1
|
Sung D, Risk BB, Kottke PA, Allen JW, Nahab F, Fedorov AG, Fleischer CC. Comparisons of healthy human brain temperature predicted from biophysical modeling and measured with whole brain MR thermometry. Sci Rep 2022; 12:19285. [PMID: 36369468 PMCID: PMC9652378 DOI: 10.1038/s41598-022-22599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Brain temperature is an understudied parameter relevant to brain injury and ischemia. To advance our understanding of thermal dynamics in the human brain, combined with the challenges of routine experimental measurements, a biophysical modeling framework was developed to facilitate individualized brain temperature predictions. Model-predicted brain temperatures using our fully conserved model were compared with whole brain chemical shift thermometry acquired in 30 healthy human subjects (15 male and 15 female, age range 18-36 years old). Magnetic resonance (MR) thermometry, as well as structural imaging, angiography, and venography, were acquired prospectively on a Siemens Prisma whole body 3 T MR scanner. Bland-Altman plots demonstrate agreement between model-predicted and MR-measured brain temperatures at the voxel-level. Regional variations were similar between predicted and measured temperatures (< 0.55 °C for all 10 cortical and 12 subcortical regions of interest), and subcortical white matter temperatures were higher than cortical regions. We anticipate the advancement of brain temperature as a marker of health and injury will be facilitated by a well-validated computational model which can enable predictions when experiments are not feasible.
Collapse
Affiliation(s)
- Dongsuk Sung
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
| | - Benjamin B. Risk
- grid.189967.80000 0001 0941 6502Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA USA
| | - Peter A. Kottke
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Jason W. Allen
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Fadi Nahab
- grid.189967.80000 0001 0941 6502Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Andrei G. Fedorov
- grid.213917.f0000 0001 2097 4943Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA
| | - Candace C. Fleischer
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA ,grid.213917.f0000 0001 2097 4943Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Wesley Woods Health Center, Emory University School of Medicine, 1841 Clifton Road, Atlanta, GA 30329 USA
| |
Collapse
|
2
|
Petrini G, Tomagra G, Bernardi E, Moreva E, Traina P, Marcantoni A, Picollo F, Kvaková K, Cígler P, Degiovanni IP, Carabelli V, Genovese M. Nanodiamond-Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202014. [PMID: 35876403 PMCID: PMC9534962 DOI: 10.1002/advs.202202014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Indexed: 05/17/2023]
Abstract
Temperature is one of the most relevant parameters for the regulation of intracellular processes. Measuring localized subcellular temperature gradients is fundamental for a deeper understanding of cell function, such as the genesis of action potentials, and cell metabolism. Notwithstanding several proposed techniques, at the moment detection of temperature fluctuations at the subcellular level still represents an ongoing challenge. Here, for the first time, temperature variations (1 °C) associated with potentiation and inhibition of neuronal firing is detected, by exploiting a nanoscale thermometer based on optically detected magnetic resonance in nanodiamonds. The results demonstrate that nitrogen-vacancy centers in nanodiamonds provide a tool for assessing various levels of neuronal spiking activity, since they are suitable for monitoring different temperature variations, respectively, associated with the spontaneous firing of hippocampal neurons, the disinhibition of GABAergic transmission and the silencing of the network. Conjugated with the high sensitivity of this technique (in perspective sensitive to < 0.1 °C variations), nanodiamonds pave the way to a systematic study of the generation of localized temperature gradients under physiological and pathological conditions. Furthermore, they prompt further studies explaining in detail the physiological mechanism originating this effect.
Collapse
Affiliation(s)
- Giulia Petrini
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
| | - Giulia Tomagra
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Ettore Bernardi
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Ekaterina Moreva
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Paolo Traina
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Federico Picollo
- Physics Department, University of Torinovia P. Giuria 1Torino10125Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Klaudia Kvaková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nam. 2Prague 6166 10Czechia
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Petr Cígler
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of MedicineCharles University
Katerinska 1660/32Prague 2121 08Czechia
| | - Ivo Pietro Degiovanni
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| | - Valentina Carabelli
- Department of Drug and Science Technology, University of TorinoCorso Raffaello 30Torino10125Italy
- NIS Inter‐departmental Centrevia G. Quarello 15Torino10135Italy
| | - Marco Genovese
- Istituto Nazionale di Ricerca MetrologicaStrada delle cacce 91Torino10135Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sez. Torinovia P. Giuria 1Torino10125Italy
| |
Collapse
|
3
|
Niesvizky-Kogan I, Bass M, Goldenholz SR, Goldenholz DM. Focal Cooling for Drug-Resistant Epilepsy: A Review. JAMA Neurol 2022; 79:937-944. [PMID: 35877102 PMCID: PMC10101767 DOI: 10.1001/jamaneurol.2022.1936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Epilepsy affects at least 1.2% of the population, with one-third of cases considered to be drug-resistant epilepsy (DRE). For these cases, focal cooling therapy may be a potential avenue for treatment, offering hope to people with DRE for freedom from seizure. The therapy leverages neuroscience and engineering principles to deliver a reversible treatment unhindered by pharmacology. Observations Analogous to (but safer than) the use of global cooling in postcardiac arrest and neonatal ischemic injury, extensive research supports the premise that focal cooling as a long-term treatment for epilepsy could be effective. The potential advantages of focal cooling are trifold: stopping epileptiform discharges, seizures, and status epilepticus safely across species (including humans). Conclusions and Relevance This Review presents the most current evidence supporting focal cooling in epilepsy. Cooling has been demonstrated as a potentially safe and effective treatment modality for DRE, although it is not yet ready for use in humans outside of randomized clinical trials. The Review will also offer a brief overview of the technical challenges related to focal cooling in humans, including the optimal device design and cooling parameters.
Collapse
Affiliation(s)
- Itamar Niesvizky-Kogan
- Harvard Medical School, Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Daniel M Goldenholz
- Harvard Medical School, Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
4
|
Pilakouta N, Baillet A. Effects of temperature on mating behaviour and mating success: A meta-analysis. J Anim Ecol 2022; 91:1642-1650. [PMID: 35811382 PMCID: PMC9541322 DOI: 10.1111/1365-2656.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
In light of global climate change, there is a pressing need to understand how populations will respond to rising temperatures. Understanding the effects of temperature changes on mating behaviour is particularly important, given its implications for population viability. To this end, we performed a meta-analysis of 53 studies to examine how temperature changes influence mating latency, choosiness and mating success. We hypothesized that if higher temperatures make mate searching and mate assessment more costly due to an elevated metabolism, this may lead to a reduction in mating latency and choosiness, thereby increasing overall mating success. We found no evidence for an overall effect of temperature on mating latency, choosiness, or mating success. There was an increase in mating success when animals were exposed to higher temperatures during mating trials but not when they were exposed before mating trials. In addition, in a subset of studies that measured both mating latency and mating success, there was a strong negative relationship between the effect sizes for these traits. This suggests that a decrease in mating latency at higher temperatures was associated with an increase in mating success and vice versa. In sum, our meta-analysis provides new insights into the effects of temperature on mating patterns. The absence of a consistent directional effect of temperature on mating behaviours and mating success suggests it may be difficult to predict changes in the strength of sexual selection in natural populations in a warming world. Nevertheless, there is some evidence that (a) higher temperatures during mating may lead to an increase in mating success and that (b) an increase in mating success is associated with a decrease in mating latency.
Collapse
Affiliation(s)
| | - Anaїs Baillet
- School of Biological SciencesUniversity of AberdeenAberdeenUK
- Observatoire des Sciences de l'Univers de Rennes (OSUR)Université de RennesRennesFrance
- Department of Wood and Forest SciencesLaval UniversityQuebecQCCanada
| |
Collapse
|
5
|
Jeschke M, Ohl FW, Wang X. Effects of Cortical Cooling on Sound Processing in Auditory Cortex and Thalamus of Awake Marmosets. Front Neural Circuits 2022; 15:786740. [PMID: 35069125 PMCID: PMC8766342 DOI: 10.3389/fncir.2021.786740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The auditory thalamus is the central nexus of bottom-up connections from the inferior colliculus and top-down connections from auditory cortical areas. While considerable efforts have been made to investigate feedforward processing of sounds in the auditory thalamus (medial geniculate body, MGB) of non-human primates, little is known about the role of corticofugal feedback in the MGB of awake non-human primates. Therefore, we developed a small, repositionable cooling probe to manipulate corticofugal feedback and studied neural responses in both auditory cortex and thalamus to sounds under conditions of normal and reduced cortical temperature. Cooling-induced increases in the width of extracellularly recorded spikes in auditory cortex were observed over the distance of several hundred micrometers away from the cooling probe. Cortical neurons displayed reduction in both spontaneous and stimulus driven firing rates with decreased cortical temperatures. In thalamus, cortical cooling led to increased spontaneous firing and either increased or decreased stimulus driven activity. Furthermore, response tuning to modulation frequencies of temporally modulated sounds and spatial tuning to sound source location could be altered (increased or decreased) by cortical cooling. Specifically, best modulation frequencies of individual MGB neurons could shift either toward higher or lower frequencies based on the vector strength or the firing rate. The tuning of MGB neurons for spatial location could both sharpen or widen. Elevation preference could shift toward higher or lower elevations and azimuth tuning could move toward ipsilateral or contralateral locations. Such bidirectional changes were observed in many parameters which suggests that the auditory thalamus acts as a filter that could be adjusted according to behaviorally driven signals from auditory cortex. Future work will have to delineate the circuit elements responsible for the observed effects.
Collapse
Affiliation(s)
- Marcus Jeschke
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Laboratory, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany,*Correspondence: Marcus Jeschke
| | - Frank W. Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Xiaoqin Wang
| |
Collapse
|
6
|
Banerjee A, Egger R, Long MA. Using focal cooling to link neural dynamics and behavior. Neuron 2021; 109:2508-2518. [PMID: 34171292 PMCID: PMC8376768 DOI: 10.1016/j.neuron.2021.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Establishing a causal link between neural function and behavioral output has remained a challenging problem. Commonly used perturbation techniques enable unprecedented control over intrinsic activity patterns and can effectively identify crucial circuit elements important for specific behaviors. However, these approaches may severely disrupt activity, precluding an investigation into the behavioral relevance of moment-to-moment neural dynamics within a specified brain region. Here we discuss the application of mild focal cooling to slow down intrinsic neural circuit activity while preserving its overall structure. Using network modeling and examples from multiple species, we highlight the power and versatility of focal cooling for understanding how neural dynamics control behavior and argue for its wider adoption within the systems neuroscience community.
Collapse
Affiliation(s)
- Arkarup Banerjee
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Robert Egger
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Ibayashi K, Cardenas AR, Oya H, Kawasaki H, Kovach CK, Howard MA, Long MA, Greenlee JDW. Focal Cortical Surface Cooling is a Novel and Safe Method for Intraoperative Functional Brain Mapping. World Neurosurg 2020; 147:e118-e129. [PMID: 33307258 DOI: 10.1016/j.wneu.2020.11.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Electric cortical stimulation (ECS) has been the gold standard for intraoperative functional mapping in neurosurgery, yet it carries the risk of induced seizures. We assess the safety of focal cortical cooling (CC) as a potential alternative to ECS. METHODS We reviewed 40 patients (13 with tumor and 27 with mesial temporal lobe epilepsy) who underwent intraoperative CC at the University of Iowa Hospital and Clinics (CC group), of whom 38 underwent ECS preceding CC. Intraoperative and postoperative seizure incidence, postoperative neurologic deficits, and new postoperative radiographic findings were collected to assess CC safety. Fifty-five patients who underwent ECS mapping without CC (ECS-alone group) were reviewed as a control cohort. Another 25 patients who underwent anterior temporal lobectomy (ATL) without CC or ECS (no ECS/no CC-ATL group) were also reviewed to evaluate long-term effects of CC. RESULTS Seventy-nine brain sites in the CC group were cooled, comprising inferior frontal gyrus (44%), precentral gyrus (39%), postcentral gyrus (6%), subcentral gyrus (4%), and superior temporal gyrus (6%). The incidence of intraoperative seizure(s) was 0% (CC group) and 3.6% (ECS-alone group). The incidence of seizure(s) within the first postoperative week did not significantly differ among CC (7.9%), ECS-alone (9.0%), and no ECS/no CC-ATL groups (12%). There was no significant difference in the incidence of postoperative radiographic change between CC (7.5%) and ECS-alone groups (5.5%). Long-term seizure outcome (Engel I+II) for mesial temporal epilepsy did not differ among CC (80%), ECS-alone (83.3%), and no ECS/no CC-ATL groups (83.3%). CONCLUSIONS CC when used as an intraoperative mapping technique is safe and may complement ECS.
Collapse
Affiliation(s)
- Kenji Ibayashi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Araceli R Cardenas
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Michael A Long
- Neuroscience Institute, New York University School of Medicine, New York, New York, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Gentilal N, Miranda PC. Heat transfer during TTFields treatment: Influence of the uncertainty of the electric and thermal parameters on the predicted temperature distribution. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105706. [PMID: 32818721 DOI: 10.1016/j.cmpb.2020.105706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor Treating Fields (TTFields) is a technique currently used in the treatment of glioblastoma. It consists in applying an electric field (EF) with a frequency of 200 kHz using two pairs of transducer arrays placed on the head. Current should be injected at least 18 h/day and induce a minimum EF intensity of 1 V/cm at the tumor bed for the treatment to be effective. To avoid scalp burns, Optune, the device used to apply this technique in patients, monitors the temperature of the transducers and keeps them below 41 °C by reducing the injected current. The goal of this study was to quantify the impact of the uncertainty associated with the electric and thermal parameters on the predicted temperature of the transducers and of each tissue when TTFields were applied. METHODS We used a realistic head model, added the two pairs of transducers arrays on the scalp and a virtual lesion, mimicking a glioblastoma tumor in the right hemisphere. Minimum, standard and maximum values for the electric and thermal properties of each tissue were taken from the literature after an extensive review. We used finite element methods (COMSOL Multiphysics) to solve Laplace's equation for the electric potential and Pennes' equation for the temperature distribution. RESULTS We observed that the electric conductivity of the scalp and skull, as well as scalp's blood perfusion and thermal conductivity were the parameters to which tissue and transducers temperature were most sensitive to. Considering all simulations, scalp's maximum temperature was around 43.5 °C, skull's 42 °C, CSF's 41.2 °C and brain's 39.3 °C. According to the literature, for this temperature range, some physiological changes are predicted only for the brain. The average temperature of the transducers varied between 38.1 °C and 41.6 °C which suggests that modelling TTFields current injection is very sensitive to the parameters chosen. CONCLUSIONS Better knowledge of the physical properties of tissues and materials and how they change with the temperature is needed to improve the accuracy of these predictions. This information would likely decrease the predicted temperature maxima in the brain and thus help ascertaining TTFields safety from a thermal point of view.
Collapse
Affiliation(s)
- Nichal Gentilal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Pedro Cavaleiro Miranda
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Smith PF, Truchet B, Chaillan FA, Zheng Y, Besnard S. Vestibular Modulation of Long-Term Potentiation and NMDA Receptor Expression in the Hippocampus. Front Mol Neurosci 2020; 13:140. [PMID: 32848601 PMCID: PMC7431471 DOI: 10.3389/fnmol.2020.00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023] Open
Abstract
Loss of vestibular function is known to cause spatial memory deficits and hippocampal dysfunction, in terms of impaired place cell firing and abnormal theta rhythm. Based on these results, it has been of interest to determine whether vestibular loss also affects the development and maintenance of long-term potentiation (LTP) in the hippocampus. This article summarizes and critically reviews the studies of hippocampal LTP following a vestibular loss and its relationship to NMDA receptor expression, that have been published to date. Although the available in vitro studies indicate that unilateral vestibular loss (UVL) results in reduced hippocampal field potentials in CA1 and the dentate gyrus (DG), the in vivo studies involving bilateral vestibular loss (BVL) do not. This may be due to the differences between UVL and BVL or it could be a result of in vitro/in vivo differences. One in vitro study reported a decrease in LTP in hippocampal slices following UVL; however, the two available in vivo studies have reported different results: either no effect or an increase in EPSP/Population Spike (ES) potentiation. This discrepancy may be due to the different high-frequency stimulation (HFS) paradigms used to induce LTP. The increased ES potentiation following BVL may be related to an increase in synaptic NMDA receptors, possibly increasing the flow of vestibular input coming into CA1, with a loss of selectivity. This might cause increased excitability and synaptic noise, which might lead to a degradation of spatial learning and memory.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, >New Zealand
| | - Bruno Truchet
- Aix Marseille University, CNRS, LNC UMR 7291, FR 3C FR 3512, Marseille, France
| | - Franck A. Chaillan
- Aix Marseille University, CNRS, LNC UMR 7291, FR 3C FR 3512, Marseille, France
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, >New Zealand
| | | |
Collapse
|
11
|
Pastukhov A, Krisanova N, Pyrshev K, Borisova T. Dual benefit of combined neuroprotection: Cholesterol depletion restores membrane microviscosity but not lipid order and enhances neuroprotective action of hypothermia in rat cortex nerve terminals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183362. [PMID: 32445746 DOI: 10.1016/j.bbamem.2020.183362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Here, both neuroprotectants, i.e. cholesterol depletion of the plasma membrane of rat brain nerve terminals (synaptosomes) using methyl-β-cyclodextrin (MβCD) and deep/propound hypothermia, were analyzed during their combined administration and regarding additive neuroprotective effect. The extracellular synaptosomal level of L-[14C]glutamate significantly increased after treatment with MβCD in both deep and profound hypothermia. Cholesterol depletion gradually enhanced inhibiting effect of deep and profound hypothermia on glutamate uptake and "excitotoxic" transporter-mediated release of L-[14C]glutamate. A decrease in L-[14C]glutamate release via heteroexchange from nerve terminals in deep and profound hypothermia was enhanced by cholesterol deficiency that confirmed previous result. Fluorometric studies with probes NR12S and DCVJ revealed oppositely directed effects of cholesterol depletion and hypothermia on synaptosomal membrane lipid order and microviscosity showing that cholesterol depletion can normalise up to the control hypothermia-induced increase in microviscosity, but not the lipid order of the synaptosomal membrane. Dynamics of changes in exocytosis in nerve terminals, which involved membrane fusion stage, was different from transporter-dependent ones. Hypothermia did not augment effects of cholesterol depletion on exocytotic L-[14C]glutamate release and lowering cholesterol enhanced the impact of deep, but not profound hypothermia on this parameter. Therefore, dual benefit of combined neuroprotection was demonstrated. Cholesterol depletion enhanced neuroprotective effects of hypothermia intensifying inhibition of "excitotoxic" transporter-mediated glutamate release and can normalise a hypothermia-induced increase in microviscosity of the synaptosomal membrane. This feature is prospective in mitigation of side effects of therapeutic hypothermia, and also for brain conservation preserving normal physical and chemical properties of the cellular membranes.
Collapse
Affiliation(s)
- A Pastukhov
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| | - N Krisanova
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - K Pyrshev
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine; Dep. of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - T Borisova
- Dep. of Neurochemistry of the Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| |
Collapse
|
12
|
Ghirga S, Pagani F, Rosito M, Di Angelantonio S, Ruocco G, Leonetti M. Optonongenetic enhancement of activity in primary cortical neurons. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:643-652. [PMID: 32400549 DOI: 10.1364/josaa.385832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/22/2020] [Indexed: 06/11/2023]
Abstract
It has been recently demonstrated that the exposure of naive neuronal cells to light-at the basis of optogenetic techniques and calcium imaging measurements-may alter neuronal firing. Indeed, understanding the effect of light on nongenetically modified neurons is crucial for a correct interpretation of calcium imaging and optogenetic experiments. Here we investigated the effect of continuous visible LED light exposure (490 nm, $ 0.18 {-} 1.3\;{\rm mW}/{{\rm mm}^2} $0.18-1.3mW/mm2) on spontaneous activity of primary neuronal networks derived from the early postnatal mouse cortex. We demonstrated, by calcium imaging and patch clamp experiments, that illumination higher than $ 1.0\;{\rm mW}/{{\rm mm}^2} $1.0mW/mm2 causes an enhancement of network activity in cortical cultures. We investigated the possible origin of the phenomena by blocking the transient receptor potential vanilloid 4 (TRPV4) channel, demonstrating a complex connection between this temperature-dependent channel and the measured effect. The results presented here shed light on an exogenous artifact, potentially present in all calcium imaging experiments, that should be taken into account in the analysis of fluorescence data.
Collapse
|
13
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
14
|
Ma L, Chan JL, Johnston K, Lomber SG, Everling S. Macaque anterior cingulate cortex deactivation impairs performance and alters lateral prefrontal oscillatory activities in a rule-switching task. PLoS Biol 2019; 17:e3000045. [PMID: 31295254 PMCID: PMC6650082 DOI: 10.1371/journal.pbio.3000045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 07/23/2019] [Accepted: 06/24/2019] [Indexed: 01/03/2023] Open
Abstract
In primates, both the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (dlPFC) are key regions of the frontoparietal cognitive control network. To study the role of the dACC and its communication with the dlPFC in cognitive control, we recorded local field potentials (LFPs) from the dlPFC before and during the reversible deactivation of the dACC, in macaque monkeys engaging in uncued switches between 2 stimulus-response rules, namely prosaccade and antisaccade. Cryogenic dACC deactivation impaired response accuracy during maintenance of—but not the initial switching to—the cognitively demanding antisaccade rule, which coincided with a reduction in task-related theta activity and the correct-error (C-E) difference in dlPFC beta-band power. During both rule switching and maintenance, dACC deactivation prolonged the animals’ reaction time and reduced task-related alpha power in the dlPFC. Our findings support a role of the dACC in prefrontal oscillatory activities that are involved the maintenance of a new, challenging task rule. Reversible deactivation of the dorsal anterior cingulate cortex — an area of the cognitive control network — impairs rule maintenance but not rule switching per se, and disrupts task-related oscillatory activities in the dorsolateral prefrontal cortex — another area of the same network.
Collapse
Affiliation(s)
- Liya Ma
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Jason L. Chan
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Kevin Johnston
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- Department of Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Csernai M, Borbély S, Kocsis K, Burka D, Fekete Z, Balogh V, Káli S, Emri Z, Barthó P. Dynamics of sleep oscillations is coupled to brain temperature on multiple scales. J Physiol 2019; 597:4069-4086. [PMID: 31197831 DOI: 10.1113/jp277664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Sleep spindle frequency positively, duration negatively correlates with brain temperature. Local heating of the thalamus produces similar effects in the heated area. Thalamic network model corroborates temperature dependence of sleep spindle frequency. Brain temperature shows spontaneous microfluctuations during both anesthesia and natural sleep. Larger fluctuations are associated with epochs of REM sleep. Smaller fluctuations correspond to the alteration of spindling and delta epochs of infra-slow oscillation. ABSTRACT Every form of neural activity depends on temperature, yet its relationship to brain rhythms is poorly understood. In this work we examined how sleep spindles are influenced by changing brain temperatures and how brain temperature is influenced by sleep oscillations. We employed a novel thermoelectrode designed for measuring temperature while recording neural activity. We found that spindle frequency is positively correlated and duration negatively correlated with brain temperature. Local heating of the thalamus replicated the temperature dependence of spindle parameters in the heated area only, suggesting biophysical rather than global modulatory mechanisms, a finding also supported by a thalamic network model. Finally, we show that switches between oscillatory states also influence brain temperature on a shorter and smaller scale. Epochs of paradoxical sleep as well as the infra-slow oscillation were associated with brain temperature fluctuations below 0.2°C. Our results highlight that brain temperature is massively intertwined with sleep oscillations on various time scales.
Collapse
Affiliation(s)
- Márton Csernai
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Sándor Borbély
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Kocsis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Neuronal Network and Behavior Research Group, RCNS, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dávid Burka
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Corvinus University of Budapest, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,Institute of Technical Physics and Material Science, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Veronika Balogh
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szabolcs Káli
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Péter Barthó
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
16
|
Walter A, Finelli K, Bai X, Johnson B, Neuberger T, Seidenberg P, Bream T, Hallett M, Slobounov S. Neurobiological effect of selective brain cooling after concussive injury. Brain Imaging Behav 2019; 12:891-900. [PMID: 28712093 DOI: 10.1007/s11682-017-9755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.
Collapse
Affiliation(s)
- Alexa Walter
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
| | - Katie Finelli
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 120G Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Brian Johnson
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Thomas Neuberger
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 113 Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Peter Seidenberg
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- , 1850 E. Park Avenue, Suite 112, State College, PA, 16803, USA
| | - Timothy Bream
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Lasch Building University Park, University Park, PA, 16802, USA
| | - Mark Hallett
- NIH, NINDS, Medical Neurology Branch Building 10 Room 7D37 10 Center Drive MSC 1428, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Nguyen K, Stahlschmidt Z. When to fight? Disentangling temperature and circadian effects on aggression and agonistic contests. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ait Ouares K, Beurrier C, Canepari M, Laverne G, Kuczewski N. Opto nongenetics inhibition of neuronal firing. Eur J Neurosci 2018; 49:6-26. [PMID: 30387216 DOI: 10.1111/ejn.14251] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 01/28/2023]
Abstract
Optogenetics is based on the selective expression of exogenous opsins by neurons allowing experimental control of their electrical activity using visible light. The interpretation of the results of optogenetic experiments is based on the assumption that light stimulation selectively acts on those neurons expressing the exogenous opsins without perturbing the activity of naive ones. Here, we report that light stimulation, of wavelengths and power in the range of those normally used in optogenetic experiments, consistently reduces the firing activity of naive Mitral Cells (MCs) and Tufted Neurons in the olfactory bulb as well as in Medium Spiny Neurons (MSNs) in the striatum. No such effect was observed for cerebellar Purkinje and hippocampal CA1 neurons. The effects on MC firing appear to be mainly due to a light-induced increase in tissue temperature, between 0.1 and 0.4°C, associated with the generation of a hyperpolarizing current and a modification of action potential (AP) shape. Therefore, light in the visible range can affect neuronal physiology in a cell-specific manner. Beside the implications for optogenetic studies, our results pave the way to investigating the use of visible light for therapeutic purposes in pathologies associated with neuronal hyperexcitability.
Collapse
Affiliation(s)
- Karima Ait Ouares
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France
| | - Corinne Beurrier
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Marco Canepari
- Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.,Laboratories of Excellence, Ion Channel Science and Therapeutics, Grenoble, France.,Institut National de la Santé et Recherche Médicale, Paris, France
| | | | - Nicola Kuczewski
- CNRS, UMR 5292, INSERM, U1028, Lyon, France.,Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, Lyon, France.,University Lyon, Lyon, Franc.,University Lyon1, Villeurbanne, France
| |
Collapse
|
19
|
Pastukhov A, Borisova T. Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia. Brain Res 2018; 1699:69-78. [PMID: 30343685 DOI: 10.1016/j.brainres.2018.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/09/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
A combination of a beneficial neuroprotectant, hypothermia, with targeted medication is a perspective therapeutic approach. Here, we analyzed both non-specific (deep and profound hypothermia, 27 °C and 17 °C, respectively) and targeted (anticonvulsant drug levetiracetam) modulation of l-[14C]glutamate release induced by activation of presynaptic NMDA, AMPA, and kainate receptors in rat brain nerve terminals (synaptosomes). Gradual dynamics of hypothermia-mediated decrease in synaptosomal l-[14C]glutamate release evoked by the receptor agonists NMDA-, AMPA-, and kainate (250 μM) has been demonstrated that can be of value for the justification of optimal temperature regimes in therapeutic hypothermia. 250 μM NMDA-induced l-[14C]glutamate release from nerve terminals was higher in the presence of levetiracetam (100 μM) as compared to that without the drug. Despite levetiracetam effects decreased in hypothermia, combined application of hypothermia and levetiracetam resulted in higher NMDA-induced l-[14C]glutamate release from nerve terminals as compared to that without the drug. These effects were not revealed for synaptosomal AMPA- and kainate-induced l-[14C]glutamate release in the presence of levetiracetam at the similar concentration. Therefore, levetiracetam administration significantly mitigated a hypothermia-induced decrease in NMDA receptor response at the presynaptic level and can be used for the targeted neurocorrection to reduce side effects of hypothermia in cardiac surgery. However, levetiracetam-mediated improvement of NMDA receptor response is not applicable in stroke, brain trauma and neonatal asphyxia therapies, where the main neuroprotective action of hypothermia is associated with prevention of damaging consequence of pre-existing acute glutamate exitotoxicity.
Collapse
Affiliation(s)
- A Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01030, Ukraine.
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev 01030, Ukraine.
| |
Collapse
|
20
|
Abstract
Fever-associated seizures or epilepsy (FASE) is primarily characterised by the occurrence of a seizure or epilepsy usually accompanied by a fever. It is common in infants and children, and generally includes febrile seizures (FS), febrile seizures plus (FS+), Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFSP). The aetiology of FASE is unclear. Genetic factors may play crucial roles in FASE. Mutations in certain genes may cause a wide spectrum of phenotypical overlap ranging from isolated FS, FS+ and GEFSP to DS. Synapse-associated proteins, postsynaptic GABAA receptor, and sodium channels play important roles in synaptic transmission. Mutations in these genes may involve in the pathogenesis of FASE. Elevated temperature promotes synaptic vesicle (SV) recycling and enlarges SV size, which may enhance synaptic transmission and contribute to FASE occurring. This review provides an overview of the loci, genes, underlying pathogenesis and the fever-inducing effect of FASE. It may provide a more comprehensive understanding of pathogenesis and contribute to the clinical diagnosis of FASE.
Collapse
|
21
|
Luong L, Bannon NM, Redenti A, Chistiakova M, Volgushev M. Very low concentrations of ethanol suppress excitatory synaptic transmission in rat visual cortex. Eur J Neurosci 2017; 45:1333-1342. [PMID: 28263415 DOI: 10.1111/ejn.13557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023]
Abstract
Ethanol is one of the most commonly used substances in the world. Behavioral effects of alcohol are well described, however, cellular mechanisms of its action are poorly understood. There is an apparent contradiction between measurable behavioral changes produced by low concentrations of ethanol, and lack of evidence of synaptic changes at these concentrations. Furthermore, effects of ethanol on synaptic transmission in the neocortex are poorly understood. Here, we set to determine effects of ethanol on excitatory synaptic transmission in the neocortex. We show that 1-50 mm ethanol suppresses excitatory synaptic transmission to layer 2/3 pyramidal neurons in rat visual cortex in a concentration-dependent manner. To the best of our knowledge, this is the first demonstration of the effects of very low concentrations of ethanol (from 1 mm) on synaptic transmission in the neocortex. We further show that a selective antagonist of A1 adenosine receptors, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), blocks effects of 1-10 mm ethanol on synaptic transmission. However, the reduction in excitatory postsynaptic potential amplitude by 50 mm ethanol was not affected by DPCPX. We propose that ethanol depresses excitatory synaptic transmission in the neocortex by at least two mechanisms, engaged at different concentrations: low concentrations of ethanol reduce synaptic transmission via A1 R-dependent mechanism and involve presynaptic changes, while higher concentrations activate additional, adenosine-independent mechanisms with predominantly postsynaptic action. Involvement of adenosine signaling in mediating effects of low concentrations of ethanol may have important implications for understanding alcohol's effects on brain function, and provide a mechanistic explanation to the interaction between alcohol and caffeine.
Collapse
Affiliation(s)
- Lucas Luong
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road Unit 1020, Storrs, CT, 06268, USA
| | - Nicholas M Bannon
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road Unit 1020, Storrs, CT, 06268, USA
| | - Andrew Redenti
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road Unit 1020, Storrs, CT, 06268, USA
| | - Marina Chistiakova
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road Unit 1020, Storrs, CT, 06268, USA
| | - Maxim Volgushev
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road Unit 1020, Storrs, CT, 06268, USA
| |
Collapse
|
22
|
Larsen LE, Lysebettens WV, Germonpré C, Carrette S, Daelemans S, Sprengers M, Thyrion L, Wadman WJ, Carrette E, Delbeke J, Boon P, Vonck K, Raedt R. Clinical Vagus Nerve Stimulation Paradigms Induce Pronounced Brain and Body Hypothermia in Rats. Int J Neural Syst 2016; 27:1750016. [PMID: 28178853 DOI: 10.1142/s0129065717500162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS) is a widely used neuromodulation technique that is currently used or being investigated as therapy for a wide array of human diseases such as epilepsy, depression, Alzheimer's disease, tinnitus, inflammatory diseases, pain, heart failure and many others. Here, we report a pronounced decrease in brain and core temperature during VNS in freely moving rats. Two hours of rapid cycle VNS (7s on/18s off) decreased brain temperature by around [Formula: see text]C, while standard cycle VNS (30[Formula: see text]s on/300[Formula: see text]s off) was associated with a decrease of around [Formula: see text]C. Rectal temperature similarly decreased by more than [Formula: see text]C during rapid cycle VNS. The hypothermic effect triggered by VNS was further associated with a vasodilation response in the tail, which reflects an active heat release mechanism. Despite previous evidence indicating an important role of the locus coeruleus-noradrenergic system in therapeutic effects of VNS, lesioning this system with the noradrenergic neurotoxin DSP-4 did not attenuate the hypothermic effect. Since body and brain temperature affect most physiological processes, this finding is of substantial importance for interpretation of several previously published VNS studies and for the future direction of research in the field.
Collapse
Affiliation(s)
- Lars Emil Larsen
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Wouter Van Lysebettens
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Charlotte Germonpré
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Sofie Carrette
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Sofie Daelemans
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Mathieu Sprengers
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Lisa Thyrion
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Wytse Jan Wadman
- 2 Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, 1090GE, The Netherlands
| | - Evelien Carrette
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Jean Delbeke
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Paul Boon
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Kristl Vonck
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| | - Robrecht Raedt
- 1 Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Internal Medicine, Ghent University, De Pintelaan 185, Ghent, 9000, Belgium
| |
Collapse
|
23
|
Pastukhov A, Krisanova N, Maksymenko V, Borisova T. Personalized approach in brain protection by hypothermia: individual changes in non-pathological and ischemia-related glutamate transport in brain nerve terminals. EPMA J 2016; 7:26. [PMID: 27999623 PMCID: PMC5157095 DOI: 10.1186/s13167-016-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/21/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Both deep and profound hypothermia are effectively applied in cardiac surgery of the aortic arch, when the reduction of cerebral circulation facilitates operations, and for the prevention of ischemic stroke consequences. Neurochemical discrimination of the effects of deep and profound hypothermia (27 and 17 °C, respectively) on non-pathological and pathological ischemia-related mechanisms of presynaptic glutamate transport with its potential contribution to predictive, preventive and personalized medicine (PPPM) was performed. METHODS Experiments were conducted using nerve terminals isolated from rat cortex (synaptosomes). Glutamate transport in synaptosomes was analyzed using radiolabel l-[14C]glutamate. Diameter of synaptosomes was assessed by dynamic light scattering. RESULTS Synaptosomal transporter-mediated uptake and tonic release of l-[14C]glutamate (oppositely directed processes, dynamic balance of which determines the physiological extracellular level of the neurotransmitter) decreased in a different range in deep/profound hypothermia. As a result, hypothermia-induced changes in extracellular l-[14C]glutamate are not evident (in one half of animals it increased, and in other it decreased). A progressive decrease from deep to profound hypothermia was shown for pathological mechanisms of presynaptic glutamate transport, that is, transporter-mediated l-[14C]glutamate release (*) stimulated by depolarization of the plasma membrane and (**) during dissipation of the proton gradient of synaptic vesicles by the protonophore FCCP. CONCLUSIONS Therefore, the direction of hypothermia-induced changes in extracellular glutamate is unpredictable in "healthy" nerve terminals and depends on hypothermia sensitivity of uptake vs. tonic release. In affected nerve terminals (e.g., in brain regions suffering from a reduction of blood circulation during cardiac surgery, and core and penumbra zones of the insult), pathological transporter-mediated glutamate release from nerve terminals decreases with progressive significance from deep to profound hypothermia, thereby underlying its potent neuroprotective action. So, alterations in extracellular glutamate during hypothermia can be unique for each patient. An extent of a decrease in pathological glutamate transporter reversal depends on the size of damaged brain zone in each incident. Therefore, test parameters and clinical criteria of neuromonitoring for the evaluation of individual hypothermia-induced effects should be developed and delivered in practice in PPPM.
Collapse
Affiliation(s)
- Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| | - Vitalii Maksymenko
- Amosov Institute of Cardiovascular Surgery of the Academy of Medical Sciences of Ukraine, 6 N. Amosov Str, Kyiv, 03110 Ukraine ; Faculty of Biomedical Engineering, National Technical University of Ukraine "KPI", 16/2 Yangel Str, Kyiv, 56 Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str, Kyiv, 01601 Ukraine
| |
Collapse
|
24
|
Nanda P, Sheth SA, McKhann GM. Brain Freeze. Neurosurgery 2016; 79:N19-21. [DOI: 10.1227/01.neu.0000499712.73961.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Wahlstrom-Helgren S, Klyachko VA. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits. J Neurophysiol 2016; 116:2564-2575. [PMID: 27605532 DOI: 10.1152/jn.00413.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022] Open
Abstract
Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits.
Collapse
Affiliation(s)
- Sarah Wahlstrom-Helgren
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Vitaly A Klyachko
- Departments of Cell Biology & Physiology and Biomedical Engineering, Center for the Investigation of Membrane Excitable Diseases, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Long MA, Katlowitz KA, Svirsky MA, Clary RC, Byun TM, Majaj N, Oya H, Howard MA, Greenlee JDW. Functional Segregation of Cortical Regions Underlying Speech Timing and Articulation. Neuron 2016; 89:1187-1193. [PMID: 26924439 PMCID: PMC4833207 DOI: 10.1016/j.neuron.2016.01.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/20/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023]
Abstract
Spoken language is a central part of our everyday lives, but the precise roles that individual cortical regions play in the production of speech are often poorly understood. To address this issue, we focally lowered the temperature of distinct cortical regions in awake neurosurgical patients, and we relate this perturbation to changes in produced speech sequences. Using this method, we confirm that speech is highly lateralized, with the vast majority of behavioral effects seen on the left hemisphere. We then use this approach to demonstrate a clear functional dissociation between nearby cortical speech sites. Focal cooling of pars triangularis/pars opercularis (Broca's region) and the ventral portion of the precentral gyrus (speech motor cortex) resulted in the manipulation of speech timing and articulation, respectively. Our results support a class of models that have proposed distinct processing centers underlying motor sequencing and execution for speech.
Collapse
Affiliation(s)
- Michael A Long
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA.
| | - Kalman A Katlowitz
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Mario A Svirsky
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Rachel C Clary
- NYU Neuroscience Institute, Department of Otolaryngology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016 USA; Center for Neural Science, New York University, New York, NY 10003 USA
| | - Tara McAllister Byun
- Department of Communicative Sciences and Disorders, New York University, New York, NY 10012 USA
| | - Najib Majaj
- Center for Neural Science, New York University, New York, NY 10003 USA
| | - Hiroyuki Oya
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| | - Matthew A Howard
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, Human Brain Research Lab, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
27
|
Stujenske JM, Spellman T, Gordon JA. Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics. Cell Rep 2015; 12:525-34. [PMID: 26166563 DOI: 10.1016/j.celrep.2015.06.036] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the increasing use of optogenetics in vivo, the effects of direct light exposure to brain tissue are understudied. Of particular concern is the potential for heat induced by prolonged optical stimulation. We demonstrate that high-intensity light, delivered through an optical fiber, is capable of elevating firing rate locally, even in the absence of opsin expression. Predicting the severity and spatial extent of any temperature increase during optogenetic stimulation is therefore of considerable importance. Here, we describe a realistic model that simulates light and heat propagation during optogenetic experiments. We validated the model by comparing predicted and measured temperature changes in vivo. We further demonstrate the utility of this model by comparing predictions for various wavelengths of light and fiber sizes, as well as testing methods for reducing heat effects on neural targets in vivo.
Collapse
Affiliation(s)
- Joseph M Stujenske
- Graduate Program in Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA.
| | - Timothy Spellman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA.
| |
Collapse
|
28
|
Shirey MJ, Smith JB, Kudlik DE, Huo BX, Greene SE, Drew PJ. Brief anesthesia, but not voluntary locomotion, significantly alters cortical temperature. J Neurophysiol 2015; 114:309-22. [PMID: 25972579 DOI: 10.1152/jn.00046.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022] Open
Abstract
Changes in brain temperature can alter electrical properties of neurons and cause changes in behavior. However, it is not well understood how behaviors, like locomotion, or experimental manipulations, like anesthesia, alter brain temperature. We implanted thermocouples in sensorimotor cortex of mice to understand how cortical temperature was affected by locomotion, as well as by brief and prolonged anesthesia. Voluntary locomotion induced small (∼ 0.1 °C) but reliable increases in cortical temperature that could be described using a linear convolution model. In contrast, brief (90-s) exposure to isoflurane anesthesia depressed cortical temperature by ∼ 2 °C, which lasted for up to 30 min after the cessation of anesthesia. Cortical temperature decreases were not accompanied by a concomitant decrease in the γ-band local field potential power, multiunit firing rate, or locomotion behavior, which all returned to baseline within a few minutes after the cessation of anesthesia. In anesthetized animals where core body temperature was kept constant, cortical temperature was still > 1 °C lower than in the awake animal. Thermocouples implanted in the subcortex showed similar temperature changes under anesthesia, suggesting these responses occur throughout the brain. Two-photon microscopy of individual blood vessel dynamics following brief isoflurane exposure revealed a large increase in vessel diameter that ceased before the brain temperature significantly decreased, indicating cerebral heat loss was not due to increased cerebral blood vessel dilation. These data should be considered in experimental designs recording in anesthetized preparations, computational models relating temperature and neural activity, and awake-behaving methods that require brief anesthesia before experimental procedures.
Collapse
Affiliation(s)
- Michael J Shirey
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Jared B Smith
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania;
| | - D'Anne E Kudlik
- Center for Neural Engineering, Bioengineering Graduate Program, Pennsylvania State University, University Park, Pennsylvania; and
| | - Bing-Xing Huo
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Stephanie E Greene
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania
| | - Patrick J Drew
- Center for Neural Engineering, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania; Department of Neurosurgery, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
29
|
Arendt T, Stieler J, Holzer M. Brain hypometabolism triggers PHF-like phosphorylation of tau, a major hallmark of Alzheimer's disease pathology. J Neural Transm (Vienna) 2014; 122:531-9. [PMID: 25480630 DOI: 10.1007/s00702-014-1342-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
Abstract
Sporadic Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder of unknown cause characterized by fibrillar accumulation of the Aß-peptide and aggregates of the microtubule-associated protein tau in a hyperphosphorylated form. Already at preclinical stages, AD is characterized by hypometabolic states which are a good predictor of cognitive decline. Here, we summarize recent evidence derived from the study of hibernating animals that brain hypometabolism can trigger PHF-like hyperphosphorylation of tau. We put forward the concept that particular types of neurons respond to a hypometabolic state with an elevated phosphorylation of tau protein which represents a physiological mechanism involved in regulating synaptic gain. If, in contrast to hibernation, the hypometabolic state is not terminated after a definite time but rather persists and progresses, the elevated phosphorylation of tau protein endures and the protective reaction associated with it might turn into a pathological cascade leading to neurodegeneration.
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, University of Leipzig, Jahnallee 59, 04109, Leipzig, Germany,
| | | | | |
Collapse
|
30
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
31
|
Mokrushin AA, Pavlinova LI, Borovikov SE. Influence of cooling rate on activity of ionotropic glutamate receptors in brain slices at hypothermia. J Therm Biol 2014; 44:5-13. [PMID: 25086967 DOI: 10.1016/j.jtherbio.2014.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Hypothermia is a known approach in the treatment of neurological pathologies. Mild hypothermia enhances the therapeutic window for application of medicines, while deep hypothermia is often accompanied by complications, including problems in the recovery of brain functions. The purpose of present study was to investigate the functioning of glutamate ionotropic receptors in brain slices cooled with different rates during mild, moderate and deep hypothermia. Using a system of gradual cooling combined with electrophysiological recordings in slices, we have shown that synaptic activity mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in rat olfactory cortex was strongly dependent on the rate of lowering the temperature. High cooling rate caused a progressive decrease in glutamate receptor activity in brain slices during gradual cooling from mild to deep hypothermia. On the contrary, low cooling rate slightly changed the synaptic responses in deep hypothermia. The short-term potentiation may be induced in slices by electric tetanization at 16 °C in this case. Hence, low cooling rate promoted preservation of neuronal activity and plasticity in the brain tissue.
Collapse
Affiliation(s)
- Anatoly A Mokrushin
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia
| | - Larisa I Pavlinova
- I.P. Pavlov Institute of Physiology, Russian Academy of Science, 199034, Nab. Makarova, 6, Saint-Petersburg, Russia; Institute of Experimental Medicine, Russian Academy of Science, 197376, Ul.Akad. Pavlova, 12, Saint-Petersburg, Russia.
| | - Sergey E Borovikov
- Science Center "Bio", 197376 Street L. Tolstoy, Building 7, 5-H (9), Saint-Petersburg, Russia
| |
Collapse
|
32
|
Nomura S, Fujii M, Inoue T, He Y, Maruta Y, Koizumi H, Suehiro E, Imoto H, Ishihara H, Oka F, Matsumoto M, Owada Y, Yamakawa T, Suzuki M. Changes in glutamate concentration, glucose metabolism, and cerebral blood flow during focal brain cooling of the epileptogenic cortex in humans. Epilepsia 2014; 55:770-776. [PMID: 24779587 DOI: 10.1111/epi.12600] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Recently, focal brain cooling (FBC) was proposed as a method for treating refractory epilepsy. However, the precise influence of cooling on the molecular basis of epilepsy has not been elucidated. Thus the aim of this study was to assess the effect of FBC on glutamate (Glu) concentration, cerebral blood flow (CBF), and glucose metabolism in patients with intractable epilepsy. METHODS Nine patients underwent FBC at 15°C for 30 min prior to cortical resection (n = 6) or hippocampectomy (n = 3). Measurement of metabolites and CBF, as well as electrocorticography (ECoG), was performed. RESULTS Epileptic discharge (ED), as observed by ECoG, disappeared in the cooling period and reappeared in the rewarming period. Glu concentrations were high during the precooling period and were reduced to 51.2% during the cooling period (p = 0.025). Glycerol levels showed a similar decrease (p = 0.028). Lactate concentration was high during the precooling period and was reduced during the cooling period (21.3% decrease; p = 0.005). Glucose and pyruvate levels were maintained throughout the procedure. Changes in CBF were parallel to those observed by ECoG. SIGNIFICANCE FBC reduced EDs and concentrations of Glu and glycerol. This demonstrates the neuroprotective effect of FBC. Our findings confirm that FBC is a reasonable and optimal treatment option for patients with intractable epilepsy.
Collapse
Affiliation(s)
- Sadahiro Nomura
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Papo D. Measuring brain temperature without a thermometer. Front Physiol 2014; 5:124. [PMID: 24723893 PMCID: PMC3973909 DOI: 10.3389/fphys.2014.00124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/13/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- David Papo
- Computational Systems Biology Group, Center for Biomedical Technology, Universidad Politécnica de Madrid Madrid, Spain
| |
Collapse
|
34
|
Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. Proc Natl Acad Sci U S A 2013; 111:480-5. [PMID: 24367075 DOI: 10.1073/pnas.1321314111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perception of time interval on the order of seconds is an essential component of cognition, but the underlying neural mechanism remains largely unknown. In rats trained to estimate time intervals, we found that many neurons in the medial prefrontal cortex (PFC) exhibited sustained spiking activity with diverse temporal profiles of firing-rate modulation during the time-estimation period. Interestingly, in tasks involving different intervals, each neuron exhibited firing-rate modulation with the same profile that was temporally scaled by a factor linearly proportional to the instructed intervals. The behavioral variability across trials within each task also correlated with the intertrial variability of the temporal scaling factor. Local cooling of the medial PFC, which affects neural circuit dynamics, significantly delayed behavioral responses. Thus, PFC neuronal activity contributes to time perception, and temporally scalable firing-rate modulation may reflect a general mechanism for neural representation of interval timing.
Collapse
|
35
|
Bannon NM, Zhang P, Ilin V, Chistiakova M, Volgushev M. Modulation of synaptic transmission by adenosine in layer 2/3 of the rat visual cortex in vitro. Neuroscience 2013; 260:171-84. [PMID: 24355495 DOI: 10.1016/j.neuroscience.2013.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 12/14/2022]
Abstract
Adenosine is a wide-spread endogenous neuromodulator. In the central nervous system it activates A1 and A2A receptors (A1Rs and A2ARs) which have differential distributions, different affinities to adenosine, are coupled to different G-proteins, and have opposite effects on synaptic transmission. Although effects of adenosine are studied in detail in several brain areas, such as the hippocampus and striatum, the heterogeneity of the effects of A1R and A2AR activation and their differential distribution preclude generalization over brain areas and cell types. Here we study adenosine's effects on excitatory synaptic transmission to layer 2/3 pyramidal neurons in slices of the rat visual cortex. We measured effects of bath application of adenosine receptor ligands on evoked excitatory postsynaptic potentials (EPSPs), miniature excitatory postsynaptic potentials (mEPSPs), and membrane properties. Adenosine reduced the amplitude of evoked EPSPs and excitatory postsynaptic currents (EPSCs), and reduced frequency of mEPSPs in a concentration-dependent and reversible manner. Concurrent with EPSP/C amplitude reduction was an increase in the paired-pulse ratio. These effects were blocked by application of the selective A1R antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), suggesting that activation of presynaptic A1Rs suppresses excitatory transmission by reducing release probability. Adenosine (20μM) hyperpolarized the cell membrane from -65.3±1.5 to -67.7±1.8mV, and reduced input resistance from 396.5±44.4 to 314.0±36.3MOhm (∼20%). These effects were also abolished by DPCPX, suggesting postsynaptic A1Rs. Application of the selective A2AR antagonist SCH-58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-a-mine) on the background of high adenosine concentrations revealed an additional decrease in EPSP amplitude. Moreover, application of the A2AR agonist CGS-21680 (4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride) led to an A1R-dependent increase in mEPSP frequency. Dependence of the A2AR effects on the A1R availability suggests interaction between these receptors, whereby A2ARs exert their facilitatory effect on synaptic transmission by inhibiting the A1R-mediated suppression. Our results demonstrate functional pre and postsynaptic A1Rs and presynaptic A2ARs in layer 2/3 of the visual cortex, and suggest interaction between presynaptic A2ARs and A1Rs.
Collapse
Affiliation(s)
- N M Bannon
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - P Zhang
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - V Ilin
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - M Chistiakova
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| | - M Volgushev
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
36
|
Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol 2013; 305:R478-89. [PMID: 23824962 DOI: 10.1152/ajpregu.00117.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany.
| | | |
Collapse
|
37
|
The influence of cold temperature on cellular excitability of hippocampal networks. PLoS One 2012; 7:e52475. [PMID: 23300680 PMCID: PMC3534091 DOI: 10.1371/journal.pone.0052475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K2P), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K2P channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.
Collapse
|
38
|
Brain temperature: physiology and pathophysiology after brain injury. Anesthesiol Res Pract 2012; 2012:989487. [PMID: 23326261 PMCID: PMC3541556 DOI: 10.1155/2012/989487] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/09/2012] [Accepted: 12/12/2012] [Indexed: 12/02/2022] Open
Abstract
The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury.
Collapse
|
39
|
Jayakumar J, Roy S, Dreher B, Martin PR, Vidyasagar TR. Multiple pathways carry signals from short-wavelength-sensitive ('blue') cones to the middle temporal area of the macaque. J Physiol 2012; 591:339-52. [PMID: 23070701 DOI: 10.1113/jphysiol.2012.241117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We recorded spike activity of single neurones in the middle temporal visual cortical area (MT or V5) of anaesthetised macaque monkeys. We used flashing, stationary spatially circumscribed, cone-isolating and luminance-modulated stimuli of uniform fields to assess the effects of signals originating from the long-, medium- or short- (S) wavelength-sensitive cone classes. Nearly half (41/86) of the tested MT neurones responded reliably to S-cone-isolating stimuli. Response amplitude in the majority of the neurones tested further (19/28) was significantly reduced, though not always completely abolished, during reversible inactivation of visuotopically corresponding regions of the ipsilateral primary visual cortex (striate cortex, area V1). Thus, the present data indicate that signals originating in S-cones reach area MT, either via V1 or via a pathway that does not go through area V1. We did not find a significant difference between the mean latencies of spike responses of MT neurones to signals that bypass V1 and those that do not; the considerable overlap we observed precludes the use of spike-response latency as a criterion to define the routes through which the signals reach MT.
Collapse
Affiliation(s)
- Jaikishan Jayakumar
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville VIC 3010, Australia
| | | | | | | | | |
Collapse
|
40
|
Abstract
Many neuroscientists access surface brain structures via a small cranial window, opened in the bone above the brain region of interest. Unfortunately this methodology has the potential to perturb the structure and function of the underlying brain tissue. One potential perturbation is heat loss from the brain surface, which may result in local dysregulation of brain temperature. Here, we demonstrate that heat loss is a significant problem in a cranial window preparation in common use for electrical recording and imaging studies in mice. In the absence of corrective measures, the exposed surface of the neocortex was at ∼28°C, ∼10°C below core body temperature, and a standing temperature gradient existed, with tissue below the core temperature even several millimeters into the brain. Cooling affected cellular and network function in neocortex and resulted principally from increased heat loss due to convection and radiation through the skull and cranial window. We demonstrate that constant perfusion of solution, warmed to 37°C, over the brain surface readily corrects the brain temperature, resulting in a stable temperature of 36-38°C at all depths. Our results indicate that temperature dysregulation may be common in cranial window preparations that are in widespread use in neuroscience, underlining the need to take measures to maintain the brain temperature in many physiology experiments.
Collapse
Affiliation(s)
- Abigail S Kalmbach
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Cooke DF, Goldring AB, Yamayoshi I, Tsourkas P, Recanzone GH, Tiriac A, Pan T, Simon SI, Krubitzer L. Fabrication of an inexpensive, implantable cooling device for reversible brain deactivation in animals ranging from rodents to primates. J Neurophysiol 2012; 107:3543-58. [PMID: 22402651 PMCID: PMC3378414 DOI: 10.1152/jn.01101.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/04/2012] [Indexed: 11/22/2022] Open
Abstract
We have developed a compact and lightweight microfluidic cooling device to reversibly deactivate one or more areas of the neocortex to examine its functional macrocircuitry as well as behavioral and cortical plasticity. The device, which we term the "cooling chip," consists of thin silicone tubing (through which chilled ethanol is circulated) embedded in mechanically compliant polydimethylsiloxane (PDMS). PDMS is tailored to compact device dimensions (as small as 21 mm(3)) that precisely accommodate the geometry of the targeted cortical area. The biocompatible design makes it suitable for both acute preparations and chronic implantation for long-term behavioral studies. The cooling chip accommodates an in-cortex microthermocouple measuring local cortical temperature. A microelectrode may be used to record simultaneous neural responses at the same location. Cortex temperature is controlled by computer regulation of the coolant flow, which can achieve a localized cortical temperature drop from 37 to 20°C in less than 3 min and maintain target temperature to within ±0.3°C indefinitely. Here we describe cooling chip fabrication and performance in mediating cessation of neural signaling in acute preparations of rodents, ferrets, and primates.
Collapse
Affiliation(s)
- Dylan F Cooke
- Center for Neuroscience, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vahedi K, Proust F, Geeraerts T. [Experts' recommendations for stroke management in intensive care: intracranial hypertension]. Rev Neurol (Paris) 2012; 168:501-11. [PMID: 22571966 DOI: 10.1016/j.neurol.2011.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 04/29/2011] [Accepted: 07/19/2011] [Indexed: 11/20/2022]
Abstract
This article aims to describe the arguments underlying the experts' recommendations for management of stroke patients in the intensive unit, focusing on intracranial hypertension. This article describes the pathophysiology, diagnostic methods and therapeutic options for intracranial hypertension after stroke, including medical and surgical management.
Collapse
Affiliation(s)
- K Vahedi
- Service de neurologie, hôpital Lariboisière, 2 rue Ambroise-Paré, Paris, France
| | | | | |
Collapse
|
43
|
Lee CM, Stoelzel C, Chistiakova M, Volgushev M. Heterosynaptic plasticity induced by intracellular tetanization in layer 2/3 pyramidal neurons in rat auditory cortex. J Physiol 2012; 590:2253-71. [PMID: 22371479 DOI: 10.1113/jphysiol.2012.228247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Associative Hebbian-type synaptic plasticity underlies the mechanisms of learning and memory; however, Hebbian learning rules lead to runaway dynamics of synaptic weights and lack mechanisms for synaptic competition.Heterosynaptic plasticity may solve these problems by complementing plasticity at synapses that were active during the induction, with opposite-sign changes at non-activated synapses. In visual cortex, a potential candidate mechanism for normalization is plasticity induced by a purely postsynaptic protocol, intracellular tetanization. Here we asked if intracellular tetanization can induce long-term plasticity in auditory cortex. We recorded excitatory postsynaptic potentials (EPSPs) of regular (n =76) and all-or-none (n =24) type in layer 2/3 pyramidal cells in slices from rat auditory cortex. After intracellular tetanization, 32 of 76 regular inputs (42%) showed long-term depression, 21 inputs (28%) showed potentiation and 23 inputs (30%) did not change. The direction of plasticity correlated with the initial release probability: inputs with initially low release probability tended to be potentiated, while inputs with high release probability tended to be depressed. Thus, intracellular tetanization had a normalizing effect on synaptic efficacy. Induction of plasticity by intracellular tetanization required a rise of intracellular [Ca(2+)], because it was impaired by chelating intracellular calcium with EGTA. The long-term changes induced by intracellular tetanization involved both pre and postsynaptic mechanisms. EPSP amplitude changes were correlated with changes of release indices: paired-pulse ratio and the inverse of the coefficient of variation (CV(-2)). Furthermore at some all-or-none synapses, changes of averaged response amplitude were correlated with a change of the failure rate, without a change of the synaptic potency, measured as averaged amplitude of successful responses. Presynaptic components of plastic changes were abolished in experiments with blockade of NO-synthesis and spread, indicating involvement of NO signalling. These results demonstrate that the ability of purely postsynaptic challenges to induce plasticity is a general property of pyramidal neurons of both auditory and visual cortices.
Collapse
Affiliation(s)
- Christopher M Lee
- Department Psychology, University of Connecticut, 406 Babbidge Road, Unit 1020, Storrs, CT 06269-1020, USA
| | | | | | | |
Collapse
|
44
|
Fujii M, Inoue T, Nomura S, Maruta Y, He Y, Koizumi H, Shirao S, Owada Y, Kunitsugu I, Yamakawa T, Tokiwa T, Ishizuka S, Yamakawa T, Suzuki M. Cooling of the epileptic focus suppresses seizures with minimal influence on neurologic functions. Epilepsia 2012; 53:485-93. [PMID: 22292464 DOI: 10.1111/j.1528-1167.2011.03388.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Focal brain cooling is effective for suppression of epileptic seizures, but it is unclear if seizures can be suppressed without a substantial influence on normal neurologic function. To address the issue, a thermoelectrically driven cooling system was developed and applied in free-moving rat models of focal seizure and epilepsy. METHODS Focal seizures limited to the unilateral forelimb were induced by local application of a penicillin G solution or cobalt powder to the unilateral sensorimotor cortex. A proportional integration and differentiation (PID)-controlled, thermoelectrically driven cooling device (weight of 11 g) and bipolar electrodes were chronically implanted on the eloquent area (on the epileptic focus) and the effects of cooling (20, 15, and 10°C) on electrocorticography, seizure frequency, and neurologic changes were investigated. KEY FINDINGS Cooling was associated with a distinct reduction of the epileptic discharges. In both models, cooling of epileptic foci significantly improved both seizure frequency and neurologic functions from 20°C down to 15°C. Cooling to 10°C also suppressed seizures, but with no further improvement in neurologic function. Subsequent investigation of sensorimotor function revealed significant deterioration in foot-fault tests and the receptive field size at 15°C. SIGNIFICANCE Despite the beneficial effects in ictal rats, sensorimotor functions deteriorated at 15°C, thereby suggesting a lower limit for the therapeutic temperature. These results provide important evidence of a therapeutic effect of temperatures from 20 to 15°C using an implantable, hypothermal device for focal epilepsy.
Collapse
Affiliation(s)
- Masami Fujii
- Department of Neurosurgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Spontaneous Rhythmic Activity in the Adult Cerebral Cortex In Vitro. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
New methods for localizing and manipulating neuronal dynamics in behaving animals. Curr Opin Neurobiol 2011; 21:693-700. [PMID: 21763124 DOI: 10.1016/j.conb.2011.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/03/2011] [Accepted: 06/22/2011] [Indexed: 11/21/2022]
Abstract
Where are the 'prime movers' that control behavior? Which circuits in the brain control the order in which individual motor gestures of a learned behavior are generated, and the speed at which they progress? Here we describe two techniques recently applied to localizing and characterizing the circuitry underlying the generation of vocal sequences in the songbird. The first utilizes small, localized, temperature changes in the brain to perturb the speed of neural dynamics. The second utilizes intracellular manipulation of membrane potential in the freely behaving animal to perturb the dynamics within a single neuron. Both of these techniques are broadly applicable in behaving animals to test hypotheses about the biophysical and circuit dynamics that allow neural circuits to march from one state to the next.
Collapse
|
47
|
Coomber B, Edwards D, Jones SJ, Shackleton TM, Goldschmidt J, Wallace MN, Palmer AR. Cortical inactivation by cooling in small animals. Front Syst Neurosci 2011; 5:53. [PMID: 21734869 PMCID: PMC3122068 DOI: 10.3389/fnsys.2011.00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/09/2011] [Indexed: 11/24/2022] Open
Abstract
Reversible inactivation of the cortex by surface cooling is a powerful method for studying the function of a particular area. Implanted cooling cryoloops have been used to study the role of individual cortical areas in auditory processing of awake-behaving cats. Cryoloops have also been used in rodents for reversible inactivation of the cortex, but recently there has been a concern that the cryoloop may also cool non-cortical structures either directly or via the perfusion of blood, cooled as it passed close to the cooling loop. In this study we have confirmed that the loop can inactivate most of the auditory cortex without causing a significant reduction in temperature of the auditory thalamus or other subcortical structures. We placed a cryoloop on the surface of the guinea pig cortex, cooled it to 2°C and measured thermal gradients across the neocortical surface. We found that the temperature dropped to 20–24°C among cells within a radius of about 2.5 mm away from the loop. This temperature drop was sufficient to reduce activity of most cortical cells and led to the inactivation of almost the entire auditory region. When the temperature of thalamus, midbrain, and middle ear were measured directly during cortical cooling, there was a small drop in temperature (about 4°C) but this was not sufficient to directly reduce neural activity. In an effort to visualize the extent of neural inactivation we measured the uptake of thallium ions following an intravenous injection. This confirmed that there was a large reduction of activity across much of the ipsilateral cortex and only a small reduction in subcortical structures.
Collapse
Affiliation(s)
- Ben Coomber
- MRC Institute of Hearing Research, University Park Nottingham, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Aronov D, Fee MS. Analyzing the dynamics of brain circuits with temperature: design and implementation of a miniature thermoelectric device. J Neurosci Methods 2011; 197:32-47. [PMID: 21291909 DOI: 10.1016/j.jneumeth.2011.01.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/21/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Traditional lesion or inactivation methods are useful for determining if a given brain area is involved in the generation of a behavior, but not for determining if circuit dynamics in that area control the timing of the behavior. In contrast, localized mild cooling or heating of a brain area alters the speed of neuronal and circuit dynamics and can reveal the role of that area in the control of timing. It has been shown that miniaturized solid-state heat pumps based on the Peltier effect can be useful for analyzing brain dynamics in small freely behaving animals (Long and Fee, 2008). Here we present a theoretical analysis of these devices and a procedure for optimizing their design. We describe the construction and implementation of one device for cooling surface brain areas, such as cortex, and another device for cooling deep brain regions. We also present measurements of the magnitude and localization of the brain temperature changes produced by these two devices.
Collapse
Affiliation(s)
- Dmitriy Aronov
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, MIT 46-5130, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | | |
Collapse
|
49
|
Zeng YC, Li SM, Xiong GL, Su HM, Wan JC. Influences of protein to energy ratios in breakfast on mood, alertness and attention in the healthy undergraduate students. Health (London) 2011. [DOI: 10.4236/health.2011.36065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Pikov V, Arakaki X, Harrington M, Fraser SE, Siegel PH. Modulation of neuronal activity and plasma membrane properties with low-power millimeter waves in organotypic cortical slices. J Neural Eng 2010; 7:045003. [PMID: 20644247 DOI: 10.1088/1741-2560/7/4/045003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As millimeter waves (MMWs) are being increasingly used in communications and military applications, their potential effects on biological tissue has become an important issue for scientific inquiry. Specifically, several MMW effects on the whole-nerve activity were reported, but the underlying neuronal changes remain unexplored. This study used slices of cortical tissue to evaluate the MMW effects on individual pyramidal neurons under conditions mimicking their in vivo environment. The applied levels of MMW power are three orders of magnitude below the existing safe limit for human exposure of 1 mW cm(-2). Surprisingly, even at these low power levels, MMWs were able to produce considerable changes in neuronal firing rate and plasma membrane properties. At the power density approaching 1 microW cm(-2), 1 min of MMW exposure reduced the firing rate to one third of the pre-exposure level in four out of eight examined neurons. The width of the action potentials was narrowed by MMW exposure to 17% of the baseline value and the membrane input resistance decreased to 54% of the baseline value across all neurons. These effects were short lasting (2 min or less) and were accompanied by MMW-induced heating of the bath solution at 3 degrees C. Comparison of these results with previously published data on the effects of general bath heating of 10 degrees C indicated that MMW-induced effects cannot be fully attributed to heating and may involve specific MMW absorption by the tissue. Blocking of the intracellular Ca(2+)-mediated signaling did not significantly alter the MMW-induced neuronal responses suggesting that MMWs interacted directly with the neuronal plasma membrane. The presented results constitute the first demonstration of direct real-time monitoring of the impact of MMWs on nervous tissue at a microscopic scale. Implication of these findings for the therapeutic modulation of neuronal excitability is discussed.
Collapse
Affiliation(s)
- Victor Pikov
- Neural Engineering Program, Huntington Medial Research Institutes, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|