1
|
Ahmadi Y, Ahmadi H, Aghebati-Maleki L. Increase in the specificity of immunoassay methods by direct targeting different epitopes; sequential chain reactions. Hum Antibodies 2024; 32:181-186. [PMID: 39240629 DOI: 10.3233/hab-240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Immunoassay methods typically involve the use of antibodies, which are either labeled with an enzyme to generate a detectable product or directly tagged with a radioactive or fluorescent substrate. METHODS One approach to enhance the specificity of immuno-detection methods is by employing a combination of different antibodies, such as primary and secondary. RESULTS However, relying solely on one antibody targeting another may not offer the highest level of precision for improving immunoassay specificity; A novel strategy for enhancing the specificity of immunoassay techniques involves directly targeting different epitopes of an antigen. CONCLUSIONS This approach entails utilizing sequential chain reactions facilitated by distinct enzymes bound to various antibodies, each directed at specific epitopes on the antigen. Such an innovative method holds promise for advancing the specificity of immunoassay methods.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan region, Iraq
| | - Hamid Ahmadi
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, Pécs University, Pécs, Hungary
| | | |
Collapse
|
2
|
Sun H, Liu J, Kong J, Zhang J, Zhang X. Ultrasensitive miRNA-21 Biosensor Based on Zn(TCPP) PET-RAFT Polymerization Signal Amplification and Multiple Logic Gate Molecular Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17716-17725. [PMID: 36988387 DOI: 10.1021/acsami.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Quantitative measurement of microRNAs (miRNAs) is extremely important in plenty of biomedical applications especially cancer diagnosis but remains a great challenge. In this work, we developed a logic gate recognition biosensing platform based on the "trinity" molecular recognition mode for quantifying miRNAs with a detection limit of 4.48 aM, along with a linear range from 0.1 nM to 10 aM under optimal experimental conditions. In order to obtain excellent detection performance, we adopted a Zn(TCPP) photocatalytic electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization signal amplification strategy. The light-induced PET-RAFT has developed green applications of free radical polymerization in the field of biosensors. This is the first report on the preparation of signal amplification biosensors using PET-RAFT for tumor marker detection. With the outstanding detection performance, we can apply the sensor system to the early screening of lung cancer patients.
Collapse
Affiliation(s)
- Haobo Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028 Jiangsu Province, PR China
| | - Jingliang Liu
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028 Jiangsu Province, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
3
|
Manaf BAA, Hong SP, Rizwan M, Arshad F, Gwenin C, Ahmed MU. Recent advancement in sensitive detection of carcinoembryonic antigen using nanomaterials based immunosensors. SURFACES AND INTERFACES 2023; 36:102596. [DOI: 10.1016/j.surfin.2022.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Shi X, Xie Y, Chen L, Lu J, Zhang L, Sun D. Combining quasi-ZIF-67 hybrid nanozyme and G-quadruplex/hemin DNAzyme for highly sensitive electrochemical sensing. Bioelectrochemistry 2023; 149:108278. [PMID: 36195024 DOI: 10.1016/j.bioelechem.2022.108278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/08/2022]
Abstract
Zeolitic imidazolate frameworks (ZIFs), a famous subfamily of metal-organic frameworks (MOFs), are considered promising electrocatalysts. Herein, ZIF-67 was selected as an electrocatalyst for designing electrochemical sensors due to having the best electrocatalytic activity in ZIFs. To overcome the insufficient electrocatalytic activity of ZIFs, ZIF-67 derivatives (QZIF-67-X, where X represents calcination time) were obtained by calcining at 250 °C for a certain time. The porous structure of the precursor in QZIF-67-X is maintained, exposing more active centers. QZIF-67-X could accelerate electron transfer and lead to improve the electrocatalytic performance. Moreover, QZIF-67-2 was chosen as an Au nanoparticle-supported nanocarrier to further bind G-quadruplex/hemin DNAzymes with strong catalytic activity due to the best supporting activity of QZIF-67-2 among QZIF-67-X. The synergistic catalysis of QZIF-67-2 and G-quadruplex/hemin DNAzymes effectively amplified the reduction current signal of H2O2. The linear range of the prepared electrochemical sensor was 2 μM-65 mM, and the detection limit was 1.2 μM. Moreover, the real-time detection of H2O2 from HepG2 cells was achieved by the sensor, providing a novel technique for efficient anticancer drug evaluation. These results suggested that QZIF-67 can be utilized as an efficient electrocatalyst for improving the sensitivity of sensors.
Collapse
Affiliation(s)
- Xianhua Shi
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China
| | - Yixuan Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Linxi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Luyong Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, Guangdong, China.
| |
Collapse
|
5
|
Muttaqien SE, Khoris IM, Pambudi S, Park EY. Nanosphere Structures Using Various Materials: A Strategy for Signal Amplification for Virus Sensing. SENSORS (BASEL, SWITZERLAND) 2022; 23:160. [PMID: 36616758 PMCID: PMC9824175 DOI: 10.3390/s23010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanomaterials have been explored in the sensing research field in the last decades. Mainly, 3D nanomaterials have played a vital role in advancing biomedical applications, and less attention was given to their application in the field of biosensors for pathogenic virus detection. The versatility and tunability of a wide range of nanomaterials contributed to the development of a rapid, portable biosensor platform. In this review, we discuss 3D nanospheres, one of the classes of nanostructured materials with a homogeneous and dense matrix wherein a guest substance is carried within the matrix or on its surface. This review is segmented based on the type of nanosphere and their elaborative application in various sensing techniques. We emphasize the concept of signal amplification strategies using different nanosphere structures constructed from a polymer, carbon, silica, and metal-organic framework (MOF) for rendering high-level sensitivity of virus detection. We also briefly elaborate on some challenges related to the further development of nanosphere-based biosensors, including the toxicity issue of the used nanomaterial and the commercialization hurdle.
Collapse
Affiliation(s)
- Sjaikhurrizal El Muttaqien
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Indra Memdi Khoris
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| | - Sabar Pambudi
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), LAPTIAB 1, PUSPIPTEK, Tangerang Selatan 15314, Indonesia
| | - Enoch Y. Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
6
|
Joshi A, Vishnu G K A, Dhruv D, Kurpad V, Pandya HJ. Morphology-Tuned Electrochemical Immunosensing of a Breast Cancer Biomarker Using Hierarchical Palladium Nanostructured Interfaces. ACS OMEGA 2022; 7:34177-34189. [PMID: 36188250 PMCID: PMC9520690 DOI: 10.1021/acsomega.2c03532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/30/2022] [Indexed: 05/28/2023]
Abstract
Metallic nanostructures are considered attractive candidates for designing novel biosensors due to their enormously significant surface area, accelerated kinetics, and improved affinity. Controllable morphological tuning of metallic nanostructures on sensing interfaces is crucial for attaining clinically relevant sensitivity and exquisite selectivity in a complex biological environment. Therefore, a facile, convenient, and robust one-step electroreduction method was employed to develop different morphological variants of palladium (Pd) nanostructures supported onto oxidized carbon nanotubes to facilitate label-free electrochemical immunosensing of HER2. The morphological and structural attributes of the synthesized Pd nanostructures were thoroughly investigated using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy techniques. In-depth electrochemical investigations revealed an intimate correlation between the nanostructured sensor and electrochemical response, suggesting the suitability of hierarchical palladium nanostructures supported onto carbon nanotubes [Pd(-0.1 V)/CNT] for sensitive detection of HER2. The high surface area of hierarchical Pd nanostructures enabled an ultrasensitive electrochemical response toward HER2 (detection limit: 1 ng/mL) with a wide detection range of 10 to 100 ng/mL. The ease of surface modification, sensitivity, and reliable electrochemical response in human plasma samples suggested the enormous potential of Pd nanostructuring for chip-level point-of-care screening of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Anju Joshi
- Department
of Electronic Systems Engineering, Division of EECS, Indian Institute of Science, Bangalore 560012, India
| | - Anil Vishnu G K
- Centre
for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dhananjay Dhruv
- Natubhai
V. Patel College of Pure and Applied Sciences, Charutar Vidya Mandal University, Vallabh Vidyanagar, Anand 388120, Gujarat, India
| | - Vishnu Kurpad
- SriShankara
Cancer Hospital and Research Centre, Bengaluru 560004, Karnataka, India
| | - Hardik J. Pandya
- Department
of Electronic Systems Engineering, Division of EECS, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
The development of high sensitive alpha-fetoprotein immune-electrochemical detection method using an excellent conductivity 3D-CuFC-C nanocrystals synthesized by solution-grown at room temperature. Biosens Bioelectron 2022; 218:114766. [DOI: 10.1016/j.bios.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
8
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
9
|
Jiang M, Wang M, Lai W, Zhang M, Ma C, Li P, Li J, Li H, Hong C. Preparation of a pH-responsive controlled-release electrochemical immunosensor based on polydopamine encapsulation for ultrasensitive detection of alpha-fetoprotein. Mikrochim Acta 2022; 189:334. [PMID: 35970980 DOI: 10.1007/s00604-022-05433-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
To accomplish ultra-sensitive detection of alpha-fetoprotein(AFP), a novel electrochemical immunosensor using polydopamine-coated Fe3O4 nanoparticles (PDA@Fe3O4 NPs) as a smart label and polyaniline (PANI) and Au NPs as substrate materials has been created. The sensor has the following advantages over typical immunoassay technology: (1) The pH reaction causes PDA@Fe3O4 NPs to release Prussian blue (PB) prosoma while also destroying the secondary antibody label and immunological platform and lowering electrode impedance; (2) PB has a highly efficient catalytic effect on H2O2, allowing for the obvious amplification of electrical impulses; (3) PANI was electrodeposited on the electrode surface to avoid PB loss and signal leakage, which effectively absorbed and fixed PB while considerably increasing electron transmission efficiency. The sensor's detection limit was 0.254 pg·mL-1 (S/N = 3), with a detection range of 1 pg·mL-1 to 100 ng·mL-1. The sensor has a high level of selectivity, repeatability, and stability, and it is predicted to be utilized to detect AFP in real-world samples.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Min Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Wenjing Lai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Pengli Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Jiajia Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
10
|
Hong F, Chen R, Lu P, Li L, Xiao R, Chen Y, Yang H. A universal, portable, and ultra-sensitive pipet immunoassay platform for deoxynivalenol detection based on dopamine self-polymerization-mediated bioconjugation and signal amplification. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129257. [PMID: 35739776 DOI: 10.1016/j.jhazmat.2022.129257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Deoxynivalenol (DON) is highly toxic to the environment and human health. It is important to detect DON with ultra-high sensitivity, ease of operation, and low cost. Inspired by the excellent stability and biocompatibility of polydopamine, a universal, portable and ultra-sensitive pipet immunoassay platform was reported for DON detection based on dopamine self-polymerization (polydopamine coating and polydopamine nanoparticles). The polydopamine coating acted as an effective strategy for biomolecule immobilization on the pipet to improve the coating efficiency that significantly reduced the required concentration of biomolecules. Performing the ELISA in pipets saved nearly 67% of the antigen amount and 83% of the antibody amount, which reduced the detection cost and simplified the experimental steps. The dual signal amplification in this pipet immunoassay enabled ultra-high sensitivity. Polydopamine nanoparticles acted as the enrichment carrier of horseradish peroxidase-goat anti-mouse IgG for the first-round signal amplification, followed by the tyramine-mediated loading of streptavidin-HRP for the second-round signal amplification. The dual-enriched HRP catalyzed the color-developing substrate to achieve highly sensitive colorimetric DON detection with a limit of detection of 0.435 ng/mL.
Collapse
Affiliation(s)
- Feng Hong
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Rui Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Peng Lu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Letian Li
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Ruiheng Xiao
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Yiping Chen
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China; Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hong Yang
- Hubei Hong Shan Laboratory, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China.
| |
Collapse
|
11
|
Hui N, Wang J, Wang D, Wang P, Luo X, Lv S. An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens Bioelectron 2022; 200:113921. [PMID: 34973567 DOI: 10.1016/j.bios.2021.113921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 12/31/2022]
Abstract
The development of biosensors capable of averting biofouling and detecting biomarkers in complex biological media remains a challenge. Herein, an ultralow fouling and highly sensitive biosensor based on specifically designed antifouling peptides and a signal amplification strategy was designed for prostate specific antigen (PSA) detection in human serum. A low fouling layer of poly(ethylene glycol) (PEG) doped the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was electrodeposited on the electrode surface, followed by the immobilization of streptavidin and further attachment of biotin-labelled peptides. The peptide was designed to include PSA specific recognition domain (HSSKLQK) and antifouling domain (PPPPEKEKEKE), and the terminal of the peptide was functionalized with -SH group. DNA functionalized gold nanorods (DNA/AuNRs) were then attached to the electrode, and methylene blue (MB) molecules were adsorbed to the DNA to form the signal amplifier. In the presence of PSA, the peptide was specifically cleaved and resulted in the loss of AuNRs together with DNA and MB, and thus significant decrease of the current signal. The biosensor exhibited a low limit of detection (LOD) of 0.035 pg mL-1 (S/N = 3), with a wide linear range from 0.10 pg mL-1 to 10.0 ng mL-1, and it was able to detect PSA in real human serum owing to the presence of the antifouling peptides, indicating great potential of the constructed biosensor for practical application.
Collapse
Affiliation(s)
- Ni Hui
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Jiasheng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Dongwei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, PR China
| | - Peipei Wang
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shaoping Lv
- Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
12
|
Qu C, Zhang J, Na L. Impedimetric immunosensor based on conductive and adhesive gold/polypyrrole-dopamine nanocomposite for the detection of carcino-embryonic antigen. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhang Z, Cai F, Chen J, Luo S, Lin Y, Zheng T. Ion-selective electrode-based potentiometric immunoassays for the quantitative monitoring of alpha-fetoprotein by coupling rolling cycle amplification with silver nanoclusters. Analyst 2022; 147:4752-4760. [DOI: 10.1039/d2an01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an ion-selective electrode-based potentiometric immunoassay for AFP detection coupling rolling cycle amplification with silver nanoclusters.
Collapse
Affiliation(s)
- Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintu Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Shimu Luo
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| |
Collapse
|
14
|
Chellachamy Anbalagan A, Sawant SN. Carboxylic acid-tethered polyaniline as a generic immobilization matrix for electrochemical bioassays. Mikrochim Acta 2021; 188:403. [PMID: 34731317 DOI: 10.1007/s00604-021-05059-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
Polyaniline (PANI) was functionalized by thiol-ene click chemistry to obtain carboxylic acid-tethered polyaniline (PCOOH). The versatility of PCOOH as an immobilization matrix was demonstrated by constructing four different biosensors for detection of metabolites and cancer biomarker. Immobilization efficiency of PCOOH was investigated by surface plasmon resonance and fluorescence microscopic analysis which revealed dense immobilization of biomolecules on PCOOH as compared to conventional PANI. A sandwich electrochemical biosensor was constructed using PCOOH for detection of liver cancer biomarker, α-fetoprotein (AFP). The sensor displayed sensitivity of 15.24 µA (ng mL-1)-1 cm-2, with good specificity, reproducibility (RSD 3.4%), wide linear range (0.25-40 ng mL-1) at - 0.1 V (vs. Ag/AgCl), and a low detection limit of 2 pg mL-1. The sensor was validated by estimating AFP in human blood serum samples where the AFP concentrations obtained are consistent with the values estimated using ELISA. Furthermore, utilization of PCOOH for construction of enzymatic biosensor was demonstrated by covalent immobilization of glucose oxidase, uricase, and horseradish peroxidase (HRP) for detection of glucose, uric acid, and H2O2, respectively. The biosensors displayed reasonable sensitivity (50, 148, 127 µA mM-1 cm-2), and linear ranges (0.1-5, 0.1-6, 0.1-7 mM) with a detection limit of 10, 1, and 8 µM for glucose, uric acid, and H2O2, respectively. The present study demonstrates the capability of PCOOH to support and enable oxidation of H2O2 generated by oxidase enzymes as well as HRP enzyme catalyzed reduction of H2O2. Thus, PCOOH offers a great promise as an immobilization matrix for development of high-performance biosensors to quantify a variety of other disease biomarkers. Carboxylic acid-tethered polyaniline synthesized by thiol-ene click chemistry was used as matrix to construct four different electrochemical biosensors for detection of cancer biomarker α-fetoprotein, glucose, uric acid, and H2O2.
Collapse
Affiliation(s)
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
15
|
Meng W, Li M, Zhang Y. Adriamycin coated silica microspheres as labels for cancer biomarker alpha-fetoprotein detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2665-2670. [PMID: 34046653 DOI: 10.1039/d1ay00655j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adriamycin (ADM)-coated silica microspheres as a label for the sensitive detection of a cancer biomarker alpha-fetoprotein (AFP) was reported. Silica microspheres (SiO2 MSs) were employed as the carrier for the immobilization of gold nanoparticles (Au NPs), secondary antibody (Ab2) and ADM (denote: ADM@Au NPs@SiO2 MS/Ab2) as labels. In the presence of AFP, the labels were captured on the surface of the Au NP-reduced graphene oxide (rGO) (Au NP-rGO) nanocomposites to form a sandwich structure vs. the specific recognition of antibody-antigen. In a pH 7.4 phosphate buffer solution, a well-defined peak of ADM at about -0.70 V (vs. SCE) was recorded via differential pulse voltammetry, the peak intensity of which was related to the concentration of AFP. Under optimal experimental conditions, the immunoassay exhibited a wide linear range (0.5 pg mL-1 to 75 ng mL-1) and low limit of detection (0.17 pg mL-1). Further, the immunoassay was evaluated for serum samples, which gave satisfactory results.
Collapse
Affiliation(s)
- Wenwen Meng
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
16
|
Wada M, Endo T, Hisamoto H, Sueyoshi K. Fractionation of Single-stranded DNAs with/without Stable Preorganized Structures Using Capillary Sieving Electrophoresis for Aptamer Selection. ANAL SCI 2021; 37:799-802. [PMID: 33952863 DOI: 10.2116/analsci.21c003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aptamers, single-stranded DNAs/RNAs with a strong and specific interaction towards a target molecule, have wide applications in the fields of medicine and biosensors. In conventional aptamer selection methods, it is difficult to obtain "preorganized" and/or "induced-fit" type of aptamers selectively. In this study, separation and fractionation of single-stranded DNAs with/without stable preorganized structures were carried out using capillary sieving electrophoresis. The fractionated DNAs showed different mobilities and thermodynamic stabilities of their secondary structures; this outcome is deemed to be necessary for the synthesis of novel aptasensors with a desirable sensing mechanism.
Collapse
Affiliation(s)
- Masahide Wada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University.,PRESTO, Japan Science and Technology Agency
| |
Collapse
|
17
|
Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters. Anal Bioanal Chem 2021; 413:4049-4061. [PMID: 34057557 DOI: 10.1007/s00216-021-03362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
In the clinical diagnosis of tumors, a single-marker immunoassay may lead to false results. Thus there is a need for an effective and valid method for the simultaneous measurement of multiple tumor markers. In this work, an efficient fluorescence immunosensor for the simultaneous measurement of CA125 and CA15-3 tumor markers was fabricated by utilizing the high selectivity of magnetic molecularly imprinted polymers (MMIPs) and the high sensitivity of a fluorescence (FL) method. Ni nanoclusters (Ni NCs) and noble Cd nanoclusters (Cd NCs) were introduced as efficient and economic emitters, and magnetic graphene oxide (GO-Fe3O4) was applied as a support material for surface molecularly imprinted polymers. Under the most favorable experimental conditions, the fluorescence intensity of the Cd NCs and Ni NCs gradually increased with increasing concentration of CA125 and CA15-3 antigens at a range of 0.0005-40 U mL-1, respectively, with a limit of detection (LOD) of 50 μU mL-1. The developed method had excellent properties including a broad linear range, good reproducibility, and simple operation for the clinical diagnosis of CA 125 and CA 15-3 tumor markers. This molecularly imprinted fluorescence sensor has the potential to be an effective clinical tool for the timely screening of breast cancer in human serum samples and OVCAR-3 and MCF-7 cell lines, and can be applied in clinical diagnostics.
Collapse
|
18
|
Ruan X, Wang Y, Kwon EY, Wang L, Cheng N, Niu X, Ding S, Van Wie BJ, Lin Y, Du D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens Bioelectron 2021; 184:113238. [PMID: 33878594 DOI: 10.1016/j.bios.2021.113238] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
The widespread use of herbicides in agriculture and gardening causes environmental and safety issues such as water pollution. Thus, efficient and convenient analysis of the levels of herbicide residues is of significant importance. Here, we employed 3D-printing to design a multiplex immunosensor for simultaneous detection of two widely used herbicides, atrazine and acetochlor. Multiplexing was achieved through customization of a lateral flow immunoassay, and then integrated with an electrochemical analyzer for ultrasensitive detection. Quantification of herbicide residues was realized through the detection of a novel nanomaterial label, the mesoporous core-shell palladium@platium nanoparticle (Pd@Pt NP), for its outstanding peroxidase-like property. During the electrochemical analysis, the catalytic activity of Pd@Pt NPs on the redox reaction between thionin acetate and hydrogen peroxide provided an electrochemically driven signal that accurately indicated the level of herbicide residues. Using this Nanomaterial-enhanced multiplex electrochemical immunosensing (NEMEIS) system, simultaneous detection of atrazine and acetochlor was realized with a limit of detection of 0.24 ppb and 3.2 ppb, respectively. To further evaluate the feasibility, the optimized NEMEIS was employed for detection in atrazine and acetochlor residue-containing spiked samples, and an overall recovery with 90.8% - 117% range was obtained. The NEMEIS constructed with the aid of 3D-printing provides a rapid, precise, economical, and portable detection device for herbicides, and its success suggests potential broad applications in chemical analysis, biosensors and point-of-care monitoring.
Collapse
Affiliation(s)
- Xiaofan Ruan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Yijia Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Eunice Y Kwon
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, United States
| | - Limin Wang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Nan Cheng
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Xiangheng Niu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Bernard J Van Wie
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, United States.
| |
Collapse
|
19
|
Advanced sensitivity amplification strategies for voltammetric immunosensors of tumor marker: State of the art. Biosens Bioelectron 2021; 178:113021. [DOI: 10.1016/j.bios.2021.113021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/27/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
|
20
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
21
|
Amarnath CA, Sawant SN. Polyaniline Based Electrochemical Biosensor for α‐Fetoprotein Detection Using Bio‐functionalized Nanoparticles as Detection Probe. ELECTROANAL 2020. [DOI: 10.1002/elan.202060219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Shilpa N. Sawant
- Chemistry Division Bhabha Atomic Research Centre, Trombay Mumbai 400085 India
- Homi Bhabha National Institute, Anushaktinagar Mumbai 400094 India
| |
Collapse
|
22
|
Zhou N, Liu T, Wen B, Gong C, Wei G, Su Z. Recent Advances in the Construction of Flexible Sensors for Biomedical Applications. Biotechnol J 2020; 15:e2000094. [PMID: 32744777 DOI: 10.1002/biot.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Indexed: 11/09/2022]
Abstract
The fabrication of flexible sensors is a potential way to promote the progress of modern social science and technology due to their wide applications in high-performance electronic equipment and devices. Flexible sensors based on organic materials combine the unique advantages of flexibility and low cost, increasing interest in healthcare monitoring, treatment, and human-machine interfaces. Advances in materials science and biotechnology have rapidly accelerated the development of bio-integrated multifunctional sensors and devices. Due to their excellent mechanical and electrical properties, many types of functional materials provided benefits for the construction of various sensors with improved flexibility and stretchability. In this review, recent advance in the fabrication of flexible sensors by using functional nanomaterials including nanoparticles, carbon materials, metal-organic materials, and polymers is presented. In addition, the potential biomedical applications of the fabricated flexible sensors for detecting gas molecules signals, small molecules, DNA/RNA, proteins, others are introduced and discussed.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianjiao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bianying Wen
- School of Materials and Mechanical Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing, 100048, China
| | - Coucong Gong
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen, D-28359, Germany.,College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
23
|
Sun B, Wang Y, Li D, Li W, Gou X, Gou Y, Hu F. Development of a sensitive electrochemical immunosensor using polyaniline functionalized graphene quantum dots for detecting a depression marker. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110797. [PMID: 32279828 DOI: 10.1016/j.msec.2020.110797] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/04/2019] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
As a new type of conductive material, polyaniline functionalized graphene quantum dots (PAGD), which were prepared by in-situ polymerization had been used to construct a novel electrochemical immunosensor for early screening of depression markers-heat shock protein 70 (HSP70). Profiting from the huge specific surface area, good bioactivity and excellent structure of PAGD, a variety of heat shock protein 70 (HSP70) was firmly loaded on the surface of PAGD for successful construction of basic electrode (HSP70/PAGD/GCE), which was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Due to the HSP70 fixed on the surface of basic electrode and the HSP70 in the samples can competitively combine with the horseradish peroxidase labeled human HSP70 antibody (HRP-Strept-Biotin-Ab). As a result, there is negative correlation between the concentration of HSP70 in samples and the detection signal of the proposed electrochemical immunosensor (HRP-Strept-Biotin-Ab-HSP70/PAGD/GCE) in the test liquid. Under conditions optimized for determining HSP70, wide linearity was obtained in the range of 0.0976-100 ng/mL, with a low detection limit of 0.05 ng/mL at 3σ. Moreover, the proposed electrochemical immunosensors was successfully applied to detect HSP70 in plasma samples, and exhibited good precision, acceptable stability and reproducibility. Therefore, this study provides a novel and convenient method for early clinical screening of depression markers, and also provides a reliable and objective analysis method for the diagnosis of depression at the molecular level.
Collapse
Affiliation(s)
- Bolu Sun
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanping Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Dai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wuyan Li
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiaodan Gou
- School of Chemistry and Chemical Engineering, Nanjing University, 210046, China
| | - Yuqiang Gou
- Center for Disease Prevention and Control in Northwest Theater of the Chinese People's Liberation Army, Lanzhou 730000, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
24
|
Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes (Basel) 2020. [DOI: 10.3390/pr8030355] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical biomedical applications. Subsequently, diverse biomedical applications of carbon nanotube were also deliberately discussed in the light of various therapeutic advantages.
Collapse
|
25
|
Abbasy L, Mohammadzadeh A, Hasanzadeh M, Ehsani M, Mokhtarzadeh A. Biosensing of prostate specific antigen (PSA) in human plasma samples using biomacromolecule encapsulation into KCC-1-npr-NH 2: A new platform for prostate cancer detection. Int J Biol Macromol 2020; 154:584-595. [PMID: 32173432 DOI: 10.1016/j.ijbiomac.2020.03.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Prostate-specific antigen (PSA) is a high molecular weight glycoprotein that is used as a marker for the diagnosis of prostate cancer and is therefore important in the medical field. In this study, a novel sandwich type immunoassay was designed based on encapsulation of biotinylated antibody into KCC-1-npr-NH2. KCC-1-npr-NH2 stabilized the stability of the primary antibody. So, encapsulated Ab1 was immobilized on the surface of glassy carbon electrode. Field emission scanning electron microscope (FE-SEM) was employed to monitor the sensor fabrication. The engineered immunosensor was used for the detection of PSA using differential pulse voltammetry (DPVs) and square wave voltammetry (SWVs) techniques. The proposed interface lead to enhancement of accessible surface area for immobilizing a high amount of anti-PSA antibody, increasing electrical conductivity, boosting stability, catalytic properties and biocompatibility. The intensity of electrochemical signals is also increased by the use of AuNPs functionalized with CysA used in secondary antibody (HRP conjugated PSA) structure. Under optimal conditions, the designed immuno-assay provide a good analytical performance for quantifying the PSA marker in the linear range of 1 to 60 μg/l.
Collapse
Affiliation(s)
- Leila Abbasy
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz 51664, Iran
| | - Arezoo Mohammadzadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Ehsani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Parate K, Rangnekar SV, Jing D, Mendivelso-Perez DL, Ding S, Secor EB, Smith EA, Hostetter JM, Hersam MC, Claussen JC. Aerosol-Jet-Printed Graphene Immunosensor for Label-Free Cytokine Monitoring in Serum. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8592-8603. [PMID: 32040290 DOI: 10.1021/acsami.9b22183] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Graphene-based inks are becoming increasingly attractive for printing low-cost and flexible electrical circuits due to their high electrical conductivity, biocompatibility, and manufacturing scalability. Conventional graphene printing techniques, such as screen and inkjet printing, are limited by stringent ink viscosity requirements properties and large as-printed line width that impedes the performance of printed biosensors. Here, we report an aerosol-jet-printed (AJP) graphene-based immunosensor capable of monitoring two distinct cytokines: interferon gamma (IFN-γ) and interleukin 10 (IL-10). Interdigitated electrodes (IDEs) with 40 μm finger widths were printed from graphene-nitrocellulose ink on a polyimide substrate. The IDEs were annealed in CO2 to introduce reactive oxygen species on the graphene surface that act as chemical handles to covalently link IFN-γ and IL-10 antibodies to the graphene surfaces. The resultant AJP electrochemical immunosensors are capable of monitoring cytokines in serum with wide sensing range (IFN-γ: 0.1-5 ng/mL; IL-10: 0.1-2 ng/mL), low detection limit (IFN-γ: 25 pg/ml and IL-10: 46 pg/ml) and high selectivity (antibodies exhibited minimal cross-reactivity with each other and IL-6) without the need for sample prelabeling or preconcentration. Moreover, these biosensors are mechanically flexible with minimal change in signal output after 250 bending cycles over a high curvature (Φ = 5 mm). Hence, this technology could be applied to numerous electrochemical applications that require low-cost electroactive circuits that are disposable and/or flexible.
Collapse
Affiliation(s)
- Kshama Parate
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Sonal V Rangnekar
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory , Iowa State University , Ames , Iowa 50010 , Unites States
| | | | - Shaowei Ding
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| | - Ethan B Secor
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Emily A Smith
- Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States
| | - Jesse M Hostetter
- College of Veterinary Medicine , Iowa State University , Ames , Iowa 50011 , United States
| | - Mark C Hersam
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jonathan C Claussen
- Department of Mechanical Engineering , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
27
|
Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA. Biosens Bioelectron 2020; 149:111842. [DOI: 10.1016/j.bios.2019.111842] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
|
28
|
Mahaling B, Verma M, Mishra G, Chaudhuri S, Dutta D, Sivakumar S. Fate of GdF 3 nanoparticles-loaded PEGylated carbon capsules inside mice model: a step toward clinical application. Nanotoxicology 2020; 14:577-594. [PMID: 31928284 DOI: 10.1080/17435390.2019.1708494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The successful translation of nanostructure-based bioimaging and/or drug delivery system needs extensive in vitro and in vivo studies on biocompatibility, biodistribution, clearance, and toxicity for its diagnostic applications. Herein, we have investigated the in vitro cyto-hemocompatibility, in vivo biodistribution, clearance, and toxicity in mice after systemic administration of GdF3 nanoparticles loaded PEGylated mesoporous carbon capsule (GdF3-PMCC)-based theranostic system. In vitro cyto-hemocompatibility study showed a very good biocompatibility up to concentration of 500 µg/ml. Biodistribution studies carried out from 1 h to 8 days showed that GdF3-PMCC was found in major organs, such as liver, kidney, spleen, and muscle till 4th day and it was negligible in any tissue after 8th day. The clearance study was carried out for a period of 8 days and it was observed that the urinary system is the main route of excretion of GdF3-PMCC. The tissue toxicity study was done for 15 days and histopathological analysis indicated that the GdF3-PMCC based theranostic system does not have any adverse effect in tissues. Thus, PMCCs are nontoxic and can be applied as theranostic agents in contrast to the other carbon-based systems (PEGylated carbon nanotubes and PEGylated graphene oxide) which showed significant toxicity.
Collapse
Affiliation(s)
- Binapani Mahaling
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Madhu Verma
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Gargi Mishra
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Centre for Environmental Science and Engineering, Thematic Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
29
|
Promsuwan K, Kanatharana P, Thavarungkul P, Limbut W. Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135309] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Husain RA, Barman SR, Chatterjee S, Khan I, Lin ZH. Enhanced biosensing strategies using electrogenerated chemiluminescence: recent progress and future prospects. J Mater Chem B 2020; 8:3192-3212. [DOI: 10.1039/c9tb02578b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of enhancement strategies for highly sensitive ECL-based sensing of bioanalytes enabling early detection of cancer.
Collapse
Affiliation(s)
- Rashaad A. Husain
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Subhodeep Chatterjee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Imran Khan
- Institute of NanoEngineering and MicroSystems
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Power Mechanical Engineering
| |
Collapse
|
31
|
Shen H, Wang C, Ren C, Zhang G, Zhang Y, Li J, Hu X, Yang Z. A streptavidin-functionalized tin disulfide nanoflake-based ultrasensitive electrochemical immunosensor for the detection of tumor markers. NEW J CHEM 2020. [DOI: 10.1039/d0nj00160k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Universal and novel streptavidin-functionalized tin disulfide nanoflakes (SnS2 NFs) have been explored for the first time to develop an ultrasensitive electrochemical immunosensor for the detection of tumor markers.
Collapse
Affiliation(s)
- Huifang Shen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Chu Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Chuanli Ren
- Clinical Medical College of Yangzhou University
- Yangzhou
- P. R. China
| | - Geshan Zhang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Juan Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
32
|
Zaidi SA, Shahzad F, Batool S. Progress in cancer biomarkers monitoring strategies using graphene modified support materials. Talanta 2019; 210:120669. [PMID: 31987212 DOI: 10.1016/j.talanta.2019.120669] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/27/2022]
Abstract
Cancer is the one of the fatal and dreaded disease responsible for huge number of morbidity and mortality across the globe. It is expected that the global burden will increase to 21.7 million fresh cancer cases as compared to present estimate of 18.1 million cancer cases in addition to nearly 9.6 million cancer deaths worldwide. In response to cancerous or certain benign conditions; specific type of tumor or cancer markers (biomarkers) are produced at much higher levels which are secreted into the urine, blood, stool, tumor or other tissues. Therefore, the efficient and early detection of cancer biomarkers is necessary which can offer a reliable way for cancer patient screening and diagnosis. This process not only helps in the evaluation of pathogenic processes but also the prognosis of different cancers and pharmacological responses to therapeutic interventions are secured. Over the past several years, electrochemical detection methods have proved to be the most attractive methods among many, due to the advantages, such as simple instrumentation, portability, low cost and high sensitivity. Furthermore, the modifications of these electrochemical immunosensors by utilizing various types of nanomaterials enable these systems to detect trace amount of target tumor markers. Hence, herein, we intend to review the selective works on electrochemical detection of various biomarkers using wide range of nanomaterials with a particular focus on graphene.
Collapse
Affiliation(s)
- Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar.
| | - Faisal Shahzad
- National Center for Nanotechnology, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, 45650, Pakistan.
| | - Sadaf Batool
- Department of Nuclear Medicine, Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan
| |
Collapse
|
33
|
Chen ZC, Chang TL, Li CH, Su KW, Liu CC. Thermally stable and uniform DNA amplification with picosecond laser ablated graphene rapid thermal cycling device. Biosens Bioelectron 2019; 146:111581. [PMID: 31629228 PMCID: PMC7126615 DOI: 10.1016/j.bios.2019.111581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/02/2019] [Accepted: 08/08/2019] [Indexed: 01/02/2023]
Abstract
Rapid thermal cycling (RTC) in an on-chip device can perform DNA amplification in vitro through precise thermal control at each step of the polymerase chain reaction (PCR). This study reports a straightforward fabrication technique for patterning an on-chip graphene-based device with hole arrays, in which the mechanism of surface structures can achieve stable and uniform thermal control for the amplification of DNA fragments. A thin-film based PCR device was fabricated using picosecond laser (PS-laser) ablation of the multilayer graphene (MLG). Under the optimal fluence of 4.72 J/cm2 with a pulse overlap of 66%, the MLG can be patterned with arrays of 250 μm2 hole surface structures. A 354-bp DNA fragment of VP1, an effective marker for diagnosing the BK virus, was amplified on an on-chip device in less than 60 min. A thin-film electrode with the aforementioned MLG as the heater was demonstrated to significantly enhance temperature stability for each stage of the thermal cycle. The temperature control of the heater was performed by means of a developed programmable PCR apparatus. Our results demonstrated that the proposed integration of a graphene-based device and a laser-pulse ablation process to form a thin-film PCR device has cost benefits in a small-volume reagent and holds great promise for practical medical use of DNA amplification.
Collapse
Affiliation(s)
- Zhao-Chi Chen
- Department of Mechatronic Engineering, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Tien-Li Chang
- Department of Mechatronic Engineering, National Taiwan Normal University, Taipei, Taiwan, ROC.
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Kai-Wen Su
- Integrated Science, University of British Columbia, Columbia, Canada
| | - Cheng-Che Liu
- Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
34
|
Liu H, Zhang L, Xu Y, Chen J, Wang Y, Huang Q, Chen X, Liu Y, Dai Z, Zou X, Li Z. Sandwich immunoassay coupled with isothermal exponential amplification reaction: An ultrasensitive approach for determination of tumor marker MUC1. Talanta 2019; 204:248-254. [DOI: 10.1016/j.talanta.2019.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/12/2022]
|
35
|
Mohammadniaei M, Nguyen HV, Tieu MV, Lee MH. 2D Materials in Development of Electrochemical Point-of-Care Cancer Screening Devices. MICROMACHINES 2019; 10:E662. [PMID: 31575012 PMCID: PMC6843145 DOI: 10.3390/mi10100662] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Effective cancer treatment requires early detection and monitoring the development progress in a simple and affordable manner. Point-of care (POC) screening can provide a portable and inexpensive tool for the end-users to conveniently operate test and screen their health conditions without the necessity of special skills. Electrochemical methods hold great potential for clinical analysis of variety of chemicals and substances as well as cancer biomarkers due to their low cost, high sensitivity, multiplex detection ability, and miniaturization aptitude. Advances in two-dimensional (2D) material-based electrochemical biosensors/sensors are accelerating the performance of conventional devices toward more practical approaches. Here, recent trends in the development of 2D material-based electrochemical biosensors/sensors, as the next generation of POC cancer screening tools, are summarized. Three cancer biomarker categories, including proteins, nucleic acids, and some small molecules, will be considered. Various 2D materials will be introduced and their biomedical applications and electrochemical properties will be given. The role of 2D materials in improving the performance of electrochemical sensing mechanisms as well as the pros and cons of current sensors as the prospective devices for POC screening will be emphasized. Finally, the future scopes of implementing 2D materials in electrochemical POC cancer diagnostics for the clinical translation will be discussed.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Huynh Vu Nguyen
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06910, Korea.
| |
Collapse
|
36
|
Ma C, Zhao C, Li W, Song Y, Hong C, Qiao X. Sandwich-type electrochemical immunosensor constructed using three-dimensional lamellar stacked CoS 2@C hollow nanotubes prepared by template-free method to detect carcinoembryonic antigen. Anal Chim Acta 2019; 1088:54-62. [PMID: 31623716 DOI: 10.1016/j.aca.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 01/01/2023]
Abstract
Effective treatment of cancer depends on early detection of tumor markers. In this paper, an effective template-free method was used to prepare CoS2@C three-dimensional hollow sheet nanotubes as the matrix of the immunosensor. The unique three-dimensional hybrid hollow tubular nanostructure provides greater contact area and enhanced detection limit. The CoS2@C-NH2-HRP nanomaterial was synthesized as a marker and had a high specific surface area, which can effectively improve the electrocatalytic ability of hydrogen peroxide (H2O2) reduction while increasing the amount of capture-fixed carcinoembryonic antigen antibody (anti-CEA). In addition, the co-bonded horseradish peroxidase (HRP) can further promote the redox of H2O2 and amplify the electrical signal. Carcinoembryonic antigen (CEA) was quantified by immediate current response (i-t), and the prepared immunosensor had good analytical performance under optimized conditions. The current signal and the concentration of CEA were linear in the range of 0.001-80 ng/mL, and the detection limit was 0.33 pg/mL (S/N = 3). The designed immunosensor has good selectivity, repeatability and stability, and the detection of human serum samples shows good performance. Furthermore, electrochemical immunosensor has broad application prospects in the clinical diagnosis of CEA.
Collapse
Affiliation(s)
- Chaoyun Ma
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chulei Zhao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Wenjun Li
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Yiju Song
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| | - Chenglin Hong
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China.
| | - Xiuwen Qiao
- College of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|
37
|
Su S, Sun Q, Wan L, Gu X, Zhu D, Zhou Y, Chao J, Wang L. Ultrasensitive analysis of carcinoembryonic antigen based on MoS2-based electrochemical immunosensor with triple signal amplification. Biosens Bioelectron 2019; 140:111353. [DOI: 10.1016/j.bios.2019.111353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/18/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
|
38
|
Kong H, Liu WW, Zhang W, Zhang Q, Wang CH, Khan MI, Wang YX, Fan LY, Cao CX. Facile, Rapid, and Low-Cost Electrophoresis Titration of Thrombin by Aptamer-Linked Magnetic Nanoparticles and a Redox Boundary Chip. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29549-29556. [PMID: 31259516 DOI: 10.1021/acsami.9b09598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An aptamer-linked assay of a target biomarker (e.g., thrombin) is facing the challenges of long-term run, complex performance, and expensive instrument, unfitting clinical diagnosis in resource-limited areas. Herein, a facile chip electrophoresis titration (ET) model was proposed for rapid, portable, and low-cost assay of thrombin via aptamer-linked magnetic nanoparticles (MNPs), redox boundary (RB), and horseradish peroxidase (HRP). In the electrophoresis titration-redox boundary (ET-RB) model, thrombin was chosen as a model biomarker, which could be captured within 15 min by MNP-aptamer 1 and HRP-aptamer 2, forming a sandwich complex of (MNP-aptamer 1)-thrombin-(HRP-aptamer 2). After MNP separation and chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) within 10 min, an ET-RB run could be completed within 5 min based on the reaction between a 3,3',5,5'-tetramethylbenzidine radical cation (TMB•+) and l-ascorbic acid in the ET channel. The systemic experiments based on the ET-RB method revealed that the sandwich complex could be formed and the thrombin content could be assayed via an ET-RB chip, demonstrating the developed model and method. In particular, the ET-RB method had the evident merits of simplicity, rapidity (less than 30 min), and low cost as well as portability and visuality, in contrast to the currently used thrombin assay. In addition, the developed method had high selectivity, sensitivity (limit of detection of 0.04 nM), and stability (intraday: 3.26%, interday: 6.07%) as well as good recovery (urine: 97-102%, serum: 94-103%). The developed model and method have potential to the development of a point-of-care testing assay in resource-constrained conditions.
Collapse
Affiliation(s)
- Hao Kong
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Wei-Wen Liu
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | | | - Qiang Zhang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Cun-Huai Wang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Muhammad Idrees Khan
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | | | | | - Cheng-Xi Cao
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
39
|
Zheng J, Peng X, Wang Y, Bao T, Wen W, Zhang X, Wang S. An exonuclease-assisted triple-amplified electrochemical aptasensor for mucin 1 detection based on strand displacement reaction and enzyme catalytic strategy. Anal Chim Acta 2019; 1086:75-81. [PMID: 31561796 DOI: 10.1016/j.aca.2019.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
The development of some sensitive methods for MUC1 is critical for preclinical diagnosis of tumors. In this experiment, we built a triple-amplified electrochemical aptasensor to achieve sensitive detection of MUC1, which was based on exonuclease III (Exo III)-assisted with strand displacement reaction and enzyme catalytic strategy. Firstly, with the help of Exo III, MUC1 and aptamer could be recycled during the cycle I, the single stranded DNA-1 (S-1) was produced during the process and was introduced to the hybride reaction on the electrode. Secondly, during the cycle II, strand displacement reaction was triggered on the electrode with the adding of hairpin DNA-2 (H-2). Thirdly, after the gold nanoparticles (AuNPs)-DNA-enzyme conjugates hybrided with the H-2 on the electrode, the AuNPs-DNA-enzyme conjugates could act as signal probe to produce electrochemical catalytic signal. We used the fabricated triple-amplified electrochemical aptasensor that could detect MUC1 from 0.1 pg mL-1 to 10 ng mL-1 with the detection limit of 0.04 pg mL-1 under the optimized experimental conditions. The constructed triple-amplified electrochemical aptasensor could be applied in real samples determination. Besides, the strategy can be applied to detect other proteins for health monitoring.
Collapse
Affiliation(s)
- Jiaxin Zheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiaolun Peng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yijia Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
40
|
Mollarasouli F, Kurbanoglu S, Ozkan SA. The Role of Electrochemical Immunosensors in Clinical Analysis. BIOSENSORS 2019; 9:E86. [PMID: 31324020 PMCID: PMC6784381 DOI: 10.3390/bios9030086] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
An immunosensor is a kind of affinity biosensor based on interactions between an antigen and specific antigen immobilized on a transducer surface. Immunosensors possess high selectivity and sensitivity due to the specific binding between antibody and corresponding antigen, making them a suitable platform for several applications especially in the medical and bioanalysis fields. Electrochemical immunosensors rely on the measurements of an electrical signal recorded by an electrochemical transducer and can be classed as amperometric, potentiometric, conductometric, or impedimetric depending on the signal type. Among the immunosensors, electrochemical immunosensors have been more perfected due to their simplicity and, especially their ability to be portable, and for in situ or automated detection. This review addresses the potential of immunosensors destined for application in clinical analysis, especially cancer biomarker diagnosis. The emphasis is on the approaches used to fabricate electrochemical immunosensors. A general overview of recent applications of the developed electrochemical immunosensors in the clinical approach is described.
Collapse
Affiliation(s)
- Fariba Mollarasouli
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey.
| |
Collapse
|
41
|
Sonthanasamy RSA, Sulaiman NMN, Tan LL, Lazim AM. Comprehensive spectroscopic studies of synergism between Gadong starch based carbon dots and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 218:85-96. [PMID: 30954801 DOI: 10.1016/j.saa.2019.03.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Carbon dots (C-dots) were used to study the binding mechanisms with serum protein, bovine serum albumin (BSA) by using two notable binding systems known as non-covalent and covalent interaction. Interaction between C-dots and BSA were estimated by Stern-Volmer equation and Double Log Regression Model (DLRM). According to the fluorescent intensity, quenching of model carrier protein by C-dots was due to dynamic quenching for non-covalent and static quenching for covalent binding. The binding site constant, KA and number of binding site, for covalent interaction is 1754.7L/mol and n≈1 (0.6922) were determined by DLRM on fluorescence quenching results. The blue shift of the fluorescence spectrum, from 450nm to 421nm (non-covalent) and 430nm (covalent) and suggested that both the microenvironment of C-dots and protein changed in relation to the protein concentration. The fluorescence intensity results show that protein structure has a significant role in Protein-C-dots interactions and type of binding influence physicochemical properties of C-dots differently. Understanding to this bio interface is important to utilize both quantum dots and biomolecules for biomedical field. It can be a useful guideline to design further applications in biomedical and bioimaging.
Collapse
Affiliation(s)
- Regina Sisika A Sonthanasamy
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nik Muslihuddin Nik Sulaiman
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southest Asia Disaster Preventation Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azwan Mat Lazim
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
42
|
Huang X, Cui B, Ma Y, Yan X, Xia L, Zhou N, Wang M, He L, Zhang Z. Three-dimensional nitrogen-doped mesoporous carbon nanomaterials derived from plant biomass: Cost-effective construction of label-free electrochemical aptasensor for sensitively detecting alpha-fetoprotein. Anal Chim Acta 2019; 1078:125-134. [PMID: 31358210 DOI: 10.1016/j.aca.2019.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/28/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022]
Abstract
We synthesized three kinds of nitrogen-doped nanoporous carbon nanomaterials (represented by N-mC) through a cost-effective method, that is, pyrolysis of plant biomasses (grass, flower, and peanut shells). We further explored their potential as sensitive bioplatforms for electrochemical label-free aptasensors to facilitate the early detection of alpha-fetoprotein (AFP). Chemical structure characterizations revealed that rich functional groups coexisted in as-synthesized N-mC nanomaterials, such as C-C, C-O, C=O, C-N, and COOH. Among the three kinds of N-mC nanomaterials, the one derived from grass (N-mCg) exhibited the lowest carbon defect degree, the highest ID/IG ratio in the Raman spectra, and the largest specific surface area (186.2 m2 g-1). Consequently, N-mCg displayed excellent electrochemical activity and strong affinity toward aptamer strands, further endowing the corresponding aptasensor with sensitive detection ability for AFP. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were used to investigate the whole detection procedure for AFP. The EIS and DPV results showed that the fabricated N-mCg-based aptasensor possessed an extremely low limit of detection of 60.8 and 61.8 fg·mL-1 (s/n = 3), respectively, for detecting AFP within a wide linear range from 0.1 pg mL-1 to 100 ng mL-1. Moreover, the aptasensor displayed acceptable selectivity and applicability, high reproducibility, and excellent stability in serum samples of cancer patients. Therefore, the proposed cost-effective and label-free strategy based on the nitrogen-doped nanoporous carbon derived from plant biomass is a promising approach for the early detection of various tumor markers.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Bingbing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Yashen Ma
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Xu Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Lei Xia
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450052, PR China.
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou, 450001, PR China.
| |
Collapse
|
43
|
Li F, Feng J, Gao Z, Shi L, Wu D, Du B, Wei Q. Facile Synthesis of Cu 2O@TiO 2-PtCu Nanocomposites as a Signal Amplification Strategy for the Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8945-8953. [PMID: 30758174 DOI: 10.1021/acsami.9b01779] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel ultrasensitive sandwich-type electrochemical immunosensor was proposed for the quantitative detection of insulin, a representative biomarker for diabetes. To this end, molybdenum disulfide nanosheet-loaded gold nanoparticles (MoS2/Au NPs) were used as substrates to modify bare glassy carbon electrodes. MoS2/Au NPs not only present superior biocompatible and large specific surface area to enhance the loading capacity of primary antibody (Ab1) but also present good electrical conductivity to accelerate electron transfer rate. Moreover, the amino-functionalized cuprous oxide decorated with titanium dioxide octahedral composites (Cu2O@TiO2-NH2) were prepared to load dendritic platinum-copper nanoparticles (PtCu NPs) to realize signal amplification strategy. The resultant nanocomposites (cuprous oxide decorated with titanium dioxide octahedral loaded dendritic platinum-copper nanoparticles) demonstrate uniform octahedral morphology and size, which effectively increases the catalytically active sites and specific surface area to load the secondary antibody (Ab2), even increases conductivity. Most importantly, the resultant nanocomposites possess superior electrocatalytic activity for hydrogen peroxide (H2O2) reduction, which present the signal amplification strategy. Under the optimal conditions, the proposed immunosensor exhibited a linear relationship between logarithm of insulin antigen concentration and amperometric response within a broad range from 0.1 pg/mL to 100 ng/mL and a limit detection of 0.024 pg/mL. Meanwhile, the immunosensor was employed to detect insulin in human serum with satisfactory results. Furthermore, it also presents good reproducibility, selectivity, and stability, which exhibits broad application prospects in biometric analysis.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering , Shandong University of Technology , Zibo 255049 , P.R. China
| | - Li Shi
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
- Centre for Energy, Materials and Telecommunications , Institut National de la Recherche Scientifique , 1650 Boulevard Lionel-Boulet , Varennes , Québec J3X 1S2 , Canada
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , P.R. China
| |
Collapse
|
44
|
Pan D, Chen K, Zhou Q, Zhao J, Xue H, Zhang Y, Shen Y. Engineering of CdTe/SiO 2 nanocomposites: Enhanced signal amplification and biocompatibility for electrochemiluminescent immunoassay of alpha-fetoprotein. Biosens Bioelectron 2019; 131:178-184. [PMID: 30831420 DOI: 10.1016/j.bios.2019.02.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
Abstract
Electrochemiluminescent (ECL) performance and cytotoxicity of CdTe quantum dots (QDs)-based nanocomposites and its possible application for ECL immunoassay were investigated. Two types of CdTe-based nanocomposites, i.e., SiO2-coated CdTe (CdTe@SiO2) and CdTe-functionalized SiO2 (SiO2@CdTe), were synthesized and comprehensively compared in regarding of the cytotoxicity and ECL performance. The in vitro cytotoxicity of SiO2@CdTe and CdTe@SiO2 nanoparticles was assessed in L02 cells using standard CCK-8 assay, and their ECL performance was investigated by constructing sandwiched immunosensor using SiO2@CdTe and CdTe@SiO2 as tags for the labelled antibody, respectively. The results showed that CdTe@SiO2 exhibited much lower cytotoxicity and a higher ECL intensity than SiO2@CdTe. Taking the analysis of alpha-fetoprotein (AFP) as an example, the ECL immunosensor using CdTe@SiO2 as an emitter was proved to have a wide linear dynamic range from 1.0 pg mL-1 to 100 ng mL-1 with a low detection limit of 0.22 pg mL-1 (S/N ratio of 3). The ECL immunosensor also demonstrated satisfactory recovery and excellent reproducibility and stability, indicating that this method has prospects in practical application in the clinical diagnosis of AFP.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Kaiyang Chen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Qing Zhou
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Jinjin Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, Henan, China
| | - Huaijia Xue
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
45
|
A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR. Biosens Bioelectron 2019; 126:151-159. [DOI: 10.1016/j.bios.2018.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
|
46
|
Mo G, He X, Zhou C, Ya D, Feng J, Yu C, Deng B. A novel ECL sensor based on a boronate affinity molecular imprinting technique and functionalized SiO2@CQDs/AuNPs/MPBA nanocomposites for sensitive determination of alpha-fetoprotein. Biosens Bioelectron 2019; 126:558-564. [DOI: 10.1016/j.bios.2018.11.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/25/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
|
47
|
Gu H, Tang H, Xiong P, Zhou Z. Biomarkers-based Biosensing and Bioimaging with Graphene for Cancer Diagnosis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E130. [PMID: 30669634 PMCID: PMC6358776 DOI: 10.3390/nano9010130] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 01/20/2023]
Abstract
At the onset of cancer, specific biomarkers get elevated or modified in body fluids or tissues. Early diagnosis of these biomarkers can greatly improve the survival rate or facilitate effective treatment with different modalities. Potential nanomaterial-based biosensing and bioimaging are the main techniques in nanodiagnostics because of their ultra-high selectivity and sensitivity. Emerging graphene, including two dimensional (2D) graphene films, three dimensional (3D) graphene architectures and graphene hybrids (GHs) nanostructures, are attracting increasing interests in the field of biosensing and bioimaging. Due to their remarkable optical, electronic, and thermal properties; chemical and mechanical stability; large surface area; and good biocompatibility, graphene-based nanomaterials are applicable alternatives as versatile platforms to detect biomarkers at the early stage of cancer. Moreover, currently, extensive applications of graphene-based biosensing and bioimaging has resulted in promising prospects in cancer diagnosis. We also hope this review will provide critical insights to inspire more exciting researches to address the current remaining problems in this field.
Collapse
Affiliation(s)
- Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Huiling Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Ping Xiong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
48
|
Zhang H, Ke H, Wang Y, Li P, Huang C, Jia N. 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Mikrochim Acta 2018; 186:39. [PMID: 30569315 DOI: 10.1007/s00604-018-3160-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
An electrochemical cytosensor for the detection of the non-small-cell lung cancer cell line A549 (NSCLC) had been developed. A microwave-hydrothermal method was employed to prepare monodisperse colloidal carbon nanospheres (CNSs). Gold nanoparticles (AuNPs) were placed on the surface of the colloidal CNSs by self-assembly to obtain 3D-structured microspheres of the type CNS@AuNP. The results of an MTT assay show the microspheres to possess good biocompatibility. The CNS@AuNP nanocomposite was then placed, in a chitosan film, on a glassy carbon electrode (GCE). The voltammetric signals and detection sensitivity are significantly enhanced owing to the synergistic effect of CNSs and AuNPs. A cytosensor was then obtained by immobilization of antibody against the carcinoembryonic antigen (which is a biomarker for NSCLC) on the GCE via crosslinking with glutaraldehyde. Hexacyanoferrate is used as an electrochemical probe, and the typical working voltage is 0.2 V (vs. SCE). If exposed to A549 cells, the differential pulse voltammetric signal decreases in the 4.2 × 10-1 to 4.2 × 10-6 cells mL-1 concentration range, and the detection limit is 14 cells mL-1 (at S/N = 3). Graphical abstract Schematic presentation of design strategy and fabrication process of the electrochemical cytosensor for A549 cells. (CNS: carbon nanospheres; GA: glutaraldehyde; PEI: polyethyleneimine; AuNPs: gold nanoparticles; BSA: Bovine serum albumin).
Collapse
Affiliation(s)
- Huan Zhang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Hong Ke
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Yinfang Wang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Pengwei Li
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry Shanghai Key Laboratory of Rare Earth Functional Materials and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
49
|
Kim DH, Oh HG, Park WH, Jeon DC, Lim KM, Kim HJ, Jang BK, Song KS. Detection of Alpha-Fetoprotein in Hepatocellular Carcinoma Patient Plasma with Graphene Field-Effect Transistor. SENSORS 2018; 18:s18114032. [PMID: 30463232 PMCID: PMC6263997 DOI: 10.3390/s18114032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023]
Abstract
The detection of alpha-fetoprotein (AFP) in plasma is important in the diagnosis of hepatocellular carcinoma (HCC) in humans. We developed a biosensor to detect AFP in HCC patient plasma and in a phosphate buffer saline (PBS) solution using a graphene field-effect transistor (G-FET). The G-FET was functionalized with 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE) for immobilization of an anti-AFP antibody. AFP was detected by assessing the shift in the voltage of the Dirac point (ΔVDirac) after binding of AFP to the anti-AFP-immobilized G-FET channel surface. This anti-AFP-immobilized G-FET biosensor was able to detect AFP at a concentration of 0.1 ng mL−1 in PBS, and the detection sensitivity was 16.91 mV. In HCC patient plasma, the biosensor was able to detect AFP at a concentration of 12.9 ng mL−1, with a detection sensitivity of 5.68 mV. The sensitivity (ΔVDirac) depended on the concentration of AFP in either PBS or HCC patient plasma. These data suggest that G-FET biosensors could have practical applications in diagnostics.
Collapse
Affiliation(s)
- Dae Hoon Kim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Hong Gi Oh
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Woo Hwan Park
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Dong Cheol Jeon
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Ki Moo Lim
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| | - Hyung Jin Kim
- Biomedical IT Convergence Center, Gumi Electronics and Information Technology Research Institute, Gumi, Gyeongbuk 39171, Korea.
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu 41931, Korea.
| | - Kwang Soup Song
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea.
| |
Collapse
|
50
|
Liang XL, Bao N, Luo X, Ding SN. CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosens Bioelectron 2018; 117:145-152. [DOI: 10.1016/j.bios.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/02/2018] [Indexed: 10/14/2022]
|