1
|
Xu N, Zhang X, Liu H, Xu Y, Lu H, Zhao L, He Y, Zhang M, Zhang J, Si G, Wang Z, Chen M, Cai Y, Zhang Y, Wang Q, Hao Y, Li Y, Zhou Z, Guo Y, Chang C, Liu M, Ma C, Wang Y, Fang L, Li S, Wang G, Liu Q, Liu W. Clinical and epidemiological investigation of human infection with zoonotic parasite Trypanosoma dionisii in China. J Infect 2024; 89:106290. [PMID: 39341404 DOI: 10.1016/j.jinf.2024.106290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Trypanosomiasis continues to pose a global threat to human health, with human infection mainly caused by Trypanosoma brucei and Trypanosoma cruzi. METHODS We present a 30-year-old pregnant woman with persistent high fever from Shandong Province, China. High-throughput sequencing revealed the presence of Trypanosoma dionisii in blood. We conducted an analysis of the patient's clinical, epidemiological, and virological data. RESULTS The patients exhibited fever, shortness of breath, chest tightness, accompanied by change in liver function and inflammatory response. She made a full recovery without any long-term effects. T. dionisii was detected in blood collected 23 days after onset of illness. The 18S rRNA gene sequence showed close similarity to T. dionisii found in bats from Japan, while the gGAPDH gene was closely related to T. dionisii from bats in Mengyin County, Shandong Province. Phylogenetic analysis demonstrated the current T. dionisii belongs to clade B within its species group. Positive anti-Trypanosoma IgG antibody was detected from the patient on Day 23, 66 and 122 after disease onset, as well as the cord blood and serum from the newborn. Retrospective screening of wild small mammals captured from Shandong Province revealed a prevalence rate of 0.54% (7/1304) for T. dionisii; specifically among 0.81% (5/620) of Apodemus agrarius, and 0.46% (2/438) of Mus musculus. CONCLUSIONS The confirmation of human infection with T. dionisii underscores its potential as a zoonotic pathogen, while the widespread presence of this parasite in rodent and bat species emphasizes the emerging threat it poses to human health.
Collapse
Affiliation(s)
- Nannan Xu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Hui Liu
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yintao Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Huixia Lu
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China; State Key Laboratory for Innovation and Transformation of Luobing Theory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lianhui Zhao
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yishan He
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Meiqi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Jingtao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Guangqian Si
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Ziyi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Muxin Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuchun Cai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yi Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Qiang Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuwan Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yuanyuan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Zhengbin Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Yunhai Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China
| | - Caiyun Chang
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Ming Liu
- Institute for Infectious Disease Control, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Chuanmin Ma
- Institute of Bacterial Disease, Jinan Center for Disease Control and Prevention, Jinan, Shandong 250021, China
| | - Yongbin Wang
- Shandong Institute of Parasitic Disease, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, Shandong 272033, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China
| | - Shizhu Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Gang Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Qin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Parasitic Diseases at Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Research Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 20025, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.
| |
Collapse
|
2
|
Tahir Aleem M, Munir F, Shakoor A, Ud Din Sindhu Z, Gao F. Advancement in the development of DNA vaccines against Trypanosoma brucei and future perspective. Int Immunopharmacol 2024; 140:112847. [PMID: 39088922 DOI: 10.1016/j.intimp.2024.112847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Trypanosomes are the extracellular protozoan parasites that cause human African trypanosomiasis disease in humans and nagana disease in animals. Tsetse flies act as a vector for the transmission of the disease in African countries. Animals infected with these parasites become useless or workless, and if not treated, disease can be fatal. There are many side effects associated with old treatments and some of them result in death in 5% of cases. There is a major surface glycoprotein in the parasite known as variant surface glycoprotein. The immune system of the host develops antibodies against this antigen but due to antigenic variation, parasites evade the immune response. Currently, no vaccine is available that provides complete protection. In murine models, only partial protection was observed using certain antigens. In order to develop vaccines against trypanosomes, molecular biology and immunology tools have been used. Immunization is the sole method for the control of disease because the eradication of the vector from endemic areas is an impossible task. Genetic vaccines can carry multiple genes encoding different antigens of the same parasite or different parasites. DNA immunization induces the activation of both cellular immune response and humoral immune response along with the generation of memory. This review highlights the importance of DNA vaccines and advances in the development of DNA vaccines against T. brucei.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 9, 38040, Pakistan
| | - Zia Ud Din Sindhu
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
3
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
4
|
Liu Y, Jiang N, Zuo S, Feng Y, Chen R, Zhang Y, Zhang N, Sang X, Chen Q. Graphene quantum dots disrupt the mitochondrial potential of Trypanosoma brucei by interacting with the p18 subunit of ATP synthase F 1 after endocytosis via the VSG recycling pathway. J Colloid Interface Sci 2024; 679:975-986. [PMID: 39418900 DOI: 10.1016/j.jcis.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
HYPOTHESIS Trypanosomiasis is one of the main threats to human and animal health in African countries. Trypanosoma brucei can evade the host immune recognition by rapidly altering its variant surface glycoprotein (VSG). The ATP synthase F1 subunit of the parasite exhibits extremely low similarity to that of its mammalian hosts, hypothetically making it an ideal target for the development of novel therapeutics. EXPERIMENTS Graphene quantum dots (GQDs) were synthesized, and their adhesion to T. brucei surface and internalization was observed microscopically. The activity of ATP synthase and mitochondrial membrane potential of T. brucei were measured after exposure to GQDs. Proteomics, biolayer interferometry, and molecular dynamic simulations were utilized to evaluate the interaction between GQDs with the target proteins. FINDINGS GQDs specifically adhered to the VSG of T. brucei and were conveyed inside the parasite via the VSG internalization pathway. The GQDs promoted intracellular ROS production, interacted with, and inhibited the activity of the p18 subunit of ATP synthase, disrupted parasite mitochondrial membrane potential. Additionally, the GQDs caused a decrease in aminoacyl - tRNA biosynthesis, and upregulated RNA and protein degradation pathways. The findings of this study offer a novel avenue for the target-oriented discovery of anti-trypanosome drugs.
Collapse
Affiliation(s)
- Yize Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Si Zuo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
5
|
Lindner AK, Lejon V, Barrett MP, Blumberg L, Bukachi SA, Chancey RJ, Edielu A, Matemba L, Mesha T, Mwanakasale V, Pasi C, Phiri T, Seixas J, Akl EA, Probyn K, Villanueva G, Simarro PP, Kadima Ebeja A, Franco JR, Priotto G. New WHO guidelines for treating rhodesiense human African trypanosomiasis: expanded indications for fexinidazole and pentamidine. THE LANCET. INFECTIOUS DISEASES 2024:S1473-3099(24)00581-4. [PMID: 39389073 DOI: 10.1016/s1473-3099(24)00581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024]
Abstract
Human African trypanosomiasis is a neglected tropical disease that is usually fatal without treatment. WHO has revised its rhodesiense human African trypanosomiasis treatment guidelines on the basis of an independent systematic literature review and following the GRADE methodology. This Review reports on the decision-making process and summarises the new recommendations and their potential implications for health-care professionals and policy makers. Due to data scarcity, all recommendations are conditional and based on very low certainty of evidence. Fexinidazole replaces suramin and melarsoprol as the first-line therapy in individuals aged 6 years and older with a bodyweight of 20 kg or more. As fexinidazole is effective in both stages of rhodesiense human African trypanosomiasis, a lumbar puncture for staging is no longer required. In settings in which first-choice drugs are not readily available, immediate interim treatment with pentamidine is suggested. The introduction of oral fexinidazole represents an advancement in the management of rhodesiense human African trypanosomiasis considering the life-threatening adverse reactions individuals can have to melarsoprol. However, children below the age or weight limits remain ineligible for treatment with fexinidazole.
Collapse
Affiliation(s)
- Andreas K Lindner
- Charité-Universitätsmedizin Berlin, Charité Center for Global Health, Institute of International Health, Berlin, Germany.
| | - Veerle Lejon
- Intertryp, Institut de Recherche pour le Développement, CIRAD, University of Montpellier, Montpellier, France
| | - Michael P Barrett
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Lucille Blumberg
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Salome A Bukachi
- Institute of Anthropology, Gender and African Studies, University of Nairobi, Nairobi, Kenya; Department of Anthropology, Durham University, Durham, UK
| | | | - Andrew Edielu
- Immunomodulation and Vaccines Theme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Lucas Matemba
- National Institute for Medical Research, Dodoma, Tanzania
| | | | | | | | | | - Jorge Seixas
- Institute of Hygiene and Tropical Medicine and Global Health and Tropical Medicine R&D Center, NOVA University, Lisbon, Portugal
| | - Elie A Akl
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | | | | | - Pere P Simarro
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Augustin Kadima Ebeja
- World Health Organization Office for the Democratic Republic of the Congo, Kinshasa, Democratic Republic of the Congo
| | - Jose R Franco
- Neglected Tropical Diseases Department, World Health Organization, Geneva, Switzerland
| | - Gerardo Priotto
- Neglected Tropical Diseases Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
6
|
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024; 16:1239. [PMID: 39458571 PMCID: PMC11510106 DOI: 10.3390/pharmaceutics16101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Neglected tropical diseases (NTDs), including leishmaniasis, trypanosomiasis, and schistosomiasis, impose a significant public health burden, especially in developing countries. Despite control efforts, treatment remains challenging due to drug resistance and lack of effective therapies. Objective: This study aimed to synthesize the current research on the combination therapy and phytochemical-loaded nanosystems, which have emerged as promising strategies to enhance treatment efficacy and safety. Methods/Results: In the present review, we conducted a systematic search of the literature and identified several phytochemicals that have been employed in this way, with the notable efficacy of reducing the parasite load in the liver and spleen in cases of visceral leishmaniasis, as well as lesion size in cutaneous leishmaniasis. Furthermore, they have a synergistic effect against Trypanosoma brucei rhodesiense rhodesain; reduce inflammation, parasitic load in the myocardium, cardiac hypertrophy, and IL-15 production in Chagas disease; and affect both mature and immature stages of Schistosoma mansoni, resulting in improved outcomes compared to the administration of phytochemicals alone or with conventional drugs. Moreover, the majority of the combinations studied demonstrated enhanced solubility, efficacy, and selectivity, as well as increased immune response and reduced cytotoxicity. Conclusions: These formulations appear to offer significant therapeutic benefits, although further research is required to validate their clinical efficacy in humans and their potential to improve treatment outcomes in affected populations.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| | - Gilberto Garza-Treviño
- Section for Postgraduate Studies and Research, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera #239, Fracc. La Escalera, Ticomán, Ciudad de México 07320, Mexico
| |
Collapse
|
7
|
Lopes A, Teixeira S, Santarém N, Greco A, Pagliaro A, Keminer O, Gul S, Cordeiro-da-Silva A, Carvalho MA. SAR Study of 4,8-Disubstituted Pyrimido[5,4- d]pyrimidines Exhibiting Antitrypanosomal and Antileishmanial Activity. ACS Med Chem Lett 2024; 15:1541-1548. [PMID: 39291018 PMCID: PMC11403736 DOI: 10.1021/acsmedchemlett.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
A set of new derivatives of 4,8-disubstituted pyrimido[5,4-d]pyrimidines were efficiently synthesized and in vitro evaluated against Trypanosoma brucei and Leishmania infantum promastigotes and intramacrophage amastigotes. The in vitro cytotoxicity was determined using the THP-1 cell line, and early in vitro ADME-Tox was carried out using in vitro assays for cytotoxicity (A549 and HEK293 cell lines) and CYP3A4 and hERG cardiotoxicity liabilities. All the new compounds were active against T. brucei (0.11 μM ≤ IC50 ≤ 8.72 μM; 1 ≤ selectivity index (SI) ≤ 877), but only eight were active against L. infantum promastigotes (0.20 μM ≤ IC50 ≤ 14.88 μM; 1 ≤ SI < 502) with three also active against L. infantum intramacrophage amastigotes (3.00 μM ≤ IC50 ≤ 8.51 μM). Compounds 4a, 4c, and 4n were identified as the hit compounds to further develop as antitrypanosomal and antileishmanial agents.
Collapse
Affiliation(s)
- André Lopes
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Sofia Teixeira
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
| | - Nuno Santarém
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Alessandro Greco
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Angela Pagliaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg 22525, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg 22525, Germany
| | - Anabela Cordeiro-da-Silva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto and Institute for Molecular and Cell Biology, University of Porto, Porto 4150-180, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto (FFUP), Porto 4050-313, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry of University of Minho (CQUM), Campus de Gualtar, Braga, Portugal and Departamento de Química, Escola de Ciências da Universidade do Minho, Braga 4710-057, Portugal
| |
Collapse
|
8
|
De Lira Silva NS, Schenkman S. Biogenesis of EVs in Trypanosomatids. CURRENT TOPICS IN MEMBRANES 2024; 94:49-83. [PMID: 39370213 DOI: 10.1016/bs.ctm.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment. They acquire and utilize proteins, lipids, and carbohydrates for growth via using membrane transport and endocytosis. Endocytosis takes place through distinct membrane areas known as the flagellar pocket and cytostome, depending on the parasite species and its developmental stage. Some forms establish a complex endocytic system to either store or break down the absorbed materials. In contrast, membrane transport facilitates the uptake of small molecules like amino acids, carbohydrates, and iron via particular receptors on the plasma membrane. Concurrently, these parasites secrete various molecules such as proteins, enzymes, nucleic acids, and glycoconjugates either in soluble form or enclosed in extracellular vesicles, which significantly contribute to their parasitic behavior. These activities require exocytosis through a secretory pathway in certain membrane domains such as the flagellum, flagellar pocket, and plasma membrane, which are controlled at various developmental stages. The main features of the endocytic and exocytic mechanisms, as well as the organelles involved, are discussed in this chapter along with their connection to the formation of exosomes and extracellular vesicles in the Tritryp species.
Collapse
Affiliation(s)
- Nadjania Saraiva De Lira Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil.
| |
Collapse
|
9
|
Ferrins L, Diaz R, Cordon-Obras C, Rojas-Barros D, Quotadamo A, Oehme DP, Ceballos-Pérez G, Swaminathan U, Pérez-Moreno G, Bosch-Navarrete C, García-Hernández R, Gomez-Liñan C, Saura A, Ruiz-Perez LM, Gamarro F, Martinez-Martinez MS, Manzano P, González-Pacanowska D, Navarro M, Pollastri MP. Pharmacophore Identification and Structure-Activity Relationship Analysis of a Series of Substituted Azaindoles as Inhibitors of Trypanosoma brucei. J Med Chem 2024; 67:13985-14006. [PMID: 39136694 PMCID: PMC11345823 DOI: 10.1021/acs.jmedchem.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Human African trypanosomiasis is among the World Health Organization's designated neglected tropical diseases. Repurposing strategies are often employed in academic drug discovery programs due to financial limitations, and in this instance, we used human kinase inhibitor chemotypes to identify substituted 4-aminoazaindoles, exemplified by 1. Structure-activity and structure-property relationship analysis, informed by cheminformatics, identified 4s as a potent inhibitor of Trypanosoma brucei growth. While 4s appeared to be fast acting and cidal in the in vitro assays, it failed to cure a murine model of infection. Preliminary efforts to identify the potential mechanism of action of the series pointed to arginine kinase, though, as we demonstrate, this does not appear to be the sole target of our compounds. This comprehensive approach to drug discovery, encompassing cheminformatics, structure-potency and structure-property analysis, and pharmacophore identification, highlights our multipronged efforts to identify novel lead compounds for this deadly disease.
Collapse
Affiliation(s)
- Lori Ferrins
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Rosario Diaz
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Carlos Cordon-Obras
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Domingo Rojas-Barros
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Antonio Quotadamo
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Life Sciences, University of Modena and
Reggio Emilia, 41125 Modena, Italy
| | - Daniel P. Oehme
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Gloria Ceballos-Pérez
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Uma Swaminathan
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Guiomar Pérez-Moreno
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Cristina Bosch-Navarrete
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Raquel García-Hernández
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Claudia Gomez-Liñan
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Andreu Saura
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Luis Miguel Ruiz-Perez
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | | | - Pilar Manzano
- Tres
Cantos R&D Center, GSK, Tres
Cantos 28760, Spain
| | - Dolores González-Pacanowska
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Miguel Navarro
- Instituto
de Parasitología y Biomedicina “López-Neyra”
Consejo Superior de Investigaciones Científicas (CSIC), Granada 18100, Spain
| | - Michael P. Pollastri
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Pazmiño-Betancourth M, Casas Gómez-Uribarri I, Mondragon-Shem K, Babayan SA, Baldini F, Rafuse Haines L. Advancing age grading techniques for Glossina morsitans morsitans, vectors of African trypanosomiasis, through mid-infrared spectroscopy and machine learning. Biol Methods Protoc 2024; 9:bpae058. [PMID: 39290986 PMCID: PMC11407438 DOI: 10.1093/biomethods/bpae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Tsetse are the insects responsible for transmitting African trypanosomes, which cause sleeping sickness in humans and animal trypanosomiasis in wildlife and livestock. Knowing the age of these flies is important when assessing the effectiveness of vector control programs and modelling disease risk. Current methods to assess fly age are, however, labour-intensive, slow, and often inaccurate as skilled personnel are in short supply. Mid-infrared spectroscopy (MIRS), a fast and cost-effective tool to accurately estimate several biological traits of insects, offers a promising alternative. This is achieved by characterising the biochemical composition of the insect cuticle using infrared light coupled with machine-learning (ML) algorithms to estimate the traits of interest. We tested the performance of MIRS in estimating tsetse sex and age for the first-time using spectra obtained from their cuticle. We used 541 insectary-reared Glossina m. morsitans of two different age groups for males (5 and 7 weeks) and three age groups for females (3 days, 5 weeks, and 7 weeks). Spectra were collected from the head, thorax, and abdomen of each sample. ML models differentiated between male and female flies with a 96% accuracy and predicted the age group with 94% and 87% accuracy for males and females, respectively. The key infrared regions important for discriminating sex and age classification were characteristic of lipid and protein content. Our results support the use of MIRS as a rapid and accurate way to identify tsetse sex and age with minimal pre-processing. Further validation using wild-caught tsetse could pave the way for this technique to be implemented as a routine surveillance tool in vector control programmes.
Collapse
Affiliation(s)
- Mauro Pazmiño-Betancourth
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Ivan Casas Gómez-Uribarri
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Karina Mondragon-Shem
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom
| | - Simon A Babayan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
| | - Francesco Baldini
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, United Kingdom
- Environmental Health, and Ecological Sciences Department, Ifakara Health Institute, Morogoro, Ifakara, P.O. Box 53, United Republic of Tanzania
| | - Lee Rafuse Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom
- Department of Biological Sciences, University of Notre Dame, 46556, Notre Dame, United States
| |
Collapse
|
11
|
Francesconi V, Rizzo M, Pozzi C, Tagliazucchi L, Konchie Simo CU, Saporito G, Landi G, Mangani S, Carbone A, Schenone S, Santarém N, Tavares J, Cordeiro-da-Silva A, Costi MP, Tonelli M. Identification of Innovative Folate Inhibitors Leveraging the Amino Dihydrotriazine Motif from Cycloguanil for Their Potential as Anti- Trypanosoma brucei Agents. ACS Infect Dis 2024; 10:2755-2774. [PMID: 38953453 DOI: 10.1021/acsinfecdis.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Folate enzymes, namely, dihydrofolate reductase (DHFR) and pteridine reductase (PTR1) are acknowledged targets for the development of antiparasitic agents against Trypanosomiasis and Leishmaniasis. Based on the amino dihydrotriazine motif of the drug Cycloguanil (Cyc), a known inhibitor of both folate enzymes, we have identified two novel series of inhibitors, the 2-amino triazino benzimidazoles (1) and 2-guanidino benzimidazoles (2), as their open ring analogues. Enzymatic screening was carried out against PTR1, DHFR, and thymidylate synthase (TS). The crystal structures of TbDHFR and TbPTR1 in complex with selected compounds experienced in both cases a substrate-like binding mode and allowed the rationalization of the main chemical features supporting the inhibitor ability to target folate enzymes. Biological evaluation of both series was performed against T. brucei and L. infantum and the toxicity against THP-1 human macrophages. Notably, the 5,6-dimethyl-2-guanidinobenzimidazole 2g resulted to be the most potent (Ki = 9 nM) and highly selective TbDHFR inhibitor, 6000-fold over TbPTR1 and 394-fold over hDHFR. The 5,6-dimethyl tricyclic analogue 1g, despite showing a lower potency and selectivity profile than 2g, shared a comparable antiparasitic activity against T. brucei in the low micromolar domain. The dichloro-substituted 2-guanidino benzimidazoles 2c and 2d revealed their potent and broad-spectrum antitrypanosomatid activity affecting the growth of T. brucei and L. infantum parasites. Therefore, both chemotypes could represent promising templates that could be valorized for further drug development.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Marco Rizzo
- Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIMMP), Via Luigi Sacconi 6, Sesto Fiorentino (FI) 50019, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
- Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Campi 287, Modena 41125, Italy
| | - Claude U Konchie Simo
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giulia Saporito
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Giacomo Landi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| | - Nuno Santarém
- i3S - Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Joana Tavares
- i3S - Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S - Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
- Department of Life Science, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Maria Paola Costi
- Department of Life Science, University of Modena and Reggio Emilia, via Campi 103, Modena 41125, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, viale Benedetto XV n.3, Genoa 16132, Italy
| |
Collapse
|
12
|
Janse van Rensburg HD, Suganuma K, N'Da DD. In vitro trypanocidal activities and structure-activity relationships of ciprofloxacin analogs. Mol Divers 2024; 28:2667-2680. [PMID: 37481633 DOI: 10.1007/s11030-023-10704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Tropical diseases, such as African trypanosomiasis, by their nature and prevalence lack the necessary urgency regarding drug development, despite the increasing need for novel, structurally diverse antitrypanosomal drugs, using different mechanisms of action that would improve drug efficacy and safety. Traditionally antibacterial agents, the fluoroquinolones, reportedly possess in vitro trypanocidal activities against Trypanosoma brucei organisms. During our research, the fluroquinolone, ciprofloxacin (1), and its analogs (2-24) were tested against bloodstream forms of T. brucei brucei, T. b. gambiense, T. b. rhodesiense, T. evansi, T. equiperdum, and T. congolense and Madin-Darby bovine kidney cells (cytotoxicity). Ciprofloxacin [CPX (1)] demonstrated selective trypanocidal activity against T. congolense (IC50 7.79 µM; SI 39.6), whereas the CPX derivatives (2-10) showed weak selective activity (25 < IC50 < 65 µM; 2 < SI < 4). Selectivity and activity of the CPX and 1,2,3-triazole (TZ) hybrids (11-24) were governed by their chemical functionality at C-3 (carboxylic acid, or 4-methylpiperazinyl amide) and their electronic effect (electron-donating or electron-withdrawing para-benzyl substituent), respectively. Trypanocidal hits in the micromolar range were identified against bloodstream forms of T. congolense [CPX (1); CPX amide derivatives 18: IC50 8.95 µM; SI 16.84; 22: IC50 5.42 µM; SI 25.2] and against T. brucei rhodesiense (CPX acid derivative 13: IC50 4.51 µM; SI 10.2), demonstrating more selectivity toward trypanosomes than mammalian cells. Hence, the trypanocidal hit compound 22 may be optimized by retaining the 4-methylpiperazine amide functional group (C-3) and the TZ moiety at position N-15 and introducing other electron-withdrawing ortho-, meta-, and/or para-substituents on the aryl ring in an effort to improve the pharmacokinetic properties and increase the trypanocidal activity.
Collapse
Affiliation(s)
| | - Keisuke Suganuma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, Hokkaido, 080-8555, Japan.
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
13
|
Tsague KJA, Bakwo Fils EM, Atagana JP, Mbeng DW, Palm L, Tchuinkam T, Schaer J. Molecular detection of trypanosomes of the Trypanosoma livingstonei species group in diverse bat species in Central Cameroon. Parasitol Res 2024; 123:280. [PMID: 39037445 PMCID: PMC11263222 DOI: 10.1007/s00436-024-08303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Bats are hosts for diverse Trypanosoma species, including trypanosomes of the Trypanosoma cruzi clade. This clade is believed to have originated in Africa and diversified in many lineages worldwide. In several geographical areas, including Cameroon, no data about trypanosomes of bats has been collected yet. In this study, we investigated the diversity and phylogenetic relationships of trypanosomes of different bat species in the central region of Cameroon. Trypanosome infections were detected in six bat species of four bat families, namely Hipposideridae, Pteropodidae, Rhinolophidae, and Vespertilionidae, with an overall prevalence of 29% and the highest infection rate in hipposiderid bat species. All trypanosomes were identified as belonging to the Trypanosoma livingstonei species group with one clade that might represent an additional subspecies of T. livingstonei. Understanding the prevalence, distribution, and host range of parasites of this group contributes to our overall knowledge of the diversity and host specificity of trypanosome species that phylogenetically group at the base of the T. cruzi clade.
Collapse
Affiliation(s)
- K J A Tsague
- Laboratory of Biological Sciences, Faculty of Sciences of University of Maroua, Maroua, Cameroon
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), University of Dschang, Dschang, Cameroon
| | - E M Bakwo Fils
- Department of Environmental Sciences, Higher Institute of Agriculture, Forestry, Water and Environment (HIAFWE), University of Ebolowa, Ebolowa, Cameroon
| | - J P Atagana
- Department of Biological Science, Faculty of Science, University of Ngaoundere, Ngaoundere, Cameroon
| | - D W Mbeng
- Laboratory of Biological Sciences, Faculty of Sciences of University of Maroua, Maroua, Cameroon
| | - L Palm
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - T Tchuinkam
- Vector Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), University of Dschang, Dschang, Cameroon.
| | - J Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
- Department of Biology, Muni University, Arua, Uganda.
- Museum Für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany.
- Department of Biological Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Sinumvayo JP, Munezero PC, Tope AT, Adeyemo RO, Bale MI, Nyandwi JB, Haakuria VM, Mutesa L, Adedeji AA. Advancing Vaccinology Capacity: Education and Efforts in Vaccine Development and Manufacturing across Africa. Vaccines (Basel) 2024; 12:741. [PMID: 39066380 PMCID: PMC11281707 DOI: 10.3390/vaccines12070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Africa, home to the world's second-largest population of approximately 1.3 billion, grapples with significant challenges in meeting its medical needs, particularly in accessing quality healthcare services and products. The continent faces a continuous onslaught of emerging infectious diseases, exacerbating the strain on its already fragile public health infrastructure. The COVID-19 crisis highlighted the urgency to build local vaccine production capacity and strengthen the health infrastructure in general. The risks associated with a heavy reliance on imported vaccines were exposed during the COVID-19 pandemic, necessitating the need to nurture and strengthen the local manufacturing of vaccines and therapeutic biologics. Various initiatives addressing training, manufacturing, and regulatory affairs are underway, and these require increasing dedicated and purposeful financial investment. Building vaccine manufacturing capacity requires substantial investment in training and infrastructure. This manuscript examines the current state of education in vaccinology and related sciences in Africa. It also provides an overview of the continent's efforts to address educational needs in vaccine development and manufacturing. Additionally, it evaluates the initiatives aimed at strengthening vaccine education and literacy, highlighting successful approaches and ongoing challenges. By assessing the progress made and identifying the remaining obstacles, this review offers insights into how Africa can enhance its vaccine manufacturing capacity to respond to vaccine-preventable disease challenges.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Pierre Celestin Munezero
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Adegboyega Taofeek Tope
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Rasheed Omotayo Adeyemo
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Muritala Issa Bale
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda; (P.C.M.); (A.T.T.); (R.O.A.); (M.I.B.)
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
| | - Jean Baptiste Nyandwi
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| | - Vetjaera Mekupi Haakuria
- East African Community, Regional Center of Excellence for Vaccines, Immunization and Health Supply Chain Management (EAC RCE-VIHSCM), Kigali P.O. Box 3286, Rwanda; (J.B.N.); (V.M.H.)
| | - Leon Mutesa
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda;
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 4285, Rwanda
| | - Ahmed Adebowale Adedeji
- Future of Medicine, Science, Technology and Innovation Research Group, School of Medicine and Pharmacy, University of Rwanda, Rwanda, Kigali P.O. Box 3286, Rwanda;
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye P.O. Box 117, Rwanda
| |
Collapse
|
15
|
Mustière R, Dassonville-Klimpt A, Sonnet P. Aminopyridines in the development of drug candidates against protozoan neglected tropical diseases. Future Med Chem 2024; 16:1357-1373. [PMID: 39109436 PMCID: PMC11318709 DOI: 10.1080/17568919.2024.2359361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 08/15/2024] Open
Abstract
Neglected tropical diseases (NTDs) pose a major threat in tropical zones for impoverished populations. Difficulty of access, adverse effects or low efficacy limit the use of current therapeutic options. Therefore, development of new drugs against NTDs is a necessity. Compounds containing an aminopyridine (AP) moiety are of great interest for the design of new anti-NTD drugs due to their intrinsic properties compared with their closest chemical structures. Currently, over 40 compounds with an AP moiety are on the market, but none is used against NTDs despite active research on APs. The aim of this review is to present the medicinal chemistry work carried out with these scaffolds, against protozoan NTDs: Trypanosoma cruzi, Trypanosoma brucei or Leishmania spp.
Collapse
Affiliation(s)
- Romain Mustière
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| | - Alexandra Dassonville-Klimpt
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| | - Pascal Sonnet
- Université de Picardie-Jules-Verne, AGIR – Agents infectieux, RéSistance et chimiothérapie, UR 4294, UFR de pharmacie, 1, Rue des Louvels, F-80037 Amiens cedex 1, France
| |
Collapse
|
16
|
Kennedy PGE. The evolving spectrum of human African trypanosomiasis. QJM 2024; 117:391-395. [PMID: 38065835 DOI: 10.1093/qjmed/hcad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Indexed: 06/27/2024] Open
Abstract
Human African trypanosomiasis (HAT), or sleeping sickness, continues to be a major threat to human health in 36 countries throughout sub-Saharan Africa with up to 60 million people at risk. Over the last decade, there have been several advances in this area, some of which are discussed in this overview. Due to the concerted efforts of several bodies, including better identification and treatment of cases and improved tsetse fly vector control, the number of cases of HAT has declined dramatically. The clinical heterogeneity of HAT has also been increasingly recognized, and the disease, while usually fatal if untreated or inadequately treated, does not always have a uniformly fatal outcome. Improved methods of HAT diagnosis have now been developed including rapid diagnostic tests. Novel drug treatment of HAT has also been developed, notably nifurtimox-eflornithine combination therapy (NECT) for late-stage Trypanosoma brucei gambiense, oral fexinidazole for early and the early component of the late-stage of T.b. gambiense, and the new oral compounds of the oxaborole group, which have shown considerable promise in field trials. Advances in HAT neuropathogenesis have been steady, though largely incremental, with a particular focus on the role of the blood-brain barrier in parasite entry into the central nervous system and the relevant importance of both innate and adaptive immunity. While the World Health Organization goal of elimination of HAT as a public health problem by 2020 has probably been achieved, it remains to be seen whether the second more ambitious goal of interruption of transmission of HAT by 2030 will be attained.
Collapse
Affiliation(s)
- P G E Kennedy
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wellcome Surgical Institute, Garscube Campus, Glasgow G61 1QH, UK
| |
Collapse
|
17
|
Corfu AI, Santarem N, Luelmo S, Mazza G, Greco A, Altomare A, Ferrario G, Nasta G, Keminer O, Aldini G, Tamborini L, Basilico N, Parapini S, Gul S, Cordeiro-da-Silva A, Conti P, Borsari C. Discovery of 1,3,4-Oxadiazole Derivatives as Broad-Spectrum Antiparasitic Agents. ACS Infect Dis 2024; 10:2222-2238. [PMID: 38717116 DOI: 10.1021/acsinfecdis.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.
Collapse
Affiliation(s)
- Alexandra Ioana Corfu
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Nuno Santarem
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara Luelmo
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gaia Mazza
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Alessandro Greco
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulia Nasta
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Oliver Keminer
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Nicoletta Basilico
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Silvia Parapini
- Department of Biomedical Sciences for Health, University of Milan, Via Pascal 36, 20133 Milan, Italy
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Anabela Cordeiro-da-Silva
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paola Conti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | - Chiara Borsari
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
18
|
Hartman CB, Dube PS, Legoabe LJ, Van Pelt N, Matheeussen A, Caljon G, Beteck RM. Novel quinoline derivatives with broad-spectrum antiprotozoal activities. Arch Pharm (Weinheim) 2024; 357:e2300319. [PMID: 38396284 DOI: 10.1002/ardp.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.
Collapse
Affiliation(s)
- Carla B Hartman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Phelelisiwe S Dube
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
19
|
Tsagmo JMN, Rotureau B, Calvo Alvarez E. Animal models of neglected parasitic diseases: In vivo multimodal imaging of experimental trypanosomatid infections. Methods Cell Biol 2024; 188:205-236. [PMID: 38880525 DOI: 10.1016/bs.mcb.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
African trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the "3Rs" principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (μCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions.
Collapse
Affiliation(s)
- Jean Marc Ngoune Tsagmo
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France; Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | | |
Collapse
|
20
|
Chen W, Zou R, Mei Y, Li J, Xuan Y, Cui B, Zou J, Wang J, Lin S, Zhang Z, Wang C. Structural insights into drug transport by an aquaglyceroporin. Nat Commun 2024; 15:3985. [PMID: 38734677 PMCID: PMC11088622 DOI: 10.1038/s41467-024-48445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.
Collapse
Affiliation(s)
- Wanbiao Chen
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
| | - Rongfeng Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen, 518000, China
| | - Yi Mei
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China
| | - Jiawei Li
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yumi Xuan
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
| | - Bing Cui
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China
- School of Basic Medicine and Clinical Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Junjie Zou
- Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Shenzhen, 518000, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Shaoquan Lin
- Centre for Polymers in Medicine, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 581055, China
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu Province, 221004, China.
| | - Chongyuan Wang
- Center for Human Tissues and Organs Degeneration, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 581055, China.
| |
Collapse
|
21
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
22
|
Gandra D, Mulama DH, Foureau DM, McKinney KQ, Kim E, Smith K, Haw J, Nagulapally A, Saulnier Sholler GL. DFMO inhibition of neuroblastoma tumorigenesis. Cancer Med 2024; 13:e7207. [PMID: 38686627 PMCID: PMC11058673 DOI: 10.1002/cam4.7207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 μM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.
Collapse
Affiliation(s)
- Divya Gandra
- Department of PediatricsPenn State Health Children's HospitalHersheyPennsylvaniaUSA
| | - David H. Mulama
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - David M. Foureau
- Department of MedicineLevine Cancer InstituteCharlotteNorth CarolinaUSA
| | | | - Elizabeth Kim
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Kaitlyn Smith
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Jason Haw
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Abhinav Nagulapally
- Department of PediatricsPenn State Health Children's HospitalHersheyPennsylvaniaUSA
| | | |
Collapse
|
23
|
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers 2024:10.1007/s11030-024-10862-4. [PMID: 38683488 DOI: 10.1007/s11030-024-10862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Rina Das
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India.
| | - Diksha Sharma
- Swami Devidyal College of Pharmacy, Barwala, 134118, India
| | - Shahbaz Aman
- Department of Microbiology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - M U Khan
- Department of pharmaceutical Chemistry & Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Uniazah, Al Qassim, Saudi Arabia
| |
Collapse
|
24
|
Vahekeni N, Brillatz T, Rahmaty M, Cal M, Keller-Maerki S, Rocchetti R, Kaiser M, Sax S, Mattli K, Wolfram E, Marcourt L, Queiroz EF, Wolfender JL, Mäser P. Antiprotozoal Activity of Plants Used in the Management of Sleeping Sickness in Angola and Bioactivity-Guided Fractionation of Brasenia schreberi J.F.Gmel and Nymphaea lotus L. Active against T. b. rhodesiense. Molecules 2024; 29:1611. [PMID: 38611890 PMCID: PMC11013945 DOI: 10.3390/molecules29071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Folk medicine is widely used in Angola, even for human African trypanosomiasis (sleeping sickness) in spite of the fact that the reference treatment is available for free. Aiming to validate herbal remedies in use, we selected nine medicinal plants and assessed their antitrypanosomal activity. A total of 122 extracts were prepared using different plant parts and solvents. A total of 15 extracts from seven different plants exhibited in vitro activity (>70% at 20 µg/mL) against Trypanosoma brucei rhodesiense bloodstream forms. The dichloromethane extract of Nymphaea lotus (leaves and leaflets) and the ethanolic extract of Brasenia schreberi (leaves) had IC50 values ≤ 10 µg/mL. These two aquatic plants are of particular interest. They are being co-applied in the form of a decoction of leaves because they are considered by local healers as male and female of the same species, the ethnotaxon "longa dia simbi". Bioassay-guided fractionation led to the identification of eight active molecules: gallic acid (IC50 0.5 µg/mL), methyl gallate (IC50 1.1 µg/mL), 2,3,4,6-tetragalloyl-glucopyranoside, ethyl gallate (IC50 0.5 µg/mL), 1,2,3,4,6-pentagalloyl-β-glucopyranoside (IC50 20 µg/mL), gossypetin-7-O-β-glucopyranoside (IC50 5.5 µg/mL), and hypolaetin-7-O-glucoside (IC50 5.7 µg/mL) in B. schreberi, and 5-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienyl] resorcinol (IC50 5.3 µg/mL) not described to date in N. lotus. Five of these active constituents were detected in the traditional preparation. This work provides the first evidence for the ethnomedicinal use of these plants in the management of sleeping sickness in Angola.
Collapse
Affiliation(s)
- Nina Vahekeni
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Théo Brillatz
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland; (T.B.); (L.M.); (E.F.Q.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Marjan Rahmaty
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland; (T.B.); (L.M.); (E.F.Q.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Monica Cal
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Sonja Keller-Maerki
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Romina Rocchetti
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Marcel Kaiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Sibylle Sax
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| | - Kevin Mattli
- Phytopharmacy & Natural Products, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland (E.W.)
| | - Evelyn Wolfram
- Phytopharmacy & Natural Products, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences (ZHAW), 8820 Wädenswil, Switzerland (E.W.)
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland; (T.B.); (L.M.); (E.F.Q.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland; (T.B.); (L.M.); (E.F.Q.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, 1211 Geneva, Switzerland; (T.B.); (L.M.); (E.F.Q.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Pascal Mäser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; (M.C.); (S.K.-M.); (R.R.); (M.K.); (S.S.); (P.M.)
- Faculty of Science, University of Basel, 4002 Basel, Switzerland
| |
Collapse
|
25
|
Davis CN, Crump RE, Sutherland SA, Spencer SEF, Corbella A, Chansy S, Lebuki J, Miaka EM, Rock KS. Comparison of stochastic and deterministic models for gambiense sleeping sickness at different spatial scales: A health area analysis in the DRC. PLoS Comput Biol 2024; 20:e1011993. [PMID: 38557869 PMCID: PMC11008881 DOI: 10.1371/journal.pcbi.1011993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
The intensification of intervention activities against the fatal vector-borne disease gambiense human African trypanosomiasis (gHAT, sleeping sickness) in the last two decades has led to a large decline in the number of annually reported cases. However, while we move closer to achieving the ambitious target of elimination of transmission (EoT) to humans, pockets of infection remain, and it becomes increasingly important to quantitatively assess if different regions are on track for elimination, and where intervention efforts should be focused. We present a previously developed stochastic mathematical model for gHAT in the Democratic Republic of Congo (DRC) and show that this same formulation is able to capture the dynamics of gHAT observed at the health area level (approximately 10,000 people). This analysis was the first time any stochastic gHAT model has been fitted directly to case data and allows us to better quantify the uncertainty in our results. The analysis focuses on utilising a particle filter Markov chain Monte Carlo (MCMC) methodology to fit the model to the data from 16 health areas of Mosango health zone in Kwilu province as a case study. The spatial heterogeneity in cases is reflected in modelling results, where we predict that under the current intervention strategies, the health area of Kinzamba II, which has approximately one third of the health zone's cases, will have the latest expected year for EoT. We find that fitting the analogous deterministic version of the gHAT model using MCMC has substantially faster computation times than fitting the stochastic model using pMCMC, but produces virtually indistinguishable posterior parameterisation. This suggests that expanding health area fitting, to cover more of the DRC, should be done with deterministic fits for efficiency, but with stochastic projections used to capture both the parameter and stochastic variation in case reporting and elimination year estimations.
Collapse
Affiliation(s)
- Christopher N. Davis
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, The University of Warwick, Coventry, United Kingdom
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Alice Corbella
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Department of Statistics, The University of Warwick, Coventry, United Kingdom
| | - Shampa Chansy
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Junior Lebuki
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Kinshasa, Democratic Republic of the Congo
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
26
|
Franco JR, Priotto G, Paone M, Cecchi G, Ebeja AK, Simarro PP, Sankara D, Metwally SBA, Argaw DD. The elimination of human African trypanosomiasis: Monitoring progress towards the 2021-2030 WHO road map targets. PLoS Negl Trop Dis 2024; 18:e0012111. [PMID: 38626188 PMCID: PMC11073784 DOI: 10.1371/journal.pntd.0012111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT) is a neglected tropical disease that usually occurs in rural areas in sub-Saharan Africa. It caused devastating epidemics during the 20th century. Sustained, coordinated efforts by different stakeholders working with national sleeping sickness control programmes (NSSCPs) succeeded in controlling the disease and reducing the number of cases to historically low levels. In 2012, WHO targeted the elimination of the disease as a public health problem by 2020. This goal has been reached and a new ambitious target was stated in the WHO road map for NTDs 2021-2030 and endorsed by the 73rd World Health Assembly: the elimination of gambiense HAT transmission (i.e. reducing the number of reported cases to zero). The interruption of transmission was not considered as an achievable goal for rhodesiense HAT, as it would require vast veterinary interventions rather than actions at the public health level. METHODOLOGY/PRINCIPAL FINDINGS Data reported to WHO by NSSCPs were harmonized, verified, georeferenced and included in the atlas of HAT. A total of 802 cases were reported in 2021 and 837 in 2022. This is below the target for elimination as a public health problem at the global level (< 2000 HAT cases/year); 94% of the cases were caused by infection with T. b. gambiense. The areas reporting ≥ 1 HAT case/10 000 inhabitants/year in 2018-2022 cover a surface of 73 134 km2, with only 3013 km2 at very high or high risk. This represents a reduction of 90% from the baseline figure for 2000-2004, the target set for the elimination of HAT as a public health problem. For the surveillance of the disease, 4.5 million people were screened for gambiense HAT with serological tests in 2021-2022, 3.6 million through active screening and 0.9 million by passive screening. In 2021 and 2022 the elimination of HAT as a public health problem was validated in Benin, Uganda, Equatorial Guinea and Ghana for gambiense HAT and in Rwanda for rhodesiense HAT. To reach the next goal of elimination of transmission of gambiense HAT, countries have to report zero cases of human infection with T. b. gambiense for a period of at least 5 consecutive years. The criteria and procedures to verify elimination of transmission have been recently published by WHO. CONCLUSIONS/SIGNIFICANCE HAT elimination as a public health problem has been reached at global level, with seven countries already validated as having reached this goal. This achievement was made possible by the work of NSSCPs, supported by different public and private partners, and coordinated by WHO. The new challenging goal now is to reach zero cases by 2030. To reach this goal is crucial to maintain the engagement and support of donors and stakeholders and to keep the involvement and coordination of all partners. Along with the focus on elimination of transmission of gambiense HAT, it is important not to neglect rhodesiense HAT, which is targeted for elimination as a public health problem in the WHO road map for NTDs 2021-2030.
Collapse
Affiliation(s)
- Jose R. Franco
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Gerardo Priotto
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Agustin Kadima Ebeja
- World Health Organization, Regional Office for Africa, Communicable Disease Unit, Brazzaville, Congo
| | - Pere P. Simarro
- Consultant, World Health Organization, Global Neglected Tropical Diseases Programme, Innovative and Intensified Disease Management Unit, Geneva, Switzerland
| | - Dieudonne Sankara
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Samia B. A. Metwally
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Daniel Dagne Argaw
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| |
Collapse
|
27
|
Wendo JK, Mbaria JM, Nyariki JN, Isaac AO. Ginkgo biloba attenuated detrimental inflammatory and oxidative events due to Trypanosoma brucei rhodesiense in mice treated with melarsoprol. PLoS Negl Trop Dis 2024; 18:e0012103. [PMID: 38620045 PMCID: PMC11045140 DOI: 10.1371/journal.pntd.0012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 04/25/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.
Collapse
Affiliation(s)
- Janet Khatenje Wendo
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| | - James Mucunu Mbaria
- The University of Nairobi, Department of Public Health, Pharmacology and Toxicology, Kangemi (Nairobi), Kenya
| | - James Nyabuga Nyariki
- The Technical University of Kenya, Department of Biochemistry and Biotechnology, Nairobi, Kenya
| | - Alfred Orina Isaac
- The Technical University of Kenya, Department of Pharmaceutical Sciences and Technology, Nairobi, Kenya
| |
Collapse
|
28
|
Iribarren PA, Di Marzio LA, Berazategui MA, Saura A, Coria L, Cassataro J, Rojas F, Navarro M, Alvarez VE. Depolymerization of SUMO chains induces slender to stumpy differentiation in T. brucei bloodstream parasites. PLoS Pathog 2024; 20:e1012166. [PMID: 38635823 PMCID: PMC11060531 DOI: 10.1371/journal.ppat.1012166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Trypanosoma brucei are protozoan parasites that cause sleeping sickness in humans and nagana in cattle. Inside the mammalian host, a quorum sensing-like mechanism coordinates its differentiation from a slender replicative form into a quiescent stumpy form, limiting growth and activating metabolic pathways that are beneficial to the parasite in the insect host. The post-translational modification of proteins with the Small Ubiquitin-like MOdifier (SUMO) enables dynamic regulation of cellular metabolism. SUMO can be conjugated to its targets as a monomer but can also form oligomeric chains. Here, we have investigated the role of SUMO chains in T. brucei by abolishing the ability of SUMO to polymerize. We have found that parasites able to conjugate only SUMO monomers are primed for differentiation. This was demonstrated for monomorphic lines that are normally unable to produce stumpy forms in response to quorum sensing signaling in mice, and also for pleomorphic cell lines in which stumpy cells were observed at unusually low parasitemia levels. SUMO chain mutants showed a stumpy compatible transcriptional profile and better competence to differentiate into procyclics. Our study indicates that SUMO depolymerization may represent a coordinated signal triggered during stumpy activation program.
Collapse
Affiliation(s)
- Paula Ana Iribarren
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Lucía Ayelén Di Marzio
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - María Agustina Berazategui
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Andreu Saura
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Lorena Coria
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| | - Federico Rojas
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC (IPBLN-CSIC), Granada, Spain
| | - Vanina Eder Alvarez
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo Ugalde”–IIBIO (UNSAM-CONICET), San Martin, Buenos Aires, Argentina
| |
Collapse
|
29
|
Khartabil T, van Schaik RH, Haanstra JR, Koelewijn R, Russcher H, van Hellemond JJ. The fully automated Sysmex XN-31 hematology analyzer can detect bloodstream form Trypanosoma brucei. Diagn Microbiol Infect Dis 2024; 108:116193. [PMID: 38295683 DOI: 10.1016/j.diagmicrobio.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND For fully automated detection and quantification of Plasmodium parasites, Sysmex developed the XN-31 hemocytometer. This study investigated whether the XN-31 can also detect and quantify bloodstream form trypanosomes (trypomastigotes). METHODS Axenic cultures of Trypanosoma brucei brucei were used to prepare two dilution series of trypomastigotes in the whole blood of a healthy donor, which were subsequently examined by the XN-31 as well as by microscopic examination of thin and thick blood films. Trypomastigote intactness during the procedures was evaluated by microscopy. RESULTS The XN-31 hemocytometer detected trypomastigotes with a detection limit of 26 trypomastigotes/μL. Scattergram patterns of Trypanosoma and Plasmodium parasites were clearly distinct, but current interpretation settings do not allow the identification of trypomastigotes yet, and therefore, need future refinement. CONCLUSION Proof of concept was provided for an automated fluorescent flow cytometry method that can detect and quantify Plasmodium spp., as well as Trypanosoma brucei trypomastigotes.
Collapse
Affiliation(s)
- Tania Khartabil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ron Hn van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jurgen R Haanstra
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Rob Koelewijn
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Henk Russcher
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Jaap J van Hellemond
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, the Netherlands.
| |
Collapse
|
30
|
Zahra M, Abrahamse H, George BP. Green nanotech paradigm for enhancing sesquiterpene lactone therapeutics in cancer. Biomed Pharmacother 2024; 173:116426. [PMID: 38471274 DOI: 10.1016/j.biopha.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa.
| |
Collapse
|
31
|
GUIHINI MOLLO B, ALDJIBERT M, DARNAS J, YONI W, SANOGO L, BARRY I, SIGNABOUBO D, KALKI R, HAIWANG D, BIÉLER S, ABDEL AZIZ AI, CECCHI G, COURTIN F, SOLANO P. [Updating the northern tsetse distribution limit in Chad in the context of global change]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2024; 4:mtsi.v4i1.2024.392. [PMID: 38846117 PMCID: PMC11151911 DOI: 10.48327/mtsi.v4i1.2024.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/29/2024] [Indexed: 06/09/2024]
Abstract
Background - Rationale Tsetse flies (Diptera: Glossinidae) are obligate bloodfeeders that occur exclusively in Sub-Saharan Africa, where they are the vectors of trypanosomes causing HAT (human African trypanosomiasis) and AAT (African animal trypanosomiasis). In Chad, tsetse flies occur only in the most southern part of the country because of its favorable bioclimatic conditions. However, despite the importance of HAT and AAT in this country, very little is known about the current tsetse distribution, in particular its northern limit, which is of key importance for the surveillance of these diseases. Material and methods - Results A total of 217 biconical traps were deployed in 2021 and 2022 from the West to the East around the formerly known northern limit, resulting in 1,024 tsetse caught belonging to three different taxa: Glossina morsitans submorsitans (57%), G. tachinoides (39%) and G. fuscipes fuscipes (4%). In addition to the information gathered on the presence/absence of each tsetse taxon, we show a strong North-South shift of the northen tsetse distribution limit as compared to the previous works from 1966 to 1996, and a growing spatial fragmentation in more and more discrete pockets of tsetse presence. Discussion - Conclusion This North-South shift of the northern tsetse distribution limit in Chad is the likely consequence of the combined effect of severe draughts that affected the country, and increasing human pressure on land. This update of the tsetse northern limit will be of help to the national programmes in charge of HAT and AAT.
Collapse
Affiliation(s)
| | - Moukhtar ALDJIBERT
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | - Juste DARNAS
- Programme national de lutte contre la trypanosomiase humaine africaine (PNLTHA), Moundou, Tchad
| | - Wilfrid YONI
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Lassina SANOGO
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Issiaka BARRY
- Centre international de recherche-développement sur lélevage en zone subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Djouk SIGNABOUBO
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | | | - Djaklessam HAIWANG
- Institut de recherche en élevage pour le développement (IRED), Ndjaména, Tchad
| | - Sylvain BIÉLER
- Foundation for innovative new diagnostics (FIND), Genève, Suisse
| | | | - Giuliano CECCHI
- Organisation des Nations unies pour l'alimentation et l'agriculture (FAO), Division de la production et de la santé animales, Rome, Italie
| | - Fabrice COURTIN
- Institut de recherche pour le développement (IRD), UMR Intertryp IRD-CIRAD, Représentation IRD à Ouagadougou, Burkina Faso
| | - Philippe SOLANO
- Institut de recherche pour le développement (IRD), UMR Intertryp IRD-CIRAD, Université de Montpellier, France
| |
Collapse
|
32
|
Juban P, Bart JM, Ségard A, Jamonneau V, Ravel S. Trypanosoma brucei gambiense group 2 experimental in vivo life cycle: from procyclic to bloodstream form. Parasite 2024; 31:15. [PMID: 38520091 PMCID: PMC10960050 DOI: 10.1051/parasite/2024009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/06/2024] [Indexed: 03/25/2024] Open
Abstract
Trypanosoma brucei gambiense (Tbg) group 2 is a subgroup of trypanosomes able to infect humans and is found in West and Central Africa. Unlike other agents causing sleeping sickness, such as Tbg group 1 and Trypanosoma brucei rhodesiense, Tbg2 lacks the typical molecular markers associated with resistance to human serum. Only 36 strains of Tbg2 have been documented, and therefore, very limited research has been conducted despite their zoonotic nature. Some of these strains are only available in their procyclic form, which hinders human serum resistance assays and mechanistic studies. Furthermore, the understanding of Tbg2's potential to infect tsetse flies and mammalian hosts is limited. In this study, 165 Glossina palpalis gambiensis flies were experimentally infected with procyclic Tbg2 parasites. It was found that 35 days post-infection, 43 flies out of the 80 still alive were found to be Tbg2 PCR-positive in the saliva. These flies were able to infect 3 out of the 4 mice used for blood-feeding. Dissection revealed that only six flies in fact carried mature infections in their midguts and salivary glands. Importantly, a single fly with a mature infection was sufficient to infect a mammalian host. This Tbg2 transmission success confirms that Tbg2 strains can establish in tsetse flies and infect mammalian hosts. This study describes an effective in vivo protocol for transforming Tbg2 from procyclic to bloodstream form, reproducing the complete Tbg2 cycle from G. p. gambiensis to mice. These findings provide valuable insights into Tbg2's host infectivity, and will facilitate further research on mechanisms of human serum resistance.
Collapse
Affiliation(s)
- Paola Juban
- INTERTRYP, Université de Montpellier, Cirad, IRD Montpellier France
| | | | - Adeline Ségard
- INTERTRYP, Université de Montpellier, Cirad, IRD Montpellier France
| | | | - Sophie Ravel
- INTERTRYP, Université de Montpellier, Cirad, IRD Montpellier France
| |
Collapse
|
33
|
Carrillo AK, Kadayat TM, Hwang JY, Chen Y, Zhu F, Holbrook G, Gillingwater K, Connelly MC, Yang L, Kaiser M, Guy RK. Antitrypanosomal Chloronitrobenzamides. J Med Chem 2024; 67:3437-3447. [PMID: 38363074 DOI: 10.1021/acs.jmedchem.3c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Human African trypanosomiasis (HAT), a neglected tropical disease caused by Trypanosoma brucei gambiense (Tbg) or Trypanosoma brucei rhodesiense (Tbr), remains a significant public health concern with over 55 million people at risk of infection. Current treatments for HAT face the challenges of poor efficacy, drug resistance, and toxicity. This study presents the synthesis and evaluation of chloronitrobenzamides (CNBs) against Trypanosoma species, identifying previously reported compound 52 as a potent and selective orally bioavailable antitrypanosomal agent. 52 was well tolerated in vivo and demonstrated favorable oral pharmacokinetics, maintaining plasma concentrations surpassing the cellular EC50 for over 24 h and achieving peak brain concentrations exceeding 7 μM in rodents after single oral administration (50 mg/kg). Treatment with 52 significantly extended the lifespan of mice infected with Trypanosoma congolense and T. brucei rhodesiense. These results demonstrate that 52 is a strong antitrypanosomal lead with potential for developing treatments for both human and animal African trypanosomiasis.
Collapse
Affiliation(s)
- Angela K Carrillo
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Tara Man Kadayat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| | - Jong Yeon Hwang
- Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon, KR 34114, United States
| | - Yizhe Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| | - Fangyi Zhu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Gloria Holbrook
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Kirsten Gillingwater
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
| | - Michele C Connelly
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Marcel Kaiser
- Department of Medical Parasitology & Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, Basel 4003, Switzerland
| | - R Kiplin Guy
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0509, United States
| |
Collapse
|
34
|
Mahadevan L, Arya H, Droste A, Schliebs W, Erdmann R, Kalel VC. PEX1 is essential for glycosome biogenesis and trypanosomatid parasite survival. Front Cell Infect Microbiol 2024; 14:1274506. [PMID: 38510966 PMCID: PMC10952002 DOI: 10.3389/fcimb.2024.1274506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.
Collapse
Affiliation(s)
| | | | | | | | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute for Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
35
|
Tannières M, Breugnot D, Bon MC, Grodowitz MJ. Cultivation of monoxenous trypanosomatids: A minireview. J Invertebr Pathol 2024; 203:108047. [PMID: 38142929 DOI: 10.1016/j.jip.2023.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Trypanosomatids are obligatory parasites, some of which are responsible for important human and animal diseases, but the vast majority of trypanosomatids are restricted to invertebrate hosts. Isolation and in vitro cultivation of trypanosomatids from insect hosts enable their description, characterization, and subsequently genetic and genomic studies. However, exact nutritional requirements are still unknown for most trypanosomatids and thus very few defined media are available. This mini review provides information about the role of different ingredients, recommendations and advice on essential supplements and important physicochemical parameters of culture media with the aim of facilitating first attempts to cultivate insect-infesting trypanosomatids, with a focus on monoxenous trypanosomatids.
Collapse
Affiliation(s)
- M Tannières
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France.
| | - D Breugnot
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M C Bon
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France
| | - M J Grodowitz
- USDA-ARS European Biological Control Laboratory, 810 avenue du campus Agropolis, 34980 Montferrier sur Lez, France; USDA-ARS National Biological Control Laboratory, 59 Lee Road, Stoneville, MS 38776, USA
| |
Collapse
|
36
|
Stijlemans B, De Baetselier P, Van Molle I, Lecordier L, Hendrickx E, Romão E, Vincke C, Baetens W, Schoonooghe S, Hassanzadeh-Ghassabeh G, Korf H, Wallays M, Pinto Torres JE, Perez-Morga D, Brys L, Campetella O, Leguizamón MS, Claes M, Hendrickx S, Mabille D, Caljon G, Remaut H, Roelants K, Magez S, Van Ginderachter JA, De Trez C. Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids. Nat Commun 2024; 15:1779. [PMID: 38413606 PMCID: PMC10899635 DOI: 10.1038/s41467-024-46067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Patrick De Baetselier
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Laurence Lecordier
- Biology of Membrane Transport Laboratory, Université Libre de Bruxelles, Gosselies, Belgium
| | - Erika Hendrickx
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Ema Romão
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cécile Vincke
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Wendy Baetens
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | | | | | - Hannelie Korf
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marie Wallays
- Laboratory of Hepatology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Joar E Pinto Torres
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Perez-Morga
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, Gosselies, Belgium
- Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Lea Brys
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - María S Leguizamón
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology, and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
37
|
Kargbo A, Jallow M, Vieira TSWJ, Amoutchi AI, Koua HK, Osman AM, Vieira RFDC. Diversity of Glossinidae (Diptera) species in The Gambia in relation to vegetation. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA = BRAZILIAN JOURNAL OF VETERINARY PARASITOLOGY : ORGAO OFICIAL DO COLEGIO BRASILEIRO DE PARASITOLOGIA VETERINARIA 2024; 33:e012623. [PMID: 38381888 PMCID: PMC10927271 DOI: 10.1590/s1984-29612024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Glossina species are known to transmit African Trypanosomiasis, one of the most important infectious diseases for both livestock and humans in sub-Saharan Africa. Therefore, the aim of this study was to characterize trapped Glossina spp. from The Gambia using morphological and molecular techniques in relation to the vegetation cover types. A line transect survey was carried out in all the administrative regions of The Gambia. Tsetse fly trapping was carried out for 14 days during each season using line transect. A total of 220 Glossina spp. specimens (117 F and 103 M) were captured, and DNA was extracted from the legs of 100 randomly selected Glossina spp. Further, DNA samples were tested by a conventional PCR assay. A total of 135/220 (61%; 95% CI: 54.6-67.8%) and 85/220 (39%; 95% CI: 32.2-45.4%) flies were identified as Glossina morsitans submorsitans and Glossina palpalis gambiensis, respectively, with most caught during wet season (53.6%) and more females (53.2%) than males. Results of the morphological identification agreed with those of molecular identification. The type of vegetation cover significantly influenced the caught of tsetse flies. Animals and humans at the various trapping sites are at risk of being bitten by tsetse flies.
Collapse
Affiliation(s)
- Alpha Kargbo
- WASCAL-Graduate Research Program in Climate Change and Biodiversity, Universite Felix Houphouet-Boigny, Abidjan, Cote d’Ivoire
- Department of Physical and Natural Sciences, University of The Gambia, Brikama Campus, The Gambia
| | - Mamudou Jallow
- Department of Physical and Natural Sciences, University of The Gambia, Brikama Campus, The Gambia
| | - Thallitha Samih Wischral Jayme Vieira
- Center for Computational Intelligence to Predict Health and Environmental Risks - CIPHER, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Amien Isaac Amoutchi
- WASCAL-Graduate Research Program in Climate Change and Biodiversity, Universite Felix Houphouet-Boigny, Abidjan, Cote d’Ivoire
| | - Herve Koukoua Koua
- Laboratoire de Zoologie et Biologie Animale, Université de Cocody, Abidjan, Côte d’Ivoire
| | - Aamir Muse Osman
- Laboratório de Doenças Transmitidas por Vetores, Departamento de Medicina Veterinária, Universidade Federal do Paraná - UFPR, Curitiba, PR, Brasil
- Somali One Health Centre, Abrar University, Mogadishu, Somalia
- Department of Animal Health and Veterinary Services, Ministry of Livestock, Forestry, and Range, Mogadishu, Somalia
| | - Rafael Felipe da Costa Vieira
- Center for Computational Intelligence to Predict Health and Environmental Risks - CIPHER, University of North Carolina at Charlotte, Charlotte, NC, USA
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
38
|
Opperdoes FR, Záhonová K, Škodová-Sveráková I, Bučková B, Chmelová Ľ, Lukeš J, Yurchenko V. In silico prediction of the metabolism of Blastocrithidia nonstop, a trypanosomatid with non-canonical genetic code. BMC Genomics 2024; 25:184. [PMID: 38365628 PMCID: PMC10874023 DOI: 10.1186/s12864-024-10094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Almost all extant organisms use the same, so-called canonical, genetic code with departures from it being very rare. Even more exceptional are the instances when a eukaryote with non-canonical code can be easily cultivated and has its whole genome and transcriptome sequenced. This is the case of Blastocrithidia nonstop, a trypanosomatid flagellate that reassigned all three stop codons to encode amino acids. RESULTS We in silico predicted the metabolism of B. nonstop and compared it with that of the well-studied human parasites Trypanosoma brucei and Leishmania major. The mapped mitochondrial, glycosomal and cytosolic metabolism contains all typical features of these diverse and important parasites. We also provided experimental validation for some of the predicted observations, concerning, specifically presence of glycosomes, cellular respiration, and assembly of the respiratory complexes. CONCLUSIONS In an unusual comparison of metabolism between a parasitic protist with a massively altered genetic code and its close relatives that rely on a canonical code we showed that the dramatic differences on the level of nucleic acids do not seem to be reflected in the metabolisms. Moreover, although the genome of B. nonstop is extremely AT-rich, we could not find any alterations of its pyrimidine synthesis pathway when compared to other trypanosomatids. Hence, we conclude that the dramatic alteration of the genetic code of B. nonstop has no significant repercussions on the metabolism of this flagellate.
Collapse
Affiliation(s)
- Fred R Opperdoes
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Barbora Bučková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
39
|
Protozoan agents and nematode agents (5th section). Transfusion 2024; 64 Suppl 1:S271-S287. [PMID: 38394043 DOI: 10.1111/trf.17694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024]
|
40
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
41
|
Henríquez AM, Tejedor-Junco MT, González-Martín M, Morales Doreste M, Martín Martel S, Paone M, Cecchi G, Corbera JA. An Atlas of Surra in Spain: A Tool to Support Epidemiological Investigations and Disease Control. Animals (Basel) 2024; 14:243. [PMID: 38254411 PMCID: PMC10812746 DOI: 10.3390/ani14020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Trypanosomosis is a global animal issue, causing significant economic losses, particularly in Africa. In Spain, only one pathogenic species, Trypanosoma evansi, has been identified so far. It was first detected in a dromedary camel in the Canary Islands in 1997. Since then, numerous cases of the disease, known as Surra, have been diagnosed, prompting various studies and efforts in control and surveillance. Given the lack of a comprehensive database that consolidates the most relevant data in this area, the development of a national atlas, with a focus on the Canary Islands, to incorporate all available information on T. evansi in Spain became a necessity. For the development of the atlas, a repository was constructed, encompassing a range of datasets and documents spanning from 1997 to 2022. Information from each source, and in particular georeferenced locations and results of blood tests on animals, were extracted and integrated into a comprehensive database. A total of 31 sources were analysed, providing a total of 99 georeferenced locations and 12,433 animal samples. Out of these samples, 601 (mostly from dromedaries) were found to be positive for T. evansi. The Card Agglutination Test for T. evansi (CATT/T. evansi), a serological test, was the most commonly used diagnostic method, and it showed a higher prevalence for all tested animal species. Positive cases were mainly concentrated in the Canary Islands, specifically in the eastern islands, with isolated cases found in the province of Alicante (Iberian Peninsula). This atlas provides an overview of the history and occurrence of Surra in Spain, and it represents a valuable tool for future control initiatives and for research. Still, the need for more studies remains, especially for further testing of potential hosts other than camelids and for the examination of their potential transmission vectors.
Collapse
Affiliation(s)
- Adrián Melián Henríquez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
| | - María Teresa Tejedor-Junco
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
- Departmento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe “Físico”, 17, Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Margarita González-Martín
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
- Departmento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe “Físico”, 17, Las Palmas de Gran Canaria, 35016 Las Palmas, Spain
| | - Manuel Morales Doreste
- Hospital Clínico Veterinario-Universidad de Las Palmas de Gran Canaria (HCV-ULPGC), Campus Universitario de Arucas, 35413 Las Palmas, Spain
| | - Sergio Martín Martel
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
- Hospital Clínico Veterinario-Universidad de Las Palmas de Gran Canaria (HCV-ULPGC), Campus Universitario de Arucas, 35413 Las Palmas, Spain
| | - Massimo Paone
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Giuliano Cecchi
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad de Las Palmas de Gran Canaria (ULPGC), 35016 Las Palmas, Spain
- Hospital Clínico Veterinario-Universidad de Las Palmas de Gran Canaria (HCV-ULPGC), Campus Universitario de Arucas, 35413 Las Palmas, Spain
| |
Collapse
|
42
|
Rostamighadi M, Kamelshahroudi A, Mehta V, Zeng FY, Pass I, Chung TDY, Salavati R. High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects. Biochem Pharmacol 2024; 219:115937. [PMID: 37995979 DOI: 10.1016/j.bcp.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Thomas D Y Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
43
|
Gomes MC, Padilha EKA, Diniz GRA, Gomes EC, da Silva Santos-Júnior PF, Zhan P, da Siva-Júnior EF. Multi-target Compounds against Trypanosomatid Parasites and Mycobacterium tuberculosis. Curr Drug Targets 2024; 25:602-619. [PMID: 38910467 DOI: 10.2174/0113894501306843240606114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024]
Abstract
Multi-target drug treatment has become popular as a substitute for traditional monotherapy. Monotherapy can lead to resistance and side effects. Multi-target drug discovery is gaining importance as data on bioactivity becomes more abundant. The design of multi-target drugs is expected to be an important development in the pharmaceutical industry in the near future. This review presents multi-target compounds against trypanosomatid parasites (Trypanosoma cruzi, T. brucei, and Leishmania sp.) and tuberculosis (Mycobacterium tuberculosis), which mainly affect populations in socioeconomically unfavorable conditions. The article analyzes the studies, including their chemical structures, viral strains, and molecular docking studies, when available. The objective of this review is to establish a foundation for designing new multi-target inhibitors for these diseases.
Collapse
Affiliation(s)
- Midiane Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Emanuelly Karla Araújo Padilha
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Gustavo Rafael Angelo Diniz
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Edilma Correia Gomes
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Paulo Fernando da Silva Santos-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| | - Peng Zhan
- Department of Medicinal - Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Edeildo Ferreira da Siva-Júnior
- Research Group in Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus AC. Simões, CEP 57072-970, Maceió-AL, Brazil
| |
Collapse
|
44
|
Jakabek D, Chaganti J, Brew BJ. Infectious leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:431-453. [PMID: 39322393 DOI: 10.1016/b978-0-323-99209-1.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukoencephalopathy from infectious agents may have a rapid course, such as human simplex virus encephalitis; however, in many diseases, it may take months or years before diagnosis, such as in subacute sclerosing panencephalitis or Whipple disease. There are wide geographic distributions and susceptible populations, including both immunocompetent and immunodeficient patients. Many infections have high mortality rates, such as John Cunningham virus and subacute sclerosing panencephalitis, although others have effective treatments if suspected and treated early, such as herpes simplex encephalitis. This chapter will describe viral, bacterial, and protozoal infections, which predominantly cause leukoencephalopathy. We focus on the clinical presentation of these infectious agents briefly covering epidemiology and subtypes of infections. Next, we detail current pathophysiologic mechanisms causing white matter injury. Diagnostic and confirmatory tests are discussed. We cover predominantly MRI imaging features of leukoencephalopathies, and in addition, summarize the common imaging features. Additionally, we detail how imaging features may be used to narrow the differential of a leukoencephalopathy clinical presentation. Lastly, we present an outline of common treatment approaches where available.
Collapse
Affiliation(s)
- David Jakabek
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia
| | - Joga Chaganti
- Department of Radiology, St. Vincent's Hospital, Sydney, NSW, Australia
| | - Bruce James Brew
- Department of Neurology, St. Vincent's Hospital, Sydney, NSW, Australia; University of New South Wales, Sydney, NSW, Australia; University of Notre Dame, Sydney, NSW, Australia; Department of HIV Medicine and Peter Duncan Neurosciences Unit St Vincent's Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Li H, Dong Y, Han C, Xia L, Zhang Y, Chen T, Wang H, Xu G. Suramin, an antiparasitic drug, stimulates adipocyte differentiation and promotes adipogenesis. Lipids Health Dis 2023; 22:222. [PMID: 38093311 PMCID: PMC10717495 DOI: 10.1186/s12944-023-01980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.
Collapse
Affiliation(s)
- Hanxiao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yingyue Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Chunmiao Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Lisha Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Yue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Tongsheng Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Physiology, Xiamen Medical College, 361023, Xiamen, China
| | - Huamin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, 100191, Beijing, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
46
|
Thiombiano NG, Boungou M, Chabi BAM, Oueda A, Werb O, Schaer J. First investigation of blood parasites of bats in Burkina Faso detects Hepatocystis parasites and infections with diverse Trypanosoma spp. Parasitol Res 2023; 122:3121-3129. [PMID: 37847392 PMCID: PMC10667148 DOI: 10.1007/s00436-023-08002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Bats are hosts to a large diversity of eukaryotic protozoan blood parasites that comprise species of Trypanosoma and different haemosporidian parasite taxa and bats have played an important role in the evolutionary history of both parasite groups. However, bats in several geographical areas have not been investigated, including in Burkina Faso, where no information about malaria parasites and trypanosomes of bats exists to date.In this study, we collected data on the prevalence and the phylogenetic relationships of protozoan blood parasites in nine different bat species in Burkina Faso. Hepatocystis parasites were detected in two species of epauletted fruit bats, and a relatively high diversity of trypanosome parasites was identified in five bat species. The phylogenetic analyses recovered the trypanosome parasites of the bat species Rhinolophus alcyone and Nycteris hispida as close relatives of T. livingstonei, the trypanosome infections in Scotophilus leucogaster as closely related to the species T. vespertilionis and the trypanosomes from Pipistrellus nanulus and Epomophorus gambianus might present the species T. dionisii. These findings of the first investigation in Burkina Faso present a first snapshot of the diversity of protozoan blood parasites in bats in this country.
Collapse
Affiliation(s)
- Noel Gabiliga Thiombiano
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Magloire Boungou
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Bertrand Adéchègoun Mèschac Chabi
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Adama Oueda
- Laboratoire de Biologie et Ecologie Animales (LBEA), Unite de Formation Et de Recherche/Science de La Vie et de La Terre (UFR/SVT), University Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Universite de Ouahigouya, Ouahigouya, Burkina Faso
| | - Oskar Werb
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Juliane Schaer
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany.
| |
Collapse
|
47
|
Ortiz-Martínez Y, Kouamé MG, Bongomin F, Lakoh S, Henao-Martínez AF. Human African Trypanosomiasis (Sleeping Sickness)-Epidemiology, Clinical Manifestations, Diagnosis, Treatment, and Prevention. CURRENT TROPICAL MEDICINE REPORTS 2023; 10:222-234. [PMID: 38939748 PMCID: PMC11210952 DOI: 10.1007/s40475-023-00304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 06/29/2024]
Abstract
Purpose of Review Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne parasitic neglected tropical disease (NTD) endemic in sub-Saharan Africa. This review aims to enhance our understanding of HAT and provide valuable insights to combat this significant public health issue by synthesizing the latest research and evidence. Recent Findings HAT has reached a historical < 1000 cases in 2018. In patients without neurologic symptoms and signs, the likelihood of a severe meningoencephalitic stage is deemed low, obviating the need for a lumbar puncture to guide treatment decisions using fexinidazole. Summary Both forms of the disease, gambiense HAT (gHAT) and rhodesiense HAT (rHAT), have specific epidemiology, risk factors, diagnosis, and treatment. Disease management still requires a high index of suspicion, infectious disease expertise, and specialized medical care. Essential stakeholders in health policy are critical to accomplishing the elimination goals of the NTD roadmap for 2021-2030.
Collapse
Affiliation(s)
- Yeimer Ortiz-Martínez
- Department of Internal Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Sulaiman Lakoh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Andrés F. Henao-Martínez
- Division of Infectious Diseases, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12700 E. 19th Avenue, Mail Stop B168, Aurora, CO 80045, USA
| |
Collapse
|
48
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
49
|
Linciano P, Quotadamo A, Luciani R, Santucci M, Zorn KM, Foil DH, Lane TR, Cordeiro da Silva A, Santarem N, B Moraes C, Freitas-Junior L, Wittig U, Mueller W, Tonelli M, Ferrari S, Venturelli A, Gul S, Kuzikov M, Ellinger B, Reinshagen J, Ekins S, Costi MP. High-Throughput Phenotypic Screening and Machine Learning Methods Enabled the Selection of Broad-Spectrum Low-Toxicity Antitrypanosomatidic Agents. J Med Chem 2023; 66:15230-15255. [PMID: 37921561 PMCID: PMC10683024 DOI: 10.1021/acs.jmedchem.3c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H. Foil
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anabela Cordeiro da Silva
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Nuno Santarem
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Carolina B Moraes
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Lucio Freitas-Junior
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Ulrike Wittig
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Wolfgang Mueller
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Stefania Ferrari
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- TYDOCK
PHARMA S.r.l., Strada
Gherbella 294/b, 41126 Modena, Italy
| | - Sheraz Gul
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
50
|
Hu L, Jia H, Zhang J, da Silva-Júnior EF, Liu C, Liu X, Zhan P. Sulfonic acid: key drug design elements with potent, broad-ranging pharmacological activities. Future Med Chem 2023; 15:2029-2032. [PMID: 37929335 DOI: 10.4155/fmc-2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Biological & Molecular Chemistry Research Group, Institute of Chemistry & Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC, Simoes Campus, Alagoas, Macei, 57072-970, Brazil
| | - Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
- Suzhou Research Institute of Shandong University, Room 607, Building B of NUSP, NO. 388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan, Shandong, 250012, PR China
| |
Collapse
|