1
|
Sheida A, Farshadi M, Mirzaei A, Najjar Khalilabad S, Zarepour F, Taghavi SP, Hosseini Khabr MS, Ravaei F, Rafiei S, Mosadeghi K, Yazdani MS, Fakhraie A, Ghattan A, Zamani Fard MM, Shahyan M, Rafiei M, Rahimian N, Talaei Zavareh SA, Mirzaei H. Potential of Natural Products in the Treatment of Glioma: Focus on Molecular Mechanisms. Cell Biochem Biophys 2024:10.1007/s12013-024-01447-x. [PMID: 39150676 DOI: 10.1007/s12013-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Despite the waning of traditional treatments for glioma due to possible long-term issues, the healing possibilities of substances derived from nature have been reignited in the scientific community. These natural substances, commonly found in fruits and vegetables, are considered potential alternatives to pharmaceuticals, as they have been shown in prior research to impact pathways surrounding cancer progression, metastases, invasion, and resistance. This review will explore the supposed molecular mechanisms of different natural components, such as berberine, curcumin, coffee, resveratrol, epigallocatechin-3-gallate, quercetin, tanshinone, silymarin, coumarin, and lycopene, concerning glioma treatment. While the benefits of a balanced diet containing these compounds are widely recognized, there is considerable scope for investigating the efficacy of these natural products in treating glioma.
Collapse
Affiliation(s)
- Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Mirzaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Najjar Khalilabad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Sadat Hosseini Khabr
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sara Rafiei
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Kimia Mosadeghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sepehr Yazdani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Fakhraie
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Masoud Zamani Fard
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahyan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Guo J, Hu M, Yang M, Cao H, Li H, Zhu J, Li S, Zhang J. Inhibition mechanism of theaflavins on matrix metalloproteinase-2: inhibition kinetics, multispectral analysis, molecular docking and molecular dynamics simulation. Food Funct 2024; 15:7452-7467. [PMID: 38910519 DOI: 10.1039/d4fo01620c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dental caries is a chronic and destructive disease and matrix metalloproteinase-2 (MMP-2) plays a major role in caries. The inhibitory mechanisms of theaflavins [theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), and theaflavin-3,3'-digallate (TF3)] on MMP-2 were investigated using techniques such as enzyme inhibition kinetics, multi-spectral methods, molecular docking, and molecular dynamics simulations. The results showed that TF1, TF2A, TF2B, and TF3 all competitively and reversibly inhibited MMP-2 activity. Fluorescence spectra and molecular docking indicated that four theaflavins spontaneously bind to MMP-2 through noncovalent interactions, driven by hydrogen bonds and hydrophobic interactions, constituting a static quenching mechanism and resulting in an altered tryptophan residue environment around MMP-2. Molecular dynamic simulations demonstrated that four theaflavins can form stable, compact complexes with MMP-2. In addition, the order of theaflavins' ability to inhibit MMP-2 was found to be TF1 > TF2B > TF2A > TF3. Interestingly, the order of binding capacity between MMP-2 and TF1, TF2A, TF2B, and TF3 was consistent with the order of inhibitory capacity, and was opposite to the order of steric hindrance of theaflavins. This may be due to the narrow space of the active pocket of MMP-2, and the smaller the steric hindrance of theaflavins, the easier it is to enter the active pocket and bind to MMP-2. This study provided novel insights into theaflavins as functional components in the exploration of natural MMP-2 inhibitors.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Mengna Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Huang Cao
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Hongan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jiayu Zhu
- Department of Dental General and Emergency, The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, No. 688 Honggu North Road, Honggutan District, Nanchang 330038, People's Republic of China.
- Jiangxi Province Key Laboratory of Oral Biomedicine, People's Republic of China
- Jiangxi Province Clinical Research Center for Oral Diseases, People's Republic of China
| | - Shuang Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, People's Republic of China
| |
Collapse
|
3
|
Perarivalan I, Karunakaran J, Anbalagan N, Harishma S, Prasad V. Matrix metalloproteinase inhibitors in restorative dentistry. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:566-571. [PMID: 38989495 PMCID: PMC11232771 DOI: 10.4103/jcde.jcde_199_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Matrix metalloproteinases (MMPs) have been identified as agents that disintegrate the collagen structures of dental hybrid layers, resulting in reduced restorative bond strength. Multiple MMP inhibitors (MMPIs) are known to counteract this degenerative mechanism, thereby preserving bond strength and promoting the longevity of resin-based restorations. Additionally, literature suggests that certain MMPI materials possess antimicrobial/anticariogenic properties, potentially reducing the risk of secondary caries development. Therefore, this review article aims to narrate on the integration of matrix metalloproteinase inhibitors into adhesive systems and their impact on bond strength.
Collapse
Affiliation(s)
- I Perarivalan
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Janani Karunakaran
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Nathashri Anbalagan
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - S Harishma
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| | - Vishnu Prasad
- Department of Conservative Dentistry and Endodontics, Chettinad Dental College and Research Institute, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
4
|
Chaudhuri R, Samanta A, Saha P, Ghosh S, Sinha D. The Potential of Epigallocatechin Gallate in Targeting Cancer Stem Cells: A Comprehensive Review. Curr Med Chem 2024; 31:5255-5280. [PMID: 38243984 DOI: 10.2174/0109298673281666231227053726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
The dreadful scenario of cancer prevails due to the presence of cancer stem cells (CSCs), which contribute to tumor growth, metastasis, invasion, resistance to chemo- and radiotherapy, and recurrence. CSCs are a small subpopulation of cells within the tumor that are characterized by self-renewal capability and have the potential to manifest heterogeneous lineages of cancer cells that constitute the tumor. The major bioactive green tea polyphenol (-)-epigallocatechin gallate (EGCG) has been fruitful in downgrading cancer stemness signaling and CSC biomarkers in cancer progression. EGCG has been evidenced to maneuver extrinsic and intrinsic apoptotic pathways in order to decrease the viability of CSCs. Cancer stemness is intricately related to epithelial-mesenchymal transition (EMT), metastasis and therapy resistance, and EGCG has been evidenced to regress all these CSC-related effects. By inhibiting CSC characteristics EGCG has also been evidenced to sensitize the tumor cells to radiotherapy and chemotherapy. However, the use of EGCG in in vitro and in vivo cancer models raises concern about its bioavailability, stability and efficacy against spheroids raised from parental cells. Therefore, novel nano formulations of EGCG and adjuvant therapy of EGCG with other phytochemicals or drugs or small molecules may have a better prospect in targeting CSCs. However, extensive clinical research is still awaited to elucidate a full proof impact of EGCG in cancer therapy.
Collapse
Affiliation(s)
- Rupa Chaudhuri
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Anurima Samanta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, 700026, India
| |
Collapse
|
5
|
Leal IDC, Rabelo CS, de Melo MAS, Silva PGDB, Costa FWG, Passos VF. Polyphenols for Preventing Dental Erosion in Pre-clinical Studies with in situ Designs and Simulated Acid Attack. PLANTA MEDICA 2023; 89:1034-1044. [PMID: 37230482 DOI: 10.1055/a-2100-3542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dental erosion is a chemical process characterized by acid dissolution of dental hard tissue, and its etiology is multifactorial. Dietary polyphenols can be a strategy for dental erosion management, collaborating to preserve dental tissues through resistance to biodegradation. This study describes a comprehensive review to interpret the effects of polyphenols on dental erosion of pre-clinical models with in situ designs and simulated acid attacks on enamel and dentin samples. We aim to evaluate evidence about Polyphenols' effects in the type of dental substrate, parameters of erosive cycling chosen in the in situ models, and the possible mechanisms involved. An evidence-based literature review was conducted using appropriate search strategies developed for main electronic databases (PubMed, Scopus, Web of Science, LILACS, EMBASE, LIVIVO, CINAHL, and DOSS) and gray literature (Google Scholar). The Joanna Briggs Institute checklist was used to evaluate the quality of the evidence. From a total of 1900 articles, 8 were selected for evidence synthesis, including 224 specimens treated with polyphenols and 224 control samples. Considering the studies included in this review, we could observe that polyphenols tend to promote a reduction in erosive and abrasive wear compared to control groups. However, as the few studies included have a high risk of bias with different methodologies and the estimated effect size is low, this conclusion should not be extrapolated to clinical reality.
Collapse
Affiliation(s)
- Isabelly de Carvalho Leal
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Cibele Sales Rabelo
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Mary Anne Sampaio de Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, United States
| | | | - Fábio Wildson Gurgel Costa
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Vanara Florêncio Passos
- Department of Clinical Dentistry, School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Niemeyer SH, Baumann T, Lussi A, Scaramucci T, Carvalho TS. Plant extracts have dual mechanism on the protection against dentine erosion: action on the dentine substrate and modification of the salivary pellicle. Sci Rep 2023; 13:7089. [PMID: 37130893 PMCID: PMC10154312 DOI: 10.1038/s41598-023-34256-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
To investigate the effect of some polyphenol-rich plant extracts on the protection of dentine against demineralization, both acting on the dentine and on the salivary pellicle. Dentine specimens (n = 180) were randomly distributed into 6 experimental groups (n = 30/group): Control (deionized water), Açaí extract, Blueberry extract, Green tea extract, Grape seed extract, and Sn2+/F- (mouthrinse containing stannous and fluoride). Each group was further divided into two subgroups (n = 15), according to the site of action of the substance: on the dentine surface (D) or on the salivary pellicle (P). The specimens were submitted to 10 cycles: 30 min incubation in human saliva (P) or only in humid chamber (D), 2 min immersion in experimental substances, 60 min of incubation in saliva (P) or not (D), and 1 min erosive challenge. Dentine surface loss (DSL), amount of degraded collagen (dColl) and total calcium release were analyzed. Green tea, Grape seed and Sn2+/F- showed significant protection, with least DSL and dColl. The Sn2+/F- showed better protection on D than on P, whereas Green tea and Grape seed showed a dual mode of action, with good results on D, and even better on P. Sn2+/F- showed the lowest values of calcium release, not differing only from Grape seed. Sn2+/F- is more effective when acting directly on the dentine surface, while Green tea and Grape seed have a dual mode of action: with a positive effect on the dentine surface itself, but an improved efficacy in the presence of the salivary pellicle. We further elucidate the mechanism of action of different active ingredients on dentine erosion, where Sn2+/F- acts better on the dentine surface, but plant extracts have a dual mode of action, acting on the dentine itself as well as on the salivary pellicle, improving the protection against acid demineralization.
Collapse
Affiliation(s)
- Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
| | - Tommy Baumann
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Adrian Lussi
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Tais Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, Av. Prof. Lineu Prestes 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| |
Collapse
|
7
|
Ali M, Ciebiera M, Vafaei S, Alkhrait S, Chen HY, Chiang YF, Huang KC, Feduniw S, Hsia SM, Al-Hendy A. Progesterone Signaling and Uterine Fibroid Pathogenesis; Molecular Mechanisms and Potential Therapeutics. Cells 2023; 12:cells12081117. [PMID: 37190026 DOI: 10.3390/cells12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Uterine fibroids (UFs) are the most important benign neoplastic threat to women's health worldwide, with a prevalence of up to 80% in premenopausal women, and can cause heavy menstrual bleeding, pain, and infertility. Progesterone signaling plays a crucial role in the development and growth of UFs. Progesterone promotes the proliferation of UF cells by activating several signaling pathways genetically and epigenetically. In this review article, we reviewed the literature covering progesterone signaling in UF pathogenesis and further discussed the therapeutic potential of compounds that modulate progesterone signaling against UFs, including selective progesterone receptor modulator (SPRM) drugs and natural compounds. Further studies are needed to confirm the safety of SPRMs as well as their exact molecular mechanisms. The consumption of natural compounds as a potential anti-UFs treatment seems promising, since these compounds can be used on a long-term basis-especially for women pursuing concurrent pregnancy, unlike SPRMs. However, further clinical trials are needed to confirm their effectiveness.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, 00-189 Warsaw, Poland
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ko-Chieh Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Stepan Feduniw
- Department of Gynecology, University of Zurich, 8091 Zurich, Switzerland
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Sakurai I, Mayanagi G, Yamada S, Takahashi N. In situ detection of endogenous proteolytic activity and the effect of inhibitors on tooth root surface. J Dent 2023; 131:104471. [PMID: 36828151 DOI: 10.1016/j.jdent.2023.104471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES The aim of this study was to clarify the distribution and activity of proteolytic enzymes and examine the inhibitory effects of various substances on this proteolytic activity on tooth root surfaces in situ. METHODS Disk-shaped bovine tooth root samples were partly pretreated in acid solution (50 mM lactic acid buffer, pH 4.0) for 48 h. The fluorescence intensity of samples was detected with fluorescent substrate solution for collagenase and gelatinase using a stereoscopic fluorescence microscope for 60 min. The acid-pretreated and non-acid-pretreated root samples were treated with chlorhexidine (CHX), sodium fluoride (NaF), epigallocatechin gallate (EGCG), and calcium hydroxide (Ca(OH)2) for 10 min, and silver diamine fluoride (SDF) for 10, 30, and 60 s. These samples were immersed in the fluorescence substrate solution at pH 7.0, and the fluorescence intensity of samples was detected. The fluorescence intensity was calculated using analysis software. RESULTS Gelatinase activity was detected in root samples. Gelatinase activity of the acid-pretreated side was significantly higher than that of the non-acid-pretreated side (1.63 times) at 60 min. CHX, EGCG, Ca(OH)2, and SDF decreased the gelatinase activity of root samples, while NaF had no effect. CONCLUSIONS Gelatinase activity was detected from the root in situ and it was increased by acid-pretreatment. CHX, EGCG, Ca(OH)2, and SDF inhibited gelatinase activity. CLINICAL SIGNIFICANCE Substances that inhibit proteolytic activity found in this research method will be useful for root caries prevention.
Collapse
Affiliation(s)
- Izumi Sakurai
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Japan; Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Gen Mayanagi
- Division for Advanced Education Development, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
9
|
Hazimeh D, Massoud G, Parish M, Singh B, Segars J, Islam MS. Green Tea and Benign Gynecologic Disorders: A New Trick for An Old Beverage? Nutrients 2023; 15:1439. [PMID: 36986169 PMCID: PMC10054707 DOI: 10.3390/nu15061439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Green tea is harvested from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. It is richer in antioxidants than other forms of tea and has a uniquely high content of polyphenolic compounds known as catechins. Epigallocatechin-3-gallate (EGCG), the major green tea catechin, has been studied for its potential therapeutic role in many disease contexts, including pathologies of the female reproductive system. As both a prooxidant and antioxidant, EGCG can modulate many cellular pathways important to disease pathogenesis and thus has clinical benefits. This review provides a synopsis of the current knowledge on the beneficial effects of green tea in benign gynecological disorders. Green tea alleviates symptom severity in uterine fibroids and improves endometriosis through anti-fibrotic, anti-angiogenic, and pro-apoptotic mechanisms. Additionally, it can reduce uterine contractility and improve the generalized hyperalgesia associated with dysmenorrhea and adenomyosis. Although its role in infertility is controversial, EGCG can be used as a symptomatic treatment for menopause, where it decreases weight gain and osteoporosis, as well as for polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | | | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. Green Tea in Reproductive Cancers: Could Treatment Be as Simple? Cancers (Basel) 2023; 15:cancers15030862. [PMID: 36765820 PMCID: PMC9913717 DOI: 10.3390/cancers15030862] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Green tea originates from the tea plant Camellia sinensis and is one of the most widely consumed beverages worldwide. Green tea polyphenols, commonly known as catechins, are the major bioactive ingredients and account for green tea's unique health benefits. Epigallocatechin-3-gallate (EGCG), is the most potent catechin derivative and has been widely studied for its pro- and anti-oxidative effects. This review summarizes the chemical and chemopreventive properties of green tea in the context of female reproductive cancers. A comprehensive search of PubMed and Google Scholar up to December 2022 was conducted. All original and review articles related to green tea or EGCG, and gynecological cancers published in English were included. The findings of several in vitro, in vivo, and epidemiological studies examining the effect of green tea on reproductive cancers, including ovarian, cervical, endometrial, and vulvar cancers, are presented. Studies have shown that this compound targets specific receptors and intracellular signaling pathways involved in cancer pathogenesis. The potential benefits of using green tea in the treatment of reproductive cancers, alone or in conjunction with chemotherapeutic agents, are examined, shedding light on new therapeutic strategies for the management of female reproductive cancers.
Collapse
Affiliation(s)
| | | | | | - James Segars
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| | - Md Soriful Islam
- Correspondence: (J.S.); or (M.S.I.); Tel.: +1-410-614-2000 (J.S. & M.S.I.)
| |
Collapse
|
11
|
Zhao S, Zhang Y, Chen Y, Xing X, Wang Y, Wu G. Evaluation of Chitosan-Oleuropein Nanoparticles on the Durability of Dentin Bonding. Drug Des Devel Ther 2023; 17:167-180. [PMID: 36712950 PMCID: PMC9879028 DOI: 10.2147/dddt.s390039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023] Open
Abstract
Purpose To evaluate the effects of dentin pretreatment with chitosan-loaded oleuropein nanoparticles (CONPs) on the durability of resin-dentin bonding interfaces. Methods Eighty freshly extracted non-carious human third molars were randomly divided into four groups (n = 20 each): a de-ionized water (DW) group, a chitosan (CS) group, a chlorhexidine (CHX) group and a CONP group. The dentin in the DW, CS, CHX, and CONP groups were pretreated with de-ionized water, 1.0 mg/L CS solution, 2% chlorhexidine solution, and CONP suspension (prepared with 100 mg/L oleuropein), respectively, followed by the universal adhesive and resin composites. The bonded teeth of each group were randomly divided into two subgroups: an immediate subgroup and an aged subgroup. The bonded teeth of each group were then cut into the bonded beams. We measured their microtensile bond strength (μTBS), observed the characteristics of bonding interface by atomic force microscope, calculated the percentage of silver particles in a selected area for interfacial nanoleakage analysis, and evaluated the endogenous gelatinase activity within the bonding interface for in-situ zymogram analysis. Data were analyzed with two-way ANOVA and LSD multiple comparison test (P < 0.05). Results Regardless of after 24 h or after thermocycling, CONP exhibited better μTBS (P < 0.05) than the other three groups except that there was not a statistical significance (P > 0.05) in the CONP and CHX groups after 24 h. Besides, the CONP group presented significantly higher modulus of elasticity in the hybrid layers (P < 0.05), lower expression of nanoleakage (P < 0.05), and better inhibitory effect of matrix metalloproteinases than the other three groups before and after thermocycling. Conclusion Altogether, the CONPs had the potential to act as a dentin primer, which could effectively improve the dentin-resin binding durability.
Collapse
Affiliation(s)
- Shuya Zhao
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yunyang Zhang
- Center of Modem Analysis, Nanjing University, Nanjing, People’s Republic of China
| | - Yun Chen
- Department of Pediatric Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xianghui Xing
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yu Wang
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Guofeng Wu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China,Correspondence: Guofeng Wu; Xianghui Xing, Email ;
| |
Collapse
|
12
|
Niemeyer SH, Jovanovic N, Sezer S, Wittwer LS, Baumann T, Saads Carvalho T. Dual protective effect of the association of plant extracts and fluoride against dentine erosion: In the presence and absence of salivary pellicle. PLoS One 2023; 18:e0285931. [PMID: 37200261 DOI: 10.1371/journal.pone.0285931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVES To verify the protective effect of plant extracts associated with fluoride against dental erosion of dentine, in the presence and absence of a salivary pellicle. METHODS Dentine specimens (n = 270) were randomly distributed into 9 experimental groups (n = 30/group): GT (green tea extract); BE (blueberry extract); GSE (grape seed extract); NaF (sodium fluoride); GT+NaF (green tea extract and NaF); BE+NaF (blueberry extract and NaF); GSE+NaF (grape seed extract and NaF); negative control (deionized water); and a positive control (commercialized mouthrinse containing stannous and fluoride). Each group was further divided into two subgroups (n = 15), according to the presence (P) or absence (NP) of salivary pellicle. The specimens were submitted to 10 cycles: 30 min incubation in human saliva (P) or only in humid chamber (NP), 2 min immersion in experimental solutions, 60 min of incubation in saliva (P) or not (NP), and 1 min erosive challenge. Dentine surface loss (dSL-10 and dSL-total), amount of degraded collagen (dColl) and total calcium release (CaR) were evaluated. Data were analyzed with Kruskal-Wallis, Dunn's and Mann-Whitney U tests (p>0.05). RESULTS Overall, the negative control presented the highest values of dSL, dColl and CaR, and the plant extracts showed different degrees of dentine protection. For the subgroup NP, GSE showed the best protection of the extracts, and the presence of fluoride generally further improved the protection for all extracts. For the subgroup P, only BE provided protection, while the presence of fluoride had no impact on dSL and dColl, but lowered CaR. The protection of the positive control was more evident on CaR than on dColl. CONCLUSION We can conclude that the plant extracts showed a protective effect against dentine erosion, regardless of the presence of salivary pellicle, and that the fluoride seems to improve their protection.
Collapse
Affiliation(s)
- Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Nikola Jovanovic
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Sindy Sezer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Lucas Sébastien Wittwer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Tommy Baumann
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Thiago Saads Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Sah DK, Khoi PN, Li S, Arjunan A, Jeong JU, Jung YD. (-)-Epigallocatechin-3-Gallate Prevents IL-1β-Induced uPAR Expression and Invasiveness via the Suppression of NF-κB and AP-1 in Human Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms232214008. [PMID: 36430487 PMCID: PMC9697952 DOI: 10.3390/ijms232214008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), a primary green tea polyphenol, has powerful iron scavengers, belongs to the family of flavonoids with antioxidant properties, and can be used to prevent cancer. Urokinase-type plasminogen activator receptors (uPARs) are glycosylphosphatidylinositol (GPI)-anchored cell membrane receptors that have crucial roles in cell invasion and metastasis of several cancers including bladder cancer. The mechanism of action of EGCG on uPAR expression has not been reported clearly yet. In this study, we investigated the effect of EGCG on interleukin (IL)-1β-induced cell invasion and uPAR activity in T24 human bladder cancer cells. Interestingly, nuclear factor (NF)-κB and activator protein (AP)-1 transcription factors were critically required for IL-1β-induced high uPAR expression, and EGCG suppressed the transcriptional activity of both the ERK1/2 and JNK signaling pathways with the AP-1 subunit c-Jun. EGCG blocked the IL-1β-stimulated reactive oxygen species (ROS) production, in turn suppressing NF-κB signaling and anti-invasion effects by inhibiting uPAR expression. These results suggest that EGCG may exert at least part of its anticancer effect by controlling uPAR expression through the suppression of ERK1/2, JNK, AP-1, and NF-κB.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Pham Ngoc Khoi
- Faculty of Basic Medical Sciences, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 740500, Vietnam
| | - Shinan Li
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Jae-Uk Jeong
- Department of Radiation Oncology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- Correspondence:
| |
Collapse
|
14
|
Kato MT, Cardoso CDAB, Jordão MC, Galvão RPDO, Iscuissati AGS, Kinoshita AMO, Buzalaf MAR. Effect of the cranberry ( Vaccinium macrocarpon ) juice on reducing dentin erosion: an in vitro study. Braz Oral Res 2022; 36:e076. [PMID: 35946732 DOI: 10.1590/1807-3107bor-2022.vol36.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Vaccinium macrocarpon (cranberry) is a fruit that has an inhibitory effect on matrix metalloproteinases (MMPs) present in dentin and saliva. The inhibition of MMPs has been shown to prevent dentin erosion. The aim of this study was to analyze the effect of cranberry juice on the reduction of dentin erosion in vitro. Specimens of bovine dentin (4×4×2 mm) were randomized and divided into 4 groups (n = 17/group): distilled water (C-control, pH 7.2); green tea extract solution containing 400 µm epigallo-catechin-gallate (EGCg, positive control, pH 4.5); 10% cranberry extract (CrE, pH 3.9), and cranberry juice (CrJ, Cranberry JuxxTM, pH 2.8). Specimens were submitted to erosive pH cycles for 5 days. Each day, four demineralizations were carried out with 0.1% citric acid (90 s). After the acid challenges, specimens were rinsed and kept in treatment solutions for 1 min; afterwards, they were rinsed and stored in artificial saliva for 1 h at 37°C (or overnight at the end of each day). After the experimental period of 5 days, dentin loss was evaluated by contact profilometry. Data were analyzed by ANOVA and Tukey's test (p < 0.05). Dentin loss (µm ± SD) was significantly lower for all treatments (EGCg = 9.93 ± 2.90; CrE = 12.10 ± 5.44; CrJ = 11.04 ± 5.70) compared to control (21.23 ± 11.96), but it did not significantly differ from each other. These results indicate that the commercial cranberry juice, despite its low pH, is able to reduce dentin erosion, which might be due to the ability of cranberry components to inhibit MMPs.
Collapse
Affiliation(s)
- Melissa Thiemi Kato
- Faculdade do Centro Oeste Paulista - FACOPH, Department of Dentistry , Piratininga , SP , Brazil
| | | | | | | | | | - Angela Mitie Otta Kinoshita
- Universidade do Oeste Paulista - Unoeste, School, Environment and Regional Development Postgraduate Program , Presidente Prudente , SP , Brazil
| | | |
Collapse
|
15
|
Ma T, Bian M, Lin X, Yang Z, Yang X, Duan J, Zhu N, Liu C, Fang Z, Guo K. Visible light‐promoted intramolecular annulation of 2‐alkynylbiphenyls to synthesize 9‐sulfenylphenanthrenes under metal‐free and additives‐free conditions. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Ma
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Mixue Bian
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Xinxin Lin
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Zhao Yang
- China Pharmaceutical University College of Engineering CHINA
| | - Xiaobing Yang
- Industrial Technology Research Institute Biology and Medicine Department CHINA
| | - Jindian Duan
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Ning Zhu
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Chengkou Liu
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Zheng Fang
- Nanjing Tech University College of Biotechnology and Pharmaceutical Engineering CHINA
| | - Kai Guo
- Nanjing Tech University State Key Laboratory of Materials-Oriented Chemical Engineering 30 Puzhu Road South 211800 Nanjing CHINA
| |
Collapse
|
16
|
Albaqawi AH, Shabib S, Vohra F, abduljabbar T. Efficacy of Chlorhexidine, photosensitizers, green tea extract, and propolis on bond integrity and microleakage of caries-affected dentin. An in-vitro study. Photodiagnosis Photodyn Ther 2022; 39:102998. [DOI: 10.1016/j.pdpdt.2022.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
17
|
Karatoprak GŞ, Göger F, Çelik İ, Budak Ü, Akkol EK, Aschner M. Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & Doğan. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 146:36-47. [PMID: 35210693 PMCID: PMC8863303 DOI: 10.1016/j.sajb.2021.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salvia ekimiana Celep & Doğan is an endemic species of Turkey. To our knowledge, the number of studies on biological activities and phytochemical profiling of this plant is quite limited. Therefore, this study aimed to analyze its activities and phytochemical content in detail. The qualitative-quantitative compositions were determined via spectrophotometric and chromatographic (LC-MS/MS and HPLC) techniques. 1,1-Diphenyl-2-picrylhydrazyl radical (DPPH•) and 2,2'-Azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) radical scavenging and ascorbate-iron (III)-catalyzed phospholipid peroxidation experiments were performed to measure antioxidant capacity. Hyaluronidase, collagenase, and elastase enzyme inhibition tests were determined in vitro using a spectrophotometer. Antiproliferative activity was evaluated in human lung cancer (A549) and human breast cancer (MCF7) cells. The murine fibroblast (L929) cell line was used as a normal control cell. While the subextract rich in phenolic compounds was n-butanol extract, rosmarinic acid was defined as the main secondary metabolite. The highest antioxidant activity observed for the n-butanol subextract included the following: DPPH• EC50: 0.08±0.00 mg/mL, TEAC/ABTS: 2.19±0.09 mmol/L Trolox, MDA EC50: 0.42±0.03 mg/mL. The methanolic extract, the ethyl acetate, and n-butanol subextracts displayed significant inhibitory activity on collagenase, while the other subextracts did not show any inhibitory activity on hyaluronidase and elastase. Due to strong interactions with their active sites, molecular docking showed luteolin 7-glucuronide, apigenin 7-glucuronide, and luteolin 5-glucoside had the highest binding affinity with target enzymes. The chloroform subextract showed significant cytotoxicity in all cell lines. These novel results revealed that S. ekimiana has strong antioxidant, collagenase enzyme inhibitory, and cytotoxic potential.
Collapse
Affiliation(s)
- Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
- Corresponding Author. (G.Ş. Karatoprak)
| | - Fatih Göger
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
- Department of Pharmacy, Yunus Emre Vocational School, Anadolu University, 26470 Eskişehir, Turkey
| | - İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Ümit Budak
- Department of Biology, Art and Science Faculty, Bozok University, 66100 Yozgat, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
18
|
Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci 2022; 23:3360. [PMID: 35328780 PMCID: PMC8955269 DOI: 10.3390/ijms23063360] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023] Open
Abstract
In humans, glioblastoma is the most prevalent primary malignant brain tumor. Usually, glioblastoma has specific characteristics, such as aggressive cell proliferation and rapid invasion of surrounding brain tissue, leading to a poor patient prognosis. The current therapy-which provides a multidisciplinary approach with surgery followed by radiotherapy and chemotherapy with temozolomide-is not very efficient since it faces clinical challenges such as tumor heterogeneity, invasiveness, and chemoresistance. In this respect, natural substances in the diet, integral components in the lifestyle medicine approach, can be seen as potential chemotherapeutics. There are several epidemiological studies that have shown the chemopreventive role of natural dietary compounds in cancer progression and development. These heterogeneous compounds can produce anti-glioblastoma effects through upregulation of apoptosis and autophagy; allowing the promotion of cell cycle arrest; interfering with tumor metabolism; and permitting proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis inhibition. Although these beneficial effects are promising, the efficacy of natural compounds in glioblastoma is limited due to their bioavailability and blood-brain barrier permeability. Thereby, further clinical trials are necessary to confirm the in vitro and in vivo anticancer properties of natural compounds. In this article, we overview the role of several natural substances in the treatment of glioblastoma by considering the challenges to be overcome and future prospects.
Collapse
Affiliation(s)
- Francesca Persano
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Department of Mathematics and Physics, University of Salento, Via Per Arnesano, 73100 Lecce, Italy;
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
19
|
Mady MS, Elsayed HE, El-Sayed EK, Hussein AA, Ebrahim HY, Moharram FA. Polyphenolic profile and ethno pharmacological activities of Callistemonsubulatus (Cheel) Craven leaves cultivated in Egypt. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114698. [PMID: 34600075 DOI: 10.1016/j.jep.2021.114698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Callistemon (syn. Melaleuca) of the myrtle family (Myrtaceae) has been documented as an integral part in the ethnobotanical system of the indigenous people of Australian mainland and many of its islands. Several Callistemons including the species subulatus were used by aboriginal Australians for making rafts, roofs for shelters, bandages, and food recipes, in addition to the management of wounds, infections, pain, cough, bronchitis, and gastrointestinal tract (GIT) disorders. AIM OF THE STUDY The current study is designed to document the therapeutic effect of the aqueous methanolic extract (AME) of C. sabulatus Chell (syn. M. sabulata) leaves in the management of diarrhea and pain. Also, its influence on additional pharmacological modalities that are related to oxidative stress just as skin aging. Ultimately, the polyphenolic profile of the extract is disclosed and correlated to the aforementioned bioactivities. MATERIALS AND METHODS The extract was fractionated using various chromatography techniques and the structures of the isolated compounds were determined based on their chemical and spectral data. The antioxidant activity was assessed using multiple models, including 2,2-diphenyl-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and β-carotene bleaching assays. The anti-skin aging effect was evaluated using different relevant enzymatic assays. The antinociceptive activity was investigated using acetic acid-induced writhing, hot plate test, and formalin-induced paw licking in mice models. The antidiarrheal activity was gauge using the castor oil induced diarrhea, enter pooling and gastrointestinal motility in vivo models. RESULTS Diverse polyphenols, including quercetin-3-O-β-D-glucuronopyranoside (1), kaempferol-3-O-β-D-glucuronopyranoside (2), strictinin (3), quercetin-3-O-(2``-O-galloyl)-β-D-glucuronopyranoside (4), afzelin (5), di-galloyl glucose (6), mono-galloyl glucose (7), acacetin (8), apigenin-6,7-dimethyl ether (9), kaempferol trimethyl ether (10), dimethoxy chrysin (11), quercetin (12), kaempferol (13), methyl gallate (14), and gallic acid (15) were identified. The extract exhibited as significant antioxidant activity even better than that of Trolox or BHT. Moreover, it exerts elastase, tyrosinase, and collagenase inhibition activities, in addition to the significant peripheral and central analgesic activity in a dose-dependent manner (P < 0.0001). In castor oil induced diarrhea model, AME significantly prolonged the diarrhea onset, decreased the frequency of defecation, and weight of feces. Likewise, it exhibited a significant reduction in the gastrointestinal motility in charcoal meal model (P < 0.0001) and a considerable inhibitory effect on gastrointestinal transit and peristaltic index with all investigated doses (P < 0.0001). CONCLUSION Ethnobotanicals are versatile resources for the management of various ailments by indigenous people and the experimental research is utmost to validate and uncover their pharmacological relevance. C. sabulatus leaves have strong antioxidant, analgesic, anti-skin aging, and antidiarrheal activities which are validated for the first time by various in vitro and in vivo models. The metabolic profile of the unprecedented AME of C. sabulatus leaves compromises a wide array of bioactive polyphenolic metabolites including, flavonoids, tannins, and phenolic acids that are correlated to the observed bioactivities. Altogether, ethnobotanicals with high and diverse contents of polyphenols are potential candidates for the management of various human aliments including neuropathies, GIT disorders, and skin aging conditions.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt
| | - Elsayed K El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville, 7535, South Africa
| | - Hassan Y Ebrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ein Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
20
|
The effects of phytochemicals and herbal bio-active compounds on tumour necrosis factor-α in overweight and obese individuals: a clinical review. Inflammopharmacology 2022; 30:91-110. [PMID: 34997431 DOI: 10.1007/s10787-021-00902-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Obesity is abnormal fat accumulation in the body which acts as a risk factor for various cardiometabolic states. Adipose tissue in excess can release inflammatory factors, including TNF-α and IL-6, and suppress adiponectin production. TNF-α increases the levels of IL-6 and acute phase reactants such as C-reactive protein. Inflammation has a crucial role in developing and progressing various cardiometabolic diseases and a wide range of obesity-related complications. It has been shown that TNF-α has a significant role in the development of insulin resistance. Recently, a growing body of evidence has focused on herbal medicine, phytochemicals and natural bioactive compounds as inexpensive, relatively easy accessible agents with low adverse effects to reduce inflammatory markers such as TNF-α and simultaneously decrease insulin resistance, glucose intolerance, and dyslipidemia in obesity. The main focus of the current review is to summarize the results of the studies, which assessed the effects of phytochemicals and herbal bio-active compounds on serum TNF-α in subjects with overweight or obesity. This review suggests that herbal medicine have favorable effects on the reduction of TNF-α concentration; however, the results were not uniform for different products. Among the reviewed plants, ginger, ginseng, resveratrol, and flaxseed had more promising effects.
Collapse
|
21
|
Furquim Dos Santos Cardoso V, Amaral Roppa RH, Antunes C, Silva Moraes AN, Santi L, Konrath EL. Efficacy of medicinal plant extracts as dental and periodontal antibiofilm agents: A systematic review of randomized clinical trials. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114541. [PMID: 34416298 DOI: 10.1016/j.jep.2021.114541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The presence of biofilm in oral cavity is associated with dental plaque and related diseases, including gingivitis, periodontitis and inflammatory responses. Some medicinal plants traditionally used for biofilm-associated pathologies such as Camellia sinensis (L.) Kuntze, Punica granatum L. and Lippia sidoides Cham. are currently incorporated into dosage forms as antiplaque agents. AIMS OF THE STUDY To present the current application of medicinal plant extracts associated in drug dosages to control microbial biofilms, with emphasis on those present in the oral cavity, especially to treat dental plaque. MATERIALS AND METHODS A PRISMA-compliant systematic search was conducted using the PubMed, Web of Science and Scopus databases. After the abstract and full-text analysis, the Cochrane Collaboration's tools for clinical studies was applied to assess the methodological quality of randomized clinical trials. RESULTS Of 964 potentially eligible studies, 47 studies met the inclusion criteria and were included in the systematic review. Camellia sinensis was the most commonly used species (8 studies), with positive results in reducing both the PI and GI in the form of mouthwash, toothpaste and gel. The Melaleuca alternifolia oil (5 studies) demonstrated low reduction in PI but important effects on GI scores. Azadirachta indica (4 studies) extracts presented efficacy similar to CHX to improve the periodontal parameters, including PI and GI. Ricinus communis oil (3 studies), despite reducing microbiological counts and GI, did not prove to be better than the hypochlorite solution, used as an alternative treatment for dentures. The main bioactive compounds described for the plant species are polyphenols, essential oils and alkaloids, most of them with identified antibiofilm activities. CONCLUSIONS These active species could lead to future development of safer and newer treatments for oral biofilm-associated infections. However, more studies are needed to further understand the clinical relevance of their application.
Collapse
Affiliation(s)
| | - Ricardo Haack Amaral Roppa
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carolina Antunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Naiara Silva Moraes
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucélia Santi
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo Luis Konrath
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
22
|
DE Moraes MDR, Passos VF, Padovani GC, Bezerra LCBDR, Vasconcelos IM, Santiago SL. Protective effect of green tea catechins on eroded human dentin: an in vitro/in situ study. Braz Oral Res 2021; 35:e108. [PMID: 34816896 DOI: 10.1590/1807-3107bor-2021.vol35.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
The present study sought to evaluate the protective effect of Epigallocatechin-3-gallate (EGCG) and commercial green tea (GT) on eroded dentin using in vitro and in situ experimental models. For the in vitro experiment, matrix metalloproteinases (MMPs) were extracted from demineralized human coronary dentin powder (citric acid, pH 2.3) and assessed via a colorimetric assay and electrophoresis in gelatin. The gels were exposed to buffers with: control (no treatment), 0.05% sodium fluoride (NaF), 0.12% chlorhexidine digluconate (CHX), GT infusion, and 0.1% EGCG, and their respective activity was analyzed by zymography. For the in situ experiment, 20 healthy volunteers (aged 20-32 years) participated in this single-center, blind, crossover study. The subjects wore upper removable devices containing four human dentin blocks. Erosive challenge (coke-1 min) was performed four times/day/5 days. Blocks were treated for 1 min with: control (No treatment), 0.05% NaF, 0.1% EGCG, and GT. Thereafter, the specimens were subjected to stylus profilometry and SEM. ANOVA was used to evaluate dentin roughness and wear, with a significance level of 5%. In the zymography analysis, 0.12% CHX, GT, and 0.1% EGCG were found to inhibit the action of MMPs; however, in the colorimetric assay, only green tea inhibited the activity of MMPs. There were no significant differences observed in dentin roughness or wear (p > 0.05). Herein, EGCG and GT inhibited the activity of endogenous proteases, resulting in protection against erosion-induced dentin damage; however, they could not prevent tooth tissue loss in situ.
Collapse
Affiliation(s)
| | - Vanara Florêncio Passos
- Universidade Federal do Ceara - UFC, Faculty of Pharmacy, Nursing and Dentistry, Department of Operative Dentistry, Fortaleza, CE, Brazil
| | | | | | | | - Sérgio Lima Santiago
- Universidade Federal do Ceara - UFC, Faculty of Pharmacy, Nursing and Dentistry, Department of Operative Dentistry, Fortaleza, CE, Brazil
| |
Collapse
|
23
|
Abstract
Nutrition and dietary supplements have been used to promote a youthful appearance for millennia. Despite high public demand for these products, evidence supporting their efficacy is limited and often inconsistent. We discuss the structural and functional changes that occur in the skin during the aging process. We also review evidence supporting the use of nutritional supplements commonly used to promote a youthful appearance, including essential fatty acids, coenzyme Q, collagen peptides, curcumin, polyphenols, flavonoids, probiotics, silymarin, and vitamins A, C, D, and E. We also consider the role of advanced glycosylated end products, antiinflammatory diets, and caloric restriction in delaying premature skin aging. Although evidence supporting the use of some dietary interventions is promising, further long-term studies in humans are required to fully understand their effects on the promotion of a youthful appearance.
Collapse
Affiliation(s)
- Sonal Muzumdar
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Katalin Ferenczi
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
24
|
Shen P, Jiao Y. WITHDRAWN: Epicatechin gallate-loaded calcium alginate sponges promote diabetic wound healing through protecting against oxidative stress and modulation of immune response via PI3K/AKT/NFκB signaling pathway. Int J Biol Macromol 2021:S0141-8130(21)01437-9. [PMID: 34229022 DOI: 10.1016/j.ijbiomac.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/26/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Peng Shen
- Northern Beijing Medical District, Chinese PLA General Hospital, Beijing 100094, China
| | - Yang Jiao
- Department of Stomatology, the 7th Medical Center, Chinese PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
25
|
Wang Y, Green A, Yao X, Liu H, Nisar S, Gorski JP, Hass V. Cranberry Juice Extract Rapidly Protects Demineralized Dentin against Digestion and Inhibits Its Gelatinolytic Activity. MATERIALS 2021; 14:ma14133637. [PMID: 34209884 PMCID: PMC8269616 DOI: 10.3390/ma14133637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023]
Abstract
Improving the longevity of composite restorations has proven to be difficult when they are bonded to dentin. Dentin demineralization leaves collagen fibrils susceptible to enzymatic digestion, which causes breakdown of the resin-dentin interface. Therefore, measures for counteracting the enzymatic environment by enhancing dentin collagen's resistance to degradation have the potential to improve the durability of dental composite restorations. This study aimed to evaluate the effects of polyphenol-rich extracts and a chemical cross-linker on the cross-linking interaction, resistance to digestion, and endogenous matrix metalloproteinase (MMP) activities of dentin collagen under clinically relevant conditions. Ten-µm-thick films were cut from dentin slabs of non-carious extracted human third molars. Following demineralization, polyphenol-rich extracts-including grape seed (GSE), green tea (GTE), and cranberry juice (CJE)-or chemical cross-linker carbodiimide with n-hydroxysuccinimide (EDC/NHS) were applied to the demineralized dentin surfaces for 30 s. The collagen cross-linking, bio-stabilization, and gelatinolytic activities of MMPs 2 and 9 were studied by using Fourier-transform infrared spectroscopy, weight loss, hydroxyproline release, scanning/transmission electron microscopy, and in situ zymography. All treatments significantly increased resistance to collagenase degradation and reduced the gelatinolytic MMP activity of dentin collagen compared to the untreated control. The CJE- and GSE-treated groups were more resistant to digestion than the GTE- or EDC/NHS-treated ones (p < 0.05), which was consistent with the cross-linking interaction found with FTIR and the in situ performance on the acid-etched dentin surface found with SEM/TEM. The collagen films treated with CJE showed the lowest MMP activity, followed by GSE, GTE, and, finally, EDC/NHS. The CJE-treated dentin collagen rapidly increased its resistance to digestion and MMP inhibition. An application of CJE as short as 30 s may be a clinically feasible approach to improving the longevity of dentin bonding in composite restorations.
Collapse
|
26
|
Wang S, Li Z, Ma Y, Liu Y, Lin CC, Li S, Zhan J, Ho CT. Immunomodulatory Effects of Green Tea Polyphenols. Molecules 2021; 26:molecules26123755. [PMID: 34203004 PMCID: PMC8234133 DOI: 10.3390/molecules26123755] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Green tea and its bioactive components, especially polyphenols, possess many health-promoting and disease-preventing benefits, especially anti-inflammatory, antioxidant, anticancer, and metabolic modulation effects with multi-target modes of action. However, the effect of tea polyphenols on immune function has not been well studied. Moreover, the underlying cellular and molecular mechanisms mediating immunoregulation are not well understood. This review summarizes the recent studies on the immune-potentiating effects and corresponding mechanisms of tea polyphenols, especially the main components of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG). In addition, the benefits towards immune-related diseases, such as autoimmune diseases, cutaneous-related immune diseases, and obesity-related immune diseases, have been discussed.
Collapse
Affiliation(s)
- Shuzhen Wang
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Zhiliang Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yuting Ma
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Yan Liu
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Chen Lin
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan;
| | - Shiming Li
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| | - Jianfeng Zhan
- Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Hubei Zhongke Research Institute of Industrial Technology, College of Life Science, Huanggang Normal University, Huanggang 438000, China; (S.W.); (Z.L.); (Y.M.); (Y.L.); (J.Z.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (S.L.); (C.-T.H.)
| |
Collapse
|
27
|
Messias DC, da Silva MFB, de Faria NS, Dias-Arnez TR, Rached-Júnior FJ, Sousa ABS. Effect of epigallocatechin-3-gallate and thermal cycling on the bond strength of resin cements to the root dentin. Odontology 2021; 109:854-859. [PMID: 33963943 DOI: 10.1007/s10266-021-00610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
This study evaluated the effect of epigallocatechin-3-gallate (EGCG) solution and thermal cycling on the bond strength (BS) of fiber posts to the root dentin using two different resin cements (conventional or self-adhesive). One hundred and forty-four bovine roots were endodontically treated. After post space preparation, specimens were randomly divided into six groups (n = 24) according to dentin pretreatment [distilled water, 0.05% EGCG solution or 2% chlorhexidine (CHX) solution] and resin luting agent used for fiber post cementation (RelyX ARC or RelyX U200-3 M ESPE). Then, the samples were separated into two subgroups (n = 12): storage in distilled water at 37 °C for 24 h and thermal cycling (5 °C/55 °C, dwell time 30 s-12,000 cycles) during 6 months. After that, the specimens were subjected to the pull-out BS test (Universal Testing Machine-0.5 mm/min) and the failures pattern was analyzed in a stereomicroscope. According to the BS results (three-way ANOVA, Tukey's test, α = 0.05), the highest values were reported in the group EGCG + RelyX U200, showing significant statistical differences compared to all the other experimental groups. For Control and CHX groups BS values, there was no significant difference (p > .05) between the resin cements. For conventional resin cement, there was no significant difference among treatment solutions (p > .05). The thermal cycling did not influence the BS results (p > .05). As reported by the failure mode analysis, adhesive failure was predominant in all groups. EGCG solution improved the bond strength of self-adhesive resin cement to root dentin.
Collapse
Affiliation(s)
- Danielle Cristine Messias
- School of Dentistry, University of Ribeirão Preto, Avenida Costábile Romano, 2201-Ribeirânia, Ribeirão Prêto, Sao Paulo, 14096-000, Brazil
| | | | - Natália Spadini de Faria
- School of Dentistry, University of Ribeirão Preto, Avenida Costábile Romano, 2201-Ribeirânia, Ribeirão Prêto, Sao Paulo, 14096-000, Brazil
| | - Tatiane Rocco Dias-Arnez
- School of Dentistry, University of Ribeirão Preto, Avenida Costábile Romano, 2201-Ribeirânia, Ribeirão Prêto, Sao Paulo, 14096-000, Brazil
| | - Fuad Jacob Rached-Júnior
- School of Dentistry, University of Ribeirão Preto, Avenida Costábile Romano, 2201-Ribeirânia, Ribeirão Prêto, Sao Paulo, 14096-000, Brazil
| | - Ana Beatriz Silva Sousa
- School of Dentistry, University of Ribeirão Preto, Avenida Costábile Romano, 2201-Ribeirânia, Ribeirão Prêto, Sao Paulo, 14096-000, Brazil.
| |
Collapse
|
28
|
Wallach-Dayan SB, Petukhov D, Ahdut-HaCohen R, Richter-Dayan M, Breuer R. sFasL-The Key to a Riddle: Immune Responses in Aging Lung and Disease. Int J Mol Sci 2021; 22:ijms22042177. [PMID: 33671651 PMCID: PMC7926921 DOI: 10.3390/ijms22042177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
- Correspondence:
| | - Dmytro Petukhov
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| | - Mark Richter-Dayan
- Department of Emergency Medicine, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| |
Collapse
|
29
|
Assunção R, Twarużek M, Kosicki R, Viegas C, Viegas S. Drinking Green Tea: Despite the Risks Due to Mycotoxins, Is It Possible to Increase the Associated Health Benefits? Toxins (Basel) 2021; 13:119. [PMID: 33562833 PMCID: PMC7914876 DOI: 10.3390/toxins13020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Tea has been consumed for thousands of years. Despite the different varieties, particular emphasis has been placed on green tea (GT), considering the associated health benefits following its regular consumption, some of which are due to its polyphenol constituents, such as epigallocatechin-3-gallate (EGCG). Tea is not prone to the growth of microorganisms, except fungus, when proper storage, handling, and packing conditions are compromised. Consequently, mycotoxins, secondary metabolites of fungi, could contaminate tea samples, affecting human health. In the present study, we aimed to assess the balance between risks (due to mycotoxins and high levels of EGCG) and benefits (due to moderate intake of EGCG) associated with the consumption of GT. For this, 20 GT samples (10 in bulk and 10 in bags) available in different markets in Lisbon were analyzed through a LC-MS/MS method, evaluating 38 different mycotoxins. Six samples revealed detectable values of the considered toxins. Current levels of mycotoxins and EGCG intake were not associated with health concerns. Scenarios considering an increasing consumption of GT in Portugal showed that drinking up to seven cups of GT per day should maximize the associated health benefits. The present study contributes to the future establishment of GT consumption recommendations in Portugal.
Collapse
Affiliation(s)
- Ricardo Assunção
- CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Food and Nutrition Department, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
| | - Magdalena Twarużek
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Robert Kosicki
- Department of Physiology and Toxicology, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland; (M.T.); (R.K.)
| | - Carla Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal; (C.V.); (S.V.)
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| |
Collapse
|
30
|
Anshida VP, Kumari RA, Murthy CS, Samuel A. Extracellular matrix degradation by host matrix metalloproteinases in restorative dentistry and endodontics: An overview. J Oral Maxillofac Pathol 2021; 24:352-360. [PMID: 33456247 PMCID: PMC7802866 DOI: 10.4103/jomfp.jomfp_34_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/29/2020] [Accepted: 05/23/2020] [Indexed: 11/04/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of over 25 secreted and membrane-bound enzymes responsible for pericellular substrate degeneration. In response to injury, they play key roles in morphogenesis, wound healing, tissue repair and remodeling. They have been isolated from dentin, odontoblasts, pulp and periapical tissue. They play a major role in the formation of dentin matrix and secondary and tertiary dentin. These are also responsible for releasing dentinal growth factors. MMP family proteins elicit a dual role in the pathogenesis of inflammation, stimulating protective innate and/or adaptive immune functions, as well as tissue destruction. The main organic component of tooth structure is collagen, and MMPs that degrade collagen and the extracellular matrix have been implicated in the progression of dental caries, dental erosion as well as degradation of the hybrid layer. MMPs have also been shown to be active in pulpitis, and studies have shown that they can be used as diagnostic markers of pulpal and periapical inflammation. This review describes the role of MMPs in dental caries, dental erosion, bond stability as well as in pulpal and periapical inflammation.
Collapse
Affiliation(s)
- V P Anshida
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - R Anitha Kumari
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - Chethana S Murthy
- Department of Conservative Dentistry and Endodontics, Vokkaligara Sangha Dental College and Hospital, Bengaluru, Karnataka, India
| | - Anoop Samuel
- Department of Conservative Dentistry and Endodontics, Noorul Islam College of Dental Sciences, Thiruvananthapuram, Kerala, India
| |
Collapse
|
31
|
Nawrot-Hadzik I, Matkowski A, Kubasiewicz-Ross P, Hadzik J. Proanthocyanidins and Flavan-3-ols in the Prevention and Treatment of Periodontitis-Immunomodulatory Effects, Animal and Clinical Studies. Nutrients 2021; 13:nu13010239. [PMID: 33467650 PMCID: PMC7830097 DOI: 10.3390/nu13010239] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
This paper continues the systematic review on proanthocyanidins and flavan-3-ols in the prevention and treatment of periodontal disease and covers the immunomodulatory effects, and animal- and clinical studies, while the other part discussed the direct antibacterial properties. Inflammation as a major response of the periodontal tissues attacked by pathogenic microbes can significantly exacerbate the condition. However, the bidirectional activity of phytochemicals that simultaneously inhibit bacterial proliferation and proinflammatory signaling can provide a substantial alleviation of both cause and symptoms. The modulatory effects on various aspects of inflammatory and overall immune response are covered, including confirmed and postulated mechanisms of action, structure activity relationships and molecular targets. Further, the clinical relevance of flavan-3-ols and available outcomes from clinical studies is analyzed and discussed. Among the numerous natural sources of flavan-3-ols and proanthocyanidins the most promising are, similarly to antibacterial properties, constituents of various foods, such as fruits of Vaccinium species, tea leaves, grape seeds, and tannin-rich medicinal herbs. Despite a vast amount of in vitro and cell-based evidence of immunomodulatory there are still only a few animal and clinical studies. Most of the reports, regardless of the used model, indicated the efficiency of these phytochemicals from cranberries and other Vaccinium species and tea extracts (green or black). Other sources such as grape seeds and traditional medicinal plants, were seldom. In conclusion, the potential of flavan-3-ols and their derivatives in prevention and alleviation of periodontal disease is remarkable but clinical evidence is urgently needed for issuing credible dietary recommendation and complementary treatments.
Collapse
Affiliation(s)
- Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
| | - Adam Matkowski
- Department of Pharmaceutical Biology and Botany, Wroclaw Medical University, 50556 Wroclaw, Poland;
- Correspondence:
| | - Paweł Kubasiewicz-Ross
- Department of Dental Surgery, Wroclaw Medical University, 50425 Wroclaw, Poland; (P.K.-R.); (J.H.)
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, 50425 Wroclaw, Poland; (P.K.-R.); (J.H.)
| |
Collapse
|
32
|
Beck F, Ilie N. Antioxidants and Collagen-Crosslinking: Benefit on Bond Strength and Clinical Applicability. MATERIALS 2020; 13:ma13235483. [PMID: 33271998 PMCID: PMC7729620 DOI: 10.3390/ma13235483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022]
Abstract
Antioxidants are known for their potential of strengthening the collagen network when applied to dentin. They establish new intra-/intermolecular bonds in the collagen, rendering it less perceptive to enzymatic hydrolysis. The study evaluated the benefit on shear bond strength (SBS) of a resin–composite to dentin when antioxidants with different biomolecular mechanisms or a known inhibitor of enzymatic activity are introduced to the bonding process in a clinically inspired protocol. Specimens (900) were prepared consistent with the requirements for a macro SBS-test. Four agents (Epigallocatechingallate (EGCG), Chlorhexidindigluconate (CHX), Proanthocyanidin (PA), and Hesperidin (HPN)) were applied on dentin, either incorporated in the primer of a two-step self-etch adhesive or as an aqueous solution before applying the adhesive. Bonding protocol executed according to the manufacturer’s information served as control. Groups (n = 20) were tested after one week, one month, three months, six months, or one year immersion times (37 °C, distilled water). After six-month immersion, superior SBS were identified in PA compared to all other agents (p < 0.01) and a higher reliability in both primer and solution application when compared to control. After one year, both PA incorporated test groups demonstrated the most reliable outcome. SBS can benefit from the application of antioxidants. The use of PA in clinics might help extending the lifespan of resin-based restorations.
Collapse
Affiliation(s)
| | - Nicoleta Ilie
- Correspondence: ; Tel.: +49-89-44005-9412; Fax: +49-89-44005-930
| |
Collapse
|
33
|
Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Landmayer K, Liberatti GA, Farias-Neto AM, Wang L, Honório HM, Francisconi-Dos-Rios LF. Could applying gels containing chlorhexidine, epigallocatechin-3-gallate, or proanthocyanidin to control tooth wear progression improve bond strength to eroded dentin? J Prosthet Dent 2020; 124:798.e1-798.e7. [PMID: 32981716 DOI: 10.1016/j.prosdent.2020.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 10/23/2022]
Abstract
STATEMENT OF PROBLEM A consensus on whether or how to treat eroded dentin to bond to composite resins is lacking. The role of gels containing chlorhexidine (CHX), epigallocatechin-3-gallate (EGCG), and proanthocyanidin (PAC) in controlling erosive wear progression needs to be evaluated for bonding. PURPOSE The purpose of this in vitro study was to evaluate the effect of gels containing antiproteolytic agents (CHX or EGCG) or an antiproteolytic and also collagen crosslinking agent (PAC) to control tooth wear progression on the microtensile bond strength (μTBS) of an adhesive system plus a composite resin to simulated eroded dentin. MATERIAL AND METHODS Superficial occlusal dentin surfaces obtained from sectioned third molars were ground with SiC paper (600-grit; 1 minute; N-normal dentin) or subsequently submitted to an initial erosive challenge (Coca-Cola; 5 minutes). They then received one of the following treatments: application of a placebo (P), a 0.12% CHX digluconate, an EGCG at 400 μM, or a 10% PAC gel (vehicle: hydroxyethylcellulose, propylene glycol, methylparaben, imidazolidinyl urea, and deionized water; active principle: as per the experimental groups when applicable) or no treatment (C: control). Initially demineralized dentin was also submitted to pH cycling (Coca-Cola; 5 minutes, 3×/day, 5 days) to simulate eroded dentin (E). After acid etching all the specimens, adhesive Adper Single Bond 2 was applied, and composite resin (Filtek Z350 XT) was placed. After 24 hours storage in distilled water at 37 °C, the specimens were sectioned into beams, and the μTBS was tested at 0.5 mm/minute. The μTBS values obtained were evaluated considering each tooth as an experimental unit, and 2-way ANOVA and the Tukey post hoc test for multiple comparisons were applied (α=.05). RESULTS Immediate μTBS values for the eroded dentin were always lower than those for the normal dentin, irrespective of whether any of the gels were applied for wear control. CONCLUSIONS CHX, EGCG, PAC, and placebo gels, applied after the initial demineralization and before the pH cycling to simulate the eroded dentin, had a similar effect on the μTBS of the adhesive system plus the composite resin to simulated eroded dentin when compared with nonapplication (control).
Collapse
Affiliation(s)
- Karin Landmayer
- PhD Candidate, Department of Operative Dentistry, School of Dentistry (FO), University of São Paulo (USP), São Paulo, Brazil
| | - Giovanni A Liberatti
- PhD Candidate, Department of Operative Dentistry, School of Dentistry (FO), University of São Paulo (USP), São Paulo, Brazil
| | - Aloísio M Farias-Neto
- PhD Candidate, Department of Operative Dentistry, School of Dentistry (FO), University of São Paulo (USP), São Paulo, Brazil
| | - Linda Wang
- Full Professor, Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry (FOB), University of São Paulo (USP), Bauru, Brazil
| | - Heitor M Honório
- Associate Professor, Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry (FOB), University of São Paulo (USP), Bauru, Brazil
| | - Luciana F Francisconi-Dos-Rios
- Assistant Professor, Department of Operative Dentistry, School of Dentistry (FO), University of São Paulo (USP), São Paulo, Brazil.
| |
Collapse
|
35
|
Zhang Z, Yu J, Yao C, Yang H, Huang C. New perspective to improve dentin-adhesive interface stability by using dimethyl sulfoxide wet-bonding and epigallocatechin-3-gallate. Dent Mater 2020; 36:1452-1463. [PMID: 32943231 DOI: 10.1016/j.dental.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/07/2020] [Accepted: 08/29/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether dentin-adhesive interface stability would be improved by dimethyl sulfoxide (DMSO) wet-bonding and epigallocatechin-3-gallate (EGCG). METHODS Etched dentin surfaces from sound third molars were randomly assigned to five groups according to different pretreatments: group 1, water wet-bonding (WWB); group 2, 50% (v/v) DMSO wet-bonding (DWB); groups 3-5, 0.01, 0.1, and 1 wt% EGCG-incorporated 50% (v/v) DMSO wet-bonding (0.01%, 0.1%, and 1%EGCG/DWB). Singlebond universal adhesive was applied to the pretreated dentin surfaces, and composite buildups were constructed. Microtensile bond strength (μTBS) and interfacial nanoleakage were respectively examined after 24 h water storage or 1-month collagenase ageing. In situ zymography andStreptococcus mutans (S. mutans) biofilm formation were also investigated. RESULTS After collagenase ageing, μTBS of groups 4 (0.1%EGCG/DWB) and 5 (1%EGCG/DWB) did not decrease (p > 0.05) and was higher than that of the other three groups (p < 0.05). Nanoleakage expression of groups 4 and 5 was less than that of the other three groups (p < 0.05), regardless of collagenase ageing. Metalloproteinase activities within the hybrid layer in groups 4 and 5 were suppressed. Furthermore, pretreatment with 1%EGCG/DWB (group 5) efficiently inhibited S. mutans biofilm formation along the dentin-adhesive interface. SIGNIFICANCE This study suggested that the synergistic action of DMSO wet-bonding and EGCG can effectively improve dentin-adhesive interface stability. This strategy provides clinicians with promising benefits to achieve desirable dentin bonding performance and to prevent secondary caries, thereby extending the longevity of adhesive restorations.
Collapse
Affiliation(s)
- Zhongni Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chenmin Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Costa C, Albuquerque N, Mendonça JS, Loguercio AD, Saboia V, Santiago SL. Catechin-based Dentin Pretreatment and the Clinical Performance of a Universal Adhesive: A Two-year Randomized Clinical Trial. Oper Dent 2020; 45:473-483. [PMID: 32352353 DOI: 10.2341/19-088-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 11/23/2022]
Abstract
CLINICAL RELEVANCE At 24 months, the dentin pretreatment with epigallocatechin-3-gallate did not impair the clinical performance of the adhesive Single Bond Universal regardless of the bonding strategy used. SUMMARY Purpose: To evaluate the two-year effect of dentin pretreatment with epigallocatechin-3-gallate (EGCG) on the clinical performance of restorations of noncarious cervical lesions (NCCLs) with Single Bond Universal, applied in two different modes (self-etch and etch-and-rinse).Methods and Materials: In this randomized clinical trial, 33 volunteers were selected, and 156 NCCLs were assigned to four groups: ER, etch-and-rinse; ER-EGCG, 0.1% EGCG dentin pretreatment + etch-and-rinse; SE, self-etch; and SE-EGCG, 0.1% EGCG dentin pretreatment + self-etch. The NCCLs were restored with a nanofilled resin composite and evaluated at baseline and at six, 12, 18, and 24 months using FDI criteria for retention, marginal staining, marginal adaptation, caries, and postoperative sensitivity. Two evaluators were blinded to the treatments performed, and impressions were taken for resin replicas to allow indirect observations. Statistical analyses were performed with Kruskal-Wallis and McNemar tests with a significance level of 5%.Results: Six restorations (one from ER, two from SE, one from ER-EGCG, and two from SEEGCG) were lost at 24 months with no significant differences (p>0.05). The retention rates were 97.0% (ER and ER-EGCG), 94.1% (SE), and 94.2% (SE-EGCG). For marginal adaptation, a significant difference was detected between the baseline and 24 months for the SE group (p=0.0313). There were no statistical differences among all other evaluated criteria at 24 months, neither for each group at baseline nor for 24-month comparisons (p>0.05).Conclusions: The pretreatment with EGCG provided no benefit in the clinical performance of the adhesive regardless of the bonding strategy used. In addition, it adds an additional required step to the restorative procedure.
Collapse
|
37
|
Viegas C, Sá F, Mateus M, Santos P, Almeida B, Aranha Caetano L, Quintal Gomes A, Viegas S. Commercial green tea from Portugal: Comprehensive microbiologic analyses. Int J Food Microbiol 2020; 333:108795. [PMID: 32721627 DOI: 10.1016/j.ijfoodmicro.2020.108795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/25/2022]
Abstract
In recent times green tea (GT) consumption has increased, due to the numerous studies that indicate a wide variety of health benefits following its regular consumption. The aim of this study was to assess the bioburden (bacteria and fungi) of bulk and bags of GT marketed in Lisbon and to obtain a more refined fungal burden characterization, including azole resistance profile. The bacteriota in tea bags before boiling ranged from lower than the detection limit to 1770 CFU.g-1, whereas in brew samples ranged from lower than the detection limit to 54.55 CFU.mL-1. In bulk samples before boiling ranged from lower than the detection limit to 2636 CFU.g-1, while after boiling ranged from lower than the detection limit to 72.73 CFU.mL-1. Fungal contamination on tea bags before boiling ranged from lower than the detection limit to 66.67 CFU.g-1 and after boiling, all samples presented results lower than the detection limit. Concerning bulk samples before boiling ranged from lower than the detection limit to 96.97 CFU.g-1, whereas after boiling ranged from lower the detection limit to 30.3 CFU.mL-1. Before boiling, the most common fungal species in the bagged tea (90.91 CFU.g-1; 45.45%) and bulk samples (66.67 CFU.g-1; 91.67%) was Aspergillus section Nigri. Fungal diversity was higher on bulk samples than in tea bags. Aspergillus section Nigri and Rhizopus sp. growth was observed mostly on itraconazole-supplemented Sabouraud dextrose agar media, which require further investigation. Aspergillus sections Fumigati and Nidulantes were detected by using real time PCR, but not in the GT samples in which they were identified through culture-based methods. A significantly reduction of bacterial contamination after boiling was observed, however fungal contamination with toxigenic potential was observed before and after boiling. Future research work needs to characterize in detail the mycotoxins contamination to allow a risk-benefit assessment to estimate the human health benefits and risks following tea consumption and to support policy-actions, if and when needed. The results also suggest that the conditions how tea is packed can influence the fungal diversity and this variable should be further investigated.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Flávio Sá
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Margarida Mateus
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Patrícia Santos
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Anita Quintal Gomes
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| |
Collapse
|
38
|
Liao S, Tang Y, Chu C, Lu W, Baligen B, Man Y, Qu Y. Application of green tea extracts epigallocatechin‐3‐gallate in dental materials: Recent progress and perspectives. J Biomed Mater Res A 2020; 108:2395-2408. [PMID: 32379385 DOI: 10.1002/jbm.a.36991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shengnan Liao
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yu Tang
- Stomatology College & the Affiliated Stomatology Hospital of Southwest Medical University Luzhou Sichuan China
| | - Chenyu Chu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Weitong Lu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Bolatihan Baligen
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yi Man
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| | - Yili Qu
- Department of Oral Implantology, West China Hospital of Stomatology; State Key Laboratory of Oral Diseases Sichuan University Chengdu Sichuan China
| |
Collapse
|
39
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
40
|
Khunkar S, Hariri I, Alsayed E, Linjawi A, Khunkar S, Islam S, Bakhsh TA, Nakashima S. Inhibitory effect of Salvadora persica extract (Miswak) on collagen degradation in demineralized dentin: In vitro study. J Dent Sci 2020; 16:208-213. [PMID: 33384799 PMCID: PMC7770310 DOI: 10.1016/j.jds.2020.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/20/2020] [Indexed: 11/15/2022] Open
Abstract
Background/purpose Root dentin is vulnerable to acid attack, suggesting a higher risk of demineralization than coronal enamel. This study aimed to evaluate the inhibitory effect of Miswak extract on collagen degradation of demineralized dentin lesion. Materials and methods Demineralized bovine root dentin specimens were treated for 1 h by 20% Miswak extract and 0.12% Chlorehexidine (CHX) as a positive control group, and then subjected to collagenolytic attack (clostridium histolyticum 0.5 CDU/mL, 16 h). These cyclic treatments were repeated for 3 days. After the cyclic treatment, the images of the specimens were captured with a light microscope and the lesion depth of degraded collagen layer of all specimens was measured. The mean lesion depth was calculated and compared between the groups using descriptive and One-way ANOVA followed by Post hoc Tukey's tests. Significant level was set at p < 0.05. Results The mean lesion depth of CHX (28.6 ± 3.37 μm) had the least value, followed by Miswak (37.5 ± 4.01 μm) then the control (78.4 ± 18.43 μm) group. There was a significant difference in the mean lesion depth among the three groups (p = 0.000). Conclusion Miswak aqueous extract from S. persica was found to preserve the dentin collagen matrix from collagenase enzyme. This could be due to the organic compounds like flavonoids, saponins, alkaloids, tannins, and others which have been reported in literature. Present finding suggests that Miswak might play a positive effect in dentin caries prevention.
Collapse
Affiliation(s)
- Sahar Khunkar
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ilnaz Hariri
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ehab Alsayed
- Yanbu Dental Center, Yanbu General Hospital, General Directorate of Health Affairs of Medina, Ministry of Health, Saudi Arabia
| | - Amal Linjawi
- Department of Orthodontics, King Abdulaziz University, Faculty of Dentistry, Jeddah, Saudi Arabia
| | - Sawsan Khunkar
- General Practitioner, King Abdulaziz Hospital, Jeddah, Saudi Arabia
| | - Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Turki A Bakhsh
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syozi Nakashima
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
41
|
WANG X, GONG X, ZHANG H, ZHU W, JIANG Z, SHI Y, LI L. In vitro anti-aging activities of ginkgo biloba leaf extract and its chemical constituents. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.02219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaoyue WANG
- Beijing Technology and Business University, China
| | - Xiaoyan GONG
- Beijing Technology and Business University, China
| | - Huina ZHANG
- Beijing Technology and Business University, China
| | | | | | - Yujing SHI
- China Academy of Chinese Medical Sciences, China
| | - Li LI
- Beijing Technology and Business University, China
| |
Collapse
|
42
|
Prasad Pandey B, Prakash Pradhan S, Adhikari K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem Biodivers 2020; 17:e2000155. [PMID: 32304171 DOI: 10.1002/cbdv.202000155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The objective of this study was to profile the chemical components and biological activity analysis of crude extract of Bryophyllum pinnatum and Oxalis corniculata. Results revealed that the analyzed plant materials encompass the high amount of total phenolic and flavonoids content and have significant antioxidant activities. Furthermore, methanol extracts are the potential source of α-amylase, α-glucosidase, lipase, tyrosinase and elastase inhibitors. High resolution mass spectrometry revealed the presence of diverse metabolites such as quercetin 3-O-α-L-rhamnopyranoside, myricetin 3-rhamnoside, bersaldegenin 1,3,5-orthoacetate, bryophyllin C, syringic acid, caffeic acid, p-coumaric acid, and quercetin in B. pinnatum and isoorientin, swertisin, apigenin 7,4'-diglucoside, vitexin, 4-hydroxybenzoic acid, vanillic acid, ethyl gallate, 3,3',4'-trihydroxy-5,7-dimethoxyflavone, and diosmetin-7-O-β-D-glucopyranoside in O. corniculata. Our finding suggested that these two plant species have high medicinal importance and are potential source of inhibitors for modern pharmaceuticals, nutraceuticals and cosmetics industries.
Collapse
Affiliation(s)
- Bishnu Prasad Pandey
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| | - Suman Prakash Pradhan
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| | - Kapil Adhikari
- Department of Chemical Science and Engineering, School of Engineering, Kathmandu University, P.O. Box 6250, Dhulikhel, 44600, Kavre, Nepal
| |
Collapse
|
43
|
Ciebiera M, Ali M, Prince L, Jackson-Bey T, Atabiekov I, Zgliczyński S, Al-Hendy A. The Evolving Role of Natural Compounds in the Medical Treatment of Uterine Fibroids. J Clin Med 2020; 9:E1479. [PMID: 32423112 PMCID: PMC7290481 DOI: 10.3390/jcm9051479] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (UFs) remain a significant health issue for many women, with a disproportionate impact on women of color, likely due to both genetic and environmental factors. The prevalence of UFs is estimated to be approximately 70% depending on population. UF-derived clinical symptoms include pelvic pain, excessive uterine bleeding, gastrointestinal and voiding problems, as well as impaired fertility. Nowadays numerous methods of UF treatment are available-from conservative treatment to invasive surgeries. Selecting an appropriate treatment option should be individualized and adjusted to the patient's expectations as much as possible. So far, the mainstay of treatment is surgery, but their negative impact of future fertility is clear. On the other hand, emerging new pharmaceutical options have significant adverse effects like liver function impairment, hot flashes, bone density loss, endometrial changes, and inability to attempt conception during treatment. Several natural compounds are found to help treat UFs and relieve their symptoms. In this review we summarize all the current available data about natural compounds that may be beneficial for patients with UFs, especially those who want to preserve their future fertility or have treatment while actively pursuing conception. Vitamin D, epigallocatechin gallate, berberine, curcumin, and others are being used as alternative UF treatments. Moreover, we propose the concept of using combined therapies of natural compounds on their own or combined with hormonal agents to manage UFs. There is a strong need for more human clinical trials involving these compounds before promoting widespread usage.
Collapse
Affiliation(s)
- Michał Ciebiera
- Second Department of Obstetrics and Gynecology, The Center of Postgraduate Medical Education, 01-809 Warsaw, Poland;
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Mohamed Ali
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Lillian Prince
- School of Public Health, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Tia Jackson-Bey
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Ihor Atabiekov
- Moscow Region Cancer Center, Balashikha 143900, Russian;
| | - Stanisław Zgliczyński
- Department of Internal Diseases and Endocrinology, Central Teaching Clinical Hospital, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Ayman Al-Hendy
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
44
|
Yang H, Xie B, Wang Y, Cui Y, Yang H, Wang X, Yang X, Bao GH. Effect of tea root-derived proanthocyanidin fractions on protection of dentin collagen. J Int Med Res 2020; 48:300060519891303. [PMID: 31818172 PMCID: PMC7265569 DOI: 10.1177/0300060519891303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives Proanthocyanidins (PAs) have been widely used as effective agents for dentin
collagen cross-linking to enhance the biomechanics and biostability of
dentin in vitro. However, the effects and protective mechanisms of various
tea root-derived PA components on dentin remain undefined. This study
evaluated the effects of these tea root-derived PA components on dentin
biomechanics and biostability. Methods In this study, ethyl acetate and n-butyl alcohol were used to extract PAs
with different degrees of polymerization from tea roots; the effects of
these PA extracts on dentin were evaluated. Results Dentin was treated with glutaraldehyde, ethyl acetate, n-butyl alcohol, or
water. PAs with a high degree of polymerization, extracted using n-butyl
alcohol, were able to more effectively improve dentin collagen
cross-linking, increase resistance to bacterial collagenase digestion, and
enhance dentin elasticity, relative to treatment with glutaraldehyde or PAs
with a low degree of polymerization (extracted using ethyl acetate).
Additionally, treatment with aqueous extract of tea roots was detrimental to
dentin stability and function. Conclusions PAs with a high degree of polymerization were effective for dentin protection
and restoration in vitro, suggesting clinical treatment potential for tea
root-derived PAs.
Collapse
Affiliation(s)
- Honglin Yang
- School of life sciences, Anhui Agricultural University, Hefei, China.,School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Bingqing Xie
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Yue Wang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Yayun Cui
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Hui Yang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Xiaoting Wang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Xi Yang
- School of Stomatology, Anhui Medical University, Hefei , Anhui, China
| | - Guan-Hu Bao
- School of life sciences, Anhui Agricultural University, Hefei, China.,Natural Products Laboratory, International Joint Laboratory of Tea Chemistry and Health effects, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei , Anhui, China
| |
Collapse
|
45
|
Han Y, Jiang Y, Hu J. Tea-polyphenol treated skin collagen owns coalesced adaptive-hydration, tensile strength and shape-memory property. Int J Biol Macromol 2020; 158:1-8. [PMID: 32251748 DOI: 10.1016/j.ijbiomac.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/15/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Tea-polyphenol, as non-toxic skincare, even a therapeutic agent, was extensively studied from chemical, biological and physiological perspectives. This study reveals physical intelligences of a tea-polyphenol treated skin collagen (TP-treated SC) through a material-approach. Compared to untreated one, the TP-treated SC shows resistance to over-swelling and dehydration damage. There exists an inflection point in stress value of TP-treated SC below extension of 25%. Such promptly transformation from flexibility to stiffness is self-adaptive stretch behavior. Moreover, TP-treated SC owns water responsive shape-memory property. These effects are attributed to polyphenol as plasticizer with chains crosslinked to multi-sites on collagen-fibers as netpoints. The discovery, mechanism and method, which have not been reported before, may help to develop new shape memory device, skincare products, as well as provides insights into the physiological behavior of collagen contained tissue.
Collapse
Affiliation(s)
- Yanting Han
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuanzhang Jiang
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
46
|
Bulboaca AE, Boarescu PM, Porfire AS, Dogaru G, Barbalata C, Valeanu M, Munteanu C, Râjnoveanu RM, Nicula CA, Stanescu IC. The Effect of Nano-Epigallocatechin-Gallate on Oxidative Stress and Matrix Metalloproteinases in Experimental Diabetes Mellitus. Antioxidants (Basel) 2020; 9:antiox9020172. [PMID: 32093214 PMCID: PMC7070619 DOI: 10.3390/antiox9020172] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background: The antioxidant properties of epigallocatechin-gallate (EGCG), a green tea compound, have been already studied in various diseases. Improving the bioavailability of EGCG by nanoformulation may contribute to a more effective treatment of diabetes mellitus (DM) metabolic consequences and vascular complications. The aim of this study was to test the comparative effect of liposomal EGCG with EGCG solution in experimental DM induced by streptozotocin (STZ) in rats. Method: 28 Wistar-Bratislava rats were randomly divided into four groups (7 animals/group): group 1—control group, with intraperitoneal (i.p.) administration of 1 mL saline solution (C); group 2—STZ administration by i.p. route (60 mg/100 g body weight, bw) (STZ); group 3—STZ administration as before + i.p. administration of EGCG solution (EGCG), 2.5 mg/100 g b.w. as pretreatment; group 4—STZ administration as before + i.p. administration of liposomal EGCG, 2.5 mg/100 g b.w. (L-EGCG). The comparative effects of EGCG and L-EGCG were studied on: (i) oxidative stress parameters such as malondialdehyde (MDA), indirect nitric oxide (NOx) synthesis, and total oxidative status (TOS); (ii) antioxidant status assessed by total antioxidant capacity of plasma (TAC), thiols, and catalase; (iii) matrix-metalloproteinase-2 (MMP-2) and -9 (MMP-9). Results: L-EGCG has a better efficiency regarding the improvement of oxidative stress parameters (highly statistically significant with p-values < 0.001 for MDA, NOx, and TOS) and for antioxidant capacity of plasma (highly significant p < 0.001 for thiols and significant for catalase and TAC with p < 0.05). MMP-2 and -9 were also significantly reduced in the L-EGCG-treated group compared with the EGCG group (p < 0.001). Conclusions: the liposomal nanoformulation of EGCG may serve as an adjuvant therapy in DM due to its unique modulatory effect on oxidative stress/antioxidant biomarkers and MMP-2 and -9.
Collapse
Affiliation(s)
- Adriana Elena Bulboaca
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
| | - Paul-Mihai Boarescu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 2-4, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Alina Silvia Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Viilor Street, no. 46-50, 400347 Cluj-Napoca, Romania
- Correspondence: (P.-M.B.); (A.S.P.); (G.D.); Tel.: +40-752-921-725 (P.-M.B.); +40-264-595-770 (A.S.P.); +40-724-231-022 (G.D.)
| | - Cristina Barbalata
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 41, 400012 Cluj-Napoca, Romania
| | - Madalina Valeanu
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street, no. 6, 400349 Cluj-Napoca, Romania
| | - Constantin Munteanu
- Department of Medical Rehabilitation, “BagdasarArseni” Emergency Clinical Hospital Bucharest, Berceni Street, no. 12, 041915 Cluj-Napoca, Romania
| | - Ruxandra Mioara Râjnoveanu
- Department of Pneumology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, B.P. Hasdeu Street, no. 6, 400371 Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Clinicilor Street, no. 3-5, 400006 Cluj-Napoca, Romania
| | - Ioana Cristina Stanescu
- Department of Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, no. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
47
|
Lopes R, Oliveira-Reis B, Maluly-Proni A, Silva M, Briso A, dos Santos P. Influence of green tea extract in the color of composite resin restorations. J Mech Behav Biomed Mater 2019; 100:103408. [DOI: 10.1016/j.jmbbm.2019.103408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
48
|
Hagiu A, Attin T, Schmidlin PR, Ramenzoni LL. Dose-dependent green tea effect on decrease of inflammation in human oral gingival epithelial keratinocytes: in vitro study. Clin Oral Investig 2019; 24:2375-2383. [DOI: 10.1007/s00784-019-03096-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
This in vitro study aimed to analyze the anti-inflammatory and wound healing potential of green tea extract (GTE) in human gingival epithelial keratinocytes (HGEK) treated with lipopolysaccharides (LPS).
Materials and methods
A cell viability assay was conducted using MTT to determine nontoxic levels of GTE on immortalized HGEK. Cells were concomitantly treated with LPS (1 μg/ml) and GTE (1 mg/ml, 2.5 mg/ml, 5 mg/ml, and 10 mg/ml) to assess inflammation. Gene expression levels of inflammatory markers IL-β1, IL-6, and TNFα were measured by RT-PCR and their protein production was assessed by ELISA. The scratch wound healing assay was used to investigate the effects of different concentrations of GTE on cell migration. We also explored the effect of GTE on the induction of the Nrf2/HO-1 pathway in the cells with or without LPS.
Results
GTE at concentrations of 2.5 mg/ml, 5 mg/ml, and 10 mg/ml significantly enhanced cell viability (p < 0.05). And IL-β1, IL-6, and TNFα gene expression presented up to 10-fold decrease compared with LPS-treated cells, which was also similarly found on the protein levels. At the same concentrations, cell migration increased.
Conclusions
The mechanism results showed that GTE produced the anti-inflammatory response by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and increasing the level of anti-oxidant protein heme oxygenase-1 (HO-1).
Clinical relevance
GTE may be potentially used as oral rinse anti-inflammatory drug for treatment and prevention of oral inflammatory diseases, which is shown here by the ability to reduce the inflammation and increase in cell migration in a dose-dependent manner.
Collapse
|
49
|
Mendoza-Wilson AM, Balandrán-Quintana RR. Computational and Experimental Progress on the Structure and Chemical Reactivity of Procyanidins: Their Potential as Metalloproteinases Inhibitors. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180828114021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are enzymes involved in various physiological
processes essential for living beings, but the loss of the regulatory control by endogenous
inhibitors of MMPs, leads to the development of serious diseases such as cardiovascular
system affections, cancer, and metastasis. For these reasons, exogenous inhibitors
are required for these enzymes, which are able to control the proteolytic activity
and are selective towards the different MMPs, besides properties which, from the
pharmacological point of view, are necessary to be effective under physiological
conditions. Based on these expectations, some bioactive compounds that are abundant in
the human diet, like procyanidins (PCs) have emerged as potential exogenous inhibitors
of MMPs. This review presents the advances of experimental and computational investigations
carried out to date on the structure and chemical reactivity of PCs, to support the basis of their potential
use as MMP inhibitors. For such purpose, specific sites among MMPs identified for a selective inhibition, the
role of PCs in the regulation of MMPs by posttranscriptional mechanisms at the level of microRNAs, modulation
of reactive oxygen species (ROS), effects on tissue inhibitors of MMPs (TIMPs), the crosslinking of PCs
with the extracellular matrix proteins, as well as direct interaction between PCs and MMPs, are discussed.
Methods for isolation and synthesis of PCs, as well as hydrophilicity properties, bioavailability, and susceptibility
to be metabolized in oral intake, are also addressed. The information gathered in this review could additionally
help to visualize future research related to this topic.
Collapse
Affiliation(s)
- Ana María Mendoza-Wilson
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| | - René Renato Balandrán-Quintana
- Centro de Investigacion en Alimentacion y Desarrollo, A.C., Coordinacion de Tecnologia de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, 83304, Hermosillo, Son, Mexico
| |
Collapse
|
50
|
The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|