusion is that the fraction of initially bound and unfused virions does not consist of defective particles, but rather of particles bound to the target membranes via inactive sites on the virus (or on cellular membranes), or else, partial fusion activity is a manifestation of a certain probability of production of fusion inactive sites by irreversible association of viral glycoproteins or peptides in the target membrane.
Collapse
Affiliation(s)
- J Ramalho-Santos
- Center for Neurosciences of Coimbra, University of Coimbra, 3000 Coimbra, Portugal
| | | | | |
Collapse
|
39
|
Schoen P, Leserman L, Wilschut J. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions. FEBS Lett 1996; 390:315-8. [PMID: 8706885 DOI: 10.1016/0014-5793(96)00682-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) represent an efficient fusogenic cellular delivery system. By interaction of HA with its natural receptors, sialylated lipids (gangliosides) or proteins, virosomes bind to cells and, following endocytic uptake, deliver their contents to the cytosol through fusion from within acidic endosomes. Here, we show that binding to sialic acid is not necessary for fusion. In the presence of streptavidin, virosomes containing a biotinylated lipid fused with liposomes lacking sialic acid if these liposomes also had a biotinylated lipid in their membranes. Moreover, fusion characteristics corresponded well with fusion of virosomes with ganglioside-containing liposomes.
Collapse
Affiliation(s)
- P Schoen
- Groningen Utrecht Institute for Drug Exploration (GUIDE), Department of Physiological Chemistry, University of Groningen, The Netherlands.
| | | | | |
Collapse
|
40
|
Klotz KH, Bartoldus I, Stegmann T. Membrane asymmetry is maintained during influenza-induced fusion. J Biol Chem 1996; 271:2383-6. [PMID: 8576195 DOI: 10.1074/jbc.271.5.2383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have investigated the influence of influenza-induced membrane fusion on the transverse asymmetry of the viral and target membranes. Large unilamellar vesicles containing headgroup-labeled fluorescent phospholipid analogues in both leaflets of the membrane were treated with phospholipase D, converting all outer membrane phospholipids to phosphatidic acid and leading to the release of the fluorescent label from the outside leaflet. After fusion of virus with these liposomes, addition of the enzyme to the fusion product did not release fluorescent label again, indicating that the phospholipid analogues from the inner leaflet of the membranes had not appeared on the outer leaflet. Moreover, the integral membrane protein hemagglutinin, which is present on the outer leaflet of the viral membrane, was quantitatively digested with protease after fusion, indicating that hemagglutinin remained on the outer leaflet of the fusion product. Therefore, there is no merger of the inner with outer leaflets of the viral or the liposomal membrane during fusion and transverse membrane asymmetry is maintained.
Collapse
Affiliation(s)
- K H Klotz
- Department of Biophysical Chemistry, Biozentrum of University of Basel, Switzerland
| | | | | |
Collapse
|
41
|
Günther-Ausborn S, Praetor A, Stegmann T. Inhibition of influenza-induced membrane fusion by lysophosphatidylcholine. J Biol Chem 1995; 270:29279-85. [PMID: 7493959 DOI: 10.1074/jbc.270.49.29279] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lysolipids have been reported to inhibit various membrane fusion events, and it was suggested that inhibition was due to their "inverted cone" shape, which hinders the formation of intermediate lipid structures required for fusion (Chernomordik, L. V., Vogel, S. S., Sokoloff, A., Onaran, H. O., Leikina, E. A., and Zimmerberg, J. (1993) FEBS Lett. 318, 71-76). Here, the effect of lysophosphatidylcholine (LPC) on fusion mediated by the hemagglutinin (HA) of influenza virus was investigated. Virus-liposome fusion was inhibited by LPC if the lysolipid was added to the membranes from an aqueous stock solution but not if LPC was symmetrically distributed over both leaflets of the liposomal bilayer. These findings would be consistent with an effect of LPC on lipid intermediate formation, but inhibition increased with increasing acyl chain length and thus a less pronounced inverted cone shape of the lysolipids suggesting that the mechanism of inhibition might be different. At low pH, due to the exposure of the fusion peptide of HA, followed by its insertion into the liposomal membrane, virus acquires the ability to bind to zwitterionic liposomes lacking receptors for HA. This type of binding was inhibited by LPC. Moreover, leakage of calcein from receptor-containing liposomes, induced by purified HA at low pH, was inhibited by LPC. Therefore, the inhibition of influenza-induced fusion by LPC was caused by the binding of LPC to fusion peptides, thereby preventing their interaction with the target membrane rather than an effect on intermediate lipid structures.
Collapse
Affiliation(s)
- S Günther-Ausborn
- Department of Biophysical Chemistry, Biozentrum of the University of Basel, Switzerland
| | | | | |
Collapse
|
42
|
de Lima MC, Ramalho-Santos J, Flasher D, Slepushkin VA, Nir S, Düzgüneş N. Target cell membrane sialic acid modulates both binding and fusion activity of influenza virus. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1236:323-30. [PMID: 7794972 DOI: 10.1016/0005-2736(95)00067-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Influenza virus binds to cell surface sialic acid receptors, and following endocytosis fuses with the endosome membrane at low pH. Whether sialic acid plays a role in the virus-cell membrane fusion step is not known. We investigated the effect of the removal of cell membrane sialic acid on the fusion activity of influenza virus (A/PR/8/34 strain) toward human T lymphocytic leukemia (CEM) cells at low pH. Fusion was monitored by fluorescence dequenching of octadecylrhodamine incorporated in the virus membrane. Removal of sialic acid by neuraminidase resulted in a drastic reduction in both viral binding and fusion. The association of the virus with neuraminidase-treated cells was enhanced at pH 5, compared to that at neutral pH, probably due to the unfolding of the hemagglutinin and the resulting increase in viral surface hydrophobicity, but the fusion capacity of the virus was reduced significantly. The results were analysed with a mass-action kinetic model which could explain and predict the kinetics of fusion. Our results indicate that binding of influenza virus to sialic acid residues on the cell surface leads to rapid and extensive fusion and partially inhibits the low pH-induced viral inactivation.
Collapse
Affiliation(s)
- M C de Lima
- Department of Microbiology, School of Dentistry, University of the Pacific, San Francisco, CA 94115-2399, USA
| | | | | | | | | | | |
Collapse
|
43
|
Puyal C, Maurin L, Miquel G, Bienvenüe A, Philippot J. Design of a short membrane-destabilizing peptide covalently bound to liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1195:259-66. [PMID: 7947919 DOI: 10.1016/0005-2736(94)90265-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We characterized the physical and biological properties of a 14-residue amphipathic sequence called SFP (for short fusogenic peptide). At acidic pH, this short synthetic peptide interacts with various phospholipidic monolayers. These interactions were correlated with a pH-dependent conformational transition of SFP resulting in a hydrophobic alpha-helical structure. The hemolysis assay showed a pH-dependent weak membrane destabilizing activity of SFP. However, membrane anchoring of SFP through a covalently bound myristic acid enhanced by 1000-fold its membrane-destabilizing power. Moreover, SFP covalently bound to fluorescent-labeled liposomes induced a pH-dependent mixing of both membranes. SFP, a small synthetic peptide, is thus able to mimick many aspects of viral protein-induced membrane fusion: conformational change, membrane destabilization, membrane anchoring and finally pH-dependent lipid mixing.
Collapse
Affiliation(s)
- C Puyal
- URA 530 CNRS Interactions Membranaires, Dépt. Biologie-Santé, Université des Sciences et Techniques du Languedoc, Montpellier, France
| | | | | | | | | |
Collapse
|
44
|
Ott S, Wunderli-Allenspach H. Liposomes and influenza viruses as an in vitro model for membrane interactions I. Kinetics of membrane fusion and lipid transfer. Eur J Pharm Sci 1994. [DOI: 10.1016/0928-0987(94)90041-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Membrane fusion-inhibiting peptides do not inhibit influenza virus fusion or the Ca(2+)-induced fusion of negatively charged vesicles. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74194-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Larsen CE, Nir S, Alford DR, Jennings M, Lee KD, Düzgüneş N. Human immunodeficiency virus type 1 (HIV-1) fusion with model membranes: kinetic analysis and the role of lipid composition, pH and divalent cations. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1147:223-36. [PMID: 8476916 DOI: 10.1016/0005-2736(93)90007-m] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The kinetics and extent of HIV-1 fusion with model membranes was studied. HIV-1 was labeled with octadecyl rhodamine B chloride, and fusion was monitored continuously as the dilution of the probe into target membranes. The results were analyzed by a mass action model which yielded good simulations and predictions for the kinetics and final extents of fluorescence increase. The model determined the percent of virions capable of fusing and rate constants of fusion, aggregation and dissociation. Ultrastructural analysis of the virus and reaction products by electron microscopy also provided evidence of HIV-1 fusion with membranes lacking CD4. HIV-1 fusion activity depends on the target membrane lipid composition according to the sequence: cardiolipin (CL) > > phosphatidylinositol > CL/dioleoylphosphatidylcholine (DOPC) (3:7), phosphatidic acid > phosphatidylserine (PS), PS/cholesterol (2:1) > PS/PC (1:1), PS/phosphatidylethanolamine (1:1) > DOPC, erythrocyte ghosts. Reduction of pH from 7.5 generally enhances the rate and extent of HIV-1 fusion. Physiologically relevant concentrations of calcium stimulate HIV-1 fusion with several liposome compositions and with erythrocyte ghost membranes. The fusion products of HIV-1 with liposomes consist of a single virus and several liposomes. The mass action analysis revealed that, compared to intact virions, the fusion products show a striking reduction in the fusion rate constant. Like influenza and Sendai viruses, HIV-1 fusion with membranes containing its own envelope glycoprotein(s) is strongly inhibited. Unlike these viruses, HIV-1 fusion is promoted by physiological levels of calcium. HIV-1 fusion with liposomes is qualitatively similar to simian immunodeficiency virus fusion.
Collapse
Affiliation(s)
- C E Larsen
- Cancer Research Institute, University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
47
|
Horton HM, Burand JP. Saturable attachment sites for polyhedron-derived baculovirus on insect cells and evidence for entry via direct membrane fusion. J Virol 1993; 67:1860-8. [PMID: 8445715 PMCID: PMC240252 DOI: 10.1128/jvi.67.4.1860-1868.1993] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This research provides the first evidence for specific receptor binding of polyhedron-derived baculovirus (PDV) to host cells and to lepidopteran brush border membrane vesicles (BBMV) and demonstration of entry via a nonendocytotic pathway involving direct membrane fusion. The technique of fluorescence-activated cell sorting analysis was used to investigate the specificity of binding between the PDV phenotype of Lymantria dispar nuclear polyhedrosis virus (LdNPV) and host membranes. Fluorescein isothiocyanate-labeled PDV was found to bind in a saturable manner to the gypsy moth cell line IPLB-LdEIta and to L. dispar BBMV. The IPLB-LdEIta cell line was found to possess approximately 10(6) PDV-specific receptor sites per cell. Excess levels of unlabeled PDV were highly efficient in competing with fluorescein isothiocyanate-labeled PDV for limited receptor sites, further supporting the specificity of the interaction. Major reductions in virus binding (as high as 70%) after protease treatment of cells indicated that a protein receptor is involved. A fluorescence dequenching assay of membrane fusion with octadecyl rhodamine B (R18)-labeled PDV was used to identify PDV fusion to host cells and BBMV. Direct membrane fusion of PDV occurred at 27 degrees C to both target membranes as well as at 4 degrees C at approximately 55% of the levels achieved at 27 degrees C. Viral fusion to BBMV occurred throughout the pH range of 4 to 11, with dramatically increased fusion levels (threefold) under the alkaline conditions normal for lepidopteran larval midguts. Treatment of cells with chloroquine, a lysosomotropic agent, did not significantly affect PDV fusion to cells or infectivity in tissue culture assays.
Collapse
Affiliation(s)
- H M Horton
- Department of Microbiology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
48
|
Ramalho-Santos J, Nir S, Düzgünes N, de Carvalho AP, de Lima MDC. A common mechanism for influenza virus fusion activity and inactivation. Biochemistry 1993; 32:2771-9. [PMID: 8457544 DOI: 10.1021/bi00062a006] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The fusion of influenza virus (A/PR/8/34 strain) with PC-12 cells was monitored by a fluorescence assay, and the results were analyzed with a mass-action model which could explain and predict the kinetics of fusion. The model accounted explicitly for the reduction in the fusion rate constant upon exposure of the virus to low pH, either for the virus alone in suspension or for the virus bound to the cells. When the pH was lowered without previous viral attachment to cells, an optimal fusion activity was detected at pH 5.2. When the virus was prebound to the cells, however, reduction of pH below 5.2 resulted in enhanced fusion activity at the initial stages. These results were explained by the fact that the rate constants of both fusion and inactivation increased severalfold at pH 4.5 or 4, compared to those at pH 5.2. At pH 5.2, lowering the temperature from 37 to 20 or 4 degrees C resulted in a decrease in the fusion rate constant by more than 30- or 1000-fold, respectively. Inactivation of the virus when preincubated in the absence of target membranes at pH 5 was found to be rapid and extensive at 37 degrees C, but was also detected at 0 degrees C. Our results indicate a strong correlation between fusion and inactivation rate constants, suggesting that the rate-limiting step in viral hemagglutinin (HA)-mediated fusion, that is, rearrangement of viral glycoproteins at the contact points with the target membrane, is similar to that involved in fusion inactivation.
Collapse
Affiliation(s)
- J Ramalho-Santos
- Center for Cell Biology, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|
49
|
Influenza hemagglutinin-mediated membrane fusion does not involve inverted phase lipid intermediates. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53911-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Affiliation(s)
- D Hoekstra
- Laboratory of Physiological Chemistry, University of Groningen, The Netherlands
| | | |
Collapse
|