1
|
Parker MT, Kunjapur AM. Deployment of Engineered Microbes: Contributions to the Bioeconomy and Considerations for Biosecurity. Health Secur 2021; 18:278-296. [PMID: 32816583 DOI: 10.1089/hs.2020.0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Engineering at microscopic scales has an immense effect on the modern bioeconomy. Microbes contribute to such disparate markets as chemical manufacturing, fuel production, crop optimization, and pharmaceutical synthesis, to name a few. Due to new and emerging synthetic biology technologies, and the sophistication and control afforded by them, we are on the brink of deploying engineered microbes to not only enhance traditional applications but also to introduce these microbes to sectors, contexts, and formats not previously attempted. In microbially managed medicine, microbial engineering holds promise for increasing efficacy, improving tissue penetration, and sustaining treatment. In the environment, the most effective areas for deployment are in the management of crops and protection of ecosystems. However, caution is warranted before introducing engineered organisms to new environments where they may proliferate without control and could cause unforeseen effects. We summarize ideas and data that can inform identification and assessment of the risks that these tools present to ensure that realistic hazards are described and unrealistic ones do not hinder advancement. Further, because modes of containment are crucial complements to deployment, we describe the state of the art in microbial biocontainment strategies, current gaps, and how these gaps might be addressed through technological advances in synthetic engineering. Collectively, this work highlights engineered microbes as a foundational and expanding facet of the bioeconomy, projects their utility in upcoming deployments outside the laboratory, and identifies knowns and unknowns that will be necessary considerations and points of focus in this endeavor.
Collapse
Affiliation(s)
- Michael T Parker
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Aditya M Kunjapur
- Michael T. Parker, PhD, is an Assistant Dean, Office of the Dean, Georgetown University, Washington, DC. Aditya M. Kunjapur, PhD, is an Assistant Professor, Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
2
|
Mojgani N, Shahali Y, Dadar M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef Microbes 2020; 11:213-226. [PMID: 32216470 DOI: 10.3920/bm2019.0121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination is one of the most important prevention tools providing protection against infectious diseases especially in children below the age of five. According to estimates, more than 5 million lives are saved annually by the implementation of six standard vaccines, including diphtheria, hepatitis B, Haemophilus influenza type b, polio, tetanus and yellow fever. Despite these efforts, we are faced with challenges in developing countries where increasing population and increasing disease burden and difficulties in vaccine coverage and delivery cause significant morbidity and mortality. Additionally, the high cost of these vaccines is also one of the causes for inappropriate and inadequate vaccinations in these regions. Thus, developing cost-effective vaccine strategies that could provide a stronger immune response with reduced vaccination schedules and maximum coverage is of critical importance. In last decade, different approaches have been investigated; among which live bacterial vaccines have been the focus of attention. In this regard, probiotic lactic acid bacteria have been extensively studied as safe and effective vaccine candidates. These microorganisms represent the largest group of probiotic bacteria in the intestine and are generally recognised as safe (GRAS) bacteria. They have also attracted attention due to their immunomodulatory actions and their effective role as novel vaccine adjuvants. A significant property of these bacteria is their ability to mimic natural infections, while intrinsically possessing mucosal adjuvant properties. Additionally, as live bacterial vaccines are administered orally or nasally, they have higher acceptance and better safety, but also avoid the risk of contamination due to needles and syringes. In this review, we emphasise the role of probiotic Lactobacillus strains as putative oral vaccine carriers and novel vaccine adjuvants.
Collapse
Affiliation(s)
- N Mojgani
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - Y Shahali
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| | - M Dadar
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148, Karaj, Iran
| |
Collapse
|
3
|
Sun X, Zhang H, Xu S, Shi L, Dong J, Gao D, Chen Y, Feng H. Membrane-anchored CCL20 augments HIV Env-specific mucosal immune responses. Virol J 2017; 14:163. [PMID: 28830557 PMCID: PMC5568278 DOI: 10.1186/s12985-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022] Open
Abstract
Background Induction of broad immune responses at mucosal site remains a primary goal for most vaccines against mucosal pathogens. Abundance of evidence indicates that the co-delivery of mucosal adjuvants, including cytokines, is necessary to induce effective mucosal immunity. In the present study, we set out to evaluate the role of a chemokine, CCL20, as an effective mucosal adjuvant for HIV vaccine. Methods To evaluate the role of CCL20 as a potent adjuvant for HIV vaccine, we examined its effects on antigen-specific antibody responses, level of antibody-secreting cells, cytokine production and intestinal homing of plasma cells in vaccine immunized mice. Results CCL20-incorporated VLP administered by mucosal route (intranasal (n = 10, p = 0.0085) or intravaginal (n = 10, p = 0.0091)) showed much higher potency in inducing Env-specific IgA antibody response than those administered by intramuscular route (n = 10). For intranasal administration, the HIV Env-specific IFN-γ(751 pg/ml), IL-4 (566 pg/ml), IL-5 (811 pg/ml) production and IgA-secreting plasma cells (62 IgA-secreting plasma cells/106 cells) in mucosal lamina propria were significantly augmented in CCL20-incorporated VLP immunized mice as compared to those immunized with Env only VLPs (p = 0.0332, 0.0398, 0.033, 0.0302 for IFN-γ, IL-4, IL-5, and IgA-secreting plasma cells, respectively). Further, anti-CCL20 mAb partially suppressed homing of Env-specific IgA ASCs into small intestine in mice immunized with CCL20-incorporated VLP by intranasal (62 decreased to 16 IgA- secreting plasma cells/106 cells, p = 0.0341) or intravaginal (52 decreased to 13 IgA- secreting plasma cells/106 cells, p = 0.0332) routes. Conclusion Our data indicated that the VLP-incorporated CCL20 can enhance HIV Env-specific immune responses in mice, especially those occurring in the mucosal sites. We also found that i.m. prime followed by mucosal boost is critical and required for CCL20 to exert its full function as an effective mucosal adjuvant. Therefore, co-incorporation of CCL20 into Env VLPs when combined with mucosal administration could represent a novel and promising HIV vaccine candidate.
Collapse
Affiliation(s)
- Xianliang Sun
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuiling Xu
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Lili Shi
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Jingjian Dong
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Dandan Gao
- Jiaxing Maternity and Child Health Care Hospital, Jiaxing, Zhejiang, 314000, China
| | - Yan Chen
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China
| | - Hao Feng
- Medical school of Jiaxing University, Jiahang road 118#, Nanhu District, Jiaxing City, Zhejiang Province, 314000, China.
| |
Collapse
|
4
|
Sustained delivery of commensal bacteria from pod-intravaginal rings. Antimicrob Agents Chemother 2014; 58:2262-7. [PMID: 24492360 DOI: 10.1128/aac.02542-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Topical administration of live commensal bacteria to the vaginal tract holds significant potential as a cost-effective strategy for the treatment of sexually transmitted infections and the delivery of mucosal vaccines. Probiotic-releasing intravaginal rings (IVRs) embody significant theoretical advantages over traditional daily-dosage forms, such as sustained and controlled delivery leading to improved adherence to therapy compared to that of frequent dosing. The conventional IVR designs, however, are not amenable to the delivery of live bacteria. We have developed a novel pod-IVR technology where polymer-coated tablets ("pods") of Lactobacillus gasseri strain ATCC 33323, a commensal microorganism of human origin, are embedded in silicone IVRs. The release rate of bacterial cells is controlled by the diameter of a delivery channel that exposes a portion of the pod to external fluids. In vitro studies demonstrated that the prototype devices released between 1.1×10(7) and 14×10(7) cells per day for up to 21 days in a controlled sustained fashion with stable burst-free release kinetics. The daily release rates were correlated with the cross-sectional area of the delivery channel. Bacteria in the IVR pods remained viable throughout the in vitro studies and formed biofilms on the surfaces of the devices. This proof-of-principle study represents the first demonstration of a prolonged, sustained release of bacteria from an intravaginal device and warrants further investigation of this device as a nonchemotherapeutic agent for the restoration and maintenance of normal urogenital flora.
Collapse
|
5
|
Abstract
Human papillomavirus (HPV) infection is a major cause of cervical cancer, the second most common cancer in women worldwide. Currently, a HPV L1-based virus-like particle has been approved as a prophylactic vaccine against HPV infection, which will probably lead to a reduction in cervical cancer incidence within a few decades. Therapeutic vaccines, however, are expected to have an impact on cervical cancer or its precursor lesions, by taking advantage of the fact that the regulatory proteins (E6 and E7) of HPV are expressed constantly in HPV-associated cervical cancer cells. Vaccine types targeting these regulatory proteins include the recombinant protein and DNA vaccines, peptide vaccines, dendritic-cell vaccines, and viral and bacterial vector deliveries of vaccines, and these may provide an opportunity to control cervical cancer. Further approaches incorporating these vaccine types with either conventional therapy modalities or the modulation of CD4(+) regulatory T cells appear to be more promising in achieving increased therapeutic efficacy. In this review, we summarize current and future therapeutic vaccine strategies against HPV-associated malignancies at the animal and clinical levels.
Collapse
Affiliation(s)
- Jeong-Im Sin
- Catholic University of Daegu, Department of Microbiology, School of Medicine, 3056-6, Daemyung-4-Dong, Namgu, Daegu, 705-718, Korea.
| |
Collapse
|
6
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
7
|
Lycke N. Recent progress in mucosal vaccine development: potential and limitations. Nat Rev Immunol 2012; 12:592-605. [DOI: 10.1038/nri3251] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
González OA, Ebersole JL, Huang CB. The oral commensal, Streptococcus gordonii, synergizes with Tat protein to induce HIV-1 promoter activation in monocytes/macrophages. Cell Immunol 2011; 269:38-45. [PMID: 21459369 DOI: 10.1016/j.cellimm.2011.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/24/2011] [Accepted: 03/09/2011] [Indexed: 01/02/2023]
Abstract
Trans-activator of transcription (Tat) is an HIV-1 protein essential for viral replication. Oral periodontopathogens (e.g. Fusobacterium nucleatum) enhance HIV-1LTR promoter activation in monocytes/macrophages in absence of Tat; however, some oral commensals fail to trigger this response. We sought to determine the effect of Tat on HIV-1LTR promoter activation induced by the representative oral commensal Streptococcus gordonii in monocytes/macrophages. S. gordonii enhanced HIV-1LTR reactivation in THP89GFP (Tat(+)), but not in BF24 (Tat(-)) cells. Interestingly, S. gordonii, but not Streptococcus sanguinis enhanced HIV-1LTR activation in the presence of recombinant Tat in BF24 cells. This response correlated with IL-8 but not TNFα or IL-6 production, and was abrogated by the NFκB inhibitor BAY 11-7082. Kinetics of NFκB-RelA activation did not explain the S. gordonii-induced HIV-1LTR activation in presence of Tat. These results suggest that S. gordonii-induced HIV-1 reactivation in monocytes/macrophages is Tat-dependent and appears to involve NFκB activation.
Collapse
Affiliation(s)
- Octavio A González
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.
| | | | | |
Collapse
|
9
|
Yu M, Vajdy M. Mucosal HIV transmission and vaccination strategies through oral compared with vaginal and rectal routes. Expert Opin Biol Ther 2010; 10:1181-95. [PMID: 20624114 DOI: 10.1517/14712598.2010.496776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD There are currently over thirty million people infected with HIV and there are no vaccines available to prevent HIV infections or disease. The genitourinary, rectal and oral mucosa are the mucosal HIV transmission routes. An effective vaccine that can induce both systemic and local mucosal immunity is generally accepted as a major means of protection against mucosal HIV transmission and AIDS. WHAT THE READER WILL GAIN Structure and cells that comprise the oral, vaginal and rectal mucosa pertaining to HIV transmission and vaccination strategies through each mucosal route to prevent mucosal and systemic infection will be discussed. AREAS COVERED IN THIS REVIEW Covering publications from 1980s through 2010, mucosal transmission of HIV and current and previous approaches to vaccinations are discussed. TAKE HOME MESSAGE Although oral transmission of HIV is far less common than vaginal and rectal transmissions, infections through this route do occur through oral sex as well as vertically from mother to child. Mucosal vaccination strategies against oral and other mucosal HIV transmissions are under intensive research but the lack of consensus on immune correlates of protection and lack of safe and effective mucosal adjuvants and delivery systems hamper progress towards a licensed vaccine.
Collapse
Affiliation(s)
- Mingke Yu
- EpitoGenesis, Inc., Walnut Creek, CA 94598, USA
| | | |
Collapse
|
10
|
Primary activation of antigen-specific naive CD4+ and CD8+ T cells following intranasal vaccination with recombinant bacteria. Infect Immun 2008; 76:5817-25. [PMID: 18838521 DOI: 10.1128/iai.00793-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The primary activation of T-helper and T-cytotoxic cells following mucosal immunization with recombinant Streptococcus gordonii was studied in vivo by adoptive transfer of ovalbumin (OVA)-specific transgenic CD8(+) (OT-I) and CD4(+) (OT-II) T cells. A recombinant strain, expressing on the surface the vaccine antigen Ag85B-ESAT-6 from Mycobacterium tuberculosis fused to OVA T-helper and T-cytotoxic epitopes (peptides 323 to 339 and 257 to 264), was constructed and used to immunize C57BL/6 mice by the intranasal route. Recombinant, but not wild-type, bacteria induced OVA-specific CD4(+) and CD8(+) T-cell clonal expansion in cervical lymph nodes, lung, and spleen. OVA-specific CD4(+) and CD8(+) T-cell proliferation appeared first in cervical lymph nodes and later in the spleen, suggesting a possible migration of activated cells from the inductive site to the systemic district. A significant correlation between the percentages of CD4(+) and CD8(+) proliferating T cells was observed for each animal. The expression of CD69, CD44, and CD45RB on proliferating T lymphocytes changed as a function of the cell division number, confirming T-cell activation following the antigen encounter. These data indicate that intranasal immunization with recombinant S. gordonii is capable of inducing primary activation of naive antigen-specific CD4(+) and CD8(+) T cells, both locally and systemically.
Collapse
|
11
|
Intranasal immunization of mice with recombinant Streptococcus gordonii expressing NadA of Neisseria meningitidis induces systemic bactericidal antibodies and local IgA. Vaccine 2008; 26:4244-50. [PMID: 18582996 DOI: 10.1016/j.vaccine.2008.05.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 11/20/2022]
Abstract
NadA and NhhA, two surface proteins of serogroup B Neisseria meningitidis identified as candidate vaccine antigens, were expressed on the surface of the human oral commensal bacterium Streptococcus gordonii. Recombinant strains were used to immunize BALB/c mice by the intranasal route and the local and systemic immune response was assessed. Mice were inoculated with recombinant bacteria administered alone or with LTR72, a partially inactivated mutant of Escherichia coli heat-labile enterotoxin, as a mucosal adjuvant. Intranasal immunization with live bacteria expressing NadA induced a significant serum antibody response, with a prevalence of the IgG2a subclass, bactericidal activity in the sera of 71% of animals, and a NadA-specific IgA response in nasal and bronchoalveolar lavages. A formalin-inactivated recombinant strain of S. gordonii expressing NadA was also administered intranasally, inducing a systemic and mucosal humoral response comparable to that of live bacteria. The administration of recombinant bacteria with the mucosal adjuvant LTR72 stimulated a stronger systemic antibody response, protective in 85% of sera, while did not increase the local IgA response. Recombinant S. gordonii expressing NhhA induced a systemic but not mucosal antibody response. These data support the role of NadA as vaccine candidate against serogroup B meningococci, and the use of S. gordonii as vector for intranasal vaccination.
Collapse
|
12
|
Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci 2006; 1072:176-86. [PMID: 17057198 DOI: 10.1196/annals.1326.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Food-grade bacteria have been consumed throughout history without associated pathologies and are, therefore, absolutely safe to ingest. Unexpectedly, Lactococcus lactis (L. lactis), known from cheese production, can be genetically engineered to constantly secrete satisfactory amounts of bioactive cytokines. Both of these features enabled the development of a new kind of topical delivery system: topical and active delivery of therapeutic proteins by genetically modified micro-organisms. The host organism's record inspired the development of applications that target intestinal diseases. In a variety of mouse models, chronic colon inflammation can be successfully treated with (interleukin) IL-10-secreting L. lactis. Trefoil factor (TFF) producer strains have also been shown to be very effective in the treatment of acute colitis. Such novel therapeutic strains are textbook examples of genetically modified (GM) organisms. There are legitimate concerns with regard to the deliberate release of GM micro-organisms. On development of these applications, therefore, we have engineered these bacteria in such a way that biological containment is guaranteed. The essential gene thyA, encoding thymidylate synthase, has been exchanged for IL-10. This makes the GM strain critically dependent on thymidine. Lack of thymidine, for example, resulting from thymidine consumption by thyA-deficient strains-will irreversibly lead to induced "thymidine-less death." This accomplishment has created the possibility of using this strategy for application in human medicine.
Collapse
Affiliation(s)
- Lothar Steidler
- Alimentary Pharmabiotic Centre, Transgenic Bacteriology, University College Cork, Western Road, Cork, Ireland.
| | | |
Collapse
|
13
|
Ciabattini A, Cuppone AM, Pulimeno R, Iannelli F, Pozzi G, Medaglini D. Stimulation of human monocytes with the gram-positive vaccine vector Streptococcus gordonii. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1037-43. [PMID: 16960116 PMCID: PMC1563572 DOI: 10.1128/cvi.00110-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus gordonii is a bacterial vaccine vector which has previously been shown to activate dendritic cells in vitro and to induce local and systemic immune responses in vivo. In the present study, human monocytes (THP-1 cell line and peripheral blood monocytes) were characterized following interaction with S. gordonii. Treatment of human monocytes with S. gordonii but not latex beads induced a clear up-regulation of CD83, CD40, CD80, and CD54 and the down-regulation of CD14. Furthermore, bacterial treatment stimulated an increased expression of Toll-like receptor 5 (TLR5), TLR6, and TLR7, production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta, and reduction of the phagocytic activity. This work shows that the immunostimulatory activity of S. gordonii is not restricted to induction of dendritic-cell maturation but also affects the differentiation process of human monocytes.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | - Anna Maria Cuppone
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | - Rita Pulimeno
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | - Francesco Iannelli
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, 53100 Siena, Italy
- Corresponding author. Mailing address: Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biologia Molecolare, Università di Siena, Policlinico Le Scotte, Viale Bracci, 53100 Siena, Italy. Phone: 39 0577 233307. Fax: 39 0577 233334. E-mail:
| |
Collapse
|
14
|
Preclinical primate studies of HIV-1-envelope-based vaccines: towards human clinical trials. Curr Opin HIV AIDS 2006; 1:336-43. [DOI: 10.1097/01.coh.0000232350.61650.f0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Medaglini D, Ciabattini A, Cuppone AM, Costa C, Ricci S, Costalonga M, Pozzi G. In vivo activation of naive CD4+ T cells in nasal mucosa-associated lymphoid tissue following intranasal immunization with recombinant Streptococcus gordonii. Infect Immun 2006; 74:2760-6. [PMID: 16622213 PMCID: PMC1459748 DOI: 10.1128/iai.74.5.2760-2766.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antigen-specific primary activation of CD4+ T cells was studied in vivo by adoptive transfer of ovalbumin-specific transgenic T cells (KJ1-26+ CD4+) following intranasal immunization with recombinant Streptococcus gordonii. A strain of S. gordonii expressing on its surface a model vaccine antigen fused to the ovalbumin (OVA) peptide from position 323 to 339 was constructed and used to study the OVA-specific T-cell activation in nasal mucosa-associated lymphoid tissue (NALT), lymph nodes, and spleens of mice immunized by the intranasal route. The recombinant strain, but not the wild type, activated the OVA-specific CD4+ T-cell population in the NALT (89% of KJ1-26+ CD4+ T cells) just 3 days following immunization. In the cervical lymph nodes and in the spleen, the percentage of proliferating cells was initially low, but it reached the peak of activation at day 5 (90%). This antigen-specific clonal expansion of KJ1-26+ CD4+ T cells after intranasal immunization was obtained with live and inactivated recombinant bacteria, and it indicates that the NALT is the site of antigen-specific T-cell priming.
Collapse
Affiliation(s)
- Donata Medaglini
- LAMMB, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
STEIDLER LOTHAR, VANDENBROUCKE KLAAS. Genetically modified Lactococcus lactis: novel tools for drug delivery. INT J DAIRY TECHNOL 2006. [DOI: 10.1111/j.1471-0307.2006.00255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Steidler L. Delivery of therapeutic proteins to the mucosa using genetically modified microflora. Expert Opin Drug Deliv 2005; 2:737-46. [PMID: 16296798 DOI: 10.1517/17425247.2.4.737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drug delivery through mucosal surfaces offers a panorama of opportunities. The advantages are clear and include safety, ease of administration and higher social acceptance, although the major disadvantages are drug availability and appropriate drug targeting. Most mucosa are well equipped to manage the presence of bacteria and many are actually permanently colonised with a specific microflora. Such microbiota may become attractive tools for the delivery of a specific niche of protein therapeutics. These proteins can be produced from genetically modified microbes that are common to the mucosa, and their delivery to the host tissues has been demonstrated. This concept is being developed for the delivery of proteins to the intestine, but has also been applied in delivery to the vagina, nose and mouth.
Collapse
Affiliation(s)
- Lothar Steidler
- University College Cork, Alimentary Pharmabiotic Centre, Transgenic Bacteriology, Cork, Ireland.
| |
Collapse
|
18
|
Wilson RL, Hruby DE. Commensal bacteria as a novel delivery system for subunit vaccines directed against agents of bioterrorism. Adv Drug Deliv Rev 2005; 57:1392-402. [PMID: 15935879 PMCID: PMC7125890 DOI: 10.1016/j.addr.2005.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/25/2005] [Indexed: 11/23/2022]
Abstract
Following the anthrax attacks of 2001 and the recent SARS outbreak, concerns about emerging and re-emerging infectious diseases have catalyzed a renewed interest in developing new vaccination strategies that provide rapid and flexible response options to future threats. Because the probability of encountering one of these exotic agents is unknown, it is essential that new vaccine formulations employ methods that provide effective protection and extremely good safety profiles if they are to be used by either military or civilian populations. One approach, which potentially satisfies these criteria, is the use of live recombinant Gram-positive commensal bacteria as expression vectors. This review provides an overview of the system, its advantages and limitations, and details an example of how Gram-positive commensal bacteria are being developed as a fifth generation vaccine against a Class A biowarfare pathogen, namely smallpox.
Collapse
Affiliation(s)
| | - Dennis E. Hruby
- Corresponding author. Tel.: +1 541 753 2000; fax: +1 541 753 9999.
| |
Collapse
|
19
|
|
20
|
Hanniffy S, Wiedermann U, Repa A, Mercenier A, Daniel C, Fioramonti J, Tlaskolova H, Kozakova H, Israelsen H, Madsen S, Vrang A, Hols P, Delcour J, Bron P, Kleerebezem M, Wells J. Potential and opportunities for use of recombinant lactic acid bacteria in human health. ADVANCES IN APPLIED MICROBIOLOGY 2005; 56:1-64. [PMID: 15566975 DOI: 10.1016/s0065-2164(04)56001-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sean Hanniffy
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Di Fabio S, Corrias F, Monardo F, Titti F. Flow cytometry analysis of immune cell populations isolated from cervicovaginal secretions of cynomolgus monkeys. J Immunol Methods 2004; 284:7-14. [PMID: 14736412 DOI: 10.1016/j.jim.2003.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flow cytometric analysis was used in this study to characterize the lymphocyte population present in the vaginal mucosa of the cynomolgus monkey. Vaginal immune cells were obtained, using absorbent wicks, from 11 normal cycling female monkeys at different stages of the menstrual cycle and from three nursing monkeys (not cycling). Leucocytes, including lymphocytes and monocyte-macrophage cells, were present in the cervicovaginal secretions of healthy cynomolgous primates throughout the three phases of the menstrual cycle. We also found that even if immune cells were constant throughout the menstrual cycle, among the T cell subsets there were differences. CD8+ cells [14.5+/-9% (mean+/-S.D.); range 3-30%] were more numerous compared to the mean number of CD4+ cells [7.3+/-5% (mean+/-S.D.); range 2-15%]. Characterization of the vaginal cells during the nursing period showed that the monocyte-macrophage (CD14+, CD11c+) cells were abundant compared with the low number of both B (CD20+) and T cells (CD2+). Our results show that cytometric analysis by FACS can be used to identify the immune cell populations present at the local level. This technique may provide a useful tool by which the vaginal environment can be studied in order to correlate cell phenotype with immune function.
Collapse
Affiliation(s)
- Simonetta Di Fabio
- Laboratory of Virology, Istituto Superiore di Sanitá, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
22
|
Abstract
Probiotic micro-organisms have been used for many years. Originating as food supplements, they are now most often administered orally and offer an attractive alternative for treating of intestinal disorders. A better understanding of the mechanisms by which these micro-organisms act has now opened up possibilities for designing new probiotic strains. Through genetic engineering, it is possible not only to strengthen the effects of existing strains, but also to create completely new probiotics. These need not necessarily be composed only of bacterial products but can also include elements of regulatory systems or enzymes derived from a foreign-human-source. If designed carefully and with absolute attention to biological safety in its broadest sense, the development of genetically modified probiotics has the potential to revolutionize alimentary health.
Collapse
Affiliation(s)
- Lothar Steidler
- Department of Medicine, Alimentary Pharmabiotic Center, University College Cork, Western Road, Cork, Ireland.
| |
Collapse
|
23
|
Park JS, Oh YK, Kang MJ, Kim CK. Enhanced mucosal and systemic immune responses following intravaginal immunization with human papillomavirus 16 L1 virus-like particle vaccine in thermosensitive mucoadhesive delivery systems. J Med Virol 2003; 70:633-41. [PMID: 12794729 DOI: 10.1002/jmv.10442] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To develop more potent and convenient mucosal human papillomavirus (HPV) vaccines, we tested the effect of thermosensitive mucoadhesive vaginal vaccine delivery systems on the local and systemic antibody responses to HPV 16 L1 virus-like particles (VLP). HPV 16 L1 VLP expressed from recombinant baculovirus-infected Sf21 insect cells were delivered in phosphate-buffered saline (PBS) or thermosensitive mucoadhesive delivery systems, composed of poloxamers (Pol) and varying amounts of polyethylene oxide (PEO). Pol/PEO-based vaginal vaccine delivery systems existed in liquid form at room temperature, but gelled at 37 degrees C. The mucoadhesiveness of Pol/PEO-based delivery systems increased with PEO, but the formulations with PEO higher than 1.0% were too viscous to be administered into the vagina. Vaccine vehicles affected the vaginal and salivary immune responses to HPV 16 L1 VLP intravaginally administered into mice. At 42 days after the first intravaginal immunization of HPV 16 L1 VLP with cholera toxin, vaginal and salivary IgA titers were the highest in the group given in Pol/PEO 1.0% vehicle followed by Pol/PEO 0.4% and PBS vehicles. Intravaginal coadministration of HPV 16 L1 VLP and cholera toxin in Pol/PEO 1.0% showed 31- and 39-fold higher titers compared to the PBS-based HPV 16 L1 VLP groups administered by intravaginal and intramuscular routes, respectively. Following intravaginal administration, Pol/PEO 1.0%, but not Pol/PEO 0.4%, showed significantly higher HPV 16 L1 VLP-specific serum IgG titers as compared to the PBS vehicle. Our results indicate that the use of in situ-gelling vaginal vaccine delivery systems with increased mucoadhesiveness would be beneficial for more effective induction of mucosal and systemic immune responses to intravaginally administered HPV 16 L1 VLP vaccines.
Collapse
Affiliation(s)
- Jeong-Sook Park
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
24
|
Magliani W, Conti S, Frazzi R, Pozzi G, Oggioni M, Polonelli L. Engineered commensal bacteria as delivery systems of anti-infective mucosal protectants. Biotechnol Genet Eng Rev 2003; 19:139-56. [PMID: 12520876 DOI: 10.1080/02648725.2002.10648027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Walter Magliani
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Viale Gramsci 14, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
HIV/AIDS has become the most devastating pandemic in recorded history. It has killed 40 million people in the last 20 years and the World Health Organisation estimated that at least 14,000 new infections occurred daily in 2001. There will be up to 100 million new infections in the next 10 years (for current updates, visit http://www.unaids.org/epidemic_update/). Most HIV infections occur in the developing world, and the adverse social and economic impact of the HIV/AIDS pandemic, particularly in the developing world, is unprecedented. Highly active antiretroviral therapy (HAART) has had significant effects on HIV/AIDS in the developed world. The drugs have acted to prolong survival, reduce the viral load, and to alleviate suffering. However, the incidence of side effects and resistance is high and the drugs are unaffordable and unavailable in the developing world. HAART regimens are difficult to comply with. Public health efforts to modify the behaviour, attitude and culture that accelerate the spread of HIV/AIDS have had only modest success. There is urgent need for a prophylactic and/or therapeutic HIV vaccine. This is a review of the obstacles and current trends in HIV vaccine development.
Collapse
Affiliation(s)
- Matilu Mwau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
26
|
Renault P. Genetically modified lactic acid bacteria: applications to food or health and risk assessment. Biochimie 2002; 84:1073-87. [PMID: 12595135 DOI: 10.1016/s0300-9084(02)00029-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lactic acid bacteria have a long history of use in fermented food products. Progress in gene technology allows their modification by introducing new genes or by modifying their metabolic functions. These modifications may lead to improvements in food technology (bacteria better fitted to technological processes, leading to improved organoleptic properties em leader ), or to new applications including bacteria producing therapeutic molecules that could be delivered by mouth. Examples in these two fields will be discussed, at the same time evaluating their potential benefit to society and the possible risks associated with their use. Risk assessment and expected benefits will determine the future use of modified bacteria in the domains of food technology and health.
Collapse
Affiliation(s)
- Pierre Renault
- Génétique microbienne, Inra, domaine de Vilvert, 78352 Jouy-en-Josas, France.
| |
Collapse
|
27
|
Novitsky V, Cao H, Rybak N, Gilbert P, McLane MF, Gaolekwe S, Peter T, Thior I, Ndung'u T, Marlink R, Lee TH, Essex M. Magnitude and frequency of cytotoxic T-lymphocyte responses: identification of immunodominant regions of human immunodeficiency virus type 1 subtype C. J Virol 2002; 76:10155-68. [PMID: 12239290 PMCID: PMC136554 DOI: 10.1128/jvi.76.20.10155-10168.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2002] [Accepted: 06/27/2002] [Indexed: 11/20/2022] Open
Abstract
A systematic analysis of immune responses on a population level is critical for a human immunodeficiency virus type 1 (HIV-1) vaccine design. Our studies in Botswana on (i) molecular analysis of the HIV-1 subtype C (HIV-1C) epidemic, (ii) frequencies of major histocompatibility complex class I HLA types, and (iii) cytotoxic T-lymphocyte (CTL) responses in the course of natural infection allowed us to address HIV-1C-specific immune responses on a population level. We analyzed the magnitude and frequency of the gamma interferon ELISPOT-based CTL responses and translated them into normalized cumulative CTL responses. The introduction of population-based cumulative CTL responses reflected both (i) essentials of the predominant virus circulating locally in Botswana and (ii) specificities of the genetic background of the Botswana population, and it allowed the identification of immunodominant regions across the entire HIV-1C. The most robust and vigorous immune responses were found within the HIV-1C proteins Gag p24, Vpr, Tat, and Nef. In addition, moderately strong responses were scattered across Gag p24, Pol reverse transcriptase and integrase, Vif, Tat, Env gp120 and gp41, and Nef. Assuming that at least some of the immune responses are protective, these identified immunodominant regions could be utilized in designing an HIV vaccine candidate for the population of southern Africa. Targeting multiple immunodominant regions should improve the overall vaccine immunogenicity in the local population and minimize viral escape from immune recognition. Furthermore, the analysis of HIV-1C-specific immune responses on a population level represents a comprehensive systematic approach in HIV vaccine design and should be considered for other HIV-1 subtypes and/or different geographic areas.
Collapse
Affiliation(s)
- V Novitsky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, FXB-402, 651 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Giomarelli B, Provvedi R, Meacci F, Maggi T, Medaglini D, Pozzi G, Mori T, McMahon JB, Gardella R, Boyd MR. The microbicide cyanovirin-N expressed on the surface of commensal bacterium Streptococcus gordonii captures HIV-1. AIDS 2002; 16:1351-6. [PMID: 12131211 DOI: 10.1097/00002030-200207050-00006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To explore the feasibility of expressing the potent HIV-inactivating protein, cyanovirin-N (CV-N), in the human commensal bacterium Streptococcus gordonii, as a possible approach for local delivery of CV-N to prevent sexual transmission of HIV-1. DESIGN AND METHODS To express CV-N in S. gordonii, we used the host-vector system we had previously developed. CV-N was expressed as a fusion protein both attached to the bacterial surface and secreted in soluble form in the supernatant of liquid cultures. The soluble form of recombinant CV-N was tested for gp120-binding activity in an enzyme-linked immunosorbent assay, whereas S. gordonii strain expressing CV-N on the surface was analyzed in an in vitro HIV capturing assay. RESULTS Two recombinant S. gordonii strains secreting or displaying CV-N on the bacterial surface were constructed and the expression of CV-N was confirmed by immunoblot and flow-cytometric analysis. The secreted form of recombinant CV-N exhibited a concentration-dependent binding to the envelope glycoprotein gp120 of HIV-1, whereas CV-N displayed on the bacterial surface was able to capture HIV virions efficiently. CONCLUSION The anti-HIV protein CV-N in S. gordonii was expressed in a biologically active form. This represents a first step in the development of a system to deliver and maintain an effective concentration of a microbicide in the vaginal mucosa.
Collapse
Affiliation(s)
- Barbara Giomarelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Molecular Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Display of heterologous proteins on the surface of microorganisms, enabled by means of recombinant DNA technology, has become an increasingly used strategy in various applications in microbiology, biotechnology and vaccinology. Gram-negative, Gram-positive bacteria, viruses and phages are all being investigated in such applications. This review will focus on the bacterial display systems and applications. Live bacterial vaccine delivery vehicles are being developed through the surface display of foreign antigens on the bacterial surfaces. In this field, 'second generation' vaccine delivery vehicles are at present being generated by the addition of mucosal targeting signals, through co-display of adhesins, in order to achieve targeting of the live bacteria to immunoreactive sites to thereby increase immune responses. Engineered bacteria are further being evaluated as novel microbial biocatalysts with heterologous enzymes immobilized as surface exposed on the bacterial cell surface. A discussion has started whether bacteria can find use as new types of whole-cell diagnostic devices since single-chain antibodies and other type of tailor-made binding proteins can be displayed on bacteria. Bacteria with increased binding capacity for certain metal ions can be created and potential environmental or biosensor applications for such recombinant bacteria as biosorbents are being discussed. Certain bacteria have also been employed for display of various poly-peptide libraries for use as devices in in vitro selection applications. Through various selection principles, individual clones with desired properties can be selected from such libraries. This article explains the basic principles of the different bacterial display systems, and discusses current uses and possible future trends of these emerging technologies.
Collapse
Affiliation(s)
- Patrik Samuelson
- Division of Molecular Biotechnology, Department of Biotechnology, SCFAB, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Oggioni MR, Beninati C, Boccanera M, Medaglini D, Spinosa MR, Maggi T, Conti S, Magliani W, De Bernardis F, Teti G, Cassone A, Pozzi G, Polonelli L. Recombinant Streptococcus gordonii for mucosal delivery of a scFv microbicidal antibody. Int Rev Immunol 2002; 20:275-87. [PMID: 11878770 DOI: 10.3109/08830180109043039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The gram-positive bacterium Streptococcus gordonii was engineered to express the microbicidal molecule H6, which is an antiidiotypic single chain antibody mimicking a yeast killer toxin. S. gordonii is a human commensal which we developed as a model system for mucosal delivery of heterologous proteins. The in vivo candidacidal activity of both H6-secreting and H6-surface-displaying streptococcal strains were assayed in a well-established rat model of vaginal candidiasis. At day 21 full clearance of Candida albicans infection was observed in 75% of animals treated with the H6-secreting strain, and in 37.5% of animals treated with the strain expressing H6 on the surface, while all animals treated with the control strain were still infected. The observed candidacidal effect was comparable with that observed with the antimycotic drug fluconazole. These data confirm the potential of H6 as a candidacidal agent and show how promising is the approach of using recombinant bacteria for mucosal delivery of biologically active molecules.
Collapse
Affiliation(s)
- M R Oggioni
- Dipartimento di Biologia Molecolare/Microbiologia, Università degli Studi di Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kelly CG, Medaglini D, Younson JS, Pozzi G. Biotechnological approaches to fight pathogens at mucosal sites. Biotechnol Genet Eng Rev 2002; 18:329-47. [PMID: 11530695 DOI: 10.1080/02648725.2001.10648018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C G Kelly
- Department of Oral Medicine and Pathology, GKT Dental Institute, King's College London at Guy's Hospital, Floor 28 Guy's Tower, London SE1 9RT, UK.
| | | | | | | |
Collapse
|
32
|
Mooij P, Heeney JL. Rational development of prophylactic HIV vaccines based on structural and regulatory proteins. Vaccine 2001; 20:304-21. [PMID: 11672892 DOI: 10.1016/s0264-410x(01)00373-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The severity of the AIDS epidemic clearly emphasises the urgent need to expedite HIV vaccine candidates into clinical trials. Prophylactic HIV vaccine candidates have been evaluated in non-human primates. Based on specific proof of principle studies the first phase III clinical studies have recently begun in humans. However, a truly effective HIV vaccine is not yet at hand and many problems related to specific properties of the virus remain to be overcome. Previously proven empirical approaches have largely failed and now rational thinking based on an understanding of immunity to lentiviral infections is needed. This review addresses the scientific problems and complications facing the development of an HIV vaccine as well as the possible strategies currently available to overcome these problems. Recent attention has focussed on identifying the immune correlates and mechanisms of protection from either HIV infection or protection from disease progression. Based on these observations, the logic and rational behind the development of multiple component vaccine strategies are highlighted.
Collapse
Affiliation(s)
- P Mooij
- Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2288 Rijswijk, The Netherlands
| | | |
Collapse
|
33
|
Mercenier A, Wiedermann U, Breiteneder H. Edible genetically modified microorganisms and plants for improved health. Curr Opin Biotechnol 2001; 12:510-5. [PMID: 11604330 DOI: 10.1016/s0958-1669(00)00255-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of new strategies for the delivery of vaccine antigens or immune modulators to the mucosal tissue includes innovative approaches such as the use of genetically modified food microorganisms and plants. Even though the 'proof-of-concept' has recently been established for these two systems, key questions mainly related to efficacy and risk of breaking oral tolerance remain to be critically addressed in the immediate future.
Collapse
Affiliation(s)
- A Mercenier
- Laboratory of Bacteriology of Ecosystems, Institut Pasteur de Lille, 1 rue du Pr. Calmette, BP 245, F-59019 Cedex, Lille, France.
| | | | | |
Collapse
|
34
|
Sharma A, Honma K, Evans RT, Hruby DE, Genco RJ. Oral immunization with recombinant Streptococcus gordonii expressing porphyromonas gingivalis FimA domains. Infect Immun 2001; 69:2928-34. [PMID: 11292708 PMCID: PMC98244 DOI: 10.1128/iai.69.5.2928-2934.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is implicated in the etiology of adult periodontitis. P. gingivalis fimbriae are one of several critical surface virulence factors involved in both bacterial adherence and inflammation. P. gingivalis fimbrillin (FimA), the major subunit protein of fimbriae, is considered an important antigen for vaccine development against P. gingivalis-associated periodontitis. We have previously shown that biologically active domains of P. gingivalis fimbrillin can be expressed on the surface of the human commensal bacterium Streptococcus gordonii. In this study, we examined the effects of oral coimmunization of germfree rats with two S. gordonii recombinants expressing N (residues 55 to 145)- and C (residues 226 to 337)-terminal epitopes of P. gingivalis FimA to elicit FimA-specific immune responses. The effectiveness of immunization in protecting against alveolar bone loss following P. gingivalis infection was also evaluated. The results of this study show that the oral delivery of P. gingivalis FimA epitopes via S. gordonii vectors resulted in the induction of FimA-specific serum (immunoglobulin G [IgG] and IgA) and salivary (IgA) antibody responses and that the immune responses were protective against subsequent P. gingivalis-induced alveolar bone loss. These results support the potential usefulness of the S. gordonii vectors expressing P. gingivalis fimbrillin as a mucosal vaccine against adult periodontitis.
Collapse
Affiliation(s)
- A Sharma
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA.
| | | | | | | | | |
Collapse
|
35
|
Medaglini D, Ciabattini A, Spinosa MR, Maggi T, Marcotte H, Oggioni MR, Pozzi G. Immunization with recombinant Streptococcus gordonii expressing tetanus toxin fragment C confers protection from lethal challenge in mice. Vaccine 2001; 19:1931-9. [PMID: 11228363 DOI: 10.1016/s0264-410x(00)00434-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tetanus toxin fragment C (TTFC) was expressed on the surface of the vaccine vector Streptococcus gordonii, a Gram-positive commensal bacterium of the human oral cavity. The immunogenicity of recombinant S. gordonii expressing TTFC was assayed in mice immunized by the parenteral and mucosal routes. High serum TTFC-specific IgG responses were induced in both BALB/c and C57BL/6 mice immunized subcutaneously. A total of 82% of vaccinated BALB/c mice were protected from the lethal challenge with 50 LD(50) of tetanus toxin (TT) and a direct correlation between the serum TTFC-specific IgG concentration and survival time of unprotected animals was observed. Intranasal immunization of BALB/c mice was also effective in inducing TTFC-specific serum IgG and local IgA in lung washes. Furthermore, 38% of animals immunized intranasally were protected from the lethal challenge with 10 LD(50) of TT while all control animals died within 24 h. Analysis of the serum IgG subclasses showed that the IgG1 subclass was predominant after parenteral immunization in BALB/c mice (IgG1/IgG2a ratio congruent with6) while following mucosal immunization a mixed IgG1 and IgG2a pattern (IgG1/IgG2a ratio congruent with1) was observed. These data show that TTFC expressed on the surface of S. gordonii is immunogenic by the subcutaneous and mucosal routes and the immune response induced is capable of conferring protection from the lethal challenge with TT.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/biosynthesis
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Base Sequence
- Clostridium tetani/genetics
- Clostridium tetani/immunology
- Clostridium tetani/pathogenicity
- DNA Primers/genetics
- Female
- Humans
- Immunity, Mucosal
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/classification
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Recombination, Genetic
- Streptococcus/genetics
- Streptococcus/immunology
- Tetanus/immunology
- Tetanus/prevention & control
- Tetanus Toxin/genetics
- Tetanus Toxin/immunology
- Tetanus Toxin/toxicity
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- D Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, Policlinico Le Scotte, Viale Bracci, 53100, Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Medina E, Guzmán CA. Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. Vaccine 2001; 19:1573-80. [PMID: 11166877 DOI: 10.1016/s0264-410x(00)00354-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most infectious agents are restricted to the mucosal membranes or their transit through the mucosa constitutes a critical step in the infection process. Therefore, the elicitation of an efficient immune response, not only at systemic, but also at mucosal level, after vaccination is highly desirable, representing a significant advantage in order to prevent infection. This goal can be only achieved, when the vaccine formulation is administered by the mucosal route. However, soluble antigens given by this route are usually poorly immunogenic. Among the available approaches to stimulate efficient mucosal responses, the use of bacterial carriers to deliver vaccine antigens, probably, constitutes one of the most successful strategies. The potential and limitations of the most extensively studied bacterial carrier systems will be discussed.
Collapse
Affiliation(s)
- E Medina
- Department of Microbial Pathogenesis and Vaccine Research, Division of Microbiology, GBF-German Research Center for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | |
Collapse
|
37
|
Da Silva DM, Eiben GL, Fausch SC, Wakabayashi MT, Rudolf MP, Velders MP, Kast WM. Cervical cancer vaccines: emerging concepts and developments. J Cell Physiol 2001; 186:169-82. [PMID: 11169454 DOI: 10.1002/1097-4652(200102)186:2<169::aid-jcp1023>3.0.co;2-h] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Certain human cancers are linked to infection by oncogenic viruses that are able to cause transformation of the normal host cell into a cancerous cell. Human papillomavirus (HPV) DNA and expression of viral transforming proteins are found in virtually all cervical cancer cells, indicating an important role of this virus in the pathogenesis of the disease. Evidence exists that the immune response to cancer cells can play a major role in determining the outcome of disease. The fact that HPV is a necessary cause for cervical cancer provides a clear opportunity to develop a therapeutic vaccine against the virus to treat patients with cervical cancer at its early and late stages. Development of a prophylactic vaccine for HPV would also reduce the incidence of cervical neoplasias by preventing virus infection. Various candidate HPV vaccines are being developed and tested in animal models and/or in human clinical trials. These HPV vaccines, both preventive and therapeutic, are the subjects of this review.
Collapse
Affiliation(s)
- D M Da Silva
- Cancer Immunology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, 2160 First Avenue, Maywood, Illinois 60143, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Beninati C, Oggioni MR, Boccanera M, Spinosa MR, Maggi T, Conti S, Magliani W, De Bernardis F, Teti G, Cassone A, Pozzi G, Polonelli L. Therapy of mucosal candidiasis by expression of an anti-idiotype in human commensal bacteria. Nat Biotechnol 2000; 18:1060-4. [PMID: 11017043 DOI: 10.1038/80250] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two recombinant strains of Streptococcus gordonii, secreting or displaying a microbicidal single-chain antibody (H6), and stably colonizing rat vagina, were used to treat an experimental vaginitis caused by Candida albicans. A post-challenge intravaginal delivery of the H6-secreting strain was as efficacious as fluconazole in rapidly abating the fungal burden. Three weeks after challenge, 75% and 37.5% of the rats treated with the H6-secreting or displaying bacteria, respectively, were cured of the infection, which persisted in 100% of the animals treated with a S. gordonii strain expressing an irrelevant single-chain antibody. Thus, a human commensal bacterium can be suitably engineered to locally release a therapeutic antibody fragment.
Collapse
Affiliation(s)
- C Beninati
- Dipartimento di Biologia Molecolare/Microbiologia, Università degli Studi di Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Cano F, Plotnicky-Gilquin H, Nguyen TN, Liljeqvist S, Samuelson P, Bonnefoy J, Stâhl S, Robert A. Partial protection to respiratory syncytial virus (RSV) elicited in mice by intranasal immunization using live staphylococci with surface-displayed RSV-peptides. Vaccine 2000; 18:2743-52. [PMID: 10781862 DOI: 10.1016/s0264-410x(00)00063-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A live bacterial vaccine-delivery system based on the food-grade bacterium Staphylococcus carnosus was used for delivery of peptides from the G glycoprotein of human respiratory syncytial virus, subtype A (RSV-A). Three peptides, corresponding to the G protein amino acids, 144-159 (denoted G5), 190-203 (G9) and 171-188 (G4 S), the latter with four cysteine residues substituted for serines, were expressed by recombinant means as surface-exposed on three different bacteria, and their surface accessibility on the bacteria was verified by fluorescence-activated cell sorting (FACS). Intranasal immunization of mice with the live recombinant staphylococci elicited significant anti-peptide as well as anti-virus serum IgG responses of balanced IgG1/IgG2a isotype profiles, and upon viral challenge with 10(5) tissue culture infectious doses(50) (TCID(50)), lung protection was demonstrated for approximately half of the mice in the G9 and G4 S immunization groups. To our knowledge, this is the first study in which protective immunity to a viral pathogen has been evoked using food-grade bacteria as vaccine-delivery vehicles.
Collapse
Affiliation(s)
- F Cano
- Centre d'Immunologie Pierre Fabre, F-74 164 Saint-Julien en Genevois, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dutton EK, Ottum SA, Bolken TC, Franke CA, Hruby DE. Expression of active monomeric and dimeric nuclease A from the gram-positive Streptococcus gordonii surface protein expression system. Protein Expr Purif 2000; 19:158-72. [PMID: 10833403 DOI: 10.1006/prep.2000.1223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We used the surface protein expression (SPEX) system to express an anchored and a secreted form of staphylococcal nuclease A (NucA) from gram-positive bacteria. NucA is a small ( approximately 18 kDa), extracellular, monomeric enzyme from Staphylococcus aureus. A deletion of amino acids 114-119 causes monomeric NucA to form homodimers. The DNA sequence encoding either wild-type or deletion mutant NucA was cloned via homologous recombination into Streptococcus gordonii. S. gordonii strains expressing either anchored or secreted, monomeric or dimeric NucA were isolated and tested for enzymatic activity using a novel fluorescence enzyme assay. We show that active monomeric and dimeric NucA enzyme can be expressed either anchored on the cell surface or secreted into the culture medium. The activity of the dimer NucA was approximately 100-fold less than the monomer. Secreted and anchored, monomeric NucA migrated on SDS-polyacrylamide gels at approximately 18 or approximately 30 kDa, respectively. In addition, similar to S. aureus NucA, the S. gordonii recombinant NucA enzyme was dependent on CaCl(2) and was heat stable. In contrast, however, the recombinant NucA activity was maximal at pH 7.0-7.5 whereas S. aureus NucA was maximal at pH 9.0. These results show, for the first time, expression of active enzyme and polymeric protein in secreted and anchored forms using SPEX. This further demonstrates the utility of this gram-positive surface protein expression system as a potential commensal bacterial delivery system for active, therapeutic enzymes, biopharmaceuticals, or vaccines.
Collapse
Affiliation(s)
- E K Dutton
- SIGA Research Laboratories, Suite 230, Corvallis, Oregon 97333, USA
| | | | | | | | | |
Collapse
|
42
|
Corinti S, Medaglini D, Prezzi C, Cavani A, Pozzi G, Girolomoni G. Human dendritic cells are superior to B cells at presenting a major histocompatibility complex class II-restricted heterologous antigen expressed on recombinant Streptococcus gordonii. Infect Immun 2000; 68:1879-83. [PMID: 10722577 PMCID: PMC97361 DOI: 10.1128/iai.68.4.1879-1883.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are being actively investigated as vaccine carriers for inducing or boosting protective immune responses. In this study, human monocyte-derived dendritic cells (DCs) and normal B cells were compared for their capacity to present the C fragment of tetanus toxin (TTFC), expressed on the surface of recombinant Streptococcus gordonii, to specific CD4(+) T lymphocytes. DCs were more efficient than B cells at presenting soluble TTFC and remarkably more capable of presenting bacterium-associated TTFC both in terms of the amount of antigen required to obtain a given T-cell response and on a per-cell basis. This difference was associated with a much lower capacity of B cells to endocytose soluble TTFC and phagocytose recombinant S. gordonii. In addition, S. gordonii induced the phenotypic maturation of DCs but not of B cells. The results thus indicate that DCs but not B cells play a crucial role in the amplification of class II-restricted immune responses induced by immunization with recombinant gram-positive bacteria.
Collapse
Affiliation(s)
- S Corinti
- Laboratory of Immunology, Istituto Dermopatico dell'Immacolata, IRCCS, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
43
|
Ricci S, Medaglini D, Rush CM, Marcello A, Peppoloni S, Manganelli R, Palú G, Pozzi G. Immunogenicity of the B monomer of Escherichia coli heat-labile toxin expressed on the surface of Streptococcus gordonii. Infect Immun 2000; 68:760-6. [PMID: 10639444 PMCID: PMC97203 DOI: 10.1128/iai.68.2.760-766.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The B monomer of the Escherichia coli heat-labile toxin (LTB) was expressed on the surface of the human oral commensal bacterium Streptococcus gordonii. Recombinant bacteria expressing LTB were used to immunize BALB/c mice subcutaneously and intragastrically. The LTB monomer expressed on the streptococcal surface proved to be highly immunogenic, as LTB-specific immunoglobulin G (IgG) serum titers of 140,000 were induced after systemic immunization. Most significantly, these antibodies were capable of neutralizing the enterotoxin in a cell neutralization assay. Following mucosal delivery, antigen-specific IgA antibodies were found in feces and antigen-specific IgG antibodies were found in sera. Analysis of serum IgG subclasses showed a clear predominance of IgG1 when recombinant bacteria were inoculated subcutaneously, while a prevalence of IgG2a was observed upon intragastric delivery, suggesting, in this case, the recruitment of a Th1 type of immune response.
Collapse
Affiliation(s)
- S Ricci
- Dipartimento di Biologia Molecolare, Sezione di Microbiologia, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Corinti S, Medaglini D, Cavani A, Rescigno M, Pozzi G, Ricciardi-Castagnoli P, Girolomoni G. Human Dendritic Cells Very Efficiently Present a Heterologous Antigen Expressed on the Surface of Recombinant Gram-Positive Bacteria to CD4+ T Lymphocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Recombinant Streptococcus gordonii expressing on the surface the C-fragment of tetanus toxin was tested as an Ag delivery system for human monocyte-derived dendritic cells (DCs). DCs incubated with recombinant S. gordonii were much more efficient than DCs pulsed with soluble C-fragment of tetanus toxin at stimulating specific CD4+ T cells as determined by cell proliferation and IFN-γ release. Compared with DCs treated with soluble Ag, DCs fed with recombinant bacteria required 102- to 103-fold less Ag and were at least 102 times more effective on a per-cell basis for activating specific T cells. S. gordonii was internalized in DCs by conventional phagocytosis, and cytochalasin D inhibited presentation of bacteria-associated Ag, but not of soluble Ag, suggesting that phagocytosis was required for proper delivery of recombinant Ag. Bacteria were also very potent inducers of DC maturation, although they enhanced the capacity of DCs to activate specific CD4+ T cells at concentrations that did not stimulate DC maturation. In particular, S. gordonii dose-dependently up-regulated expression of membrane molecules (MHC I and II, CD80, CD86, CD54, CD40, CD83) and reduced both phagocytic and endocytic activities. Furthermore, bacteria promoted in a dose-dependent manner DC release of cytokines (IL-6, TNF-α, IL-1β, IL-12, TGF-β, and IL-10) and of the chemokines IL-8, RANTES, IFN-γ-inducible protein-10, and monokine induced by IFN-γ. Thus, recombinant Gram-positive bacteria appear a powerful tool for vaccine design due to their extremely high capacity to deliver Ags into DCs, as well as induce DC maturation and secretion of T cell chemoattractans.
Collapse
Affiliation(s)
- Silvia Corinti
- *Laboratory of Immunology, Istituto Dermopatico dell’Immacolata, Instituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Donata Medaglini
- †Section of Microbiology, Department of Molecular Biology, University of Siena, Siena, Italy; and
| | - Andrea Cavani
- *Laboratory of Immunology, Istituto Dermopatico dell’Immacolata, Instituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Rescigno
- ‡Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Gianni Pozzi
- †Section of Microbiology, Department of Molecular Biology, University of Siena, Siena, Italy; and
| | | | - Giampiero Girolomoni
- *Laboratory of Immunology, Istituto Dermopatico dell’Immacolata, Instituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
45
|
Gunneriusson E, Samuelson P, Ringdahl J, Grönlund H, Nygren PA, Ståhl S. Staphylococcal surface display of immunoglobulin A (IgA)- and IgE-specific in vitro-selected binding proteins (affibodies) based on Staphylococcus aureus protein A. Appl Environ Microbiol 1999; 65:4134-40. [PMID: 10473426 PMCID: PMC99751 DOI: 10.1128/aem.65.9.4134-4140.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from a Staphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinant S. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.
Collapse
Affiliation(s)
- E Gunneriusson
- Department of Biotechnology, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Oggioni MR, Medaglini D, Maggi T, Pozzi G. Engineering the gram-positive cell surface for construction of bacterial vaccine vectors. Methods 1999; 19:163-73. [PMID: 10525453 DOI: 10.1006/meth.1999.0842] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A genetic system for surface display of heterologous proteins has been developed in Streptococcus gordonii, a gram-positive human oral commensal that is naturally competent for genetic transformation. Our approach is based on chromosomal integration downstream from a resident promoter and translational fusion to an M6 protein. Using this strategy a variety of proteins, of different origin and size, were displayed on the cell surface and were shown to be stably expressed both in vitro and in vivo. Animal models of mucosal colonization (oral and vaginal) and intragastric immunization with recombinant S. gordonii were developed and the local and systemic immune responses were studied. Here we report the techniques for the construction of recombinant bacteria, use of animal models, and analysis of the immune response.
Collapse
Affiliation(s)
- M R Oggioni
- Department of Molecular Biology, University of Siena, Via Laterina 8, Siena, I-53100, Italy.
| | | | | | | |
Collapse
|
47
|
Liljeqvist S, Ståhl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999; 73:1-33. [PMID: 10483112 DOI: 10.1016/s0168-1656(99)00107-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first scientific attempts to control an infectious disease can be attributed to Edward Jenner, who, in 1796 inoculated an 8-year-old boy with cowpox (vaccinia), giving the boy protection against subsequent challenge with virulent smallpox. Thanks to the successful development of vaccines, many major diseases, such as diphtheria, poliomyelitis and measles, are nowadays kept under control, and in the case of smallpox, the dream of eradication has been fulfilled. Yet, there is a growing need for improvements of existing vaccines in terms of increased efficacy and improved safety, besides the development of completely new vaccines. Better technological possibilities, combined with increased knowledge in related fields, such as immunology and molecular biology, allow for new vaccination strategies. Besides the classical whole-cell vaccines, consisting of killed or attenuated pathogens, new vaccines based on the subunit principle, have been developed, e.g. the Hepatitis B surface protein vaccine and the Haemophilus influenzae type b vaccine. Recombinant techniques are now dominating in the strive for an ideal vaccine, being safe and cheap, heat-stable and easy to administer, preferably single-dose, and capable of inducing broad immune response with life-long memory both in adults and in infants. This review will describe different recombinant approaches used in the development of novel subunit vaccines, including design and production of protein immunogens, the development of live delivery systems and the state-of-the-art for nucleic acids vaccines.
Collapse
Affiliation(s)
- S Liljeqvist
- Department of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | |
Collapse
|
48
|
Sharma A, Honma K, Sojar HT, Hruby DE, Kuramitsu HK, Genco RJ. Expression of saliva-binding epitopes of the Porphyromonas gingivalis FimA protein on the surface of Streptococcus gordonii. Biochem Biophys Res Commun 1999; 258:222-6. [PMID: 10222264 DOI: 10.1006/bbrc.1999.0616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Porphyromonas gingivalis, a gram-negative oral anaerobic bacterium, has been implicated in the onset and development of periodontitis. The P. gingivalis fimbriae which mediate bacterial adherence to host oral sites and induce host inflammatory responses have been suggested as a potential antigen candidate. for vaccine development. This study was undertaken to generate Streptococcus gordonii vectors expressing the major subunit protein (FimA) of P. gingivalis fimbriae for testing as a potential live vaccine against periodontitis. We report here the expression of the C-terminal saliva-binding epitopes of P. gingivalis FimA on the surface of S. gordonii and demonstrate that domains containing free cysteine residues are poorly expressed on the surface of S. gordonii.
Collapse
Affiliation(s)
- A Sharma
- School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, 14214, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Oggioni MR, Medaglini D, Romano L, Peruzzi F, Maggi T, Lozzi L, Bracci L, Zazzi M, Manca F, Valensin PE, Pozzi G. Antigenicity and immunogenicity of the V3 domain of HIV type 1 glycoprotein 120 expressed on the surface of Streptococcus gordonii. AIDS Res Hum Retroviruses 1999; 15:451-9. [PMID: 10195755 DOI: 10.1089/088922299311204] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Five different V3 domains of HIV-1 gp120 were expressed on the surface of the gram-positive bacterium Streptococcus gordonii, a model live vector for vaccine delivery. Sera of HIV-1-infected individuals and human monoclonal antibodies specifically recognized the gp120 sequences on the bacterial surface. Recombinant V3 from the reference HIV-1 strain MN was also shown to retain a conformation that allowed reaction with a conformation-specific monoclonal antibody. A V3-specific serum antibody response was detected in mice immunized both by subcutaneous injection and by vaginal colonization. V3-specific IgG2a antibodies, suggestive of a Th1 response, were found in the sera of mice colonized by recombinant bacteria.
Collapse
Affiliation(s)
- M R Oggioni
- Dipartimento di Biologia Molecolare, Università di Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|