1
|
Ferrari A, Filoni J, Di Dedda C, Piemonti L, Monti P. Ketone bodies rescue T cell impairments induced by low glucose availability. Eur J Nutr 2024; 63:2815-2825. [PMID: 39105784 DOI: 10.1007/s00394-024-03469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Ketogenic diets are proposed as a therapeutic approach for type 1 and type 2 diabetes due to their low glucose intake. However, their potential effects on the immune system need investigation. This study aims to explore how glucose concentration and beta-hydroxybutyrate (BHB) impact T cell phenotype, metabolism, and function, with a focus on systemic inflammatory response (T2D) and autoimmunity (T1D). METHODS T cells from healthy donors were cultured in vitro under varying glucose concentrations with or without BHB. Flow cytometry was employed to analyze changes in T cell phenotype, while proliferation was evaluated through a CFSE dilution assay. Additionally, we used a novel flow cytometry method allowing a direct assessment of T cell metabolism. RESULTS Culturing T cells in low glucose concentrations revealed their dependency on glucose metabolism, leading to reduced proliferation rates, overexpression of exhaustion markers and increased susceptibility to Treg suppression and the influence of immune-modulating drugs such as rapamycin, FK506, and MMF. Notably, T cells cultured in low glucose concentrations increased the expression of BDH1 to utilize BHB as an alternative fuel source. Finally, the addition of BHB to the culture effectively rescued T cell impairments caused by insufficient glucose levels. CONCLUSIONS T cells display limited capacity to adapt to low glucose levels, resulting in profound functional impairment. However, T cell functions can be efficiently recovered by the presence of 2mM BHB.
Collapse
Affiliation(s)
- Arianna Ferrari
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy
| | - Jessica Filoni
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy
| | - Carla Di Dedda
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy
| | - Paolo Monti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele Milan, Milan, Italy.
| |
Collapse
|
2
|
Bharadwaj NS, Zumwalde NA, Kapur A, Patankar M, Gumperz JE. Human CD4 + memory phenotype T cells use mitochondrial metabolism to generate sensitive IFN-γ responses. iScience 2024; 27:109775. [PMID: 38726371 PMCID: PMC11079467 DOI: 10.1016/j.isci.2024.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
The transition of naive T lymphocytes into antigenically activated effector cells is associated with a metabolic shift from oxidative phosphorylation to aerobic glycolysis. This shift facilitates production of the key anti-tumor cytokine interferon (IFN)-γ; however, an associated loss of mitochondrial efficiency in effector T cells ultimately limits anti-tumor immunity. Memory phenotype (MP) T cells are a newly recognized subset that arises through homeostatic activation signals following hematopoietic transplantation. We show here that human CD4+ MP cell differentiation is associated with increased glycolytic and oxidative metabolic activity, but MP cells retain less compromised mitochondria compared to effector CD4+ T cells, and their IFN-γ response is less dependent on glucose and more reliant on glutamine. MP cells also produced IFN-γ more efficiently in response to weak T cell receptor (TCR) agonism than effectors and mediated stronger responses to transformed B cells. MP cells may thus be particularly well suited to carry out sustained immunosurveillance against neoplastic cells.
Collapse
Affiliation(s)
- Nikhila S. Bharadwaj
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Nicholas A. Zumwalde
- Department of Genetics, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Arvinder Kapur
- QIAGEN Sciences Inc., 19300 Germantown Road, Germantown, MD 20874, USA
| | - Manish Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health; Madison, WI 53706, USA
| |
Collapse
|
3
|
Vecchione A, Khosravi-Maharlooei M, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591692. [PMID: 38746102 PMCID: PMC11092663 DOI: 10.1101/2024.05.02.591692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. T cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and LIP have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
|
4
|
Bremer SJ, Boxnick A, Glau L, Biermann D, Joosse SA, Thiele F, Billeb E, May J, Kolster M, Hackbusch R, Fortmann MI, Kozlik-Feldmann R, Hübler M, Tolosa E, Sachweh JS, Gieras A. Thymic Atrophy and Immune Dysregulation in Infants with Complex Congenital Heart Disease. J Clin Immunol 2024; 44:69. [PMID: 38393459 PMCID: PMC10891212 DOI: 10.1007/s10875-024-01662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect, and up to 50% of infants with CHD require cardiovascular surgery early in life. Current clinical practice often involves thymus resection during cardiac surgery, detrimentally affecting T-cell immunity. However, epidemiological data indicate that CHD patients face an elevated risk for infections and immune-mediated diseases, independent of thymectomy. Hence, we examined whether the cardiac defect impacts thymus function in individuals with CHD. We investigated thymocyte development in 58 infants categorized by CHD complexity. To assess the relationship between CHD complexity and thymic function, we analyzed T-cell development, thymic output, and biomarkers linked to cardiac defects, stress, or inflammation. Patients with highly complex CHD exhibit thymic atrophy, resulting in low frequencies of recent thymic emigrants in peripheral blood, even prior to thymectomy. Elevated plasma cortisol levels were detected in all CHD patients, while high NT-proBNP and IL-6 levels were associated with thymic atrophy. Our findings reveal an association between complex CHD and thymic atrophy, resulting in reduced thymic output. Consequently, thymus preservation during cardiovascular surgery could significantly enhance immune function and the long-term health of CHD patients.
Collapse
Affiliation(s)
- Sarah-Jolan Bremer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Boxnick
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Daniel Biermann
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University, Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friederike Thiele
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Elena Billeb
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan May
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Manuela Kolster
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Romy Hackbusch
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | | | - Rainer Kozlik-Feldmann
- Department of Pediatric Cardiology, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hübler
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany
| | - Jörg Siegmar Sachweh
- Congenital and Pediatric Heart Surgery, Children's Heart Clinic, University Heart & Vascular Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, N27, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Baldrich A, Althaus D, Menter T, Hirsiger JR, Köppen J, Hupfer R, Juskevicius D, Konantz M, Bosch A, Drexler B, Gerull S, Ghosh A, Meyer BJ, Jauch A, Pini K, Poletti F, Berkemeier CM, Heijnen I, Panne I, Cavelti-Weder C, Niess JH, Dixon K, Daikeler T, Hartmann K, Hess C, Halter J, Passweg J, Navarini AA, Yamamoto H, Berger CT, Recher M, Hruz P. Post-transplant Inflammatory Bowel Disease Associated with Donor-Derived TIM-3 Deficiency. J Clin Immunol 2024; 44:63. [PMID: 38363399 PMCID: PMC10873237 DOI: 10.1007/s10875-024-01667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Inflammatory bowel disease (IBD) occurring following allogeneic stem cell transplantation (aSCT) is a very rare condition. The underlying pathogenesis needs to be better defined. There is currently no systematic effort to exclude loss- or gain-of-function mutations in immune-related genes in stem cell donors. This is despite the fact that more than 100 inborn errors of immunity may cause or contribute to IBD. We have molecularly characterized a patient who developed fulminant inflammatory bowel disease following aSCT with stable 100% donor-derived hematopoiesis. A pathogenic c.A291G; p.I97M HAVCR2 mutation encoding the immune checkpoint protein TIM-3 was identified in the patient's blood-derived DNA, while being absent in DNA derived from the skin. TIM-3 expression was much decreased in the patient's serum, and in vitro-activated patient-derived T cells expressed reduced TIM-3 levels. In contrast, T cell-intrinsic CD25 expression and production of inflammatory cytokines were preserved. TIM-3 expression was barely detectable in the immune cells of the patient's intestinal mucosa, while being detected unambiguously in the inflamed and non-inflamed colon from unrelated individuals. In conclusion, we report the first case of acquired, "transplanted" insufficiency of the regulatory TIM-3 checkpoint linked to post-aSCT IBD.
Collapse
Affiliation(s)
- Adrian Baldrich
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Dominic Althaus
- Gastroenterology and Hepatology, University Center for Gastrointestinal and Liver Diseases, Clarunis, Basel, Switzerland
| | - Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Julia R Hirsiger
- Translational Immunology, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Julius Köppen
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Robin Hupfer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Darius Juskevicius
- Molecular Diagnostics, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Martina Konantz
- Allergy and Immunity Laboratory, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Angela Bosch
- Translational Diabetes, Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Beatrice Drexler
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Sabine Gerull
- Department of Oncology and Hematology, Kantonsspital Aarau, Aarau, Switzerland
| | - Adhideb Ghosh
- Competence Center for Personalized Medicine, University of Zürich/Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland
| | - Benedikt J Meyer
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Annaise Jauch
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Katia Pini
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabio Poletti
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Caroline M Berkemeier
- Division Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Ingmar Heijnen
- Division Medical Immunology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Isabelle Panne
- Gastroenterology and Hepatology, University Center for Gastrointestinal and Liver Diseases, Clarunis, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Translational Diabetes, Department of Biomedicine, University Hospital, Basel, Switzerland
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Jan Hendrik Niess
- Gastroenterology and Hepatology, University Center for Gastrointestinal and Liver Diseases, Clarunis, Basel, Switzerland
| | - Karen Dixon
- Cancer Immunology, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Thomas Daikeler
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Karin Hartmann
- Allergy and Immunity Laboratory, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Basel Hospital, Basel, Switzerland
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
- University Center for Immunology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Jörg Halter
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jakob Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Hiroyuki Yamamoto
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Research Group 2, AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Christoph T Berger
- Translational Immunology, Department of Biomedicine, University Hospital, Basel, Switzerland
- University Center for Immunology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland.
- University Center for Immunology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Petr Hruz
- Gastroenterology and Hepatology, University Center for Gastrointestinal and Liver Diseases, Clarunis, Basel, Switzerland.
| |
Collapse
|
6
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
7
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
9
|
Vakrakou AG, Brinia ME, Alexaki A, Koumasopoulos E, Stathopoulos P, Evangelopoulos ME, Stefanis L, Stadelmann-Nessler C, Kilidireas C. Multiple faces of multiple sclerosis in the era of highly efficient treatment modalities: Lymphopenia and switching treatment options challenges daily practice. Int Immunopharmacol 2023; 125:111192. [PMID: 37951198 DOI: 10.1016/j.intimp.2023.111192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
The expanded treatment landscape in relapsing-remitting multiple sclerosis (MS) has resulted in highly effective treatment options and complexity in managing disease- or drug-related events during disease progression. Proper decision-making requires thorough knowledge of the immunobiology of MS itself and an understanding of the main principles behind the mechanisms that lead to secondary autoimmunity affecting organs other than the central nervous system as well as opportunistic infections. The immune system is highly adapted to both environmental and disease-modifying agents. Immune reconstitution following cell depletion or cell entrapment therapies eliminates pathogenic aspects of the disease but can also lead to distorted immune responses with harmful effects. Atypical relapses occur with second-line treatments or after their discontinuation and require appropriate clinical decisions. Lymphopenia is a result of the mechanism of action of many drugs used to treat MS. However, persistent lymphopenia and cell-specific lymphopenia could result in disease exacerbation, secondary autoimmunity, or the emergence of opportunistic infections. Clinicians treating patients with MS should be aware of the multiple faces of MS under novel, efficient treatment modalities and understand the intricate brain-immune cell interactions in the context of an altered immune system. MS relapses and disease progression still occur despite the current treatment modalities and are mediated either by failure to control effector mechanisms inherent to MS pathophysiology or by new drug-related mechanisms. The multiple faces of MS due to the highly adapted immune system of patients impose the need for appropriate switching therapies that safeguard disease remission and further clinical improvement.
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany.
| | - Maria-Evgenia Brinia
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Alexaki
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Koumasopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panos Stathopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aiginition Hospital, National and Kapodistrian University of Athens, Athens, Greece; Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
10
|
Frech M, Danzer H, Uchil P, Azizov V, Schmid E, Schälter F, Dürholz K, Mauro D, Rauber S, Muñoz L, Taher L, Ciccia F, Schober K, Irla M, Sarter K, Schett G, Zaiss MM. Butyrophilin 2a2 (Btn2a2) expression on thymic epithelial cells promotes central T cell tolerance and prevents autoimmune disease. J Autoimmun 2023; 139:103071. [PMID: 37356345 DOI: 10.1016/j.jaut.2023.103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Heike Danzer
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Pooja Uchil
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Eva Schmid
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Schälter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Daniele Mauro
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Simon Rauber
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis Muñoz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Graz, Austria
| | - Francesco Ciccia
- Dipartimento di Medicina di Precisione, University Della Campania L. Vanvitelli, Naples, Italy
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Magali Irla
- CNRS, INSERM, Centre D'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, Marseille, France
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universiät Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
11
|
Cho MJ, Lee HG, Yoon JW, Kim GR, Koo JH, Taneja R, Edelson BT, Lee YJ, Choi JM. Steady-state memory-phenotype conventional CD4 + T cells exacerbate autoimmune neuroinflammation in a bystander manner via the Bhlhe40/GM-CSF axis. Exp Mol Med 2023:10.1038/s12276-023-00995-1. [PMID: 37121980 DOI: 10.1038/s12276-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1β without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1β signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jae-Won Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Brian T Edelson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63119, USA
| | - You Jeong Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
12
|
Vakrakou AG, Paschalidis N, Pavlos E, Giannouli C, Karathanasis D, Tsipota X, Velonakis G, Stadelmann-Nessler C, Evangelopoulos ME, Stefanis L, Kilidireas C. Specific myeloid signatures in peripheral blood differentiate active and rare clinical phenotypes of multiple sclerosis. Front Immunol 2023; 14:1071623. [PMID: 36761741 PMCID: PMC9905713 DOI: 10.3389/fimmu.2023.1071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Current understanding of Multiple Sclerosis (MS) pathophysiology implicates perturbations in adaptive cellular immune responses, predominantly T cells, in Relapsing-Remitting forms (RRMS). Nevertheless, from a clinical perspective MS is a heterogeneous disease reflecting the heterogeneity of involved biological systems. This complexity requires advanced analysis tools at the single-cell level to discover biomarkers for better patient-group stratification. We designed a novel 44-parameter mass cytometry panel to interrogate predominantly the role of effector and regulatory subpopulations of peripheral blood myeloid subsets along with B and T-cells (excluding granulocytes) in MS, assessing three different patient cohorts: RRMS, PPMS (Primary Progressive) and Tumefactive MS patients (TMS) (n=10, 8, 14 respectively). We further subgrouped our cohort into inactive or active disease stages to capture the early underlying events in disease pathophysiology. Peripheral blood analysis showed that TMS cases belonged to the spectrum of RRMS, whereas PPMS cases displayed different features. In particular, TMS patients during a relapse stage were characterized by a specific subset of CD11c+CD14+ CD33+, CD192+, CD172+-myeloid cells with an alternative phenotype of monocyte-derived macrophages (high arginase-1, CD38, HLA-DR-low and endogenous TNF-a production). Moreover, TMS patients in relapse displayed a selective CD4 T-cell lymphopenia of cells with a Th2-like polarised phenotype. PPMS patients did not display substantial differences from healthy controls, apart from a trend toward higher expansion of NK cell subsets. Importantly, we found that myeloid cell populations are reshaped under effective disease-modifying therapy predominantly with glatiramer acetate and to a lesser extent with anti-CD20, suggesting that the identified cell signature represents a specific therapeutic target in TMS. The expanded myeloid signature in TMS patients was also confirmed by flow cytometry. Serum neurofilament light-chain levels confirmed the correlation of this myeloid cell signature with indices of axonal injury. More in-depth analysis of myeloid subsets revealed an increase of a subset of highly cytolytic and terminally differentiated NK cells in PPMS patients with leptomeningeal enhancement (active-PPMS), compared to those without (inactive-PPMS). We have identified previously uncharacterized subsets of circulating myeloid cells and shown them to correlate with distinct disease forms of MS as well as with specific disease states (relapse/remission).
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
| | - Christina Giannouli
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Karathanasis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xristina Tsipota
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
13
|
Li X, Zhou W, Wang D. Integrative bioinformatic analysis identified IFIT3 as a novel regulatory factor in psoriasis. J Cell Biochem 2022; 123:2066-2078. [PMID: 36169003 DOI: 10.1002/jcb.30332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022]
Abstract
Psoriasis is an autoimmune skin disease with poor prognosis. Currently, there is no cure for psoriasis and the pathogenic mechanism of psoriasis remains unclear. Our study aims to explore key regulators underlying psoriasis and potential targets for psoriasis treatment. RNA-seq data of psoriasis and normal tissues were extracted from Gene Expression Omnibus database to screen differentially expressed genes (DEGs). Weighted correlation network analysis (WGCNA) was conducted to identify key gene modules correlated with psoriasis. Enrichment analysis was used to characterize identified genes. The expression of identified genes was verified in a data set with various types of psoriasis lesion tissues and six psoriasis and healthy control tissues by quantitative polymerase chain reaction and immunohistochemistry assays. And the biological functions of IFIT3 in keratinocytes were determined by colony formation assays, Cell Counting Kit-8, and enzyme-linked immunosorbent assays. A total of 594 overlapped genes (370 upregulated and 224 downregulated) were selected as DEGs between psoriasis and normal tissues in three independent data sets. These genes were enriched in interferon-related pathway and cytokine-related pathway. Weighted correlation network analysis identified several gene modules that were associated with psoriasis. Overlapped genes between gene modules and DEGs were associated with interferon-related pathway and T cell activities. Among these genes, OAS1, USP18, and IFIT3 had higher expression levels in psoriasis vulgaris (PV) and nonpustular palmoplantar psoriasis (NPPP) tissues but not Palmoplantar Pustular Psoriasis (PPPP). Meanwhile, these results were confirmed in our independent psoriasis tissue cohort. And results of in vitro experiments showed that inhibition of IFIT3 significantly impaired the proliferation capacity and CXCL1, CCL20, IL-1β, and IL-6 secretion of keratinocytes. Our study identified key genes and pathways underlying the pathogenesis of psoriasis through the conduct of integrated analysis. OAS1, USP18, and IFIT3 could be potential targets for the treatment of psoriasis. IFIT3 can promote the proliferation and immune activation of keratinocytes and facilitates the development of psoriasis.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Dan Wang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Increased Expression of CD95 in CD4 + Effector Memory T Cells Promotes Th17 Response in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 2022; 17:437-452. [PMID: 34716498 DOI: 10.1007/s11481-021-10030-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 10/24/2021] [Indexed: 01/13/2023]
Abstract
Emerging data have revealed that CD95 can evoke non-apoptotic signals, thereby promoting pro-inflammatory functions that link to the severity of autoimmune disorders. Here, we reported that the expression of CD95 in CD4+ effector memory T (CD4+ TEM) cells was increased in myasthenia gravis (MG) patients. We also found increased expression of CD95 in CD4+ TEM cells from MG patients correlated positively with clinical severity scores (QMGs), serum IL-17 levels and plasma cells (PCs) frequencies. Conventional treatment, such as glucocorticoid, could down-regulate the expression of CD95 in CD4+ TEM cells, QMGs, serum IL-17 levels and PCs frequencies from MG patients. In vitro, low-dose of agonistic anti-CD95 mAb could promote Th17 cell development. This effect was reversed by CD95 siRNA. Moverover, CD95 stimulation induced the phosphorylation of p38 and Erk1/2 and Th17 cell differentiation, and p38 specific inhibitor SB203580 or Erk1/2 specific inhibitor PD98059 could induce opposite changes. However, SB203580 or PD98059 do not abrogate the increase of CCR6+IL-17A+ cells, ROR-γt and IL-17 expression induced by CD95 triggering relatively to each corresponding control. This suggests that p38 and Erk1/2 MAPK pathway plays a role in expression of CCR6+IL-17A+ cells, ROR-γt and IL-17, but not in their increase induced by CD95 triggering. Taken together, this study revealed that increased expression of CD95 in CD4+ TEM cells promotes Th17 response under the microenvironment of MG.
Collapse
|
15
|
Shibata K, Motozono C, Nagae M, Shimizu T, Ishikawa E, Motooka D, Okuzaki D, Izumi Y, Takahashi M, Fujimori N, Wing JB, Hayano T, Asai Y, Bamba T, Ogawa Y, Furutani-Seiki M, Shirai M, Yamasaki S. Symbiotic bacteria-dependent expansion of MR1-reactive T cells causes autoimmunity in the absence of Bcl11b. Nat Commun 2022; 13:6948. [PMID: 36376329 PMCID: PMC9663695 DOI: 10.1038/s41467-022-34802-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I-related protein 1 (MR1) is a metabolite-presenting molecule that restricts MR1-reactive T cells including mucosal-associated invariant T (MAIT) cells. In contrast to MAIT cells, the function of other MR1-restricted T cell subsets is largely unknown. Here, we report that mice in which a T cell-specific transcription factor, B-cell lymphoma/leukemia 11B (Bcl11b), was ablated in immature thymocytes (Bcl11b∆iThy mice) develop chronic inflammation. Bcl11b∆iThy mice lack conventional T cells and MAIT cells, whereas CD4+IL-18R+ αβ T cells expressing skewed Traj33 (Jα33)+ T cell receptors (TCR) accumulate in the periphery, which are necessary and sufficient for the pathogenesis. The disorders observed in Bcl11b∆iThy mice are ameliorated by MR1-deficiency, transfer of conventional T cells, or germ-free conditions. We further show the crystal structure of the TCR expressed by Traj33+ T cells expanded in Bcl11b∆iThy mice. Overall, we establish that MR1-reactive T cells have pathogenic potential.
Collapse
Affiliation(s)
- Kensuke Shibata
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan ,grid.177174.30000 0001 2242 4849Department of Ophthalmology, Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Chihiro Motozono
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.274841.c0000 0001 0660 6749Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, 860-0871 Japan
| | - Masamichi Nagae
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takashi Shimizu
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Eri Ishikawa
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Motooka
- grid.136593.b0000 0004 0373 3971Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Single Cell Genomics, Human Immunology, World Premier International Research Center Initiative Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan
| | - Yoshihiro Izumi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Masatomo Takahashi
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Nao Fujimori
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - James B. Wing
- grid.136593.b0000 0004 0373 3971Laboratory of Human Immunology (Single Cell Immunology), World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan
| | - Takahide Hayano
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Yoshiyuki Asai
- grid.268397.10000 0001 0660 7960Department of Systems Bioinformatics, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Takeshi Bamba
- grid.177174.30000 0001 2242 4849Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan
| | - Yoshihiro Ogawa
- grid.177174.30000 0001 2242 4849Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan ,grid.419082.60000 0004 1754 9200Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology, Tokyo, 100-0004 Japan ,grid.27476.300000 0001 0943 978XDepartment of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601 Japan
| | - Makoto Furutani-Seiki
- grid.268397.10000 0001 0660 7960Systems Biochemistry in Pathology and Regeneration, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Mutsunori Shirai
- grid.268397.10000 0001 0660 7960Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505 Japan
| | - Sho Yamasaki
- grid.136593.b0000 0004 0373 3971Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871 Japan ,grid.177174.30000 0001 2242 4849Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582 Japan ,grid.136304.30000 0004 0370 1101Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673 Japan
| |
Collapse
|
16
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
17
|
Saidakova EV. Lymphopenia and Mechanisms of T-Cell Regeneration. CELL AND TISSUE BIOLOGY 2022; 16:302-311. [PMID: 35967247 PMCID: PMC9358362 DOI: 10.1134/s1990519x2204006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
Chronic lymphopenia, in particular, T-lymphocyte deficiency, increases the risk of death from cancer, cardiovascular and respiratory diseases and serves as a risk factor for a severe course and poor outcome of infectious diseases such as COVID-19. The regeneration of T-lymphocytes is a complex multilevel process, many questions of which still remain unanswered. The present review considers two main pathways of increasing the T-cell number in lymphopenia: production in the thymus and homeostatic proliferation in the periphery. Literature data on the signals that regulate each pathway are summarized. Their contribution to the quantitative and qualitative restoration of the immune cell pool is analyzed. The features of CD4+ and CD8+ T-lymphocytes’ regeneration are considered.
Collapse
Affiliation(s)
- E. V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences—Branch of Perm Federal Research Center, Ural Branch, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
18
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
The Proinflammatory Cytokines IL-18, IL-21, and IFN-γ Differentially Regulate Liver Inflammation and Anti-Mitochondrial Antibody Level in a Murine Model of Primary Biliary Cholangitis. J Immunol Res 2022; 2022:7111445. [PMID: 35300072 PMCID: PMC8922149 DOI: 10.1155/2022/7111445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 11/18/2022] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic liver disease primarily featured by autoimmune-mediated damage of intrahepatic small- and medium-sized bile ducts. Elevated serum proinflammatory cytokines, serum anti-mitochondrial antibodies (AMAs), liver inflammation, and fibrosis are also hallmarks of PBC disease. However, whether the elevated proinflammatory cytokines play a role in autoimmune cholangitis remains unknown. Herein, we utilized the p40-/-IL-2Rα-/- PBC mouse model to investigate the roles of proinflammatory cytokines IL-18, IL-21, and IFN-γ in the onset and progression of PBC. IL-18-/-, IFN-γ-/-, and IL-21-/- mice were crossed with p40-/-IL-2Ra+/- mice, respectively, to produce corresponding cytokine-deficient PBC models. Autoantibody level, liver inflammation, and bile duct injury were analyzed. We found that livers from p40-/-IL-2Rα-/- mice exhibit similar transcriptomic characters of PBC patients. In p40-/-IL-2Rα-/- mice, deletion of IL-18 has no remarkable effect on disease progression, while deletion of IL-21 indicates that it is necessary for AMA production but independent of liver inflammation and cholangitis. IFN-γ is responsible for both AMA production and liver inflammation in our model. Our results demonstrate that different proinflammatory cytokines can regulate different effector functions in PBC pathogenesis and need to be considered in PBC treatment.
Collapse
|
20
|
Ruck T, Barman S, Schulte-Mecklenbeck A, Pfeuffer S, Steffen F, Nelke C, Schroeter CB, Willison A, Heming M, Müntefering T, Melzer N, Krämer J, Lindner M, Riepenhausen M, Gross CC, Klotz L, Bittner S, Muraro PA, Schneider-Hohendorf T, Schwab N, Meyer zu Hörste G, Goebels N, Meuth SG, Wiendl H. OUP accepted manuscript. Brain 2022; 145:1711-1725. [PMID: 35661859 PMCID: PMC9166548 DOI: 10.1093/brain/awac064] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Abstract
Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing–remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence to: PD Dr. med. Tobias Ruck Department of Neurology with Institute of Translational Neurology University Hospital Muenster Albert-Schweitzer-Campus 1 D-48149 Muenster, Germany E-mail:
| | - Sumanta Barman
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Christopher Nelke
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Christina B. Schroeter
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alice Willison
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Thomas Müntefering
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nico Melzer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Krämer
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Maren Lindner
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Marianne Riepenhausen
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Catharina C. Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Paolo A. Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Gerd Meyer zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
- Correspondence may also be addressed to: Univ.-Prof. Prof. h.c. Dr. med. Heinz Wiendl E-mail:
| |
Collapse
|
21
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
22
|
Deng R, Wu Y, Xu L, Liu K, Huang X, Zhang X. Clinical risk factors and prognostic model for idiopathic inflammatory demyelinating diseases after haploidentical hematopoietic stem cell transplantation in patients with hematological malignancies. Am J Hematol 2021; 96:1407-1419. [PMID: 34350623 DOI: 10.1002/ajh.26312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 01/09/2023]
Abstract
Idiopathic inflammatory demyelinating diseases (IIDDs) of the central nervous system (CNS) are rare but serious neurological complications of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). However, the risk factors and a method to predict the prognosis of post-transplantation CNS IIDDs are not available. This retrospective study first reviewed data from 4532 patients who received haplo-HSCT during 2008-2019 in our center, and 184 patients (4.1%) with IIDDs after haplo-HSCT were identified. Grades II to IV acute graft-versus-host disease (aGVHD) (p < 0.001) and chronic GVHD (cGVHD) (p = 0.009) were identified as risk factors for developing IIDDs after haplo-HSCT. We then divided the 184 IIDD patients into a derivation cohort and validation cohort due to transplantation time to develop and validate a model for predicting the prognosis of IIDDs. In the multivariate analysis of the derivation cohort, four candidate predictors were entered into the final prognostic model: cytomegalovirus (CMV) infection, Epstein-Barr virus (EBV) infection, IgG synthesis (IgG-syn) and spinal cord lesions. The prognostic model had an area under the receiver operating characteristic curve of 0.864 (95% CI: 0.803-0.925) in the internal validation cohort and 0.871 (95% CI: 0.806-0.931) in the external validation cohort. The calibration plots showed a high agreement between the predicted and observed outcomes. Decision curve analysis indicated that IIDD patients could benefit from the clinical application of the prognostic model. The identification of IIDD patients after allo-HSCT who have a poor prognosis might allow timely treatment and improve patient survival and outcomes.
Collapse
Affiliation(s)
- Rui‐Xin Deng
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Ye‐Jun Wu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Lan‐Ping Xu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Kai‐Yan Liu
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Xiao‐Jun Huang
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| | - Xiao‐Hui Zhang
- Peking University People's Hospital Peking University Institute of Hematology Beijing China
- Collaborative Innovation Center of Hematology Peking University Beijing China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation Beijing China
- National Clinical Research Center for Hematologic Disease Beijing China
| |
Collapse
|
23
|
Smetanova J, Milota T, Rataj M, Bloomfield M, Sediva A, Klocperk A. Accelerated Maturation, Exhaustion, and Senescence of T cells in 22q11.2 Deletion Syndrome. J Clin Immunol 2021; 42:274-285. [PMID: 34716533 DOI: 10.1007/s10875-021-01154-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized chiefly by the hypoplasia of the thymus resulting in T cell lymphopenia, increased susceptibility to infections, and higher risk of autoimmune diseases. The irregular thymic niche of T cell development may contribute to autoimmune and atopic complications, whereas the compensatory mechanism of homeostatic T cell proliferation and continuous immune stimulation may result in T cell senescence and exhaustion, further aggravating the immune system dysregulation. METHODS We used flow cytometry to investigate T cell maturation, delineation, proliferation, activation, and expression of senescence and exhaustion-associated markers (PD1, KLRG1, CD57) in 17 pediatric and adolescent patients with 22q11.2DS and age-matched healthy donors. RESULTS 22q11.2DS patients aged 0-5 years had fewer naïve but more effector memory T cells with a tendency to approach normal values with increasing age. Young patients in particular had a higher percentage of proliferating T cells and increased expression of PD1, KLRG1, and CD57, as well as cells co-expressing several exhaustion-associated molecules (PD1, KLRG1, Tbet, Eomes, Helios). Additionally, high-risk 22q11.2DS patients with very low numbers of CD4 T cells had significantly higher percentage of Th1 and Th17 T cells, driven in part by higher proportion of mature T cell forms. CONCLUSION The low thymic output and accelerated T cell differentiation remain the principal features of 22q11.2DS patient immunity, especially in young patients of < 5 years. Later in life, homeostatic proliferation drives expression of T cell exhaustion and senescence-associated markers, suggesting functional aberrations in addition to numeric T cell deficiency.
Collapse
Affiliation(s)
- Jitka Smetanova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Michal Rataj
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Marketa Bloomfield
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.,Department of Paediatrics, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
24
|
Natalini A, Simonetti S, Favaretto G, Peruzzi G, Antonangeli F, Santoni A, Muñoz-Ruiz M, Hayday A, Di Rosa F. OMIP-079: Cell cycle of CD4 + and CD8 + naïve/memory T cell subsets, and of Treg cells from mouse spleen. Cytometry A 2021; 99:1171-1175. [PMID: 34668313 PMCID: PMC9543383 DOI: 10.1002/cyto.a.24509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 01/04/2023]
Abstract
A multicolor flow cytometry panel was designed and optimized to define the following nine mouse T cell subsets: Treg (CD3+ CD4+ CD8− FoxP3+), CD4+ T naïve (CD3+ CD4+ CD8−FoxP3− CD44int/low CD62L+), CD4+ T central memory (CD3+ CD4+ CD8− FoxP3− CD44high CD62L+), CD4+ T effector memory (CD3+ CD4+ CD8− FoxP3− CD44high CD62L−), CD4+ T EMRA (CD3+ CD4+ CD8− FoxP3− CD44int/low CD62L−), CD8+ T naïve (CD3+ CD8+ CD4− CD44int/low CD62L+), CD8+ T central memory (CD3+ CD8+ CD4− CD44high CD62L+), CD8+ T effector memory (CD3+ CD8+ CD4− CD44high CD62L−), and CD8+ T EMRA (CD3+ CD8+ CD4− CD44int/low CD62L−). In each T cell subset, a dual staining for Ki‐67 expression and DNA content was employed to distinguish the following cell cycle phases: G0 (Ki67−, with 2n DNA), G1 (Ki67+, with 2n DNA), and S‐G2/M (Ki67+, with 2n < DNA ≤ 4n). This panel was established for the analysis of mouse (C57BL/6J) spleen.
Collapse
Affiliation(s)
- Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Gabriele Favaretto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Adrian Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK.,Peter Gorer Department of Immunobiology, King's College London, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
25
|
Zou X, Wang S, Zhang Y, Wang X, Zhang R, Yang W, Li Y. AIRE-overexpressing BMDCs suppress T FH cells through ICOSL to prevent and attenuate autoimmune diabetes in NOD mice. Int Immunopharmacol 2021; 99:107979. [PMID: 34293711 DOI: 10.1016/j.intimp.2021.107979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022]
Abstract
The strong genetic association between autoimmune regulator (AIRE) and autoimmune diseases indicates its critical role in immune tolerance. AIRE deficiency is thought to promote the development of follicular helper T (TFH) cells, which are considered to be essential in B cell proliferation. Excessive TFH cell generation is a key step towards the development of autoimmune diseases, including type 1 diabetes. However, the potential mechanism by which AIRE contributes to the generation and function of the TFH cell population has remained elusive. We show that AIRE reduced TFH cell generation by inhibiting the expression of inducible costimulatory ligand (ICOSL), interleukin (IL)-6 and IL-27 in dendritic cells (DCs). To understand the precise impact of AIRE-overexpressing bone marrow-derived DCs (AIRE-BMDCs) on type 1 diabetes progression and the associated molecular mechanisms, we transferred AIRE-BMDCs to recipient NOD mice and found that transplantation of AIRE-BMDCs can prevent or delay the onset of diabetes, attenuate diabetes after the establishment of overt hyperglycaemia, and lead to the inhibition of autoreactive pathological TFH cells and germinal centre (GC) B cells. To further determine the potential mechanism underlying this TFH cell depletion, BMDCs were cotransferred with recombinant mouse ICOSL (ICOSLG protein). We demonstrated that NOD mice were more susceptible to diabetes when they received AIRE-BMDCs and ICOSLG than when they received only mock-vehicle BMDCs (GFP-BMDCs). In addition, we did not observe the reversal of diabetes in any mice subjected to this cotransfer system. A single cycle of ICOSLG treatment temporarily promoted TFH cell proliferation and GC development. Our results reveal a mechanistic role of AIRE-BMDCs in the initiation of TFH cell differentiation, and the AIRE-mediated decrease in ICOSL expression in BMDCs plays a critical role. The effect of decreased ICOSL expression in type 1 diabetes will guide the design and evaluation of parallel studies in patients.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shuang Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Yi Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Strunz PP, Froehlich M, Gernert M, Schwaneck EC, Fleischer A, Pecher AC, Tony HP, Henes JC, Schmalzing M. Immunological Adverse Events After Autologous Hematopoietic Stem Cell Transplantation in Systemic Sclerosis Patients. Front Immunol 2021; 12:723349. [PMID: 34539659 PMCID: PMC8447845 DOI: 10.3389/fimmu.2021.723349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
Autologous hematopoietic stem cell transplantation (aHSCT) represents an effective treatment for systemic sclerosis (SSc), but it also can cause immunological adverse events (iAEs). Therefore, we aimed to determine the frequency of iAEs [engraftment syndrome (ES) and secondary autoimmune disorder (sAD)] and to identify potential risk factors for their development in a retrospective analysis on 22 patients similarly transplanted due to SSc. While nine patients (41%) suffered from ESs, seven sADs occurred in six patients (27%). Patients who developed ES were older in our cohort (52.45 vs. 42.58 years, p = .0433, Cohen’s d = 0.86), and cardiac involvement by SSc was associated with development of ES (OR = 40.11, p = .0017). Patients with manifestation of sAD had a higher modified Rodnan skin score (mRSS) reduction after aHSCT (90.50% vs. 60.00%, p = .0064, r = .65). Thus, IAEs are common after aHSCT for SSc and can occur in different stages during and after aHSCT with characteristic clinical manifestations. Good cutaneous response after aHSCT might be considered as a risk factor for sAD, and higher age at aHSCT and cardiac involvement might be considered as risk factors for the development of ES.
Collapse
Affiliation(s)
- Patrick-Pascal Strunz
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Matthias Froehlich
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Michael Gernert
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | | - Anna Fleischer
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Ann-Christin Pecher
- Department of Internal Medicine II, University Hospital of Tuebingen, Tuebingen, Germany
| | - Hans-Peter Tony
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Joerg Christoph Henes
- Department of Internal Medicine II, University Hospital of Tuebingen, Tuebingen, Germany
| | - Marc Schmalzing
- Department of Internal Medicine II, University Hospital of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
27
|
Kong X, Zeng D, Wu X, Wang B, Yang S, Song Q, Zhu Y, Salas M, Qin H, Nasri U, Haas KM, Riggs AD, Nakamura R, Martin PJ, Huang A, Zeng D. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity. J Clin Invest 2021; 131:135468. [PMID: 32931481 DOI: 10.1172/jci135468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
CD4+ T cell interactions with B cells play a critical role in the pathogenesis of systemic autoimmune diseases such as systemic lupus and chronic graft-versus-host disease (cGVHD). Extrafollicular CD44hiCD62LloPSGL1loCD4+ T cells (PSGL1loCD4+ T cells) are associated with the pathogenesis of lupus and cGVHD, but their causal role has not been established. With murine and humanized MHC-/-HLA-A2+DR4+ murine models of cGVHD, we showed that murine and human PSGL1loCD4+ T cells from GVHD target tissues have features of B cell helpers with upregulated expression of programmed cell death protein 1 (PD1) and inducible T cell costimulator (ICOS) and production of IL-21. They reside in nonlymphoid tissues without circulating in the blood and have features of tissue-resident memory T cells with upregulated expression of CD69. Murine PSGL1loCD4+ T cells from GVHD target tissues augmented B cell differentiation into plasma cells and production of autoantibodies via their PD1 interaction with PD-L2 on B cells. Human PSGL1loCD4+ T cells were apposed with memory B cells in the liver tissues of humanized mice and cGVHD patients. Human PSGL1loCD4+ T cells from humanized GVHD target tissues also augmented autologous memory B cell differentiation into plasma cells and antibody production in a PD1/PD-L2-dependent manner. Further preclinical studies targeting tissue-resident T cells to treat antibody-mediated features of autoimmune diseases are warranted.
Collapse
Affiliation(s)
- Xiaohui Kong
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Deye Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Bixin Wang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Qingxiao Song
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongping Zhu
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Martha Salas
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ryotaro Nakamura
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aimin Huang
- Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
28
|
Bos MM, van Vliet NA, Mooijaart SP, Noordam R, van Heemst D. Genetically Determined Higher TSH Is Associated With a Lower Risk of Diabetes Mellitus in Individuals With Low BMI. J Clin Endocrinol Metab 2021; 106:e2502-e2511. [PMID: 33901276 PMCID: PMC8208661 DOI: 10.1210/clinem/dgab277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 11/23/2022]
Abstract
CONTEXT Thyroid status is hypothesized to be causally related with the risk of diabetes mellitus (DM), but previous results were conflicting possibly because of a complex interaction between thyrotropin (TSH), body mass index (BMI) and DM. OBJECTIVE This work aims to investigate the causal association between thyroid status with DM and glucose homeostasis and to what extent this association is dependent on BMI. METHODS A mendelian randomization study was conducted of European-ancestry participants from the UK Biobank population. The present study involved 408 895 individuals (mean age 57.4 years [SD 8.0], 45.9% men), of whom 19 773 had DM. Genetic variants for circulatory TSH, free thyroxine (fT4) concentrations and BMI to calculate weighted genetic risk scores. The main outcome measures included self-reported DM-stratified analyses by BMI. Analyses were repeated for nonfasting glucose and glycated hemoglobin A1c (HbA1c) among individuals without DM. RESULTS Genetically determined TSH and fT4 levels were not associated with risk of DM in the total UK Biobank population. However, in analyses stratified on genetically determined BMI, genetically determined higher TSH, and not fT4, was associated with a lower risk for DM only in the low BMI group (odds ratio 0.91; 95% CI, 0.85-0.98 in low BMI; P value for interaction = .06). Similar results were observed for glucose and HbA1c among individuals without DM. CONCLUSION TSH, but not fT4, is a potential causal risk factor for DM in individuals with genetically determined low BMI highlighting potential protective effects of TSH only in low-risk populations.
Collapse
Affiliation(s)
- Maxime M Bos
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Nicolien A van Vliet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Simon P Mooijaart
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
- Correspondence: Raymond Noordam, PhD, Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, P.O. Box 9600, 2300RC Leiden, the Netherlands.
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, 2300RC Leiden, the Netherlands
| |
Collapse
|
29
|
Robust CD8+ T-cell proliferation and diversification after mogamulizumab in patients with adult T-cell leukemia-lymphoma. Blood Adv 2021; 4:2180-2191. [PMID: 32433748 DOI: 10.1182/bloodadvances.2020001641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023] Open
Abstract
Skin-related adverse events (AEs) occur frequently in adult T-cell leukemia-lymphoma (ATL) patients treated with mogamulizumab, a humanized anti-CCR4 monoclonal antibody. This study was undertaken to elucidate the mechanisms of mogamulizumab-induced skin-related AEs. We analyzed the T-cell receptor β chain repertoire in ATL patients' peripheral blood mononuclear cells (PBMCs) before and after mogamulizumab. Skin-related AEs were present in 16 patients and were absent in 8 patients. Additionally, we included 11 patients before and after chemotherapy without mogamulizumab. Immune-related gene expression in PBMCs before and after mogamulizumab was also assessed (n = 24). Mogamulizumab treatment resulted in CCR4+ T-cell depletion, and the consequent lymphopenia provoked homeostatic CD8+ T-cell proliferation, as evidenced by increased expressions of CD8B and CD8A, which were significantly greater in patients with skin-related AEs than in those without them. We hypothesize that proliferation is driven by the engagement of self-antigens, including skin-related antigens, in the face of regulatory T-cell depletion. Together with the observed activated antigen presentation function, this resulted in T-cell diversification that was significantly greater in patients with skin-related AEs than in those without. We found that the CD8+ T cells that proliferated and diversified after mogamulizumab treatment were almost entirely newly emerged clones. There was an inverse relationship between the degree of CCR4+ T-cell depletion and increased CD8+ T-cell proliferation and diversification. Thus, lymphocyte-depleting mogamulizumab treatment provokes homeostatic CD8+ T-cell proliferation predominantly of newly emerging clones, some of which could have important roles in the pathogenesis of mogamulizumab-induced skin-related AEs.
Collapse
|
30
|
Lymphopenia, Lymphopenia-Induced Proliferation, and Autoimmunity. Int J Mol Sci 2021; 22:ijms22084152. [PMID: 33923792 PMCID: PMC8073364 DOI: 10.3390/ijms22084152] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Immune homeostasis is a tightly regulated system that is critical for defense against invasion by foreign pathogens and protection from self-reactivity for the survival of an individual. How the defects in this system might result in autoimmunity is discussed in this review. Reduced lymphocyte number, termed lymphopenia, can mediate lymphopenia-induced proliferation (LIP) to maintain peripheral lymphocyte numbers. LIP not only occurs in normal physiological conditions but also correlates with autoimmunity. Of note, lymphopenia is also a typical marker of immune aging, consistent with the fact that not only the autoimmunity increases in the elderly, but also autoimmune diseases (ADs) show characteristics of immune aging. Here, we discuss the types and rates of LIP in normal and autoimmune conditions, as well as the coronavirus disease 2019 in the context of LIP. Importantly, although the causative role of LIP has been demonstrated in the development of type 1 diabetes and rheumatoid arthritis, a two-hit model has suggested that the factors other than lymphopenia are required to mediate the loss of control over homeostasis to result in ADs. Interestingly, these factors may be, if not totally, related to the function/number of regulatory T cells which are key modulators to protect from self-reactivity. In this review, we summarize the important roles of lymphopenia/LIP and the Treg cells in various autoimmune conditions, thereby highlighting them as key therapeutic targets for autoimmunity treatments.
Collapse
|
31
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
32
|
S E, K V, W C, T R, FAM K, C S, H C, J N, J Z, R M, P M. Lymphopenia-induced lymphoproliferation drives activation of naive T cells and expansion of regulatory populations. iScience 2021; 24:102164. [PMID: 33665580 PMCID: PMC7907823 DOI: 10.1016/j.isci.2021.102164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/15/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Chemotherapy pre-conditioning is an essential component of chimeric antigen receptor transduced cell therapy. Acute lymphopenia-induced proliferation (LIP) is known to be driven primarily by homeostatic cytokines, but little is known on the underlying mechanisms in humans. We undertook phenotypic and transcriptional analysis of T cells undergoing LIP two weeks post-myeloablative autograft stem cell transplantation. Strong IL-7 signaling was reflected in downregulated IL-7R expression on all T cells, including naive cells, along with parallel increased IL-2Rα expression. Notably, activated residual naive cells expressed Fas indicating recent TCR engagement. Moreover, proportion of Ki67 + FoxP3+ Tregs was almost doubled. Transcriptional analysis revealed increased fatty acid metabolism and interferon signaling responses. In contrast, TGF-β signaling was strongly suppressed. Thus, human LIP response is characterized by cytokine and TCR-driven proliferation which drives global T cell activation but also preferentially triggers regulatory cell expansion which may limit tumor-specific immunity. These features indicate potential therapeutic opportunities to manipulate immunotherapy regimens incorporating LIP conditioning protocols.
Collapse
Affiliation(s)
- Eldershaw S
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Verma K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Croft W
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Rai T
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kinsella FAM
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Stephens C
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Chen H
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nunnick J
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Zuo J
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Malladi R
- Center for clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Moss P
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Centre for Computational Biology, University of Birmingham, Birmingham, UK
| |
Collapse
|
33
|
Wang Y, Fu Z, Li X, Liang Y, Pei S, Hao S, Zhu Q, Yu T, Pei Y, Yuan J, Ye J, Fu J, Xu J, Hong J, Yang R, Hou H, Huang X, Peng C, Zheng M, Xiao Y. Cytoplasmic DNA sensing by KU complex in aged CD4 + T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity 2021; 54:632-647.e9. [PMID: 33667382 DOI: 10.1016/j.immuni.2021.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/19/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zunyun Fu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Yinming Liang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shumeng Hao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yifei Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Yuan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jialin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiemeng Fu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Hong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinfang Huang
- Department of Rheumatology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai 201210, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
34
|
Perez-Diez A, Wong CS, Liu X, Mystakelis H, Song J, Lu Y, Sheikh V, Bourgeois JS, Lisco A, Laidlaw E, Cudrici C, Zhu C, Li QZ, Freeman AF, Williamson PR, Anderson M, Roby G, Tsang JS, Siegel R, Sereti I. Prevalence and pathogenicity of autoantibodies in patients with idiopathic CD4 lymphopenia. J Clin Invest 2021; 130:5326-5337. [PMID: 32634122 DOI: 10.1172/jci136254] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDIdiopathic CD4 lymphopenia (ICL) is defined by persistently low CD4+ cell counts (<300 cells/μL) in the absence of a causal infection or immune deficiency and can manifest with opportunistic infections. Approximately 30% of ICL patients develop autoimmune disease. The prevalence and breadth of their autoantibodies, however, and their potential contribution to pathogenesis of ICL remain unclear.METHODSWe hybridized 34 and 51 ICL patients' sera to a 9,000-human-proteome array and to a 128-known-autoantigen array, respectively. Using a flow-based method, we characterized the presence of anti-lymphocyte Abs in the whole cohort of 72 patients, as well as the Ab functional capability of inducing Ab-dependent cell-mediated cytotoxicity (ADCC), complement deposition, and complement-dependent cytotoxicity (CDC). We tested ex vivo the activation of the classical complement pathway on ICL CD4+ T cells.RESULTSAll ICL patients had a multitude of autoantibodies mostly directed against private (not shared) targets and unrelated quantitatively or qualitatively to the patients' autoimmune disease status. The targets included lymphocyte intracellular and membrane antigens, confirmed by the detection by flow of IgM and IgG (mostly IgG1 and IgG4) anti-CD4+ cell Abs in 50% of the patients, with half of these cases triggering lysis of CD4+ T cells. We also detected in vivo classical complement activation on CD4+ T cells in 14% of the whole cohort.CONCLUSIONOur data demonstrate that a high prevalence of autoantibodies in ICL, some of which are specific for CD4+ T cells, may contribute to pathogenesis, and may represent a potentially novel therapeutic target.TRIAL REGISTRATIONClinicalTrials.gov NCT00867269.FUNDINGNIAID and National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH.
Collapse
Affiliation(s)
| | - Chun-Shu Wong
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - Xiangdong Liu
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Jian Song
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and
| | - Yong Lu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and
| | - Virginia Sheikh
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Andrea Lisco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | | | - Cornelia Cudrici
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | - Quan-Zhen Li
- Microarray Core Facility and.,Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Peter R Williamson
- Translational Mycology Section, Laboratory of Clinical and Molecular Immunology, NIAID, and
| | - Megan Anderson
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - Gregg Roby
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), and.,Trans-NIH Center for Human Immunology, NIH, Bethesda, Maryland, USA
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, and
| |
Collapse
|
35
|
Campos JS, Henrickson SE, Abraham RS. Expanding mechanistic insights into the pathogenesis of idiopathic CD4+ T cell lymphocytopenia. J Clin Invest 2021; 130:5105-5108. [PMID: 32865518 DOI: 10.1172/jci141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Idiopathic CD4+ T cell lymphocytopenia (ICL) is a heterogeneous syndrome presenting with persistent CD4+ T cell lymphopenia of unknown origin, and opportunistic infections in some patients. The underlying pathogenesis and appropriate management remain understudied. In this issue of the JCI, Perez-Diez and Wong et al. assessed the prevalence of autoantibodies from the sera of 51 adult ICL patients (out of a cohort of 72). Some patients showed high levels of IgG and IgM autoantibodies against numerous autoantigens, and some autoantibodies were specific for lymphocytes. The researchers implicate these autoantibodies as a possible pathogenic mechanism responsible for the reduction in circulating CD4+ T cells. This study goes beyond defining a mechanism in a complex, poorly defined disease; it also brings a renewed focus on ICL that will likely result in improved diagnostic evaluation and treatment.
Collapse
Affiliation(s)
- Jose S Campos
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
36
|
Consensus opinion on immune-mediated cytopenias after hematopoietic cell transplant for inherited metabolic disorders. Bone Marrow Transplant 2021; 56:1238-1247. [PMID: 33441980 DOI: 10.1038/s41409-020-01179-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell transplantation (HCT) has been increasingly used for patients with inherited metabolic disorders (IMD). Immune mediated cytopenias (IMCs) after HCT, manifesting as hemolytic anemia, thrombocytopenia, and/or neutropenia, are recognized as a significant complication in this patient population, yet our understanding of the incidence, risk factors, and pathophysiology is currently limited. Review of the published literature demonstrates a higher incidence in younger patients who undergo HCT for a nonmalignant disease indication. However, a few reports suggest that the incidence is even higher among those with IMD (incidence ranging from 10 to 56%). This review summarizes the literature, provides an approach to better understanding of the possible etiology of IMCs, and proposes a diagnostic and management plan for patients with IMD who develop single or multi-lineage cytopenias after HCT.
Collapse
|
37
|
Immunology Basics of Rheumatic Disease. PHYSICIAN ASSISTANT CLINICS 2021. [DOI: 10.1016/j.cpha.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Moskalec OV. Characteristics of the Immunoresponse in Elderly People and Autoimmunity. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Adhesin HpaA of Helicobacter pylori Promoted Migration of AGS Cells via IL-21 Secretion from HpaA-induced CD4+T Cells. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.101137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: As known, there is a high correlation between Helicobacter pylori infection and gastric carcinoma. Objectives: Concerning the important role of adhesin HpaA of H. pylori in the infection process, we aimed to explore whether HpaA promotes gastric cancer metastasis. Methods: In this study, the levels of IL-21, MMP-2, and MMP-9 in patients’ biopsies with H. pylori infection were compared with post-treatment condition. The levels of IL-21 from CD4+ T cells and culture supernatants with the recombinant HpaA treatment were detected, and then the levels of MMP-2, MMP-9, and metastasis were detected and verified via AGS cells co-cultured with aforesaid CD4+ T cells. Results: Our results showed that higher levels of IL-21, MMP-2, and MMP-9 in patients’ biopsies with H. pylori infection than without H. pylori infection. Adhesin HpaA induced more IL-21 via CD4+ T cells, and IL-21 induced high MMP-2 and MMP-9 via AGS cells. In particular, HpaA caused this serial reaction to improve the migration of AGS cells, and aptamer HA6 (our previous report) and anti-IL-21 mcAb reduced the above phenomenon remarkably. Conclusions: In summary, our research suggested that adhesin HpaA plays a significant role in the process of gastric carcinoma cell metastasis via IL-21 from HpaA-induced T cells, and aptamer HA6 may be a potential therapeutic agent for H. pylori treatment.
Collapse
|
40
|
Darrigues J, Santamaria JC, Galindo-Albarrán A, Robey EA, Joffre OP, van Meerwijk JPM, Romagnoli P. Robust intrathymic development of regulatory T cells in young NOD mice is rapidly restrained by recirculating cells. Eur J Immunol 2020; 51:580-593. [PMID: 32730634 DOI: 10.1002/eji.202048743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T lymphocytes (Treg) play a vital role in the protection of the organism against autoimmune pathology. It is therefore paradoxical that comparatively large numbers of Treg were found in the thymus of type I diabetes-prone NOD mice. The Treg population in the thymus is composed of newly developing cells and cells that had recirculated from the periphery back to the thymus. We here demonstrate that exceptionally large numbers of Treg develop in the thymus of young, but not adult, NOD mice. Once emigrated from the thymus, an unusually large proportion of these Treg is activated in the periphery, which causes a particularly abundant accumulation of recirculating Treg in the thymus. These cells then rapidly inhibit de novo development of Treg. The proportions of developing Treg thus reach levels similar to or lower than those found in most other, type 1 diabetes-resistant, inbred mouse strains. Thus, in adult NOD mice the particularly large Treg-niche is actually composed of mostly recirculating cells and only few newly developing Treg.
Collapse
Affiliation(s)
- Julie Darrigues
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France
| | - Jeremy C Santamaria
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France
| | - Ariel Galindo-Albarrán
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France.,Station d'Ecologie Théorique et Expérimentale, CNRS, Moulis, France, Université Paul Sabatier, Moulis, France
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Olivier P Joffre
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France
| | - Joost P M van Meerwijk
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France
| | - Paola Romagnoli
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm U1043, CNRS UMR 5282, Université de Toulouse III (UPS), Toulouse, France
| |
Collapse
|
41
|
Imai N, Tawara I, Yamane M, Muraoka D, Shiku H, Ikeda H. CD4 + T cells support polyfunctionality of cytotoxic CD8 + T cells with memory potential in immunological control of tumor. Cancer Sci 2020; 111:1958-1968. [PMID: 32304127 PMCID: PMC7293103 DOI: 10.1111/cas.14420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
Polyfunctionality/multifunctionality of effector T cells at the single cell level has been shown as an important parameter to predict the quality of T cell response and immunological control of infectious disease and malignancy. However, the fate of polyfunctional CD8+ CTLs and the factors that control the polyfunctionality of T cells remain largely unknown. Here we show that the acquisition of polyfunctionality on the initial stimulation is a sensitive immune correlate of CTL survival and memory formation. CD8+ T cells with high polyfunctionality, assessed with γ‐interferon and tumor necrosis factor‐α production and surface mobilization of the degranulation marker CD107a, showed enhanced Bcl‐2 expression, low apoptosis, and increased CD127highKLRG1low memory precursor phenotype. Consistent with these observations, CD8+ T cells were found to acquire high frequency of cells with polyfunctionality when stimulated in conditions known to enhance memory formation, such as the presence of CD4+ T cells, interleukin (IL)‐2, or IL‐21. Utilizing T‐cell receptor (TCR) transgenic mouse‐derived CD8+ T cells that express a TCR specific for a tumor‐derived neoantigen, we showed that polyfunctional tumor‐specific CTLs generated in the presence of CD4+ T cells showed long persistence in vivo and induced enhanced tumor regression when adoptively transferred into mice with progressing tumor. Acquisition of polyfunctionality thus impacts CTL survival and memory formation associated with immunological control of tumor.
Collapse
Affiliation(s)
- Naoko Imai
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makiko Yamane
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Daisuke Muraoka
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
42
|
Rodriguez-Barbosa JI, Schneider P, Graca L, Bühler L, Perez-Simon JA, del Rio ML. The Role of TNFR2 and DR3 in the In Vivo Expansion of Tregs in T Cell Depleting Transplantation Regimens. Int J Mol Sci 2020; 21:E3347. [PMID: 32397343 PMCID: PMC7247540 DOI: 10.3390/ijms21093347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Regulatory T cells (Tregs) are essential for the maintenance of tolerance to self and non-self through cell-intrinsic and cell-extrinsic mechanisms. Peripheral Tregs survival and clonal expansion largely depend on IL-2 and access to co-stimulatory signals such as CD28. Engagement of tumor necrosis factor receptor (TNFR) superfamily members, in particular TNFR2 and DR3, contribute to promote peripheral Tregs expansion and sustain their survival. This property can be leveraged to enhance tolerance to allogeneic transplants by tipping the balance of Tregs over conventional T cells during the course of immune reconstitution. This is of particular interest in peri-transplant tolerance induction protocols in which T cell depletion is applied to reduce the frequency of alloreactive T cells or in conditioning regimens that allow allogeneic bone marrow transplantation. These conditioning regimens are being implemented to limit long-term side effects of continuous immunosuppression and facilitate the establishment of a state of donor-specific tolerance. Lymphopenia-induced homeostatic proliferation in response to cytoreductive conditioning is a window of opportunity to enhance preferential expansion of Tregs during homeostatic proliferation that can be potentiated by agonist stimulation of TNFR.
Collapse
Affiliation(s)
- Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology, School of Biology and Biotechnology, Institute of Molecular Biology, Genomics and Proteomics, University of Leon, 24071 Leon, Spain;
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Luis Graca
- School of Medicine, Institute of Molecular Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Leo Bühler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Jose-Antonio Perez-Simon
- Department of Hematology, Institute of Biomedicine (IBIS/CSIC), University Hospital Virgen del Rocio, 41013 Sevilla, Spain;
| | - Maria-Luisa del Rio
- Transplantation Immunobiology, School of Biology and Biotechnology, Institute of Molecular Biology, Genomics and Proteomics, University of Leon, 24071 Leon, Spain;
| |
Collapse
|
43
|
Minato N, Hattori M, Hamazaki Y. Physiology and pathology of T-cell aging. Int Immunol 2020; 32:223-231. [PMID: 31967307 PMCID: PMC7150735 DOI: 10.1093/intimm/dxaa006] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Acquired immune function shows recognizable changes over time with organismal aging. These changes include T-cell dysfunction, which may underlie diminished resistance to infection and possibly various chronic age-associated diseases in the elderly. T-cell dysfunction may occur at distinct stages, from naive cells to the end stages of differentiation during immune responses. The thymus, which generates naive T cells, shows unusually early involution resulting in progressive reduction of T-cell output after adolescence, but peripheral T-cell numbers are maintained through antigen-independent homeostatic proliferation of naive T cells driven by the major histocompatibility complex associated with self-peptides and homeostatic cytokines, retaining the diverse repertoire. However, extensive homeostatic proliferation may lead to the emergence of dysfunctional CD4+ T cells with features resembling senescent cells, termed senescence-associated T (SA-T) cells, which increase and accumulate with age. In situations such as chronic viral infection, T-cell dysfunction may also develop via persistent antigen stimulation, termed exhaustion, preventing possible immunopathology due to excessive immune responses. Exhausted T cells are developed through the effects of checkpoint receptors such as PD-1 and may be reversed with the receptor blockade. Of note, although defective in their regular T-cell antigen-receptor-mediated proliferation, SA-T cells secrete abundant pro-inflammatory factors such as osteopontin, reminiscent of an SA-secretory phenotype. A series of experiments in mouse models indicated that SA-T cells are involved in systemic autoimmunity as well as chronic tissue inflammation following tissue stresses. In this review, we discuss the physiological aspects of T-cell dysfunction associated with aging and its potential pathological involvement in age-associated diseases and possibly cancer.
Collapse
Affiliation(s)
- Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Hattori
- Medical Innovation Center, Graduate School of Medicine, Kyoto, Japan
| | - Yoko Hamazaki
- Laboratory of Immunobiology, Center for iPS Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Lee GH, Hong KT, Choi JY, Shin HY, Lee WW, Kang HJ. Immunosenescent characteristics of T cells in young patients following haploidentical haematopoietic stem cell transplantation from parental donors. Clin Transl Immunology 2020; 9:e1124. [PMID: 32280463 PMCID: PMC7142179 DOI: 10.1002/cti2.1124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Paediatric and adolescent patients in need of allogeneic haematopoietic stem cell transplantation (HSCT) generally receive stem cells from older, unrelated or parental donors when a sibling donor is not available. Despite encouraging clinical outcomes, it has been suggested that immune reconstitution accompanied by increased replicative stress and a large difference between donor and recipient age may worsen immunosenescence in paediatric recipients. Methods In this study, paired samples were collected at the same time from donors and recipients of haploidentical haematopoietic stem cell transplantation (HaploSCT). We then conducted flow cytometry‐based phenotypic and functional analyses and telomere length (TL) measurements of 21 paired T‐cell sets from parental donors and children who received T‐cell‐replete HaploSCT with post‐transplant cyclophosphamide (PTCy). Results Senescent T cells, CD28− or CD57+ cells, were significantly expanded in patients. Further, not only CD4+CD28− T cells, but also CD4+CD28+ T cells showed reduced cytokine production capacity and impaired polyfunctionality compared with parental donors, whereas their TCR‐mediated proliferation capacity was comparable. Of note, the TL in patient T cells was preserved, or even slightly longer, in senescent T cells compared with donor cells. Regression analysis showed that senescent features of CD4+ and CD8+ T cells in patients were influenced by donor age and the frequency of CD28− cells, respectively. Conclusion Our data suggest that in paediatric HaploSCT, premature immunosenescent changes occur in T cells from parental donors, and therefore, long‐term immune monitoring should be conducted.
Collapse
Affiliation(s)
- Ga Hye Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea
| | - Kyung Taek Hong
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Jung Yoon Choi
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Hee Young Shin
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| | - Won-Woo Lee
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea.,BK21Plus Biomedical Science Project Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea.,Department of Microbiology and Immunology Seoul National University College of Medicine Seoul South Korea.,Ischemic/Hypoxic Disease Institute Seoul National University College of Medicine Seoul South Korea.,Institute of Infectious Diseases Seoul National University College of Medicine Seoul South Korea.,Seoul National University Hospital Biomedical Research Institute Seoul South Korea
| | - Hyoung Jin Kang
- Department of Pediatrics Seoul National University College of Medicine Seoul South Korea.,Seoul National University Cancer Research Institute Seoul South Korea
| |
Collapse
|
45
|
Miller PDE, Snowden JA, De Latour RP, Iacobelli S, Eikema DJ, Knol C, Marsh JCW, Rice C, Koh M, Fagioli F, Chaganti S, Finke J, Duarte RF, Bader P, Farge D, Passweg JR, Madrigal JA, Dufour C. Autoimmune cytopenias (AIC) following allogeneic haematopoietic stem cell transplant for acquired aplastic anaemia: a joint study of the Autoimmune Diseases and Severe Aplastic Anaemia Working Parties (ADWP/SAAWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2020; 55:441-451. [PMID: 31554929 PMCID: PMC6995778 DOI: 10.1038/s41409-019-0680-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/03/2022]
Abstract
This retrospective study explored the incidence of autoimmune cytopenia (AIC) in 530 paediatric and adult patients with acquired aplastic anaemia (aAA) who underwent first allogeneic HSCT between 2002 and 2012. AIC was a rare complication with a cumulative incidence of AIC at 1, 3, 5 and 10 years post HSCT of 2.5% (1.2-3.9 95% CI), 4.4% (2.6-6.2 95% CI), 4.6% (2.8-6.5 95% CI) and 5.1% (3.1-7.2 95% CI). Overall survival at 5 years after diagnosis of AIC was 85.9% (71-100 95% CI). Twenty-five patients were diagnosed with AIC at a median of 10.6 (2.6-91.5) months post HSCT. Eight (32%) patients were diagnosed with immune thrombocytopenia (ITP), seven (28%) with autoimmune haemolytic anaemia (AIHA), seven (24%) with Evans syndrome and four (16%) with autoimmune neutropenia (AIN). Treatment strategies were heterogeneous. Complete responses were seen in 12 of 25 patients, with death in three patients. In multivariable Cox analysis of a subgroup of 475 patients, peripheral blood stem cell (PBSC) transplant was associated with higher risk of AIC compared with bone marrow (BM) when conditioning regimens contained fludarabine and/or alemtuzumab (2.81 [1.06-7.49 95% CI]; p = 0.038), or anti-thymocyte globulin (ATG) (2.86 [1.11-7.37 95% CI]; p = 0.029). Myeloablative conditioning was associated with a lower risk of AIC compared with reduced intensity conditioning (RIC) in fludarabine and/or alemtuzumab (0.34 [0.12-0.98 95% CI]; p = 0.046) and ATG containing regimens (0.34 [0.12-0.95 95% CI]; p = 0.04). These findings provide clinically useful information regarding the incidence of a rare and potentially life-threatening complication of allogeneic HSCT for aAA, and further support for BM as the preferred stem cell source for transplant of patients with aAA.
Collapse
Affiliation(s)
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Cora Knol
- EBMT Data Office, Leiden, Netherlands
| | - Judith C W Marsh
- Department of Haematological Medicine, Kings College Hospital, London, UK
| | - Carmel Rice
- Department of Haematological Medicine, Kings College Hospital, London, UK
| | - Mickey Koh
- Department of Haematology, St George's Hospital NHS Foundation Trust, London, UK
| | - Franca Fagioli
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Torino, Italy
| | - Sridhar Chaganti
- Centre for Clinical Haematology, University Hospital Birmingham, Birmingham, UK
| | - Jürgen Finke
- Department of Hematology and Oncology, University Medical Center, Freiburg, Germany
| | - Rafael F Duarte
- Department of Hematology, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Peter Bader
- University Children's Hospital Frankfurt, Frankfurt, Germany
| | - Dominique Farge
- Department of Autoimmune Diseases and Vascular Pathology, Hopital Saint-Louis, Paris, France
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Santander, Basel, Switzerland
| | | | - Carlo Dufour
- Hematology Unit, G. Gaslini Children's Hospital, Genova, Italy
| |
Collapse
|
46
|
Knipper JA, Wright D, Cope AP, Malissen B, Zamoyska R. PTPN22 Acts in a Cell Intrinsic Manner to Restrict the Proliferation and Differentiation of T Cells Following Antibody Lymphodepletion. Front Immunol 2020; 11:52. [PMID: 32047502 PMCID: PMC6997546 DOI: 10.3389/fimmu.2020.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 11/25/2022] Open
Abstract
Lymphopenic insult has been shown to precipitate the initiation of autoimmune disease in murine models such as the Non-obese diabetic mouse. Similarly, in man lymphopenia induced by mAb therapy, for instance Alemtuzumab as treatment for Multiple Sclerosis, can precipitate development of secondary autoimmune disease in up to 30 % of patients. We asked whether an identified autoimmune susceptibility locus might increase the risk of developing autoimmunity in the context of mAb-induced lymphopenia in a mouse model. A single nucleotide polymorphism (SNP) in the gene encoding the tyrosine phosphatase PTPN22 (R620W) is associated with multiple human autoimmune diseases, and PTPN22 has been shown to modulate T cell responses, particularly to weak antigens. In keeping with this, PTPN22-deficient or PTPN22 R619W mutant murine T cells adoptively transferred into immunodeficient lymphopenic hosts showed a higher lymphopenia-induced proliferation rate than WT cells. We induced lymphopenia by treating wild-type or PTPN22 knock-out mice with T cell depleting antibodies and monitored reconstitution of the T cell pool. We found that PTPN22 deficient T cells acquired a more activated effector phenotype, with significantly more IFNγ producing cells. This resulted from expansion driven by self-peptide MHC, as it was evident when the contribution of IL-7 to lymphopenic expansion was blocked with IL-7R Ab. Interestingly, Foxp3+ Tregs were also considerably expanded in PTPN22-deficient and PTPN22 R619W mice, as was the frequency of both CD25+ and CD25- CD4 T cells that produce IL-10. Using bone marrow chimeric mice, we showed that PTPN22 influenced development of both regulatory and effector T cell functions in a cell-intrinsic manner. Overall the expansion of Tregs is likely to keep the expanded T effector populations in check and sparing Treg during therapeutic mAb depletion may be a useful strategy to prevent occurrence of secondary autoimmunity.
Collapse
Affiliation(s)
- Johanna A Knipper
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David Wright
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P Cope
- Faculty of Life Sciences and Medicine, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, INSERM, CNRS, Aix Marseille Université, Marseille, France.,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
47
|
Sim SW, Weinstein DA, Lee YM, Jun HS. Glycogen storage disease type Ib: role of glucose‐6‐phosphate transporter in cell metabolism and function. FEBS Lett 2019; 594:3-18. [DOI: 10.1002/1873-3468.13666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sang Wan Sim
- Department of Biotechnology and Bioinformatics College of Science and Technology Korea University Sejong Korea
| | - David A. Weinstein
- Glycogen Storage Disease Program University of Connecticut School of Medicine Farmington CT USA
| | - Young Mok Lee
- Glycogen Storage Disease Program University of Connecticut School of Medicine Farmington CT USA
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics College of Science and Technology Korea University Sejong Korea
| |
Collapse
|
48
|
Yamaguchi T, Teraguchi S, Furusawa C, Machiyama H, Watanabe TM, Fujita H, Sakaguchi S, Yanagida T. Theoretical modeling reveals that regulatory T cells increase T-cell interaction with antigen-presenting cells for stable immune tolerance. Int Immunol 2019; 31:743-753. [PMID: 31131864 PMCID: PMC6794947 DOI: 10.1093/intimm/dxz043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
The immune system in tolerance maintains cell diversity without responding to self-antigens. Foxp3-expressing CD25+CD4+ regulatory T cells (Tregs) inhibit T-cell activation through various molecular mechanisms. However, several key questions are still not resolved, including how Tregs control the immune response on the basis of their self-skewed T-cell receptor repertoire and how Tregs avoid impeding relevant immunity against pathogens. Here, we show that Tregs promote the proliferation of conventional T cells in the presence of excessive co-stimulation when murine T cells are stimulated in vitro with allogeneic antigen-presenting cells (APCs). Antigen-specific Tregs increase the number of cells interacting with dendritic cells (DCs) by increasing the number of viable DCs and the expression of adhesion molecules on DCs. Theoretical simulations and mathematical models representing the dynamics of T-APC interaction and T-cell numbers in a lymph node indicate that Tregs reduce the dissociation probability of T cells from APCs and increase the new association. These functions contribute to tolerance by enhancing the interaction of low-affinity T cells with APCs. Supporting the theoretical analyses, we found that reducing the T-cell numbers in mice increases the ratio of specific T cells among CD4+ T cells after immunization and effectively induces autoimmune diabetes in non obese diabetes mice. Thus, as a critical function, antigen-specific Tregs stabilize the immune state, irrespective of it being tolerant or responsive, by augmenting T-APC interaction. We propose a novel regulation model in which stable tolerance with large heterogeneous populations proceeds to a specific immune response through a transient state with few populations.
Collapse
Affiliation(s)
- Tomoyuki Yamaguchi
- Basic Immunology Laboratory, Research Institute, Nozaki Tokushukai Hospital, Tanigawa, Daito, Osaka, Japan
- Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, Furuedai, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, Furuedai, Suita, Osaka, Japan
| | - Shunsuke Teraguchi
- Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Chikara Furusawa
- Quantitative Biology Center, RIKEN, Furuedai, Suita, Osaka, Japan
- Universal Biology Institute, University of Tokyo, Hongo, Tokyo, Japan
| | - Hiroaki Machiyama
- Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, Furuedai, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, Furuedai, Suita, Osaka, Japan
| | | | - Hideaki Fujita
- Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, Furuedai, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, Furuedai, Suita, Osaka, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Toshio Yanagida
- Single Molecule Imaging, WPI Immunology Frontier Research Center, Osaka University, Furuedai, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, Furuedai, Suita, Osaka, Japan
| |
Collapse
|
49
|
Alternative NF-κB signaling controls peripheral homeostasis and function of regulatory T cells. Immunobiology 2019; 224:687-696. [DOI: 10.1016/j.imbio.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 11/23/2022]
|
50
|
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis. Proc Natl Acad Sci U S A 2019; 116:18517-18527. [PMID: 31455730 PMCID: PMC6744919 DOI: 10.1073/pnas.1904271116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
How arthritis-causing T cells trigger rheumatoid arthritis (RA) is not understood since it is difficult to differentiate T cells activated by inflammation in arthritic joints from those activated through their T cell antigen receptor (TCR) by self-antigens. We developed a model to identify and study antigen-specific T cell responses in arthritis. Nur77—a specific marker of TCR signaling—was used to identify antigen-activated T cells in the SKG arthritis model and in patients with RA. Nur77 could distinguish highly arthritogenic and autoreactive T cells in SKG mice. The enhanced autoreactivity was associated with increased interleukin-6 (IL-6) receptor signaling, likely contributing to their arthritogenicity. These data highlight a functional correlate between Nur77 expression, arthritogenic T cell populations, and heightened IL-6 sensitivity in SKG mice with translatable implications for human RA. How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77—a marker of T cell antigen receptor (TCR) signaling—to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)–producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)—a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA.
Collapse
|