1
|
Tan HQ, Cai J, Tay SH, Sim AY, Huang L, Chua ML, Tang Y. Cluster-based radiomics reveal spatial heterogeneity of bevacizumab response for treatment of radiotherapy-induced cerebral necrosis. Comput Struct Biotechnol J 2024; 23:43-51. [PMID: 38125298 PMCID: PMC10730953 DOI: 10.1016/j.csbj.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Bevacizumab is used in the treatment of radiation necrosis (RN), which is a debilitating toxicity following head and neck radiotherapy. However, there is no biomarker to predict if a patient would respond to bevacizumab. Purpose We aimed to develop a cluster-based radiomics approach to characterize the spatial heterogeneity of RN and map their responses to bevacizumab. Methods 118 consecutive nasopharyngeal carcinoma patients diagnosed with RN were enrolled. We divided 152 lesions from the patients into 101 for training, and 51 for validation. We extracted voxel-level radiomics features from each lesion segmented on T1-weighted+contrast and T2 FLAIR sequences of pre- and post-bevacizumab magnetic resonance images, followed by a three-step analysis involving individual- and population-level clustering, before delta-radiomics to derive five radiomics clusters within the lesions. We tested the association of each cluster with response to bevacizumab and developed a clinico-radiomics model using clinical predictors and cluster-specific features. Results 71 (70.3%) and 34 (66.7%) lesions had responded to bevacizumab in the training and validation datasets, respectively. Two radiomics clusters were spatially mapped to the edema region, and the volume changes were significantly associated with bevacizumab response (OR:11.12 [95% CI: 2.54-73.47], P = 0.004; and 1.63[1.07-2.78], P = 0.042). The combined clinico-radiomics model based on textural features extracted from the most significant cluster improved the prediction of bevacizumab response, compared with a clinical-only model (AUC:0.755 [0.645-0.865] to 0.852 [0.764-0.940], training; 0.708 [0.554-0.861] to 0.816 [0.699-0.933], validation). Conclusion Our radiomics approach yielded intralesional resolution, enabling a more refined feature selection for predicting bevacizumab efficacy in the treatment of RN.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Jinhua Cai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shi Hui Tay
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Adelene Y.L. Sim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Luo Huang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, People's Republic of China
| | - Melvin L.K. Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Lawrence LSP, Maralani PJ, Das S, Sahgal A, Stanisz GJ, Lau AZ. Magnetic resonance imaging techniques for monitoring glioma response to chemoradiotherapy. J Neurooncol 2024:10.1007/s11060-024-04856-3. [PMID: 39527382 DOI: 10.1007/s11060-024-04856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Treatment response assessment for gliomas currently uses changes in tumour size as measured with T1- and T2-weighted MRI. However, changes in tumour size may occur many weeks after therapy completion and are confounded by radiation treatment effects. Advanced MRI techniques sensitive to tumour physiology may provide complementary information to evaluate tumour response at early timepoints during therapy. The objective of this review is to provide a summary of the history and current knowledge regarding advanced MRI techniques for early treatment response evaluation in glioma. METHODS The literature survey included perfusion MRI, diffusion-weighted imaging, quantitative magnetization transfer imaging, and chemical exchange transfer MRI. Select articles spanning the history of each technique as applied to treatment response evaluation in glioma were chosen. This report is a narrative review, not formally systematic. RESULTS Chemical exchange saturation transfer imaging potentially offers the earliest method to detect tumour response due to changes in metabolism. Diffusion-weighted imaging is sensitive to changes in tumour cellularity later during radiotherapy and is prognostic for progression-free and overall survival. Substantial evidence suggests that perfusion MRI can differentiate between tumour recurrence and treatment effect, but consensus regarding acquisition, processing, and interpretation is still lacking. Magnetization transfer imaging shows promise for detecting subtle white matter damage which could indicate tumour invasion, but more research in this area is needed. CONCLUSION Advanced MRI techniques show potential for early treatment response assessment, but each technique alone lacks specificity. Multiparametric imaging may be necessary to aid biological interpretation and enable treatment guidance.
Collapse
Affiliation(s)
- Liam S P Lawrence
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pejman J Maralani
- Department of Medical Imaging, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sunit Das
- Department of Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University, Lublin, Poland
| | - Angus Z Lau
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
3
|
Yadav D, Upadhyay R, Kumar VA, Chen MM, Johnson JM, Langshaw H, Curl BJ, Farhat M, Talpur W, Beckham TH, Yeboa DN, Swanson TA, Ghia AJ, Li J, Chung C. Additive Value of Magnetic Resonance Simulation Before Chemoradiation in Evaluating Treatment Response and Pseudoprogression in High-Grade Gliomas. Pract Radiat Oncol 2024; 14:e449-e457. [PMID: 38685448 DOI: 10.1016/j.prro.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE A dedicated magnetic resonance imaging simulation (MRsim) for radiation treatment (RT) planning in patients with high-grade glioma (HGG) can detect early radiologic changes, including tumor progression after surgery and before standard of care chemoradiation. This study aimed to determine the effect of using postoperative magnetic resonance imaging (MRI) versus MRsim as the baseline for response assessment and reporting pseudoprogression on follow-up imaging at 1 month (FU1) after chemoradiation. METHODS AND MATERIALS Histologically confirmed patients with HGG were planned for 6 weeks of RT in a prospective study for adaptive RT planning. All patients underwent postoperative MRI, MRsim, and follow-up MRI scans every 2 to 3 months. Tumor response was assessed by 3 independent blinded reviewers using Response Assessment in Neuro-Oncology criteria when baseline was either postoperative MRI or MRsim. Interobserver agreement was calculated using Light's kappa. RESULTS Thirty patients (median age, 60.5 years; IQR, 54.5-66.3) were included. Median interval between surgery and RT was 34 days (IQR, 27-41). Response assessment at FU1 differed in 17 patients (57%) when the baseline was postoperative MRI versus MRsim, including true progression versus partial response or stable disease in 11 (37%) and stable disease versus partial response in 6 (20%) patients. True progression was reported in 19 patients (63.3%) on FU1 when the baseline was postoperative MRI versus 8 patients (26.7%) when the baseline was MRsim (P = .004). Pseudoprogression was observed at FU1 in 12 (40%) versus 4 (13%) patients, when the baseline was postoperative MRI versus MRsim (P = .019). Interobserver agreement between observers was moderate (κ = 0.579; P < .001). CONCLUSIONS Our study demonstrates the value of acquiring an updated MR closer to RT in patients with HGG to improve response assessment, and accuracy in evaluation of pseudoprogression even at the early time point of first follow-up after RT. Earlier identification of patients with true progression would enable more timely salvage treatments including potential clinical trial enrollment to improve patient outcomes.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Rituraj Upadhyay
- Department of Radiation Oncology, James Comprehensive Cancer Hospital, The Ohio State University, Columbus, Ohio
| | - Vinodh A Kumar
- Department of Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Melissa M Chen
- Department of Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jason M Johnson
- Department of Radiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Holly Langshaw
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Brandon J Curl
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Maguy Farhat
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Wasif Talpur
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Thomas H Beckham
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Debra N Yeboa
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Todd A Swanson
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Amol J Ghia
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Jing Li
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Caroline Chung
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Satragno C, Schiavetti I, Cella E, Picichè F, Falcitano L, Resaz M, Truffelli M, Caneva S, Mattioli P, Esposito D, Ginulla A, Scaffidi C, Fiaschi P, D'Andrea A, Bianconi A, Zona G, Barletta L, Roccatagliata L, Castellan L, Morbelli S, Bauckneht M, Donegani I, Nozza P, Arnaldi D, Vidano G, Gianelli F, Barra S, Bennicelli E, Belgioia L. Systemic inflammatory markers and volume of enhancing tissue on post-contrast T1w MRI images in differentiating true tumor progression from pseudoprogression in high-grade glioma. Clin Transl Radiat Oncol 2024; 49:100849. [PMID: 39318678 PMCID: PMC11419878 DOI: 10.1016/j.ctro.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 09/26/2024] Open
Abstract
Background High-grade glioma (HGG) patients post-radiotherapy often face challenges distinguishing true tumor progression (TTP) from pseudoprogression (PsP). This study evaluates the effectiveness of systemic inflammatory markers and volume of enhancing tissue on post-contrast T1 weighted (T1WCE) MRI images for this differentiation within the first six months after treatment. Material and Methods We conducted a retrospective analysis on a cohort of HGG patients from 2015 to 2021, categorized per WHO 2016 and 2021 criteria. We analyzed treatment responses using modified RANO criteria and conducted volumetry on T1WCE and T2W/FLAIR images.Blood parameters assessed included neutrophil/lymphocyte ratio (NLR), systemic immune-inflammation index (SII), and systemic inflammation response index (SIRI). We employed Chi-square, Fisher's exact test, and Mann-Whitney U test for statistical analyses, using log-transformed predictors due to multicollinearity. A Cox regression analysis assessed the impact of PsP- and TTP-related factors on overall survival (OS). Results The cohort consisted of 39 patients, where 16 exhibited PsP and 23 showed TTP. Univariate analysis revealed significantly higher NLR and SII in the TTP group [NLR: 4.1 vs 7.3, p = 0.002; SII 546.5 vs 890.5p = 0.009]. T1WCE volume distinctly differentiated PsP from TTP [2.2 vs 11.7, p < 0.001]. In multivariate regression, significant predictors included NLR and T1WCE volume in the "NLR Model," and T1WCE volume and SII in the "SII Model." The study also found a significantly lower OS rate in TTP patients compared to those with PsP [HR 3.97, CI 1.59 to 9.93, p = 0.003]. Conclusion Elevated both, SII and NLR, and increased T1WCE volume were effective in differentiating TTP from PsP in HGG patients post-radiotherapy. These results suggest the potential utility of incorporating these markers into clinical practice, though further research is necessary to confirm these findings in larger patient cohorts.
Collapse
Affiliation(s)
- Camilla Satragno
- Dept. of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Irene Schiavetti
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Eugenia Cella
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dept. of Internal Medicine and Medical Speciality (DIMI), University of Genoa, Genoa, Italy
| | - Federica Picichè
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Laura Falcitano
- U.O. Neuroradiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Martina Resaz
- U.O. Neuroradiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Truffelli
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Caneva
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience Ophthalmological Rehabilitation Genetics and Mother and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience Ophthalmological Rehabilitation Genetics and Mother and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- U.O. Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela Esposito
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Alessio Ginulla
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Claudio Scaffidi
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Pietro Fiaschi
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience Ophthalmological Rehabilitation Genetics and Mother and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Alessandro D'Andrea
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Bianconi
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluigi Zona
- U.O. Clinica Neurochirurgica e Neurotraumatologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience Ophthalmological Rehabilitation Genetics and Mother and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Laura Barletta
- U.O. Neuroradiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Roccatagliata
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
- U.O. Neuroradiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucio Castellan
- U.O. Neuroradiologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bauckneht
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Isabella Donegani
- U.O. Medicina Nucleare, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Nozza
- U.O. Anatomia Patologica Ospedaliera, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience Ophthalmological Rehabilitation Genetics and Mother and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- U.O. Neurofisiopatologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Vidano
- U.O. Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Gianelli
- U.O. Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Salvina Barra
- U.O. Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Bennicelli
- U.O. Oncologia Medica 2, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Liliana Belgioia
- Dept. of Health Science (DISSAL), University of Genoa, Genoa, Italy
- U.O. Radioterapia Oncologica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Wu X, Zhang M, Jiang Q, Li M, Wu Y. Diagnostic accuracy of magnetic resonance diffusion tensor imaging in distinguishing pseudoprogression from glioma recurrence: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:1177-1185. [PMID: 39400036 DOI: 10.1080/14737140.2024.2415404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of diffusion tensor imaging (DTI)-derived metrics mean diffusivity (MD) and fractional anisotropy (FA) in differentiating glioma recurrence from pseudoprogression. METHODS The Cochrane Library, Scopus, PubMed, and the Web of Science were systematically searched. Study selection and data extraction were done by two investigators independently. The quality assessment of diagnostic accuracy studies was applied to evaluate the quality of the included studies. Combined sensitivity (SEN) and specificity (SPE) and the area under the summary receiver operating characteristic curve (SROC) with the 95% confidence interval (CI) were calculated. RESULTS Seven high-quality studies involving 246 patients were included. Quantitative synthesis of studies showed that the pooled SEN and SPE for MD were 0.81 (95% CI 0.70-0.88) and 0.82 (95% CI 0.70-0.90), respectively, and the value of the area under the SROC curve was 0.88 (95% CI 0.85-0.91). The pooled SEN and SPE for FA were 0.74 (95% CI 0.65-0.82) and 0.79 (95% CI 0.66-0.88), respectively, and the value of the area under the SROC curve was 0.84 (95% CI 0.80-0.87). CONCLUSIONS This meta-analysis showed that both MD and FA have a high diagnostic accuracy in differentiating glioma recurrence from pseudoprogression. REGISTRATION PROSPERO protocol: CRD42024501146.
Collapse
Affiliation(s)
- Xiaoyi Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mai Zhang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Jiang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxi Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Salem PP, Chami P, Daou R, Hajj J, Lin H, Chhabra AM, Simone CB, Lee NY, Hajj C. Proton Radiation Therapy: A Systematic Review of Treatment-Related Side Effects and Toxicities. Int J Mol Sci 2024; 25:10969. [PMID: 39456752 PMCID: PMC11506991 DOI: 10.3390/ijms252010969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer is the second leading cause of death worldwide. Around half of all cancer patients undergo some type of radiation therapy throughout the course of their treatment. Photon radiation remains (RT) the most widely utilized modality of radiotherapy despite recent advancements in proton radiation therapy (PBT). PBT makes use of the particle's biological property known as the Bragg peak to better spare healthy tissue from radiation damage, with data to support that this treatment modality is less toxic than photon RT. Hence, proton radiation dosimetry looks better compared to photon dosimetry; however, due to proton-specific uncertainties, unexpected acute, subacute, and long-term toxicities can be encountered. Reported neurotoxicity resulting from proton radiation treatments include radiation necrosis, moyamoya syndrome, neurosensory toxicities, brain edema, neuromuscular toxicities, and neurocognitive toxicities. Pulmonary toxicities include pneumonitis and fibrosis, pleural effusions, and bronchial toxicities. Pericarditis, pericardial effusions, and atrial fibrillations are among the cardiac toxicities related to proton therapy. Gastrointestinal and hematological toxicities are also found in the literature. Genitourinary toxicities include urinary and reproductive-related toxicities. Osteological, oral, endocrine, and skin toxicities have also been reported. The side effects will be comparable to the ones following photon RT, nonetheless at an expected lower incidence. The toxicities collected mainly from case reports and clinical trials are described based on the organs affected and functions altered.
Collapse
Affiliation(s)
- Peter P. Salem
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Perla Chami
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (P.P.S.); (P.C.)
| | - Remy Daou
- Family Medicine Department, Hotel Dieu de France Hospital, Beirut 1660, Lebanon;
| | - Joseph Hajj
- Faculty of Medicine, University of Balamand, Beirut 1100, Lebanon;
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Arpit M. Chhabra
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
| | - Charles B. Simone
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Nancy Y. Lee
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| | - Carla Hajj
- New York Proton Center, New York, NY 10035, USA; (H.L.); (A.M.C.); (C.B.S.II); (N.Y.L.)
- Memorial Sloan Kettering Cancer Center, New York, NY 10027, USA
| |
Collapse
|
7
|
Anil A, Stokes AM, Karis JP, Bell LC, Eschbacher J, Jennings K, Prah MA, Hu LS, Boxerman JL, Schmainda KM, Quarles CC. Identification of a Single-Dose, Low-Flip-Angle-Based CBV Threshold for Fractional Tumor Burden Mapping in Recurrent Glioblastoma. AJNR Am J Neuroradiol 2024; 45:1545-1551. [PMID: 38782593 PMCID: PMC11448978 DOI: 10.3174/ajnr.a8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND AND PURPOSE DSC-MR imaging can be used to generate fractional tumor burden (FTB) maps via application of relative CBV thresholds to spatially differentiate glioblastoma recurrence from posttreatment radiation effects (PTRE). Image-localized histopathology was previously used to validate FTB maps derived from a reference DSC-MR imaging protocol by using preload, a moderate flip angle (MFA, 60°), and postprocessing leakage correction. Recently, a DSC-MR imaging protocol with a low flip angle (LFA, 30°) with no preload was shown to provide leakage-corrected relative CBV (rCBV) equivalent to the reference protocol. This study aimed to identify the rCBV thresholds for the LFA protocol that generate the most accurate FTB maps, concordant with those obtained from the reference MFA protocol. MATERIALS AND METHODS Fifty-two patients with grade-IV glioblastoma who had prior surgical resection and received chemotherapy and radiation therapy were included in the study. Two sets of DSC-MR imaging data were collected sequentially first by using LFA protocol with no preload, which served as the preload for the subsequent MFA protocol. Standardized relative CBV maps (sRCBV) were obtained for each patient and coregistered with the anatomic postcontrast T1-weighted images. The reference MFA-based FTB maps were computed by using previously published sRCBV thresholds (1.0 and 1.56). A receiver operating characteristics (ROC) analysis was conducted to identify the optimal, voxelwise LFA sRCBV thresholds, and the sensitivity, specificity, and accuracy of the LFA-based FTB maps were computed with respect to the MFA-based reference. RESULTS The mean sRCBV values of tumors across patients exhibited strong agreement (concordance correlation coefficient = 0.99) between the 2 protocols. Using the ROC analysis, the optimal lower LFA threshold that accurately distinguishes PTRE from tumor recurrence was found to be 1.0 (sensitivity: 87.77%; specificity: 90.22%), equivalent to the ground truth. To identify aggressive tumor regions, the ROC analysis identified an upper LFA threshold of 1.37 (sensitivity: 90.87%; specificity: 91.10%) for the reference MFA threshold of 1.56. CONCLUSIONS For LFA-based FTB maps, an sRCBV threshold of 1.0 and 1.37 can differentiate PTRE from recurrent tumors. FTB maps aid in surgical planning, guiding pathologic diagnosis and treatment strategies in the recurrent setting. This study further confirms the reliability of single-dose LFA-based DSC-MR imaging.
Collapse
Affiliation(s)
- Aliya Anil
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley M Stokes
- Division of Neuroimaging Research and Barrow Neuroimaging Innovation Center (A.M.S.), Barrow Neurological Institute, Phoenix, Arizona
| | - John P Karis
- Department of Neuroradiology (J.P.K.), Barrow Neurological Institute, Phoenix, Arizona
| | - Laura C Bell
- Clinical Imaging Group (L.C.B.), Genentech Inc., San Francisco, California
| | - Jennifer Eschbacher
- Department of Neuropathology (J.E.), Barrow Neurological Institute, Phoenix, Arizona
| | - Kristofer Jennings
- Department of Biostatistics (K.J.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa A Prah
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leland S Hu
- Department of Radiology (L.S.H.), Division of Neuroradiology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Jerrold L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital, Providence, Rhode Island
| | - Kathleen M Schmainda
- Department of Biophysics (M.A.P., K.M.S.), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - C Chad Quarles
- From the Cancer System Imaging (A.A., C.C.Q.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Librizzi G, Lombardi G, Bertoldo A, Manara R. Perioperative imaging predictors of tumor progression and pseudoprogression: A systematic review. Crit Rev Oncol Hematol 2024; 202:104445. [PMID: 38992848 DOI: 10.1016/j.critrevonc.2024.104445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
In high-grade gliomas, pseudoprogression after radiation treatment might dramatically impact patient's management. We searched for perioperative imaging predictors of pseudoprogression in high-grade gliomas according to PRISMA guidelines, using MEDLINE/Pubmed and Embase (until January 2024). Study design, sample size, setting, diagnostic gold standard, imaging modalities and contrasts, and differences among variables or measures of diagnostic accuracy were recorded. Study quality was assessed through the QUADAS-2 tool. Twelve studies (11 with MRI, one with PET; 1058 patients) were reviewed. Most studies used a retrospective design (9/12), and structural MRI (7/12). Studies were heterogeneous in metrics and diagnostic reference standards; patient selection bias was a frequent concern. Pseudoprogression and progression showed some significant group differences in perioperative imaging metrics, although often with substantial overlap. Radiomics showed moderate accuracy but requires further validation. Current literature is scarce and limited by methodological concerns, highlighting the need of new predictors and multiparametric approaches.
Collapse
Affiliation(s)
- Giovanni Librizzi
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Neuroradiology Unit, Padova University Hospital, Padova, Italy.
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy; Department of Information Engineering, University of Padova, Padova, Italy.
| | - Renzo Manara
- Neuroradiology Unit, Padova University Hospital, Padova, Italy; DIMED, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
10
|
Chamseddine I, Shah K, Lee H, Ehret F, Schuemann J, Bertolet A, Shih HA, Paganetti H. Decoding Patient Heterogeneity Influencing Radiation-Induced Brain Necrosis. Clin Cancer Res 2024; 30:4424-4433. [PMID: 39106090 PMCID: PMC11444871 DOI: 10.1158/1078-0432.ccr-24-1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE In radiotherapy (RT) for brain tumors, patient heterogeneity masks treatment effects, complicating the prediction and mitigation of radiation-induced brain necrosis. Therefore, understanding this heterogeneity is essential for improving outcome assessments and reducing toxicity. EXPERIMENTAL DESIGN We developed a clinically practical pipeline to clarify the relationship between dosimetric features and outcomes by identifying key variables. We processed data from a cohort of 130 patients treated with proton therapy for brain and head and neck tumors, utilizing an expert-augmented Bayesian network to understand variable interdependencies and assess structural dependencies. Critical evaluation involved a three-level grading system for each network connection and a Markov blanket analysis to identify variables directly impacting necrosis risk. Statistical assessments included log-likelihood ratio, integrated discrimination index, net reclassification index, and receiver operating characteristic (ROC). RESULTS The analysis highlighted tumor location and proximity to critical structures such as white matter and ventricles as major determinants of necrosis risk. The majority of network connections were clinically supported, with quantitative measures confirming the significance of these variables in patient stratification (log-likelihood ratio = 12.17; P = 0.016; integrated discrimination index = 0.15; net reclassification index = 0.74). The ROC curve area was 0.66, emphasizing the discriminative value of nondosimetric variables. CONCLUSIONS Key patient variables critical to understanding brain necrosis post-RT were identified, aiding the study of dosimetric impacts and providing treatment confounders and moderators. This pipeline aims to enhance outcome assessments by revealing at-risk patients, offering a versatile tool for broader applications in RT to improve treatment personalization in different disease sites.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keyur Shah
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hoyeon Lee
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Felix Ehret
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, a partnership between DKFZ and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alejandro Bertolet
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Wang Z, Shu J, Feng L. T2-FLAIR imaging-based radiomic features for predicting early postoperative recurrence of grade II gliomas. Future Oncol 2024; 20:2757-2764. [PMID: 39268928 DOI: 10.1080/14796694.2024.2397327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Aim: To develop and validate a T2-weighted-fluid attenuated inversion recovery (T2-FLAIR) images-based radiomics model for predicting early postoperative recurrence (within 1 year) in patients with low-grade gliomas (LGGs).Methods: A retrospective analysis was performed by collecting clinical, pathological and magnetic resonance imaging (MRI) data from patients with LGG between 2017 and 2022. Regions of interest were delineated and radiomic features were extracted from T2-FLAIR images using 3D-Slicer software. To minimize redundant features, the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was used. Patients were categorized into two groups based on recurrence status: the recurrence group (RG) and the non-recurrence group (NRG). Radiomic features were used to develop models using three machine learning approaches: logistic regression (LR), random forest (RF) and support vector machine (SVM). The performance of the radiomic features was validated using fivefold cross-validation.Results: After rigorous screening, 105 patients met the inclusion criteria, and five radiomic features were identified. After 5-folds cross-validation, the average areas under the curves for LR, RF and SVM were 0.813, 0.741 and 0.772, respectively.Conclusion: T2-FLAIR-based radiomic features effectively predicted early recurrence in postoperative LGGs.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Oncology, Qiandongnan Hospital affiliated to Guizhou Medical University (People's Hospital of Qiandongnan Miao & Dong Autonomous Prefecture), No. 31, Shaoshan South Road, Kaili, Guizhou Province, China
| | - Jinzhong Shu
- Department of Oncology, Qiandongnan Hospital affiliated to Guizhou Medical University (People's Hospital of Qiandongnan Miao & Dong Autonomous Prefecture), No. 31, Shaoshan South Road, Kaili, Guizhou Province, China
| | - Linjun Feng
- Department of Oncology, Qiandongnan Hospital affiliated to Guizhou Medical University (People's Hospital of Qiandongnan Miao & Dong Autonomous Prefecture), No. 31, Shaoshan South Road, Kaili, Guizhou Province, China
| |
Collapse
|
12
|
Hu G, Tian B, Han S, Wang S, Hacker M, Li X, Bai X. Prognostic evaluation in recurrent glioma through 11C-Choline PET/CT imaging. EJNMMI Res 2024; 14:84. [PMID: 39266803 PMCID: PMC11393258 DOI: 10.1186/s13550-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Geng Hu
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Bin Tian
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Shaoli Han
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic, Capital Medical University, Tumor Research Institute, Beijing, China.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | - Xia Bai
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
13
|
Moltoni G, Romano A, Capriotti G, Campagna G, Ascolese AM, Romano A, Dellepiane F, Minniti G, Signore A, Bozzao A. ASL, DSC, DCE perfusion MRI and 18F-DOPA PET/CT in differentiating glioma recurrence from post-treatment changes. LA RADIOLOGIA MEDICA 2024; 129:1382-1393. [PMID: 39117936 PMCID: PMC11379733 DOI: 10.1007/s11547-024-01862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES To discriminate between post-treatment changes and tumor recurrence in patients affected by glioma undergoing surgery and chemoradiation with a new enhancing lesion is challenging. We aimed to evaluate the role of ASL, DSC, DCE perfusion MRI, and 18F-DOPA PET/CT in distinguishing tumor recurrence from post-treatment changes in patients with glioma. MATERIALS AND METHODS We prospectively enrolled patients with treated glioma (surgery plus chemoradiation) and a new enhancing lesion doubtful for recurrence or post-treatment changes. Each patient underwent a 1.5T MRI examination, including ASL, DSC, and DCE PWI, and an 18F-DOPA PET/CT examination. For each lesion, we measured ASL-derived CBF and normalized CBF, DSC-derived rCBV, DCE-derived Ktrans, Vp, Ve, Kep, and PET/CT-derived SUV maximum. Clinical and radiological follow-up determined the diagnosis of tumor recurrence or post-treatment changes. RESULTS We evaluated 29 lesions (5 low-grade gliomas and 24 high-grade gliomas); 14 were malignancies, and 15 were post-treatment changes. CBF ASL, nCBF ASL, rCBV DSC, and PET SUVmax were associated with tumor recurrence from post-treatment changes in patients with glioma through an univariable logistic regression. Whereas the multivariable logistic regression results showed only nCBF ASL (p = 0.008) was associated with tumor recurrence from post-treatment changes in patients with glioma with OR = 22.85, CI95%: (2.28-228.77). CONCLUSION In our study, ASL was the best technique, among the other two MRI PWI and the 18F-DOPA PET/CT PET, in distinguishing disease recurrence from post-treatment changes in treated glioma.
Collapse
Affiliation(s)
- Giulia Moltoni
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy.
| | - Andrea Romano
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Gabriela Capriotti
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Giuseppe Campagna
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Anna Maria Ascolese
- SMCMT Department, Radiotherapy Oncology, S. Andrea Hospital, University Sapienza, Rome, Italy
| | - Allegra Romano
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Francesco Dellepiane
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, 00138, Rome, Italy
- IRCCS Neuromed, 86077, Pozzilli, Italy
| | - Alberto Signore
- Department of Medical-Surgical Sciences and Translational Medicine, University of Rome "Sapienza", Rome, Italy
| | - Alessandro Bozzao
- NESMOS, Department of Neuroradiology, S. Andrea Hospital, University Sapienza, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| |
Collapse
|
14
|
van den Elshout R, Ariëns B, Esmaeili M, Akkurt B, Mannil M, Meijer FJA, van der Kolk AG, Scheenen TWJ, Henssen D. Distinguishing glioblastoma progression from treatment-related changes using DTI directionality growth analysis. Neuroradiology 2024:10.1007/s00234-024-03450-8. [PMID: 39153088 DOI: 10.1007/s00234-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND It is difficult to distinguish between tumor progression (TP) and treatment-related abnormalities (TRA) in treated glioblastoma patients via conventional MRI, but this distinction is crucial for treatment decision making. Glioblastoma is known to exhibit an invasive growth pattern along white matter architecture and vasculature. This study quantified lesion development patterns in treated glioblastoma lesions and their relation to white matter microstructure to distinguish TP from TRA. MATERIALS AND METHODS Glioblastoma patients with confirmed TP or TRA with T1-weighted contrast-enhanced and DTI MR scans from two posttreatment follow-up timepoints were reviewed. The contrast-enhancing regions were segmented, and the regions were coregistered to the DTI data. Lesion increase vectors were categorized into two groups: parallel (0-20 degrees) and perpendicular (70-90 degrees) to white matter. FA-values were also extracted. To test for a statistically significant difference between the TP and TRA groups, a Mann‒Whitney U test was performed. RESULTS Of 73 glioblastoma patients, fifteen were diagnosed with TRA, whereas 58 patients suffered TP. TP had a 25.8% (95% CI 24.1%-27.6%) increase in parallel lesions, and TRA had a 25.4% (95% CI 20.9%-29.9%) increase in parallel lesions. The perpendicular increase was 14.7% for TP (95% CI 13.0%-16.4%) and 18.0% (95% CI 13.5%-22.5%) for TRA. These results were not significantly different (p = 0.978). FA value for TP showed to be 0.248 (SD = 0.054) and for TRA it was 0.231 (SD = 0.075), showing no statistically significant difference (p = 0.121). CONCLUSIONS Based on our results, quantifying posttreatment contrast-enhancing lesion development directionality with DTI in glioblastoma patients does not appear to effectively distinguish between TP and TRA.
Collapse
Affiliation(s)
- R van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands.
| | - B Ariëns
- AmsterdamUMC, Radiology and Nuclear Medicine, Amsterdam, Netherlands
| | - M Esmaeili
- Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
- Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway
| | - B Akkurt
- University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Muenster, Germany
| | - M Mannil
- University Clinic for Radiology, Westfälische Wilhelms-University Muenster and University Hospital Muenster, Muenster, Germany
| | - F J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - A G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - T W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| | - D Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen, 6525 GA, the Netherlands
| |
Collapse
|
15
|
Takagi F, Furuse M, Kuwabara H, Kambara A, Omura N, Tanabe S, Yagi R, Hiramatsu R, Kameda M, Nonoguchi N, Kawabata S, Takami T, Miyatake SI, Wanibuchi M. Expression and distribution of hypoxia-inducible factor-1α and vascular endothelial growth factor in comparison between radiation necrosis and tumor tissue in metastatic brain tumor: A case report. Neuropathology 2024; 44:240-246. [PMID: 38069461 DOI: 10.1111/neup.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 06/04/2024]
Abstract
We report the case of a 70-year-old woman with metastatic brain tumors who underwent surgical removal of the tumor and radiation necrosis. The patient had a history of colon cancer and had undergone surgical removal of a left occipital tumor. Histopathological evaluation revealed a metastatic brain tumor. The tumor recurred six months after surgical removal, followed by whole-brain radiotherapy, and the patient underwent stereotactic radiosurgery. Six months later, the perifocal edema had increased, and the patient became symptomatic. The diagnosis was radiation necrosis and corticosteroids were initially effective. However, radiation necrosis became uncontrollable, and the patient underwent removal of necrotic tissue two years after stereotactic radiosurgery. Pathological findings predominantly showed necrotic tissue with some tumor cells. Since the vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were expressed around the necrotic tissue, the main cause of the edema was determined as radiation necrosis. Differences in the expression levels and distribution of HIF-1α and VEGF were observed between treatment-naïve and recurrent tumor tissue and radiation necrosis. This difference suggests the possibility of different mechanisms for edema formation due to the tumor itself and radiation necrosis. Although distinguishing radiation necrosis from recurrent tumors using MRI remains challenging, the pathophysiological mechanism of perifocal edema might be crucial for differentiating radiation necrosis from recurrent tumors.
Collapse
Affiliation(s)
- Fugen Takagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroko Kuwabara
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Akihiro Kambara
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Naoki Omura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shogo Tanabe
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryokichi Yagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| |
Collapse
|
16
|
Qian X, Tan H, Liu X, Zhao W, Chan MD, Kim P, Zhou X. Radiogenomics-Based Risk Prediction of Glioblastoma Multiforme with Clinical Relevance. Genes (Basel) 2024; 15:718. [PMID: 38927654 PMCID: PMC11202835 DOI: 10.3390/genes15060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients' survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction with an increased contrast-enhancing lesion size at the tumor site or resection margins miming tumor recurrence on MRI. The accurate and reliable prognostication of GBM progression is urgently needed in the clinical management of GBM patients. Clinical data analysis indicates that the patients with PsP had superior overall and progression-free survival rates. In this study, we aimed to develop a prognostic model to evaluate the tumor progression potential of GBM patients following standard therapies. We applied a dictionary learning scheme to obtain imaging features of GBM patients with PsP or true tumor progression (TTP) from the Wake dataset. Based on these radiographic features, we conducted a radiogenomics analysis to identify the significantly associated genes. These significantly associated genes were used as features to construct a 2YS (2-year survival rate) logistic regression model. GBM patients were classified into low- and high-survival risk groups based on the individual 2YS scores derived from this model. We tested our model using an independent The Cancer Genome Atlas Program (TCGA) dataset and found that 2YS scores were significantly associated with the patient's overall survival. We used two cohorts of the TCGA data to train and test our model. Our results show that the 2YS scores-based classification results from the training and testing TCGA datasets were significantly associated with the overall survival of patients. We also analyzed the survival prediction ability of other clinical factors (gender, age, KPS (Karnofsky performance status), normal cell ratio) and found that these factors were unrelated or weakly correlated with patients' survival. Overall, our studies have demonstrated the effectiveness and robustness of the 2YS model in predicting the clinical outcomes of GBM patients after standard therapies.
Collapse
Affiliation(s)
- Xiaohua Qian
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Hua Tan
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Xiaona Liu
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Weiling Zhao
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Michael D. Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Pora Kim
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| | - Xiaobo Zhou
- Department of Bioinformatics and Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA (X.L.); (P.K.)
| |
Collapse
|
17
|
Flies CM, Friedrich M, Lohmann P, van Garderen KA, Smits M, Tonn JC, Weller M, Galldiks N, Snijders TJ. Treatment-associated imaging changes in newly diagnosed MGMT promoter-methylated glioblastoma undergoing chemoradiation with or without cilengitide. Neuro Oncol 2024; 26:902-910. [PMID: 38219019 PMCID: PMC11066942 DOI: 10.1093/neuonc/noad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Radiological progression may originate from progressive disease (PD) or pseudoprogression/treatment-associated changes. We assessed radiological progression in O6-methylguanine-DNA methyltransferase (MGMT) promoter-methylated glioblastoma treated with standard-of-care chemoradiotherapy with or without the integrin inhibitor cilengitide according to the modified response assessment in neuro-oncology (RANO) criteria of 2017. METHODS Patients with ≥ 3 follow-up MRIs were included. Preliminary PD was defined as a ≥ 25% increase of the sum of products of perpendicular diameters (SPD) of a new or increasing lesion compared to baseline. PD required a second ≥25% increase of the SPD. Treatment-associated changes require stable or regressing disease after preliminary PD. RESULTS Of the 424 evaluable patients, 221 patients (52%) were randomized into the cilengitide and 203 patients (48%) into the control arm. After chemoradiation with or without cilengitide, preliminary PD occurred in 274 patients (65%) during available follow-up, and 88 of these patients (32%) had treatment-associated changes, whereas 67 patients (25%) had PD. The remaining 119 patients (43%) had no further follow-up after preliminary PD. Treatment-associated changes were more common in the cilengitide arm than in the standard-of-care arm (24% vs. 17%; relative risk, 1.3; 95% CI, 1.004-1.795; P = .047). Treatment-associated changes occurred mainly during the first 6 months after RT (54% after 3 months vs. 13% after 6 months). CONCLUSIONS With the modified RANO criteria, the rate of treatment-associated changes was low compared to previous studies in MGMT promoter-methylated glioblastoma. This rate was higher after cilengitide compared to standard-of-care treatment. Confirmatory scans, as recommended in the modified RANO criteria, were not always available reflecting current clinical practice.
Collapse
Affiliation(s)
- Christina Maria Flies
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Karin Alida van Garderen
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Centre, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| | - Tom Jan Snijders
- Department of Neurology & Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Neto EB, de Almeida Bastos DC, Yoshikawa MH, Figueiredo EG, de Assis de Souza Filho F, Prabhu S. Short-term predictors of stereotactic radiosurgery outcome for untreated single non-small cell lung cancer brain metastases: a restrospective cohort study. Neurosurg Rev 2024; 47:172. [PMID: 38639882 DOI: 10.1007/s10143-024-02415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Stereotactic radiosurgery (SRS) is an option for brain metastases (BM) not eligible for surgical resection, however, predictors of SRS outcomes are poorly known. The aim of this study is to investigate predictors of SRS outcome in patients with BM secondary to non-small cell lung cancer (NSCLC). The secondary objective is to analyze the value of volumetric criteria in identifying BM progression. This retrospective cohort study included patients >18 years of age with a single untreated BM secondary to NSCLC. Demographic, clinical, and radiological data were assessed. The primary outcome was treatment failure, defined as a BM volumetric increase 12 months after SRS. The unidimensional measurement of the BM at follow-up was also assessed. One hundred thirty-five patients were included, with a median BM volume at baseline of 1.1 cm3 (IQR 0.4-2.3). Fifty-two (38.5%) patients had SRS failure at follow-up. Only right BM laterality was associated with SRS failure (p=0.039). Using the volumetric definition of SRS failure, the unidimensional criteria demonstrated a sensibility of 60.78% (46.11%-74.16%), specificity of 89.02% (80.18%-94.86%), positive LR of 5.54 (2.88-10.66) and negative LR of 0.44 (0.31-0.63). SRS demonstrated a 61.5% local control rate 12 months after treatment. Among the potential predictors of treatment outcome analyzed, only the right BM laterality had a significant association with SRS failure. The volumetric criteria were able to identify more subtle signs of BM increase than the unidimensional criteria, which may allow earlier diagnosis of disease progression and use of appropriate therapies.
Collapse
Affiliation(s)
- Eliseu Becco Neto
- Division of Neurosurgery, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Marcia Harumy Yoshikawa
- Division of Neurosurgery, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Eberval Gadelha Figueiredo
- Division of Neurosurgery, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil.
| | | | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
19
|
Cuccarini V, Savoldi F, Mardor Y, Last D, Pellegatta S, Mazzi F, Bruzzone MG, Anghileri E, Pollo B, Maddaloni L, Russo C, Bocchi E, Pinzi V, Eoli M, Aquino D. Response assessment of GBM during immunotherapy by delayed contrast treatment response assessment maps. Front Neurol 2024; 15:1374737. [PMID: 38651109 PMCID: PMC11033465 DOI: 10.3389/fneur.2024.1374737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Assessing the treatment response of glioblastoma multiforme during immunotherapy (IT) is an open issue. Treatment response assessment maps (TRAMs) might help distinguish true tumor progression (TTP) and pseudoprogression (PsP) in this setting. Methods We recruited 16 naïve glioblastoma patients enrolled in a phase II trial consisting of the Stupp protocol (a standardized treatment for glioblastoma involving combined radiotherapy and chemotherapy with temozolomide, followed by adjuvant temozolomide) plus IT with dendritic cells. Patients were followed up till progression or death; seven underwent a second surgery for suspected progression. Clinical, immunological, and MRI data were collected from all patients and histology in case of second surgery. Patients were classified as responders (progression-free survival, PFS > 12 months), and non-responders (PFS ≤ 12), HIGH-NK (natural killer cells, i.e., immunological responders), and LOW-NK (immunological non-responders) based on immune cell counts in peripheral blood. TRAMs differentiate contrast-enhancing lesions with different washout dynamics into hypothesized tumoral (conventionally blue-colored) vs. treatment-related (red-colored). Results Using receiver operating characteristic (ROC) curves, a threshold of -0.066 in VBlue/VCE (volume of the blue portion of tumoral area/volume of contrast enhancement) variation between values obtained in the MRI performed before PsP/TTP and at TTP/PSP allowed to discriminate TTP from PsP with a sensitivity of 71.4% and a specificity of 100%. Among HIGH-NK patients, at month 6 there was a significant reduction compared to baseline and month 2 in median "blue" volumes. Discussion In conclusion, in our pilot study TRAMs support the discrimination between tumoral and treatment-related enhancing features in immunological responders vs. non-responders, the distinction between PsP and TTP, and might provide surrogate markers of immunological response.
Collapse
Affiliation(s)
- Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Filippo Savoldi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Yael Mardor
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - David Last
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Serena Pellegatta
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Anghileri
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Neuro-Pathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Maddaloni
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Russo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Elisa Bocchi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Pinzi
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
20
|
Stummer W, Müther M, Spille D. Beyond fluorescence-guided resection: 5-ALA-based glioblastoma therapies. Acta Neurochir (Wien) 2024; 166:163. [PMID: 38563988 PMCID: PMC10987337 DOI: 10.1007/s00701-024-06049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma is the most common primary malignant brain tumor. Despite advances in multimodal concepts over the last decades, prognosis remains poor. Treatment of patients with glioblastoma remains a considerable challenge due to the infiltrative nature of the tumor, rapid growth rates, and tumor heterogeneity. Standard therapy consists of maximally safe microsurgical resection followed by adjuvant radio- and chemotherapy with temozolomide. In recent years, local therapies have been extensively investigated in experimental as well as translational levels. External stimuli-responsive therapies such as Photodynamic Therapy (PDT), Sonodynamic Therapy (SDT) and Radiodynamic Therapy (RDT) can induce cell death mechanisms via generation of reactive oxygen species (ROS) after administration of five-aminolevulinic acid (5-ALA), which induces the formation of sensitizing porphyrins within tumor tissue. Preliminary data from clinical trials are available. The aim of this review is to summarize the status of such therapeutic approaches as an adjunct to current standard therapy in glioblastoma.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Michael Müther
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Dorothee Spille
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
21
|
Rai P, Mahajan A, Shukla S, Agarwal U. Double Whammy: Abscopal Effect and Pseudoprogression in a Case of Non-small Cell Lung Carcinoma With Brain Metastases. Cureus 2024; 16:e59099. [PMID: 38803768 PMCID: PMC11128365 DOI: 10.7759/cureus.59099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Abscopal effect and pseudoprogression are terms used in modern oncological imaging. Abscopal effect refers to the elicitation of tumor response away from the site of primary disease. Pseudoprogression is the increase in size or enhancement of the treated tumor or the appearance of new lesions that remain stable or show subsequent decrease without any change in therapy. Both of these are known to be associated with radiation therapy. We present a case of adenocarcinoma of the lung, which developed both these phenomena throughout the course of their therapy. Out-of-target responses secondary to radiotherapy have been discussed extensively in the literature and may pave the way for future oncological management as the targeted therapies become more specific. At the same time, atypical, however not uncommon, phenomena such as pseudoprogression should always be kept in the back of a clinician's mind as further course of clinical management may change.
Collapse
Affiliation(s)
- Pranjal Rai
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| | - Abhishek Mahajan
- Imaging Department, The Clatterbridge Cancer Centre National Health Service (NHS), Liverpool, GBR
| | - Shreya Shukla
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| | - Ujjwal Agarwal
- Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute (HBNI), Mumbai, IND
| |
Collapse
|
22
|
Eichkorn T, Lischalk JW, Schwarz R, Bauer L, Deng M, Regnery S, Jungk C, Hörner-Rieber J, Herfarth K, König L, Debus J. Radiation-Induced Cerebral Contrast Enhancements Strongly Share Ischemic Stroke Risk Factors. Int J Radiat Oncol Biol Phys 2024; 118:1192-1205. [PMID: 38237810 DOI: 10.1016/j.ijrobp.2023.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 03/18/2024]
Abstract
PURPOSE Radiation-induced cerebral contrast enhancements (RICE) are frequent after photon and particularly proton radiation therapy and are associated with a significant risk for neurologic morbidity. Nevertheless, risk factors are poorly understood. A more robust understanding of RICE risk factors is crucial to improve management and offer adaptive therapy at the outset and during follow-up. METHODS AND MATERIALS We analyzed the comorbidities in detail of 190 consecutive adult patients treated at a single European national comprehensive cancer center with proton radiation therapy (54 Gy relative biological effectiveness) for LGG from 2010 to 2020 who were followed with serial clinical examinations and magnetic resonance imaging for a median 5.6 years. RESULTS Classical vascular risk factors including age (≥50 vs <50 years: 1.6-fold; P = .0024), hypertension (2.7-fold; P = .00012), and diabetes (11.7-fold; P = .0066) were observed more frequently in the cohort that developed RICE. Dyslipidemia (2.1-fold), being overweight (2.0-fold), and smoking (2.6-fold), as well as history of previous stroke (1.7-fold), were also more frequently observed in the RICE cohort, although these factors did not reach the threshold for significance. Multivariable regression modeling supported the influence of age (P = .05), arterial hypertension (P = .01), and potentially male sex (P = .02), diabetes (P = .0008), and smoking (P = .001) on RICE occurrence over time, independent of each other and further vascular risk factors. If RICE occurred, bevacizumab treatment was 2-fold more frequently needed in the cohort with vascular risk factors, but RICE long-term prognosis did not differ between the RICE subcohorts with and without vascular risk factors. CONCLUSIONS This is the first report in the literature demonstrating that RICE strongly shares vascular risk factors with ischemic stroke, which further enhances the nebulous understanding of the multifactorial pathophysiology of RICE. Classical vascular risk factors, especially age, hypertension, and diabetes, clearly correlated independently with RICE risk. Risk-adapted screening and management for RICE can be directly derived from these data to assist in clinical management.
Collapse
Affiliation(s)
- Tanja Eichkorn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Jonathan W Lischalk
- Department of Radiation Oncology, Perlmutter Cancer Center at New York University Langone Health at Long Island, New York, New York
| | - Robert Schwarz
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Jungk
- National Center for Tumor Diseases (NCT), Heidelberg, Germany; Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Laila König
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Yamazaki M, Takamatsu S, Iwata Y, Sakurai T, Taka M, Kobayashi S, Gabata T, Mizuno E. Notch appearance as a novel radiological predictor of transient expansion and good outcome of expanding schwannoma after radiotherapy. Discov Oncol 2024; 15:79. [PMID: 38503989 PMCID: PMC10951174 DOI: 10.1007/s12672-024-00936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVES Schwannoma expansion after radiotherapy has not been well-studied despite the clinical importance of distinguishing transient increase from permanent expansion. Thus, this study aimed to identify the underlying mechanism and novel radiological predictors of schwannoma expansion after radiotherapy. MATERIALS & METHODS We retrospectively examined the therapeutic effects of radiotherapy on schwannomas and magnetic resonance images of 43 patients with vestibular schwannomas who underwent stereotactic radiotherapy or radiosurgery at our facility between June 1, 2012 and September 1, 2018. Based on the size change pattern, the treated tumors were classified into six groups, including transient-expansion and consistent-increase groups. The apparent diffusion coefficient (ADC) ratio and appearance of any notch were included as evaluation items based on our hypothesis that transient expansion is due to edema with increased extracellular free water. A log-rank test was performed to evaluate the relationship between the local control rate and radiological signs. RESULTS The mean overall 5-year local control rate was 90%, and the median follow-up period was 62 (24-87) months. Approximately 28% of the tumors showed transient expansion; all ADC ratios synchronized with size change, and 75% showed a new notch appearance. Approximately 9% of tumors showed consistent increase, with no notch on the outline. The log-rank test revealed a difference in the local control rate with or without notch appearance in expanding irradiated schwannomas. All tumors with notch appearance showed a significant regression 5 years after radiation. CONCLUSIONS New notch appearance on the outline could indicate favorable long-term outcomes of expanding schwannomas post-treatment. CLINICAL RELEVANCE STATEMENT Notch appearance can help differentiate a transient schwannoma from a real tumor expansion, and it is a novel predictor of better outcomes of expanding schwannomas after radiotherapy.
Collapse
Affiliation(s)
- Masahiro Yamazaki
- Department of Radiology, Kanazawa University School of Medical Science, Kanazawa City, Japan.
| | - Shigeyuki Takamatsu
- Department of Radiology, Kanazawa University School of Medical Science, Kanazawa City, Japan
| | - Yuta Iwata
- Toyama CyberKnife Center, Toyama City, Japan
| | - Takayuki Sakurai
- Department of Radiology, Kanazawa University School of Medical Science, Kanazawa City, Japan
| | - Masashi Taka
- Toyama Prefectural Central Hospital, Toyama City, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University School of Medical Science, Kanazawa City, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University School of Medical Science, Kanazawa City, Japan
| | | |
Collapse
|
24
|
Bhattacharya K, Rastogi S, Mahajan A. Post-treatment imaging of gliomas: challenging the existing dogmas. Clin Radiol 2024; 79:e376-e392. [PMID: 38123395 DOI: 10.1016/j.crad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Gliomas are the commonest malignant central nervous system tumours in adults and imaging is the cornerstone of diagnosis, treatment, and post-treatment follow-up of these patients. With the ever-evolving treatment strategies post-treatment imaging and interpretation in glioma remains challenging, more so with the advent of anti-angiogenic drugs and immunotherapy, which can significantly alter the appearance in this setting, thus making interpretation of routine imaging findings such as contrast enhancement, oedema, and mass effect difficult to interpret. This review details the various methods of management of glioma including the upcoming novel therapies and their impact on imaging findings, with a comprehensive description of the imaging findings in conventional and advanced imaging techniques. A systematic appraisal for the existing and emerging techniques of imaging in these settings and their clinical application including various response assessment guidelines and artificial intelligence based response assessment will also be discussed.
Collapse
Affiliation(s)
- K Bhattacharya
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - S Rastogi
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - A Mahajan
- Department of imaging, The Clatterbridge Cancer Centre, NHS Foundation Trust, Pembroke Place, Liverpool L7 8YA, UK; University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
25
|
Thenier-Villa JL, Martínez-Ricarte FR, Figueroa-Vezirian M, Arikan-Abelló F. Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic Resonance Imaging, Principal Component Analysis, and Supervised and Unsupervised Machine Learning. World Neurosurg 2024; 183:e953-e962. [PMID: 38253179 DOI: 10.1016/j.wneu.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND One of the most frequent phenomena in the follow-up of glioblastoma is pseudoprogression, present in up to half of cases. The clinical usefulness of discriminating this phenomenon through magnetic resonance imaging and nuclear medicine has not yet been standardized; in this study, we used machine learning on multiparametric magnetic resonance imaging to explore discriminators of this phenomenon. METHODS For the study, 30 patients diagnosed with IDH wild-type glioblastoma operated on at both study centers in 2011-2020 were selected; 15 patients corresponded to early tumor progression and 15 patients to pseudoprogression. Using unsupervised learning, the number of clusters and tumor segmentation was recorded using gap-stat and k-means method, adjusting to voxel adjacency. In a second phase, a class prediction was carried out with a multinomial logistic regression supervised learning method; the outcome variables were the percentage of assignment, class overrepresentation, and degree of voxel adjacency. RESULTS Unsupervised learning of the tumor in its diagnosis shows up to 14 well-differentiated tumor areas. In the supervised learning phase, there is a higher percentage of assigned classes (P < 0.01), less overrepresentation of classes (P < 0.01), and greater adjacency (55% vs. 33%) in cases of true tumor progression compared with pseudoprogression. CONCLUSIONS True tumor progression preserves the multidimensional characteristics of the basal tumor at the voxel and region of interest level, resulting in a characteristic differential pattern when supervised learning is used.
Collapse
Affiliation(s)
- José Luis Thenier-Villa
- Department of Neurosurgery, University Hospital Arnau de Vilanova, Lleida, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain.
| | - Francisco Ramón Martínez-Ricarte
- Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Fuat Arikan-Abelló
- Department of Neurosurgery, University Hospital Arnau de Vilanova, Lleida, Spain; Department of Neurosurgery, Vall d'Hebron University Hospital, Barcelona, Spain; Neurotrauma and Neurosurgery Research Unit (UNINN), Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
26
|
Carpentier A, Stupp R, Sonabend AM, Dufour H, Chinot O, Mathon B, Ducray F, Guyotat J, Baize N, Menei P, de Groot J, Weinberg JS, Liu BP, Guemas E, Desseaux C, Schmitt C, Bouchoux G, Canney M, Idbaih A. Repeated blood-brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial. Nat Commun 2024; 15:1650. [PMID: 38396134 PMCID: PMC10891097 DOI: 10.1038/s41467-024-45818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Here, the results of a phase 1/2 single-arm trial (NCT03744026) assessing the safety and efficacy of blood-brain barrier (BBB) disruption with an implantable ultrasound system in recurrent glioblastoma patients receiving carboplatin are reported. A nine-emitter ultrasound implant was placed at the end of tumor resection replacing the bone flap. After surgery, activation to disrupt the BBB was performed every four weeks either before or after carboplatin infusion. The primary objective of the Phase 1 was to evaluate the safety of escalating numbers of ultrasound emitters using a standard 3 + 3 dose escalation. The primary objective of the Phase 2 was to evaluate the efficacy of BBB opening using magnetic resonance imaging (MRI). The secondary objectives included safety and clinical efficacy. Thirty-three patients received a total of 90 monthly sonications with carboplatin administration and up to nine emitters activated without observed DLT. Grade 3 procedure-related adverse events consisted of pre syncope (n = 3), fatigue (n = 1), wound infection (n = 2), and pain at time of device connection (n = 7). BBB opening endpoint was met with 90% of emitters showing BBB disruption on MRI after sonication. In the 12 patients who received carboplatin just prior to sonication, the progression-free survival was 3.1 months, the 1-year overall survival rate was 58% and median overall survival was 14.0 months from surgery.
Collapse
Affiliation(s)
- Alexandre Carpentier
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France.
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Henry Dufour
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Olivier Chinot
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service de Neuro-Oncologie, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurochirurgie, Paris, France
| | - François Ducray
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | - Jacques Guyotat
- Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Service de Neuro-Oncologie, Hospices Civils de Lyon, Cancer Research Center of Lyon, INSERM U1052, CNRS UMR 5286, Cancer Cell Plasticity Department, Lyon, France
| | | | | | - John de Groot
- Departments of Neurology and Neurosurgery, University of California, San Francisco, CA, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Benjamin P Liu
- Departments of Radiology and Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | - Ahmed Idbaih
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-Oncologie, Paris, France
| |
Collapse
|
27
|
Kong Z, Li Z, Chen J, Shi Y, Li N, Ma W, Wang Y, Yang Z, Liu Z. A histogram of [ 18F]BBPA PET imaging differentiates non-neoplastic lesions from malignant brain tumors. EJNMMI Res 2024; 14:12. [PMID: 38305994 PMCID: PMC10837405 DOI: 10.1186/s13550-024-01069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Junyi Chen
- National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, BeijingBeijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Zhibo Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, China.
- National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, BeijingBeijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
28
|
Baudou É, Ryan JL, Cox E, Nham L, Johnston K, Bouffet É, Bartels U, Timmons B, de Medeiros C, Mabbott DJ. Optimizing an exercise training program in pediatric brain tumour survivors: Does timing postradiotherapy matter? Neurooncol Pract 2024; 11:69-81. [PMID: 38222057 PMCID: PMC10785595 DOI: 10.1093/nop/npad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background While exercise training (ET) programs show positive outcomes in cognition, motor function, and physical fitness in pediatric brain tumor (PBT) survivors, little is known about the optimal timing of intervention. The aim of this work was to explore the feasibility and benefits of ET based on its timing after radiotherapy. Methods This retrospective analysis (ClinicalTrials.gov, NCT01944761) analyzed data based on the timing of PBT survivors' participation in an ET program relative to their completion of radiotherapy: <2 years (n = 9), 2-5 years (n = 10), and > 5 years (n = 13). We used repeated measures analysis of variance to compare feasibility and efficacy indicators among groups, as well as correlation analysis between ET program timing postradiotherapy and preliminary treatment effects on cognition, motor function and physical fitness outcomes. Results Two to five years postradiotherapy was the optimal time period in terms of adherence (88.5%), retention (100%), and satisfaction (more fun, more enjoyable and recommend it more to other children). However, the benefits of ET program on memory recognition (r = -0.379, P = .047) and accuracy (r = -0.430, P = .032) decreased with increased time postradiotherapy. Motor function improved in all groups, with greater improvements in bilateral coordination (P = .043) earlier postradiotherapy, and in running (P = .043) later postradiotherapy. The greatest improvement in pro-rated work rate occurred in the < 2-year group (P = .008). Conclusion Participation in an ET program should be offered as part of routine postradiotherapy care in the first 1-2 years and strongly encouraged in the first 5 years.
Collapse
Affiliation(s)
- Éloïse Baudou
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer L Ryan
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lisa Nham
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Krista Johnston
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Éric Bouffet
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Bartels
- Divisions of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Timmons
- Department of Pediatrics, Child Health and Exercise Medicine Program, McMaster University, Hamilton, ON, Canada
| | - Cynthia de Medeiros
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Müller SJ, Khadhraoui E, Ganslandt O, Henkes H, Gihr GA. MRI Treatment Response Assessment Maps (TRAMs) for differentiating recurrent glioblastoma from radiation necrosis. J Neurooncol 2024; 166:513-521. [PMID: 38261142 DOI: 10.1007/s11060-024-04573-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND MRI treatment response assessment maps (TRAMs) were introduced to distinguish recurrent malignant glioma from therapy related changes. TRAMs are calculated with two contrast-enhanced T1-weighted sequences and reflect the "late" wash-out (or contrast clearance) and wash-in of gadolinium. Vital tumor cells are assumed to produce a wash-out because of their high turnover rate and the associated hypervascularization, whereas contrast medium slowly accumulates in scar tissue. To examine the real value of this method, we compared TRAMs with the pathology findings obtained after a second biopsy or surgery when recurrence was suspected. METHODS We retrospectively evaluated TRAMs in adult patients with histologically demonstrated glioblastoma, contrast-enhancing tissue and a pre-operative MRI between January 1, 2017, and December 31, 2022. Only patients with a second biopsy or surgery were evaluated. Volumes of the residual tumor, contrast clearance and contrast accumulation before the second surgery were analyzed. RESULTS Among 339 patients with mGBM who underwent MRI, we identified 29 repeated surgeries/biopsies in 27 patients 59 ± 12 (mean ± standard deviation) years of age. Twenty-eight biopsies were from patients with recurrent glioblastoma histology, and only one was from a patient with radiation necrosis. We volumetrically evaluated the 29 pre-surgery TRAMs. In recurrent glioblastoma, the ratio of wash-out volume to tumor volume was 36 ± 17% (range 1-73%), and the ratio of the wash-out volume to the sum of wash-out and wash-in volumes was 48 ± 21% (range 22-92%). For the one biopsy with radiation necrosis, the ratios were 42% and 54%, respectively. CONCLUSIONS Typical recurrent glioblastoma shows a > 20%ratio of the wash-out volume to the sum of wash-out and wash-in volumes. The one biopsy with radiation necrosis indicated that such necrosis can also produce high wash-out in individual cases. Nevertheless, the additional information provided by TRAMs increases the reliability of diagnosis.
Collapse
Affiliation(s)
| | - Eya Khadhraoui
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Oliver Ganslandt
- Abteilung Für Neurochirurgie, Klinikum-Stuttgart, Stuttgart, Germany
| | - Hans Henkes
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| | - Georg Alexander Gihr
- Klinik Für Neuroradiologie, Klinikum-Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany
| |
Collapse
|
30
|
Lee J, Chen MM, Liu HL, Ucisik FE, Wintermark M, Kumar VA. MR Perfusion Imaging for Gliomas. Magn Reson Imaging Clin N Am 2024; 32:73-83. [PMID: 38007284 DOI: 10.1016/j.mric.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Accurate diagnosis and treatment evaluation of patients with gliomas is imperative to make clinical decisions. Multiparametric MR perfusion imaging reveals physiologic features of gliomas that can help classify them according to their histologic and molecular features as well as distinguish them from other neoplastic and nonneoplastic entities. It is also helpful in distinguishing tumor recurrence or progression from radiation necrosis, pseudoprogression, and pseudoresponse, which is difficult with conventional MR imaging. This review provides an update on MR perfusion imaging for the diagnosis and treatment monitoring of patients with gliomas following standard-of-care chemoradiation therapy and other treatment regimens such as immunotherapy.
Collapse
Affiliation(s)
- Jina Lee
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Melissa M Chen
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - F Eymen Ucisik
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Max Wintermark
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Sharma A, Garg A, Singh M, Sharma MC, Gupta S, Kunhiparambath H, Tripathi M, Kale SS, Bal C. Metabolic imaging in recurrent gliomas: comparative performance of 18F-FDOPA, 18F-fluorocholine and 18F-FDG PET/CT. Nucl Med Commun 2024; 45:139-147. [PMID: 38095139 DOI: 10.1097/mnm.0000000000001795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
PURPOSE The aim of this study was to directly evaluate glucose, amino-acid and membrane metabolism in tumor cells for diagnosis and prognostication of recurrent gliomas. METHODS Fifty-five patients (median age = 36 years; 33 men) with histologically proven gliomas and suspected recurrence were prospectively recruited and underwent 18F-FDG (Fluorodeoxyglucose), 18F-FDOPA (fluorodopa) and 18F-Fluorocholine-PET/CT. Images were evaluated by two physicians visually and quantitatively [lesion-SUVmax, tumor (T) to gray-matter (G) and metabolically-active tumor volumes (MTV)]. After median follow-up of 51.5 months, recurrence was diagnosed in 49 patients. Thirty-one patients died with a median survival of 14 months. RESULTS Diagnostic-accuracies for 18F-FDOPA, 18F-Fluorocholine,18F-FDG and contrast-enhanced-MRI were 92.7% (95% CI 82.7-97.1), 81.8% (69.7-89.8), 45.5% (33.0-58.5) and 44.7% (30.2-60.3), respectively. Among the 20 lesions, missed by MRI; 18F-FDOPA, 18F-Fluorocholine and 18F-FDG were able to detect 19, 14 and 4 lesions. Corresponding area-under-the-curves (T/G ratios) were 0.817 (0.615-1.000), 0.850 (0.736-0.963) and 0.814 (0.658-0.969), when differentiating recurrence from treatment-induced changes. In univariate-survival-analysis, 18F-FDOPA-T/G, visually detectable recurrence in 18F-FDG, 18F-FDOPA-MTV, cell-lineage and treatment-type were significant parameters. In Multivariate-Cox-regression analysis, 18F-FDOPA-MTV [HR = 1.009 (1.001-1.017); P = 0.024 (~0.9% increase in hazard for every mL increase of MTV)] and cell-lineage [3.578 (1.447-8.846); P = 0.006] remained significant. 18F-FDOPA-MTV cutoff <29.59 mL predicted survival higher than 2 years. At cutoff ≥29.59 mL, HR at 2 years was 2.759 (1.310-5.810). CONCLUSION 18F-FDOPA-PET/CT can diagnose recurrence with high accuracy and MTV predicts survival. 18F-Fluorocholine is a good alternative. Higher 18F-FDG uptake is an adverse prognostic indicator.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Bilaspur, HP (Former resident at All India Institute of Medical Sciences, New-Delhi)
| | | | | | | | - Subhash Gupta
- Department of Radiation Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences
| | - Haresh Kunhiparambath
- Department of Radiation Oncology, Dr. B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences
| | - Madhavi Tripathi
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Blakstad H, Mendoza Mireles EE, Heggebø LC, Magelssen H, Sprauten M, Johannesen TB, Vik-Mo EO, Leske H, Niehusmann P, Skogen K, Helseth E, Emblem KE, Brandal P. Incidence and outcome of pseudoprogression after radiation therapy in glioblastoma patients: A cohort study. Neurooncol Pract 2024; 11:36-45. [PMID: 38222046 PMCID: PMC10785573 DOI: 10.1093/nop/npad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Background Differentiating post-radiation MRI changes from progressive disease (PD) in glioblastoma (GBM) patients represents a major challenge. The clinical problem is two-sided; avoid termination of effective therapy in case of pseudoprogression (PsP) and continuation of ineffective therapy in case of PD. We retrospectively assessed the incidence, management, and prognostic impact of PsP and analyzed factors associated with PsP in a GBM patient cohort. Methods Consecutive GBM patients diagnosed in the South-Eastern Norway Health Region from 2015 to 2018 who had received RT and follow-up MRI were included. Tumor, patient, and treatment characteristics were analyzed in relationship to re-evaluated MRI examinations at 3 and 6 months post-radiation using Response Assessment in Neuro-Oncology criteria. Results A total of 284 patients were included in the study. PsP incidence 3 and 6 months post-radiation was 19.4% and 7.0%, respectively. In adjusted analyses, methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter and the absence of neurological deterioration were associated with PsP at both 3 (p < .001 and p = .029, respectively) and 6 months (p = .045 and p = .034, respectively) post-radiation. For patients retrospectively assessed as PD 3 months post-radiation, there was no survival benefit of treatment change (p = .838). Conclusions PsP incidence was similar to previous reports. In addition to the previously described correlation of methylated MGMT promoter with PsP, we also found that absence of neurological deterioration significantly correlated with PsP. Continuation of temozolomide courses did not seem to compromise survival for patients with PD at 3 months post-radiation; therefore, we recommend continuing adjuvant temozolomide courses in case of inconclusive MRI findings.
Collapse
Affiliation(s)
- Hanne Blakstad
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eduardo Erasmo Mendoza Mireles
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Liv Cathrine Heggebø
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Mette Sprauten
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Tom Børge Johannesen
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Cancer Registry of Norway, Oslo, Norway
| | - Einar Osland Vik-Mo
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Vilhelm Magnus Laboratory, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo
- University of Oslo, Oslo, Norway
| | - Pitt Niehusmann
- Department of Pathology, Oslo University Hospital, Oslo
- Division of Cancer Medicine, Oslo University Hospital, Oslo
| | - Karoline Skogen
- Department of Radiology, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Kyrre Eeg Emblem
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Petter Brandal
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
33
|
Saito N, Hirai N, Sato S, Hayashi M, Iwabuchi S. Delayed Pseudoprogression in Glioblastoma Patients Treated With Tumor-Treating Fields. Cureus 2024; 16:e55147. [PMID: 38558596 PMCID: PMC10979818 DOI: 10.7759/cureus.55147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Tumor-treating fields (TTFields) is an established treatment modality for glioblastoma. False progression to chemoradiation is a known problem in patients with glioblastoma multiforme (GBM), with most cases occurring within three months of radiation therapy. In this report, we present two cases of delayed pseudoprogression caused by TTFields. Two patients with GBM who received TTFields showed signs of radiographic progression six months after the completion of radiation therapy. Patient 1 was a 37-year-old female with a glioblastoma in the right temporal lobe. Patient 2 was a 70-year-old male with glioblastoma in the left temporal lobe. Both patients received radiation therapy, followed by temozolomide (TMZ) maintenance therapy and TTFields. Patient 1 underwent a second resection; however, the pathology revealed only a treatment effect, and the final diagnosis was a pseudoprogression. In Case 2, the disease resolved with steroid therapy alone. In both patients, the lesions appeared later than during the typical pseudoprogression period. A recent study reported that TTFields increase the permeability of the plasma cell membrane, which may result in further leakage of gadolinium into the extracellular lumen. Further studies are needed to better characterize delayed pseudoprogression and improve treatment outcomes.
Collapse
Affiliation(s)
- Norihiko Saito
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Nozomi Hirai
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Sho Sato
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Morito Hayashi
- Neurosurgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | | |
Collapse
|
34
|
Wu B, Li S, Wang J, Wang J, Qiu W, Gao H. Bibliometric and visualization analysis of radiation brain injury from 2003 to 2023. Front Neurol 2024; 14:1275836. [PMID: 38298563 PMCID: PMC10828967 DOI: 10.3389/fneur.2023.1275836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Background Over the past two decades, the field of radiation brain injury has attracted the attention of an increasing number of brain scientists, particularly in the areas of molecular pathology and therapeutic approaches. Characterizing global collaboration networks and mapping development trends over the past 20 years is essential. Objective The aim of this paper is to examine significant issues and future directions while shedding light on collaboration and research status in the field of radiation brain injury. Methods Bibliometric studies were performed using CiteSpaceR-bibliometrix and VOSviewer software on papers regarding radiation brain injury that were published before November 2023 in the Web of Science Core Collection. Results In the final analysis, we found 4,913 records written in 1,219 publications by 21,529 authors from 5,007 institutions in 75 countries. There was a noticeable increase in publications in 2014 and 2021. The majority of records listed were produced by China, the United States, and other high-income countries. The largest nodes in each cluster of the collaboration network were Sun Yat-sen University, University of California-San Francisco, and the University of Toronto. Galldiks N, Barnett GH, Langen KJ and Kim JH are known to be core authors in the field. The top 3 keywords in that time frame are radiation, radiation necrosis, and radiation-therapy. Conclusions The objective and thorough bibliometric analysis also identifies current research hotspots and potential future paths, providing a retrospective perspective on RBI and offering useful advice to researchers choosing research topics. Future development directions include the integration of multi-omics methodologies and novel imaging techniques to improve RBI's diagnostic effectiveness and the search for new therapeutic targets.
Collapse
Affiliation(s)
- Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Shaojie Li
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jian Wang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Weizhi Qiu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian Medical University, Quanzhou, China
| |
Collapse
|
35
|
Laprie A, Noel G, Chaltiel L, Truc G, Sunyach MP, Charissoux M, Magne N, Auberdiac P, Biau J, Ken S, Tensaouti F, Khalifa J, Sidibe I, Roux FE, Vieillevigne L, Catalaa I, Boetto S, Uro-Coste E, Supiot S, Bernier V, Filleron T, Mounier M, Poublanc M, Olivier P, Delord JP, Cohen-Jonathan-Moyal E. Randomized phase III trial of metabolic imaging-guided dose escalation of radio-chemotherapy in patients with newly diagnosed glioblastoma (SPECTRO GLIO trial). Neuro Oncol 2024; 26:153-163. [PMID: 37417948 PMCID: PMC10768994 DOI: 10.1093/neuonc/noad119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.
Collapse
Affiliation(s)
- Anne Laprie
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Leonor Chaltiel
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gilles Truc
- Centre Georges-François Leclerc, Dijon, France
| | | | | | - Nicolas Magne
- Institut de Cancérologie de la Loire, Saint-Priest en Jarez, France
| | | | - Julian Biau
- Centre Jean-Perrin, Clermont-Ferrand, France
| | - Soléakhéna Ken
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Fatima Tensaouti
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole & ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jonathan Khalifa
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Franck-Emmanuel Roux
- Centre Hospitalier Universitaire de Toulouse, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Laure Vieillevigne
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Sergio Boetto
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Stéphane Supiot
- Institut de Cancerologie de l’Ouest, Nantes st Herblain, France
| | - Valérie Bernier
- Institut de Cancérologie de Lorraine Centre Alexis Vautrin, Nancy, France
| | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Poublanc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Pascale Olivier
- Service de Pharmacologie Médicale et Clinique, Centre Régional de Pharmacovigilance, de Pharmacoépidémiologie et d’Information sur le Médicament CHU de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | |
Collapse
|
36
|
Driscoll RK, Lyne SB, Voce DJ, Maraka S, Gondi V, Chmura SJ, Dixit KS, Kumthekar PU, Karrison TG, Pytel P, Collins JM, Stupp R, Merrell RT, Lukas RV, Yamini B. A multi-institutional phase I study of acetazolamide with temozolomide in adults with newly diagnosed MGMT-methylated malignant glioma. Neurooncol Adv 2024; 6:vdae014. [PMID: 38420615 PMCID: PMC10901541 DOI: 10.1093/noajnl/vdae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Background A significant unmet need exists for the treatment of glioblastoma, IDH-wildtype (GBM). Preclinical work shows that acetazolamide sensitizes GBM to temozolomide (TMZ) by overcoming TMZ resistance due to BCL-3-dependent upregulation of carbonic anhydrase. Acetazolamide is Food and Drug Administration-approved for the treatment of altitude sickness. Drug repurposing enables the application of drugs to diseases beyond initial indications. This multi-institutional, open-label, phase I trial examined a combination of acetazolamide and TMZ in patients with MGMT promoter-methylated high-grade glioma. Methods A total of 24 patients (GBM, IDH-wildtype = 22; Grade 4 astrocytoma, IDH-mutant = 1; Grade 3 astrocytoma, IDH-mutant = 1) were accrued over 17 months. All patients received oral acetazolamide (250 mg BID for 7 days increased to 500 mg BID for Days 8-21 of each 28-day cycle) during the adjuvant phase of TMZ for up to 6 cycles. Results No patient had a dose-limiting toxicity. Adverse events were consistent with known sequelae of acetazolamide and TMZ. In the 23 WHO Grade 4 patients, the median overall survival (OS) was 30.1 months and the median progression-free survival was 16.0 months. The 2-year OS was 60.9%. In total 37% of the study population had high BCL-3 staining and trended toward shorter OS (17.2 months vs N.R., P = .06). Conclusions The addition of acetazolamide is safe and tolerable in GBM patients receiving standard TMZ. Survival results compare favorably to historical data from randomized trials in patients with MGMT promoter-methylated GBM and support examination of acetazolamide in a randomized trial. BCL-3 expression is a potential biomarker for prognosis in GBM or for patients more likely to benefit from TMZ.
Collapse
Affiliation(s)
- Riley K Driscoll
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - Sean B Lyne
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| | - David J Voce
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stefania Maraka
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Vinai Gondi
- Proton Therapy Center and Northwestern Medicine Cancer Center, Warrensville, Illinois, USA
| | - Steven J Chmura
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Karan S Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Priya U Kumthekar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Theodore G Karrison
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Peter Pytel
- Department of Pathology, University of Chicago Medicine, Chicago, Illinois, USA
| | - John M Collins
- Department of Radiology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan T Merrell
- NorthShore University Health System, Evanston, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou & Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Bakhtiar Yamini
- Department of Neurological Surgery, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
37
|
Kossmann MRP, Ehret F, Roohani S, Winter SF, Ghadjar P, Acker G, Senger C, Schmid S, Zips D, Kaul D. Histopathologically confirmed radiation-induced damage of the brain - an in-depth analysis of radiation parameters and spatio-temporal occurrence. Radiat Oncol 2023; 18:198. [PMID: 38087368 PMCID: PMC10717523 DOI: 10.1186/s13014-023-02385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Radiation-induced damage (RID) after radiotherapy (RT) of primary brain tumors and metastases can be challenging to clinico-radiographically distinguish from tumor progression. RID includes pseudoprogression and radiation necrosis; the latter being irreversible and often associated with severe symptoms. While histopathology constitutes the diagnostic gold standard, biopsy-controlled clinical studies investigating RID remain limited. Whether certain brain areas are potentially more vulnerable to RID remains an area of active investigation. Here, we analyze histopathologically confirmed cases of RID in relation to the temporal and spatial dose distribution. METHODS Histopathologically confirmed cases of RID after photon-based RT for primary or secondary central nervous system malignancies were included. Demographic, clinical, and dosimetric data were collected from patient records and treatment planning systems. We calculated the equivalent dose in 2 Gy fractions (EQD22) and the biologically effective dose (BED2) for normal brain tissue (α/β ratio of 2 Gy) and analyzed the spatial and temporal distribution using frequency maps. RESULTS Thirty-three patients were identified. High-grade glioma patients (n = 18) mostly received one normofractionated RT series (median cumulative EQD22 60 Gy) to a large planning target volume (PTV) (median 203.9 ccm) before diagnosis of RID. Despite the low EQD22 and BED2, three patients with an accelerated hyperfractionated RT developed RID. In contrast, brain metastases patients (n = 15; 16 RID lesions) were often treated with two or more RT courses and with radiosurgery or fractionated stereotactic RT, resulting in a higher cumulative EQD22 (median 162.4 Gy), to a small PTV (median 6.7 ccm). All (n = 34) RID lesions occurred within the PTV of at least one of the preceding RT courses. RID in the high-grade glioma group showed a frontotemporal distribution pattern, whereas, in metastatic patients, RID was observed throughout the brain with highest density in the parietal lobe. The cumulative EQD22 was significantly lower in RID lesions that involved the subventricular zone (SVZ) than in lesions without SVZ involvement (median 60 Gy vs. 141 Gy, p = 0.01). CONCLUSIONS Accelerated hyperfractionated RT can lead to RID despite computationally low EQD22 and BED2 in high-grade glioma patients. The anatomical location of RID corresponded to the general tumor distribution of gliomas and metastases. The SVZ might be a particularly vulnerable area.
Collapse
Affiliation(s)
- Mario R P Kossmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Radiotherapy and Radiation Oncology, Pius-Hospital Oldenburg, Georgstr. 12, 26121, Oldenburg, Germany
| | - Felix Ehret
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siyer Roohani
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Pirus Ghadjar
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Güliz Acker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurosurgery, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Senger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simone Schmid
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Daniel Zips
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiation Oncology, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
38
|
Rydelius A, Bengzon J, Engelholm S, Kinhult S, Englund E, Nilsson M, Lätt J, Lampinen B, Sundgren PC. Predictive value of diffusion MRI-based parametric response mapping for prognosis and treatment response in glioblastoma. Magn Reson Imaging 2023; 104:88-96. [PMID: 37734574 DOI: 10.1016/j.mri.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Early detection of treatment response is important for the management of patients with malignant brain tumors such as glioblastoma to assure good quality of life in relation to therapeutic efficacy. AIM To investigate whether parametric response mapping (PRM) with diffusion MRI may provide prognostic information at an early stage of standard therapy for glioblastoma. MATERIALS AND METHODS This prospective study included 31 patients newly diagnosed with glioblastoma WHO grade IV, planned for primary standard postoperative treatment with radiotherapy 60Gy/30 fractions with concomitant and adjuvant Temozolomide. MRI follow-up including diffusion and perfusion weighting was performed at 3 T at start of postoperative chemoradiotherapy, three weeks into treatment, and then regularly until twelve months postoperatively. Regional mean diffusivity (MD) changes were analyzed voxel-wise using the PRM method (MD-PRM). At eight and twelve months postoperatively, after completion of standard treatment, patients were classified using conventional MRI and clinical evaluation as either having stable disease (SD, including partial response) or progressive disease (PD). It was assessed whether MD-PRM differed between patients having SD versus PD and whether it predicted the risk of disease progression (progression-free survival, PFS) or death (overall survival, OS). A subgroup analysis was performed that compared MD-PRM between SD and PD in patients only undergoing diagnostic biopsy. MGMT-promotor methylation status (O6-methylguanine-DNA methyltransferase) was registered and analyzed with respect to PFS, OS and MD-PRM. RESULTS Of the 31 patients analyzed: 21 were operated by resection and ten by diagnostic biopsy. At eight months, 19 patients had SD and twelve had PD. At twelve months, ten patients had SD and 20 had PD, out of which ten were deceased within twelve months and one was deceased without known tumor progression. Median PFS was nine months, and median OS was 17 months. Eleven patients had methylated MGMT-promotor, 16 were MGMT unmethylated, and four had unknown MGMT-status. MD-PRM did not significantly predict patients having SD versus PD neither at eight nor at twelve months. Patients with an above median MD-PRM reduction had a slightly longer PFS (P = 0.015) in Kaplan-Maier analysis, as well as a non-significantly longer OS (P = 0.099). In the subgroup of patients only undergoing biopsy, total MD-PRM change at three weeks was generally higher for patients with SD than for patients with PD at eight months, although no tests were performed. MGMT status strongly predicted both PFS and OS but not MD-PRM change. CONCLUSION MD-PRM at three weeks was not demonstrated to be predictive of treatment response, disease progression, or survival. Preliminary results suggested a higher predictive value in non-resected patients, although this needs to be evaluated in future studies.
Collapse
Affiliation(s)
- A Rydelius
- Department of Clinical Sciences Lund, Division of Neurology, Lund University, Skane University Hospital, Lund, Sweden; Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden.
| | - J Bengzon
- Department of Clinical Sciences Lund, Division of Neurosurgery, Lund University, Skane University Hospital, Lund, Sweden
| | - S Engelholm
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Skane University Hospital, Lund, Sweden
| | - S Kinhult
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Skane University Hospital, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Clinical Genetics, Pathology and Molecular Diagnostics, Medical Service, Lund, Skane University Hospital, Lund, Sweden
| | - M Nilsson
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - J Lätt
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - B Lampinen
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden
| | - P C Sundgren
- Department of Clinical Sciences Lund, Division of Diagnostic Radiology, Lund University, Skane University Hospital, Lund, Sweden; Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden; Lund University, BioImaging Centre (LBIC), Lund University, Lund, Sweden; Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Makranz C, Lubotzky A, Zemmour H, Shemer R, Glaser B, Cohen J, Maoz M, Sapir E, Wygoda M, Peretz T, Weizman N, Feldman J, Abrams RA, Lossos A, Dor Y, Zick A. Short report: Plasma based biomarkers detect radiation induced brain injury in cancer patients treated for brain metastasis: A pilot study. PLoS One 2023; 18:e0285646. [PMID: 38015964 PMCID: PMC10684068 DOI: 10.1371/journal.pone.0285646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/15/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Radiotherapy has an important role in the treatment of brain metastases but carries risk of short and/or long-term toxicity, termed radiation-induced brain injury (RBI). As the diagnosis of RBI is crucial for correct patient management, there is an unmet need for reliable biomarkers for RBI. The aim of this proof-of concept study is to determine the utility of brain-derived circulating free DNA (BncfDNA), identified by specific methylation patterns for neurons, astrocytes, and oligodendrocytes, as biomarkers brain injury induced by radiotherapy. METHODS Twenty-four patients with brain metastases were monitored clinically and radiologically before, during and after brain radiotherapy, and blood for BncfDNA analysis (98 samples) was concurrently collected. Sixteen patients were treated with whole brain radiotherapy and eight patients with stereotactic radiosurgery. RESULTS During follow-up nine RBI events were detected, and all correlated with significant increase in BncfDNA levels compared to baseline. Additionally, resolution of RBI correlated with a decrease in BncfDNA. Changes in BncfDNA were independent of tumor response. CONCLUSIONS Elevated BncfDNA levels reflects brain cell injury incurred by radiotherapy. further research is needed to establish BncfDNA as a novel plasma-based biomarker for brain injury induced by radiotherapy.
Collapse
Affiliation(s)
- Chen Makranz
- Department of Neurology and Oncology, The Gaffin Center for Neurooncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Asael Lubotzky
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Division of Neurology and Department of Molecular Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Hai Zemmour
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jonathan Cohen
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Myriam Maoz
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eli Sapir
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Radiation Oncology Institute, Samson Assuta Ashdod University Hospital, Ben Gurion University, Ashdod, Israel
| | - Marc Wygoda
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noam Weizman
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jon Feldman
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ross A. Abrams
- Department of Radiation Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander Lossos
- Department of Neurology and Oncology, The Gaffin Center for Neurooncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Aviad Zick
- Department of Oncology, Sharett Institute for Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
40
|
Ngu S, Werner C, D' Amico RS, Wernicke AG. Whole brain radiation therapy resulting in radionecrosis: a possible link with radiosensitising chemoimmunotherapy. BMJ Case Rep 2023; 16:e256758. [PMID: 38016763 PMCID: PMC10685978 DOI: 10.1136/bcr-2023-256758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Radionecrosis describes a rare but serious complication of radiation therapy. In clinical practice, stereotactic radiosurgery (SRS) is increasingly used in combination with systemic therapy, including chemotherapy, immune checkpoint inhibitor and targeted therapy, either concurrently or sequentially. There is a paucity of literature regarding radionecrosis in patients receiving whole brain radiation therapy (WBRT) alone (without additional SRS) in combination with immunotherapy or targeted therapies. It is observed that certain combinations increase the overall radiosensitivity of the tumorous lesions. We present a rare case of symptomatic radionecrosis almost 1 year after WBRT in a patient with non-squamous non-small cell lung cancer on third-line chemoimmunotherapy. We discuss available research regarding factors that may lead to radionecrosis in these patients, including molecular and genetic profiles, specific drug therapy combinations and their timing or increased overall survival.
Collapse
Affiliation(s)
- Sam Ngu
- Department of Hematology/Oncology, Lenox Hill Hospital, New York, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Cassidy Werner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - Randy S D' Amico
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Neurosurgery, Lenox Hill Hospital, New York, New York, USA
| | - A Gabriella Wernicke
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Radiation Medicine, Lenox Hill Hospital, New York, New York, USA
- Northwell Health Cancer Institute, New York, New York, USA
| |
Collapse
|
41
|
Kim N, Lee J, Nam DH, Lee JI, Seol HJ, Kong DS, Choi JW, Chong K, Lee WJ, Chang JH, Kang SG, Moon JH, Cho J, Lim DH, Yoon HI. Impact of boost sequence in concurrent chemo-radiotherapy on newly diagnosed IDH-wildtype glioblastoma multiforme. J Neurooncol 2023; 165:261-268. [PMID: 37861921 DOI: 10.1007/s11060-023-04465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The standard of care for glioblastoma multiforme (GBM) is maximal surgical resection followed by conventional fractionated concurrent chemoradiotherapy (CCRT) with a total dose of 60 Gy. However, there is currently no consensus on the optimal boost technique for CCRT in GBM. METHODS We conducted a retrospective review of 398 patients treated with CCRT between 2016 and 2021, using data from two institutional databases. Patients were divided into two groups: those receiving sequential boost (SEB, N = 119) and those receiving simultaneous integrated boost (SIB, N = 279). The primary endpoint was overall survival (OS). To minimize differences between the SIB and SEB groups, we conducted propensity score matching (PSM) analysis. RESULTS The median follow-up period was 18.6 months. Before PSM, SEB showed better OS compared to SIB (2-year, 55.6% vs. 44.5%, p = 0.014). However, after PSM, there was no significant difference between two groups (2-year, 55.6% vs. 51.5%, p = 0.300). The boost sequence was not associated with inferior OS before and after PSM (all p-values > 0.05). Additionally, the rates of symptomatic pseudo-progression were similar between the two groups (odds ratio: 1.75, p = 0.055). CONCLUSIONS This study found no significant difference in OS between SEB and SIB for GBM patients treated with CCRT. Further research is needed to validate these findings and to determine the optimal boost techniques for this patient population.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Joongyo Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Won Choi
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyuha Chong
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Jae Lee
- Department of Neurosurgery, Brain Tumor Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Severance Hospital, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Teunissen WHT, Lavrova A, van den Bent M, van der Hoorn A, Warnert EAH, Smits M. Arterial spin labelling MRI for brain tumour surveillance: do we really need cerebral blood flow maps? Eur Radiol 2023; 33:8005-8013. [PMID: 37566264 PMCID: PMC10598159 DOI: 10.1007/s00330-023-10099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 07/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVES Arterial spin labelling (ASL) perfusion MRI is one of the available advanced MRI techniques for brain tumour surveillance. The first aim of this study was to investigate the correlation between quantitative cerebral blood flow (CBF) and non-quantitative perfusion weighted imaging (ASL-PWI) measurements. The second aim was to investigate the diagnostic accuracy of ASL-CBF and ASL-PWI measurements as well as visual assessment for identifying tumour progression. METHODS A consecutive cohort of patients who underwent 3-T MRI surveillance containing ASL for treated brain tumours was used. ROIs were drawn in representative parts of tumours in the ASL-CBF maps and copied to the ASL-PWI. ASL-CBF ratios and ASL-PWI ratios of the tumour ROI versus normal appearing white matter (NAWM) were correlated (Pearson correlation) and AUCs were calculated to assess diagnostic accuracy. Additionally, lesions were visually classified as hypointense, isointense, or hyperintense. We calculated accuracy at two thresholds: low threshold (between hypointense-isointense) and high threshold (between isointense-hyperintense). RESULTS A total of 173 lesions, both enhancing and non-enhancing, measured in 115 patients (93 glioma, 16 metastasis, and 6 lymphoma) showed a very high correlation of 0.96 (95% CI: 0.88-0.99) between ASL-CBF ratios and ASL-PWI ratios. AUC was 0.76 (95%CI: 0.65-0.88) for ASL-CBF ratios and 0.72 (95%CI: 0.58-0.85) for ASL-PWI ratios. Diagnostic accuracy of visual assessment for enhancing lesions was 0.72. CONCLUSION ASL-PWI ratios and ASL-CBF ratios showed a high correlation and comparable AUCs; therefore, quantification of ASL-CBF could be omitted in these patients. Visual classification had comparable diagnostic accuracy to the ASL-PWI or ASL-CBF ratios. CLINICAL RELEVANCE STATEMENT This study shows that CBF quantification of ASL perfusion MRI could be omitted for brain tumour surveillance and that visual assessment provides the same diagnostic accuracy. This greatly reduces the complexity of the use of ASL in routine clinical practice. KEY POINTS • Arterial spin labelling MRI for clinical brain tumour surveillance is undervalued and underinvestigated. • Non-quantitative and quantitative arterial spin labelling assessments show high correlation and comparable diagnostic accuracy. • Quantification of arterial spin labelling MRI could be omitted to improve daily clinical workflow.
Collapse
Affiliation(s)
- Wouter H T Teunissen
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Medical Delta, Delft, The Netherlands.
| | - Anna Lavrova
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, University of Michigan Hospital, Ann Arbor, MI, USA
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Anouk van der Hoorn
- Medical Imaging Center, Department of Radiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- Brain Tumour Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Medical Delta, Delft, The Netherlands.
| |
Collapse
|
43
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
van Dijken BRJ, Doff AR, Enting RH, van Laar PJ, Jeltema HR, Dierckx RAJO, van der Hoorn A. Influence of MRI Follow-Up on Treatment Decisions during Standard Concomitant and Adjuvant Chemotherapy in Patients with Glioblastoma: Is Less More? Cancers (Basel) 2023; 15:4973. [PMID: 37894340 PMCID: PMC10605145 DOI: 10.3390/cancers15204973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
MRI is the gold standard for treatment response assessments for glioblastoma. However, there is no consensus regarding the optimal interval for MRI follow-up during standard treatment. Moreover, a reliable assessment of treatment response is hindered by the occurrence of pseudoprogression. It is unknown if a radiological follow-up strategy at 2-3 month intervals actually benefits patients and how it influences clinical decision making about the continuation or discontinuation of treatment. This study assessed the consequences of scheduled follow-up scans post-chemoradiotherapy (post-CCRT), after three cycles of adjuvant chemotherapy [TMZ3/6], and after the completion of treatment [TMZ6/6]), and of unscheduled scans on treatment decisions during standard concomitant and adjuvant treatment in glioblastoma patients. Additionally, we evaluated how often follow-up scans resulted in diagnostic uncertainty (tumor progression versus pseudoprogression), and whether perfusion MRI improved clinical decision making. Scheduled follow-up scans during standard treatment in glioblastoma patients rarely resulted in an early termination of treatment (2.3% post-CCRT, 3.2% TMZ3/6, and 7.8% TMZ6/6), but introduced diagnostic uncertainty in 27.7% of cases. Unscheduled scans resulted in more major treatment consequences (30%; p < 0.001). Perfusion MRI caused less diagnostic uncertainty (p = 0.021) but did not influence treatment consequences (p = 0.871). This study does not support the current pragmatic follow-up strategy and suggests a more tailored follow-up approach.
Collapse
Affiliation(s)
- Bart R. J. van Dijken
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Annerieke R. Doff
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Roelien H. Enting
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Peter Jan van Laar
- Department of Radiology, Hospital Group Twente, 7600 SZ Almelo, The Netherlands
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Rudi A. J. O. Dierckx
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Anouk van der Hoorn
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
45
|
Alizadeh M, Broomand Lomer N, Azami M, Khalafi M, Shobeiri P, Arab Bafrani M, Sotoudeh H. Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers (Basel) 2023; 15:4429. [PMID: 37760399 PMCID: PMC10526457 DOI: 10.3390/cancers15184429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma and glioblastoma multiform (GBM) remain among the most debilitating and life-threatening brain tumors. Despite advances in diagnosing approaches, patient follow-up after treatment (surgery and chemoradiation) is still challenging for differentiation between tumor progression/recurrence, pseudoprogression, and radionecrosis. Radiomics emerges as a promising tool in initial diagnosis, grading, and survival prediction in patients with glioma and can help differentiate these post-treatment scenarios. Preliminary published studies are promising about the role of radiomics in post-treatment glioma/GBM. However, this field faces significant challenges, including a lack of evidence-based solid data, scattering publication, heterogeneity of studies, and small sample sizes. The present review explores radiomics's capabilities in following patients with glioma/GBM status post-treatment and to differentiate tumor progression, recurrence, pseudoprogression, and radionecrosis.
Collapse
Affiliation(s)
- Mohammadreza Alizadeh
- Physiology Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran;
| | - Nima Broomand Lomer
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 41937-13111, Iran;
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj 66186-34683, Iran;
| | - Mohammad Khalafi
- Radiology Department, Tabriz University of Medical Sciences, Tabriz 51656-65931, Iran;
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Melika Arab Bafrani
- School of Medicine, Tehran University of Medical Sciences, Tehran 14167-53955, Iran; (P.S.); (M.A.B.)
| | - Houman Sotoudeh
- Department of Radiology and Neurology, Heersink School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Gong Y, Ke Y, Yu Z, Pan J, Zhou X, Jiang Y, Zhou M, Zeng H, Geng X, Hu G. Identified RP2 as a prognostic biomarker for glioma, facilitating glioma pathogenesis mainly via regulating tumor immunity. Aging (Albany NY) 2023; 15:8155-8184. [PMID: 37602882 PMCID: PMC10497014 DOI: 10.18632/aging.204962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Glioma is the most common primary intracranial tumor in the central nervous system, with a high degree of malignancy and poor prognosis, easy to recur, difficult to cure. The mutation of Retinitis Pigmentosa 2 (RP2) can cause retinitis pigmentosa, it is a prognostic factor of osteosarcoma, however, its role in glioma remains unclear. Based on the data from TCGA and GTEx, we identified RP2 as the most related gene for glioma by WGCNA, and used a series of bioinformatics analyses including LinkedOmics, GSCA, CTD, and so on, to explore the expression of RP2 in glioma and the biological functions it is involved in. The results showed that RP2 was highly expressed in glioma, and its overexpression could lead to poor prognosis. In addition, the results of enrichment analysis showed that RP2 was highly correlated with cell proliferation and immune response. And then, we found significant enrichment of Macrophages among immune cells. Furthermore, our experiments have confirmed that Macrophages can promote the development of glioma by secreting or influencing the secretion of some cytokines. Moreover, we investigated the influence of RP2 on the immunotherapy of glioma and the role of m6A modification in the influence of RP2 on glioma. Ultimately, we determined that RP2 is an independent prognostic factor that is mainly closely related to immune for glioma.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yun Ke
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
47
|
Koh ES, Gan HK, Senko C, Francis RJ, Ebert M, Lee ST, Lau E, Khasraw M, Nowak AK, Bailey DL, Moffat BA, Fitt G, Hicks RJ, Coffey R, Verhaak R, Walsh KM, Barnes EH, De Abreu Lourenco R, Rosenthal M, Adda L, Foroudi F, Lasocki A, Moore A, Thomas PA, Roach P, Back M, Leonard R, Scott AM. [ 18F]-fluoroethyl-L-tyrosine (FET) in glioblastoma (FIG) TROG 18.06 study: protocol for a prospective, multicentre PET/CT trial. BMJ Open 2023; 13:e071327. [PMID: 37541751 PMCID: PMC10407346 DOI: 10.1136/bmjopen-2022-071327] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/08/2023] [Indexed: 08/06/2023] Open
Abstract
INTRODUCTION Glioblastoma is the most common aggressive primary central nervous system cancer in adults characterised by uniformly poor survival. Despite maximal safe resection and postoperative radiotherapy with concurrent and adjuvant temozolomide-based chemotherapy, tumours inevitably recur. Imaging with O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) has the potential to impact adjuvant radiotherapy (RT) planning, distinguish between treatment-induced pseudoprogression versus tumour progression as well as prognostication. METHODS AND ANALYSIS The FET-PET in Glioblastoma (FIG) study is a prospective, multicentre, non-randomised, phase II study across 10 Australian sites and will enrol up to 210 adults aged ≥18 years with newly diagnosed glioblastoma. FET-PET will be performed at up to three time points: (1) following initial surgery and prior to commencement of chemoradiation (FET-PET1); (2) 4 weeks following concurrent chemoradiation (FET-PET2); and (3) within 14 days of suspected clinical and/or radiological progression on MRI (performed at the time of clinical suspicion of tumour recurrence) (FET-PET3). The co-primary outcomes are: (1) to investigate how FET-PET versus standard MRI impacts RT volume delineation and (2) to determine the accuracy and management impact of FET-PET in distinguishing pseudoprogression from true tumour progression. The secondary outcomes are: (1) to investigate the relationships between FET-PET parameters (including dynamic uptake, tumour to background ratio, metabolic tumour volume) and progression-free survival and overall survival; (2) to assess the change in blood and tissue biomarkers determined by serum assay when comparing FET-PET data acquired prior to chemoradiation with other prognostic markers, looking at the relationships of FET-PET versus MRI-determined site/s of progressive disease post chemotherapy treatment with MRI and FET-PET imaging; and (3) to estimate the health economic impact of incorporating FET-PET into glioblastoma management and in the assessment of post-treatment pseudoprogression or recurrence/true progression. Exploratory outcomes include the correlation of multimodal imaging, blood and tumour biomarker analyses with patterns of failure and survival. ETHICS AND DISSEMINATION The study protocol V.2.0 dated 20 November 2020 has been approved by a lead Human Research Ethics Committee (Austin Health, Victoria). Other clinical sites will provide oversight through local governance processes, including obtaining informed consent from suitable participants. The study will be conducted in accordance with the principles of the Declaration of Helsinki and Good Clinical Practice. Results of the FIG study (TROG 18.06) will be disseminated via relevant scientific and consumer forums and peer-reviewed publications. TRIAL REGISTRATION NUMBER ANZCTR ACTRN12619001735145.
Collapse
Affiliation(s)
- Eng-Siew Koh
- Radiation Oncology, Liverpool Hospital, Liverpool, New South Wales, Australia
- South West Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hui K Gan
- Austin Health, Department of Medical Oncology, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare Senko
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Roslyn J Francis
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Martin Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Crawley, Western Australia, Australia
| | - Sze Ting Lee
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| | - Eddie Lau
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Mustafa Khasraw
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Dale L Bailey
- Faculty of Medicine & Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Greg Fitt
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Radiology, Austin Health, Heidelberg, Victoria, Australia
| | - Rodney J Hicks
- Department of Radiology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Robert Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Roel Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kyle M Walsh
- Department of Neurosurgery and Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth H Barnes
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Broadway, New South Wales, Australia
| | - Mark Rosenthal
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Lucas Adda
- The Cooperative Trials Group for Neuro-Oncology (COGNO) Consumer Advisor Panel, National Health and Medical Research Council (NHMRC) Clinical Trials Centre (CTC), University of Sydney, Sydney, New South Wales, Australia
| | - Farshad Foroudi
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Radiation Oncology, Austin Health, Melbourne, Victoria, Australia
| | - Arian Lasocki
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alisha Moore
- Trans Tasman Radiation Oncology Group (TROG), Newcastle, New South Wales, Australia
| | - Paul A Thomas
- Department of Nuclear Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Paul Roach
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Back
- Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robyn Leonard
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew M Scott
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
48
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
49
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
50
|
Anzalone N, Politi LS, Caulo M. Editorial: Untangling post-treatment follow up of brain tumors: the role of neuroimaging. FRONTIERS IN RADIOLOGY 2023; 3:1204517. [PMID: 37492383 PMCID: PMC10364976 DOI: 10.3389/fradi.2023.1204517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 07/27/2023]
Affiliation(s)
- Nicoletta Anzalone
- Vita e Salute University, San Raffaele Hospital (IRCCS), Milan, Italy
- Neuroradiology Department, San Raffaele Hospital and Vita e Salute University, Milan, Italy
| | - Letterio S. Politi
- Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Massimo Caulo
- University of Studies G. d'Annunzio Chieti and Pescara, Chieti, Italy
- Radiology Department, D'Annunzio University, Chieti, Italy
| |
Collapse
|