1
|
Ma S, Yang L, Lai J, Cheng S, Zhang Y, Wu Z, Huang A, Wei T, Luo Q, Wang M, Du J, Yin P. In-depth profile of biosignatures for T2DM cohort utilizing an integrated targeted LC-MS platform. Sci Data 2025; 12:377. [PMID: 40038313 DOI: 10.1038/s41597-025-04652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025] Open
Abstract
The profiling of metabolites provides an immediate snapshot that depicts crucial physiological information, holding immense potential for the early diagnosis and prognosis of diseases, including diabetes. Herein, we proposed an optimized and in-depth target-based metabolome platform through an integration of six distinct conditions, including a normal phase, a pre-column chemical derivatization and four reversed phase separation methods for the quantification of a total of 1609 small molecules (32 sub-classes) in serum after normalization using isotope-labeled internal standards. After undergoing rigorous methodological validation and comprehensive comparison with untargeted strategies, we present a new dataset of metabolomic profile encompassing a cohort of 200 healthy individuals and 100 newly diagnosed Type 2 diabetes mellitus (T2DM) patients from the northern region of China. The overall differential analysis results indicated obvious metabolic disturbance of amino acid, fatty acids, lysophosphatidyl-choline and triacylglycerol in T2DM. We hereby make these technical validation results and the profiling dataset publicly available to the scientific community, showcasing its exceptional sensitivity and robustness as an invaluable tool for the comprehensive targeted metabolome analysis.
Collapse
Affiliation(s)
- Shurong Ma
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Lu Yang
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Jinwen Lai
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Shan Cheng
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Yunshu Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Zeming Wu
- IPhenome Biotechnology Inc., Dalian, Liaoning, 116000, P. R. China
| | - Anliang Huang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Tianfu Wei
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Qiuying Luo
- IPhenome Biotechnology Inc., Dalian, Liaoning, 116000, P. R. China
| | - Mimi Wang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China
| | - Jianling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China.
| | - Peiyuan Yin
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116000, P. R. China.
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116000, P. R. China.
| |
Collapse
|
2
|
Interino N, Vitagliano R, D’Amico F, Lodi R, Porru E, Turroni S, Fiori J. Microbiota-Gut-Brain Axis: Mass-Spectrometry-Based Metabolomics in the Study of Microbiome Mediators-Stress Relationship. Biomolecules 2025; 15:243. [PMID: 40001546 PMCID: PMC11853089 DOI: 10.3390/biom15020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The microbiota-gut-brain axis is a complex bidirectional communication system that involves multiple interactions between intestinal functions and the emotional and cognitive centers of the brain. These interactions are mediated by molecules (metabolites) produced in both areas, which are considered mediators. To shed light on this complex mechanism, which is still largely unknown, a reliable characterization of the mediators is essential. Here, we review the most studied metabolites in the microbiota-gut-brain axis, the metabolic pathways in which they are involved, and their functions. This review focuses mainly on the use of mass spectrometry for their determination, reporting on the latest analytical methods, their limitations, and future perspectives. The analytical strategy for the qualitative-quantitative characterization of mediators must be reliable in order to elucidate the molecular mechanisms underlying the influence of the above-mentioned axis on stress resilience or vulnerability.
Collapse
Affiliation(s)
- Nicolò Interino
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Rosalba Vitagliano
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Federica D’Amico
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Raffaele Lodi
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
| | - Emanuele Porru
- Occupational Medicine Unit, Department of Medical and Surgical Science, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Jessica Fiori
- IRCCS Institute of Neurological Sciences of Bologna, 40139 Bologna, Italy; (N.I.); (R.V.); (R.L.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
3
|
Xu K, Berthiller F, Metzler-Zebeli BU, Schwartz-Zimmermann HE. Development and Validation of Targeted Metabolomics Methods Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) for the Quantification of 235 Plasma Metabolites. Molecules 2025; 30:706. [PMID: 39942809 PMCID: PMC11820780 DOI: 10.3390/molecules30030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Plasma contains metabolites with diverse physicochemical properties, ranging from highly polar to highly apolar, and concentrations spanning at least nine orders of magnitude. Plasma metabolome analysis is valuable for monitoring health and evaluating medical interventions but is challenging due to the metabolome's diversity and complexity. This study aims to develop and validate targeted LC-MS/MS methods for quantifying 235 mammalian metabolites from 17 compound classes in porcine plasma without prior derivatization. Utilizing reversed-phase and hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry, each analyte is identified and quantified using two selected reaction monitoring (SRM) transitions. Fast polarity switching and scheduled SRM enhance the metabolome coverage and throughput, enabling the analysis of one sample in about 40 min. A simple "dilute and shoot" sample preparation protocol was employed, with samples injected at two dilution levels to align metabolite concentrations within calibration curve ranges. Validation in porcine plasma included assessments of carryover, linearity, detection and quantification limits, repeatability and recovery. The method was further applied to plasma samples from various animal species, demonstrating its applicability to human and animal studies. This study establishes two robust LC-MS/MS methods for comprehensive porcine plasma metabolome quantification, advancing large-scale targeted metabolomics in biomedical research.
Collapse
Affiliation(s)
- Kangkang Xu
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), 3430 Tulln, Austria
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| | - Barbara U. Metzler-Zebeli
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E. Schwartz-Zimmermann
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agricultural Sciences, BOKU University, 3430 Tulln, Austria; (K.X.); (F.B.)
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, 1210 Vienna, Austria;
| |
Collapse
|
4
|
Zhang W, Zhang X, Teng F, Yang Q, Wang J, Sun B, Liu J, Zhang J, Sun X, Zhao H, Xie Y, Liao K, Wang X. Research progress and the prospect of using single-cell sequencing technology to explore the characteristics of the tumor microenvironment. Genes Dis 2025; 12:101239. [PMID: 39552788 PMCID: PMC11566696 DOI: 10.1016/j.gendis.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 11/19/2024] Open
Abstract
In precision cancer therapy, addressing intra-tumor heterogeneity poses a significant obstacle. Due to the heterogeneity of each cell subtype and between cells within the tumor, the sensitivity and resistance of different patients to targeted drugs, chemotherapy, etc., are inconsistent. Concerning a specific tumor type, many feasible treatments or combinations can be used by specifically targeting the tumor microenvironment. To solve this problem, it is necessary to further study the tumor microenvironment. Single-cell sequencing techniques can dissect distinct tumor cell populations by isolating cells and using statistical computational methods. This technology may assist in the selection of targeted combination therapy, and the obtained cell subset information is crucial for the rational application of targeted therapy. In this review, we summarized the research and application advances of single-cell sequencing technology in the tumor microenvironment, including the most commonly used single-cell genomic and transcriptomic sequencing, and their future development direction was proposed. The application of single-cell sequencing technology has been expanded to include epigenomics, proteomics, metabolomics, and microbiome analysis. The integration of these different omics approaches has significantly advanced the development of single-cell multiomics sequencing technology. This innovative approach holds immense potential for various fields, such as biological research and medical investigations. Finally, we discussed the advantages and disadvantages of using single-cell sequencing to explore the tumor microenvironment.
Collapse
Affiliation(s)
- Wenyige Zhang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xue Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Feifei Teng
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qijun Yang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiayi Wang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Bing Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jie Liu
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingyan Zhang
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaomeng Sun
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hanqing Zhao
- Queen Mary College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yuxuan Xie
- The Second Clinical Medical School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kaili Liao
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
5
|
Zhang L, Zheng J, Johnson M, Mandal R, Cruz M, Martínez-Huélamo M, Andres-Lacueva C, Wishart DS. A Comprehensive LC-MS Metabolomics Assay for Quantitative Analysis of Serum and Plasma. Metabolites 2024; 14:622. [PMID: 39590858 PMCID: PMC11596266 DOI: 10.3390/metabo14110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Targeted metabolomics is often criticized for the limited metabolite coverage that it offers. Indeed, most targeted assays developed or used by researchers measure fewer than 200 metabolites. In an effort to both expand the coverage and improve the accuracy of metabolite quantification in targeted metabolomics, we decided to develop a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that could quantitatively measure more than 700 metabolites in serum or plasma. Methods: The developed assay makes use of chemical derivatization followed by reverse phase LC-MS/MS and/or direct flow injection MS (DFI-MS) in both positive and negative ionization modes to separate metabolites. Multiple reaction monitoring (MRM), in combination with isotopic standards and multi-point calibration curves, is used to detect and absolutely quantify the targeted metabolites. The assay has been adapted to a 96-well plate format to enable automated, high-throughput sample analysis. Results: The assay (called MEGA) is able to detect and quantify 721 metabolites in serum/plasma, covering 20 metabolite classes and many commonly used clinical biomarkers. The limits of detection were determined to range from 1.4 nM to 10 mM, recovery rates were from 80% to 120%, and quantitative precision was within 20%. LC-MS/MS metabolite concentrations of the NIST® SRM®1950 plasma standard were found to be within 15% of NMR quantified levels. The MEGA assay was further validated in a large dietary intervention study. Conclusions: The MEGA assay should make comprehensive quantitative metabolomics much more affordable, accessible, automatable, and applicable to large-scale clinical studies.
Collapse
Affiliation(s)
- Lun Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Jiamin Zheng
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Mathew Johnson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Rupasri Mandal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
| | - Meryl Cruz
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
| | - Miriam Martínez-Huélamo
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Nutrition and Food Safety Research Institute (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.C.); (M.M.-H.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David S. Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E8, Canada; (L.Z.); (J.Z.); (M.J.); (R.M.)
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
6
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
7
|
Jiang Y, Li X, Zhao WJ, Liu FJ, Yang LL, Li P, Li HJ. Integration of untargeted and pseudotargeted metabolomics reveals specific markers for authentication and adulteration detection of Fritillariae Bulbus using tandem mass spectrometry and chemometrics. J Pharm Biomed Anal 2024; 242:116013. [PMID: 38341927 DOI: 10.1016/j.jpba.2024.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Authentication and adulteration detection of closely related herbal medicines is a thorny issue in the quality control and market standardization of traditional Chinese medicine. Taking Fritillariae Bulbus (FB) as a case study, we herein proposed a three-step strategy that integrates mass spectrometry-based metabolomics and multivariate statistical analysis to identify specific markers, thereby accurately identifying FBs and determining the adulteration level. First, an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based untargeted metabolomics method was employed to profile steroid alkaloids in five sorts of FB and screen potential differential markers. Then, the reliability of the screened markers was further verified by the distribution in different FB groups acquired from ultra-high performance liquid chromatography triple quadrupole mass spectrometry-based pseudotargeted metabolomics analysis. As a result, a total of 16 compounds were screened out to be the specific markers, which were successfully applied to distinguish five FBs by using discriminant analysis model. Besides, partial least squares regression models based on specific markers allowed accurate prediction of three sets of adulterated FBs. All the models afforded good linearity and good predictive ability with regression coefficient of prediction (R2p) > 0.9 and root mean square error of prediction (RMSEP) < 0.1. The reliable results of discriminant and quantitative analysis revealed that this proposed strategy could be potentially used to identify specific markers, which contributes to rapid chemical discrimination and adulteration detection of herbal medicines with close genetic relationship.
Collapse
Affiliation(s)
- Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Wen-Jing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China.
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Lu-Lu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China.
| |
Collapse
|
8
|
Catussi BLC, Ferreira JR, Lo Turco EG, Morgulis SCF, Baruselli PS. Metabolic imprinting in beef calves supplemented with creep feeding on performance, reproductive efficiency and metabolome profile. Sci Rep 2024; 14:9702. [PMID: 38678099 PMCID: PMC11055875 DOI: 10.1038/s41598-024-60216-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
This experiment evaluated the influence of creep feeding supplementation on productive and reproductive performance and on serum metabolome profile in Nelore (Bos indicus) heifers. Female calves were assigned to treatments: Creep (n = 190), with ad libitum access to a nutritional supplement from 70 to 220 days after birth, or Control (n = 140), without supplementation. After weaning (Day 220), both groups followed the same pasture and nutritional management. Body weight (BW) and backfat thickness (BFAT) were measured over time. Blood samples were collected at 220 and 360 days for LC-MS/MS targeted metabolomics. On day 408, during the synchronization timed artificial insemination (TAI) protocol, reproductive status (RS: diameter of uterine horn and largest follicle, and presence of CL) was assessed. Creep feeding increased BW and BFAT at weaning, but no differences in BW, BFAT, or RS after weaning were observed. Nonetheless, the pregnancy per AI (P/AI) for 1st service was 28.9% higher in the Creep group. On day 220, 11 significant metabolites influenced five metabolic pathways: Glucose-alanine cycle, alanine, glutathione, phenylalanine and tyrosine metabolism, and urea cycle. On day 360, 14 significant metabolites influenced eight metabolic pathways: Malate-aspartate shuttle, arginine and proline metabolism, urea cycle, aspartate, beta-alanine, glutamate metabolism, ammonia recycling and citric acid cycle. In conclusion, creep feeding supplementation improved calf performance and induced metabolic changes at weaning and 360 days of age. Although heifers had similar productive performance and reproductive status, when submitted to TAI, those supplemented with creep feeding had greater P/AI.
Collapse
Affiliation(s)
- Bruna Lima Chechin Catussi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | - Pietro Sampaio Baruselli
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Sun T, Chen J, Yang F, Zhang G, Chen J, Wang X, Zhang J. Lipidomics reveals new lipid-based lung adenocarcinoma early diagnosis model. EMBO Mol Med 2024; 16:854-869. [PMID: 38467839 PMCID: PMC11018865 DOI: 10.1038/s44321-024-00052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Lung adenocarcinoma (LUAD) continues to pose a significant mortality risk with a lack of dependable biomarkers for early noninvasive cancer detection. Here, we find that aberrant lipid metabolism is significantly enriched in lung cancer cells. Further, we identified four signature lipids highly associated with LUAD and developed a lipid signature-based scoring model (LSRscore). Evaluation of LSRscore in a discovery cohort reveals a robust predictive capability for LUAD (AUC: 0.972), a result further validated in an independent cohort (AUC: 0.92). We highlight one lipid signature biomarker, PE(18:0/18:1), consistently exhibiting altered levels both in cancer tissue and in plasma of LUAD patients, demonstrating significant predictive power for early-stage LUAD. Transcriptome analysis reveals an association between increased PE(18:0/18:1) levels and dysregulated glycerophospholipid metabolism, which consistently displays strong prognostic value across two LUAD cohorts. The combined utility of LSRscore and PE(18:0/18:1) holds promise for early-stage diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Junge Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100083, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, 100044, Beijing, China
- Thoracic Oncology Institute, Peking University People's Hospital, 100044, Beijing, China
| | - Gang Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 100190, Beijing, China
| | - Jiahao Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China
| | - Xun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, 100044, Beijing, China.
- Thoracic Oncology Institute, Peking University People's Hospital, 100044, Beijing, China.
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 100083, Beijing, China.
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, 100083, Beijing, China.
| |
Collapse
|
10
|
Barthwal R, Mahar R. Exploring the Significance, Extraction, and Characterization of Plant-Derived Secondary Metabolites in Complex Mixtures. Metabolites 2024; 14:119. [PMID: 38393011 PMCID: PMC10890687 DOI: 10.3390/metabo14020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Secondary metabolites are essential components for the survival of plants. Secondary metabolites in complex mixtures from plants have been adopted and documented by different traditional medicinal systems worldwide for the treatment of various human diseases. The extraction strategies are the key components for therapeutic development from natural sources. Polarity-dependent solvent-selective extraction, acidic and basic solution-based extraction, and microwave- and ultrasound-assisted extraction are some of the most important strategies for the extraction of natural products from plants. The method needs to be optimized to isolate a specific class of compounds. Therefore, to establish the mechanism of action, the characterization of the secondary metabolites, in a mixture or in their pure forms, is equally important. LC-MS, GC-MS, and extensive NMR spectroscopic strategies are established techniques for the profiling of metabolites in crude extracts. Various protocols for the extraction and characterization of a wide range of classes of compounds have been developed by various research groups and are described in this review. Additionally, the possible means of characterizing the compounds in the mixture and their uniqueness are also discussed. Hyphenated techniques are crucial for profiling because of their ability to analyze a vast range of compounds. In contrast, inherent chemical shifts make NMR an indispensable tool for structure elucidation in complex mixtures.
Collapse
Affiliation(s)
- Ruchi Barthwal
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| | - Rohit Mahar
- Department of Chemistry, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal 246174, Uttarakhand, India
| |
Collapse
|
11
|
Hu H, Singh AN, Lehnherr D, Mdluli V, Chun SW, Makarewicz AM, Gouker JR, Ukaegbu O, Li S, Wen X, McLaren DG, Velasquez JE, Moore JC, Galanie S, Appiah-Amponsah E, Regalado EL. Accelerating Pharmaceutical Process Development with an Acoustic Droplet Ejection-Multiple Reaction Monitoring-Mass Spectrometry Workflow. Anal Chem 2024; 96:1138-1146. [PMID: 38165811 DOI: 10.1021/acs.analchem.3c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Fast-paced pharmaceutical process developments (e.g., high-throughput experimentation, directed evolution, and machine learning) involve the introduction of fast, sensitive, and accurate analytical assays using limited sample volumes. In recent years, acoustic droplet ejection (ADE) coupled with an open port interface has been invented as a sampling technology for mass spectrometry, providing high-throughput nanoliter analytical measurements directly from the standard microplates. Herein, we introduce an ADE-multiple reaction monitoring-mass spectrometry (ADE-MRM-MS) workflow to accelerate pharmaceutical process research and development (PR&D). This systematic workflow outlines the selection of MRM transitions and optimization of assay parameters in a data-driven manner using rapid measurements (1 sample/s). The synergy between ADE sampling and MRM analysis enables analytical assays with excellent sensitivity, selectivity, and speed for PR&D reaction screenings. This workflow was utilized to develop new ADE-MRM-MS assays guiding a variety of industrial processes, including (1) screening of Ni-based catalysts for C-N cross-coupling reaction at 1 Hz and (2) high-throughput regioisomer analysis-enabled enzyme library screening for peptide ligation reaction. ADE-MRM-MS assays were demonstrated to deliver accurate results that are comparable to conventional liquid chromatography (LC) experiments while providing >100-fold throughput enhancement.
Collapse
Affiliation(s)
- Hang Hu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Velabo Mdluli
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephanie W Chun
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Amanda M Makarewicz
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joseph R Gouker
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shasha Li
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiujuan Wen
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David G McLaren
- Quantitative Biosciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Juan E Velasquez
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jeffrey C Moore
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephanie Galanie
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Erik L Regalado
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
Wang Z, Yang Y, Xing Y, Si D, Wang S, Lin J, Li C, Zhang J, Yin D. Combined metabolomic and lipidomic analysis uncovers metabolic profile and biomarkers for papillary thyroid carcinoma. Sci Rep 2023; 13:17666. [PMID: 37848492 PMCID: PMC10582036 DOI: 10.1038/s41598-023-41176-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy with a rapidly increasing incidence. The pathogenesis of PTC is unclear, but metabolic and lipidomic reprogramming may play a role in tumor growth. We applied ultra-performance liquid chromatography-tandem mass spectrometry to perform widely targeted metabolomics and lipidomics on plasma samples from 94 patients with PTC and 100 healthy controls. We identified 113 differential metabolites and 236 differential lipids, mainly involved in branched-chain amino acid metabolism, glutamate and glutamine metabolism, tricarboxylic acid cycle, and lipid metabolism. We also screened three potential metabolite biomarkers: sebacic acid, L-glutamine, and indole-3-carboxaldehyde. These biomarkers showed excellent diagnostic performance for PTC in both discovery and validation cohorts, with areas under the receiver operating characteristic curves of 0.994 and 0.925, respectively. Our findings reveal distinct metabolic and lipidomic features of PTC and provide novel targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Zipeng Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, 450052, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, 450052, China
| | - Yiqin Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Yurong Xing
- Physical Examination Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | | | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China
| | - Jiashuo Lin
- School of Medicine, Zhengzhou University, Zhengzhou, 450052, China
| | - Cai Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, China.
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, 450052, China.
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Kress J, Nandita E, Jones E, Sanou M, Higgins J, Kosanam H. A targeted liquid chromatography mass spectrometry method for routine monitoring of cell culture media components for bioprocess development. J Chromatogr A 2023; 1706:464281. [PMID: 37566999 DOI: 10.1016/j.chroma.2023.464281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
The analysis of cell culture media (CCM) components is critical for understanding cell growth kinetics and overall product quality during biomanufacturing. Given the diverse physical and chemical nature of CCM compounds present at a wide range of concentrations, there is an increasing demand for single-platform analytical assays with exceptional specificity and sensitivity. This study presents a targeted LC-MS/MS method for the identification and quantitation of 110 CCM analytes is presented, where target metabolites are monitored over an 20-min gradient. The analyte panel constitutes amino acids, vitamins, organic acids, nucleic acids, carbohydrates, and lipids. The method employs isotopically labeled standards to enable specific and accurate relative quantitation of CCM compounds based on physicochemical properties and retention time. Quantitation is performed on a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode. The method demonstrates strong linearity with an R2 of ≥0.99 with three orders of linear dynamic range and inter-day and intra-day precision with a%CV of <10% for spiked-in quality control samples. We also present three case studies to demonstrate method applicability in the bioprocessing space for developing vaccines and biologics.
Collapse
Affiliation(s)
- Jared Kress
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | | | | | - Missa Sanou
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | - John Higgins
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA
| | - Hari Kosanam
- Global Vaccines and Biologics Commercialization, Merck & Co., Inc, West Point, PA, USA.
| |
Collapse
|
15
|
Kao TJ, Lin CL, Yang WB, Li HY, Hsu TI. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023; 22:114. [PMID: 37537607 PMCID: PMC10398973 DOI: 10.1186/s12944-023-01881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich, 81377, Germany
- Gene Center, Ludwig-Maximilians-University, Munich, 81377, Germany
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
16
|
Yan Z, Xu Q, Yao Y, Ayala J, Hou R, Wang H. Fecal Metabolomics Reveals the Foraging Strategies of Giant Pandas for Different Parts of Bamboo. Animals (Basel) 2023; 13:ani13081278. [PMID: 37106841 PMCID: PMC10135075 DOI: 10.3390/ani13081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Climate change-induced food shortages pose major threats to wildlife conservation, and the exclusive reliance of giant pandas on bamboo makes them particularly vulnerable. The aim of this study was to provide insight into the reasons for the foraging strategies of giant pandas to selectively forage for different bamboo parts (bamboo shoot, culm, and leaf) during different seasons. This study used a metabolomic approach to analyze the fecal metabolites of giant pandas and conducted a correlation analysis with their gut microbiota. The results indicate that the fecal metabolites of giant pandas differ significantly depending on the bamboo parts they forage on, with higher sugar content observed when they consume bamboo culm with high fiber content. By functional annotation, culm group metabolites were enriched in the galactose metabolic pathway, while shoot group metabolites were enriched in the phenylalanine, tyrosine and tryptophan biosynthesis pathways. Moreover, Streptococcus showed a significant positive correlation with glucose and acetic acid content. Therefore, the foraging strategy of giant pandas is based on the ability to utilize the nutrient content of different bamboo parts. Captive feeding and habitat construction should enrich bamboo species to allow them to express their natural foraging strategies and improve their welfare and reproductive status.
Collapse
Affiliation(s)
- Zheng Yan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - James Ayala
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
17
|
Jiang X, Wang Y, Liu J. Comprehensive characterization of amino acids and water-soluble vitamins in a pentylenetetrazole-induced seizures rat model. J Sep Sci 2023; 46:e2201004. [PMID: 36841992 DOI: 10.1002/jssc.202201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a complex neurological disease characterized by spontaneous recurrent seizures that affect around 1% of the global population. Despite the significant progress in the mechanisms of epileptogenesis, there is still about 60% of cases in which the cause is unknown. Thus, revealing the molecular mechanisms of epileptogenesis will greatly improve the development of epilepsy treatment. Since the comprehensive characterization of amino acids and water-soluble vitamins is important in understanding the underlying mechanisms of epilepsy or seizures, we developed two liquid chromatography-tandem mass spectrometry methods to quantify 17 water-soluble vitamins and 46 amino acids and applied them to our pentylenetetrazole-induced kindling rat model. All water-soluble vitamins were detected with a linearity of r > 0.992 and limits of quantitation between 0.1 and 5 ng/ml except for nicotinic acid. For amino acids, the linearities obtained were good with correlation coefficients higher than 0.99, and matrix effects were between 85.3% and 110%. To handle the multidimensional data more effectively, multivariate statistical analysis approaches used in non-targeted metabolomics were creatively exploited in the visualization, interpretation, and exploration of the results.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Yan Wang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
18
|
Sarmad S, Viant MR, Dunn WB, Goodacre R, Wilson ID, Chappell KE, Griffin JL, O'Donnell VB, Naicker B, Lewis MR, Suzuki T. A proposed framework to evaluate the quality and reliability of targeted metabolomics assays from the UK Consortium on Metabolic Phenotyping (MAP/UK). Nat Protoc 2023; 18:1017-1027. [PMID: 36828894 DOI: 10.1038/s41596-022-00801-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/24/2022] [Indexed: 02/26/2023]
Abstract
Targeted metabolite assays that measure tens or hundreds of pre-selected metabolites, typically using liquid chromatography-mass spectrometry, are increasingly being developed and applied to metabolic phenotyping studies. These are used both as standalone phenotyping methods and for the validation of putative metabolic biomarkers obtained from untargeted metabolomics studies. However, there are no widely accepted standards in the scientific community for ensuring reliability of the development and validation of targeted metabolite assays (referred to here as 'targeted metabolomics'). Most current practices attempt to adopt, with modifications, the strict guidance provided by drug regulatory authorities for analytical methods designed largely for measuring drugs and other xenobiotic analytes. Here, the regulatory guidance provided by the European Medicines Agency, US Food and Drug Administration and International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use are summarized. In this Perspective, we have adapted these guidelines and propose a less onerous 'tiered' approach to evaluate the reliability of a wide range of metabolomics analyses, addressing the need for community-accepted, harmonized guidelines for tiers other than full validation. This 'fit-for-purpose' tiered approach comprises four levels-discovery, screening, qualification and validation-and is discussed in the context of a range of targeted and untargeted metabolomics assays. Issues arising with targeted multiplexed metabolomics assays, and how these might be addressed, are considered. Furthermore, guidance is provided to assist the community with selecting the appropriate degree of reliability for a series of well-defined applications of metabolomics.
Collapse
Affiliation(s)
- Sarir Sarmad
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Mark R Viant
- Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Warwick B Dunn
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK.,Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ian D Wilson
- Division of Systems Medicine, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Katie E Chappell
- The National Phenome Centre, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Julian L Griffin
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Valerie B O'Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Brendon Naicker
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew R Lewis
- The National Phenome Centre, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, UK
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK. .,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
19
|
Luo Z, Liu L, Nie Q, Huang M, Luo C, Sun Y, Ma Y, Yu J, Du F. HPLC-based metabolomics of Dendrobium officinale revealing its antioxidant ability. FRONTIERS IN PLANT SCIENCE 2023; 14:1060242. [PMID: 36760636 PMCID: PMC9902878 DOI: 10.3389/fpls.2023.1060242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
Dendrobium officinale is an orchid with medicinal and nutritional properties that has received increasing attention because of its health benefits; however, there is limited information about the metabolic basis of these properties. In this report, secondary metabolites and the antioxidant activity of D. officinale stem samples from three provenances were analyzed, using a UHPLC-QqQ-MS/MS-based metabolomics approach. In total, 411 metabolites were identified including 8 categories such as flavonoids and phenolic acids, 136 of which were differential metabolites. These differentially accumulated metabolites (DAMs) were mainly enriched in secondary metabolic pathways such as flavone, flavonol, tropane, piperidine, pyridine, isoquinoline alkaloid biosynthesis and tyrosine metabolism. The metabolomic profiling suggested that the quantity and content of flavonoid compounds accounted for the highest proportion of total metabolites. Hierarchical cluster analysis (HCA) showed that the marker metabolites of D. officinale from the three provenances were mainly flavonoids, alkaloids and phenolic acids. Correlation analysis identified that 48 differential metabolites showed a significant positive correlation with antioxidant capacity (r ³ 0.8 and p < 0.0092), and flavonoids were the main factors affecting the different antioxidant activities. It is worth noting that quercetin-3-O-sophoroside-7-O-rhamnoside and dihydropinosylvin methyl ether might be the main compounds causing the differences in antioxidant capacity of Yunnan provenance (YN), Zhejiang provenance (ZJ), and Guizhou provenance (GZ). These finding provides valuable information for screening varieties, quality control and product development of D. officinale.
Collapse
Affiliation(s)
- Zhengfei Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Lian Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Qiong Nie
- College of Agriculture, Guizhou University, Guiyang, China
| | - Mingjin Huang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Chunlii Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yedong Sun
- Anlong County Xicheng Xiushu Agriculture and Forestry Co., Ltd, Anlong, China
| | - Yongyan Ma
- Anlong County Xicheng Xiushu Agriculture and Forestry Co., Ltd, Anlong, China
| | - Jianxin Yu
- GuiZhou Warmen Pharmaceutical Co., Ltd, Guiyang, China
| | - Fuqiang Du
- GuiZhou Warmen Pharmaceutical Co., Ltd, Guiyang, China
| |
Collapse
|
20
|
Park E, Yu H, Lim JH, Hee Choi J, Park KJ, Lee J. Seaweed metabolomics: A review on its nutrients, bioactive compounds and changes in climate change. Food Res Int 2023; 163:112221. [PMID: 36596150 DOI: 10.1016/j.foodres.2022.112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Seaweed, an important food resource in several Asian countries, contains various metabolites, including sugars, organic acids, and amino acids; however, their content is affected by prevailing environmental conditions. This review discusses seaweed metabolomics, especially the distribution of primary and functional secondary metabolites (e.g., carotenoids, polyphenols) in seaweed. Additionally, the effects of global warming on seaweed metabolite profile changes are discussed. For example, high temperatures can increase amino acid levels in seaweeds. Overall, understanding the effects of global warming on seaweed metabolite profiles can be useful for evaluating the nutritional composition of seaweeds as food. This review provides an overview of recent applications of metabolomics in seaweed research as well as a perspective on the nutrient content and cultivation of seaweeds under climate change scenarios.
Collapse
Affiliation(s)
- Eunyoung Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hahyeong Yu
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jeong-Ho Lim
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Jeong Hee Choi
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Kee-Jai Park
- Research Group of Consumer Safety, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Jihyun Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
21
|
Yin M, Li C, Wang Y, Fu J, Sun Y, Zhang Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species. PLANT SIGNALING & BEHAVIOR 2022; 17:2138041. [PMID: 36317599 PMCID: PMC9629078 DOI: 10.1080/15592324.2022.2138041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Ulmus parvifolia (U. parvifolia) is a Chinese medicine plant whose bark and leaves are used in the treatment of some diseases such as inflammation, diarrhea and fever. However, metabolic signatures of seeds have not been studied. The seeds and bark of U. parvifolia collected at the seed ripening stage were used for metabolite profiling analysis through the untargeted metabolomics approach. A total of 2,578 and 2,207 metabolites, while 503 and 132 unique metabolites were identified in seeds and bark, respectively. Additionally, 574 differential metabolites (DEMs) were detected in the two different organs of U. parvifolia, which were grouped into 52 classes. Most kinds of metabolites classed into prenol lipids class. The relative content of flavonoids class was the highest. DEMs contained some bioactive compounds (e.g., flavonoids, terpene glycosides, triterpenoids, sesquiterpenoids) with antioxidant, anti-inflammatory, and anti-cancer activities. Most kinds of flavonoids and sesquiterpenes were up-regulated in seeds. There were more varieties of terpene glycosides and triterpenoids showing up-regulated in bark. The pathway enrichment was performed, while flavonoid biosynthesis, flavone and flavonol biosynthesis were worthy of attention. This study identified DEMs with pharmaceutical value between seeds and bark during seed maturation and offered a molecular basis for alternative or complementary use of seeds and bark of U. parvifolia as a Chinese medicinal material.
Collapse
Affiliation(s)
- MingLong Yin
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - ChuanRong Li
- Forestry College, Shandong Agricultural University, Tai’an, China
| | - YuShan Wang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - JunHui Fu
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - YangYang Sun
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| | - Qian Zhang
- Institute of Forest Tree Genetics and Breeding, Taishan Academy of Forestry Sciences, Tai’an, China
| |
Collapse
|
22
|
Qu B, Liu Y, Shen A, Guo Z, Yu L, Liu D, Huang F, Peng T, Liang X. Combining multidimensional chromatography-mass spectrometry and feature-based molecular networking methods for the systematic characterization of compounds in the supercritical fluid extract of Tripterygium wilfordii Hook F. Analyst 2022; 148:61-73. [PMID: 36441185 DOI: 10.1039/d2an01471h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tripterygium wilfordii Hook F from the family Celastraceae is a traditional Chinese medicine (TCM) whose principal chemical constituents are terpenoids, including sesquiterpene alkaloids and diterpenoids, which have unique and diverse structures and remarkable biological activities. In order to advance pharmacological research and guide the preparation of monomer compounds derived from T. wilfordii, a systematic approach to efficiently discover new compounds or their derivatives is needed. Herein, compound separation and identification were performed by offline reversed-phase × supercritical fluid chromatography coupled mass spectrometry (RP × SFC-Q-TOF-MS/MS) and Global Natural Product Social (GNPS) molecular networking. The 2D chromatography system exhibited a high degree of orthogonality and significant peak capacity, and SFC has an advantage during the separation of sesquiterpene alkaloid isomers. Feature-based molecular networking offers the great advantage of quickly detecting and clustering unknown compounds, which greatly assists in intuitively judging the type of compound, and this networking technique has the potential to dramatically accelerate the identification and characterization of compounds from natural sources. A total of 324 compounds were identified and quantitated, including 284 alkaloids, 22 diterpenoids and 18 triterpenoids, which means that there are numerous potential new compounds with novel structures to be further explored. Overall, feature-based molecular networking provides an effective method for discovering and characterizing novel compounds and guides the separation and preparation of targeted natural products.
Collapse
Affiliation(s)
- Boquan Qu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfang Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhimou Guo
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Long Yu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Dian Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Feifei Huang
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Ting Peng
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China. .,Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| |
Collapse
|
23
|
Dhakal S, Dey M. Resistant starch type-4 intake alters circulating bile acids in human subjects. Front Nutr 2022; 9:930414. [PMID: 36337613 PMCID: PMC9631925 DOI: 10.3389/fnut.2022.930414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/27/2022] [Indexed: 09/30/2023] Open
Abstract
Background Resistant starch (RS) type 4 (RS4) is a type of RS, a class of non-digestible prebiotic dietary fibers with a range of demonstrated metabolic health benefits to the host. On the other hand, bile acids (BA) have recently emerged as an important class of metabolic function mediators that involve host-microbiota interactions. RS consumption alters fecal and cecal BA in humans and rodents, respectively. The effect of RS intake on circulating BA concentrations remains unexplored in humans. Methods and results Using available plasma and stool samples from our previously reported double-blind, controlled, 2-arm crossover nutrition intervention trial (Clinicaltrials.gov: NCT01887964), a liquid-chromatography/mass-spectrometry-based targeted multiple reaction monitoring, and absolute quantifications, we assessed BA changes after 12 weeks of an average 12 g/day RS4-intake. Stool BA concentrations were lower post RS4 compared to the control, the two groups consuming similar macronutrients (n = 14/group). Partial least squares-discriminant analysis revealed distinct BA signatures in stool and plasma post interventions. The increased circulating BA concentrations were further investigated using linear mixed-effect modeling that controlled for potential confounders. A higher plasma abundance of several BA species post RS4 was observed (fold increase compared to control in parenthesis): taurocholic acid (1.92), taurodeoxycholic acid (1.60), glycochenodeoxycholic acid (1.58), glycodeoxycholic acid (1.79), and deoxycholic acid (1.77) (all, p < 0.05). Distinct microbiome ortholog-signatures were observed between RS4 and control groups (95% CI), derived using the Piphillin function-prediction algorithm and principal component analysis (PCA) of pre-existing 16S rRNA gene sequences. Association of Bifidobacterium adolescentis with secondary BA such as, deoxycholic acid (rho = 0.55, p = 0.05), glycodeoxycholic acid (rho = 0.65, p = 0.02), and taurodeoxycholic acid (rho = 0.56, p = 0.04) were observed in the RS4-group, but not in the control group (all, p > 0.05). Conclusion Our observations indicate a previously unknown in humans- RS4-associated systemic alteration of microbiota-derived secondary BA. Follow-up investigations of BA biosynthesis in the context of RS4 may provide molecular targets to understand and manipulate microbiome-host interactions.
Collapse
Affiliation(s)
| | - Moul Dey
- School of Health and Consumer Sciences, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
24
|
Qi B, Zhang Y, Xu B, Zhang Y, Fei G, Lin L, Li Q. Metabolomic Characterization of Acute Ischemic Stroke Facilitates Metabolomic Biomarker Discovery. Appl Biochem Biotechnol 2022; 194:5443-5455. [DOI: 10.1007/s12010-022-04024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
|
25
|
Scarano P, Guida R, Zuzolo D, Tartaglia M, Prigioniero A, Postiglione A, Pinto G, Illiano A, Amoresano A, Schicchi R, Geraci A, Sciarrillo R, Guarino C. An Endemic Plant of the Mediterranean Area: Phytochemical Characterization of Strawberry Tree (Arbutus unedo L.) Fruits Extracts at Different Ripening Stages. Front Nutr 2022; 9:915994. [PMID: 35782922 PMCID: PMC9249387 DOI: 10.3389/fnut.2022.915994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
This work focused on the extraction, quantification, and characterization of bioactive compounds of Arbutus unedo L. fruits, comparing the results obtained from the different ripening states. Extractions were performed by different methods (such as maceration extraction and ultrasonic extraction) and food grade solvents (aqueous and hydroalcoholic solvents) in each of the all ripening states (four states considered, associated with four different colors, i.e., green, yellow, orange, and red). The presence of (poly)phenols was quantified and characterized, and scavenging activity was determined by the Folin–Ciocâlteu reagent and the DPPH method, respectively. The content of bioactive compounds was characterized by LC-MS/MS, such as multiple reaction monitoring (MRM) mass spectrometry. The results showed that ultrasound-assisted extraction (UAE) performed better than maceration extraction; ethanol–water mixture extracts showed a more positive effect than the use of aqueous extracts regarding the content of total phenolic compounds. Overall, the total phenolic compounds in the EtOH:H2O mixture at a ratio of 7:3 (v:v) were higher than that of the other solvents for both extraction methods. Some bioactive molecules were characterized for the first time in the extracts of A. unedo. The chemical profile of the strawberry tree extracts depended on the degree of fruit ripeness. The results suggest that A. unedo fruits may be of great interest for food and nutraceutical applications.
Collapse
Affiliation(s)
- Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Rosa Guida
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Maria Tartaglia
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Alessia Postiglione
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Gabriella Pinto
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB—Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Anna Illiano
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB—Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Science, University of Naples Federico II, Naples, Italy
- INBB—Consorzio Interuniversitario Istituto Nazionale di Biostrutture e Biosistemi, Rome, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Anna Geraci
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, Benevento, Italy
- *Correspondence: Rosaria Sciarrillo,
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
26
|
Huang M, Zhou T. Comprehensive pseudotargeted metabolomics analysis based on two-phase liquid extraction-UHPLC-MS/MS for the investigation of depressive rats. J Sep Sci 2022; 45:2977-2986. [PMID: 35648513 DOI: 10.1002/jssc.202200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Pseudotargeted analysis combines the advantages of untargeted and targeted metabolomics methods. This study proposed a comprehensive pseudotargeted metabolomics method based on two-phase liquid extraction using ultra-high-performance liquid chromatography-tandem mass spectrometry. Two-phase liquid extraction, composed of both aqueous and organic phases, extracted a wide range of metabolites from polar to nonpolar in plasma samples. Besides, the two phases were combined and detected in a single injection to save analytical time. A total of 486 potential metabolites were detected by the developed approach. Compared with the conventional methanol-based protein precipitation method, the two-phase liquid extraction method significantly increased the metabolite coverage by 20.29%. Besides, the proposed pseudotargeted metabolomics method exhibited higher sensitivity and better repeatability than the untargeted method. Finally, we applied the established pseudotargeted method to the metabolomics study of depressive rats and screened 53 differential variables. Sixteen determined differential metabolites were mainly in four metabolic pathways, including glycerophospholipid, arachidonic acid, sphingolipid metabolisms, pentose and glucuronate interconversions. The results indicated that the pseudotargeted method based on two-phase liquid extraction broadened the metabolite coverage with good sensitivity and repeatability, exhibiting significant potential for discovering differential metabolites in metabolomics studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Minhan Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
27
|
Shen S, Chen X, Zhuo Q, Ma Y, Wang J, Wang L, Gong Z, Huo J. Integrating untargeted metabolites and targeted analysis for discrimination of kiwifruits from different cultivars. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Duan X, Zhang W, Li J, Xu H, Hu J, Zhao L, Ma Y. Comparative metabolomics analysis revealed biomarkers and distinct flavonoid biosynthesis regulation in Chrysanthemum mongolicum and C. rhombifolium. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:373-385. [PMID: 34750870 DOI: 10.1002/pca.3095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Chrysanthemums are traditional flowers that originated in China and have high ornamental, economic and medicinal value. They are widely used as herbal remedies and consumed as food or beverages in folk medicine. However, little is known about their metabolic composition. OBJECTIVES The aims of this work were to determine the metabolic composition of and natural variation among different species of Chrysanthemum and to explore new potential resources for drug discovery and sustainable utilisation of wild Chrysanthemum. METHODS The metabolomes of Chrysanthemum mongolicum (Ling) Tzvel. and Chrysanthemum rhombifolium H. Ohashi & Yonek. were compared using a widely targeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS In total, 477 metabolites were identified, of which 72 showed significant differences in expression between C. mongolicum and C. rhombifolium, mainly in flavonoids, organic acids and nucleotides. The flavone and flavonol biosynthesis pathway showed significant enrichment among the differentially expressed metabolites. The contents of genkwanin, trigonelline, diosmin, narcissoside, 3,4-dihydroxyphenylacetic acid, linarin, N',N'-p-coumarin, C-hexosyl-tricetin O-pentoside, chrysoeriol, acacetin and kaempferol-3-O-gentiobioside were significantly different between the two species and represent potential biomarkers. CONCLUSION The types of flavonoid-related metabolites in the flavonoid biosynthesis pathway differed between C. mongolicum and C. rhombifolium. The mechanisms underlying the unique adaptations of these two species to their environments may involve variations in the composition and abundance of flavonoids, organic acids, and nucleotides. These methods are promising to identify functional compounds in Chrysanthemum species and can provide potential resources for drug discovery and the sustainable utilisation of Chrysanthemum plants.
Collapse
Affiliation(s)
- Xiaxia Duan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wenjie Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jingjing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyuan Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jing Hu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liang Zhao
- College of Life Sciences, Yangling, China
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
29
|
Reiter A, Asgari J, Wiechert W, Oldiges M. Metabolic Footprinting of Microbial Systems Based on Comprehensive In Silico Predictions of MS/MS Relevant Data. Metabolites 2022; 12:257. [PMID: 35323700 PMCID: PMC8949988 DOI: 10.3390/metabo12030257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Metabolic footprinting represents a holistic approach to gathering large-scale metabolomic information of a given biological system and is, therefore, a driving force for systems biology and bioprocess development. The ongoing development of automated cultivation platforms increases the need for a comprehensive and rapid profiling tool to cope with the cultivation throughput. In this study, we implemented a workflow to provide and select relevant metabolite information from a genome-scale model to automatically build an organism-specific comprehensive metabolome analysis method. Based on in-house literature and predicted metabolite information, the deduced metabolite set was distributed in stackable methods for a chromatography-free dilute and shoot flow-injection analysis multiple-reaction monitoring profiling approach. The workflow was used to create a method specific for Saccharomyces cerevisiae, covering 252 metabolites with 7 min/sample. The method was validated with a commercially available yeast metabolome standard, identifying up to 74.2% of the listed metabolites. As a first case study, three commercially available yeast extracts were screened with 118 metabolites passing quality control thresholds for statistical analysis, allowing to identify discriminating metabolites. The presented methodology provides metabolite screening in a time-optimised way by scaling analysis time to metabolite coverage and is open to other microbial systems simply starting from genome-scale model information.
Collapse
Affiliation(s)
- Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Jian Asgari
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Computational Systems Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (A.R.); (J.A.); (W.W.)
- Institute of Biotechnology, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
30
|
Wang G, Qiu M, Xing X, Zhou J, Yao H, Li M, Yin R, Hou Y, Li Y, Pan S, Huang Y, Yang F, Bai F, Nie H, Di S, Guo L, Meng Z, Wang J, Yin Y. Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis. Sci Transl Med 2022; 14:eabk2756. [PMID: 35108060 DOI: 10.1126/scitranslmed.abk2756] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung cancer is the leading cause of cancer mortality, and early detection is key to improving survival. However, there are no reliable blood-based tests currently available for early-stage lung cancer diagnosis. Here, we performed single-cell RNA sequencing of different early-stage lung cancers and found that lipid metabolism was broadly dysregulated in different cell types, with glycerophospholipid metabolism as the most altered lipid metabolism-related pathway. Untargeted lipidomics was carried out in an exploratory cohort of 311 participants. Through support vector machine algorithm-based and mass spectrum-based feature selection, we identified nine lipids (lysophosphatidylcholines 16:0, 18:0, and 20:4; phosphatidylcholines 16:0-18:1, 16:0-18:2, 18:0-18:1, 18:0-18:2, and 16:0-22:6; and triglycerides 16:0-18:1-18:1) as the features most important for early-stage cancer detection. Using these nine features, we developed a liquid chromatography-mass spectrometry (MS)-based targeted assay using multiple reaction monitoring. This target assay achieved 100.00% specificity on an independent validation cohort. In a hospital-based lung cancer screening cohort of 1036 participants examined by low-dose computed tomography and a prospective clinical cohort containing 109 participants, the assay reached more than 90.00% sensitivity and 92.00% specificity. Accordingly, matrix-assisted laser desorption/ionization MS imaging confirmed that the selected lipids were differentially expressed in early-stage lung cancer tissues in situ. This method, designated as Lung Cancer Artificial Intelligence Detector, may be useful for early detection of lung cancer or large-scale screening of high-risk populations for cancer prevention.
Collapse
Affiliation(s)
- Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Mantang Qiu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Xudong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Juntuo Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Hantao Yao
- Institute of Automation, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Mingru Li
- Department of Thoracic Surgery, Aerospace 731 Hospital, Beijing 100074, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Yan Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Yang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Shuli Pan
- Medical Examination Center, Aerospace 731 Hospital, Beijing 100074, China
| | - Yuqing Huang
- Department of Thoracic Surgery, Beijing Haidian Hospital, Beijing 100080, China
| | - Fan Yang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Honggang Nie
- Analytical Instrumentation Center, Peking University, Beijing 100871, China
| | - Shuangshuang Di
- Analytical Instrumentation Center, Peking University, Beijing 100871, China
| | - Limei Guo
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China
| | - Zhu Meng
- Beijing University of Posts and Telecommunications, Beijing Key Laboratory of Network System and Network Culture, Beijing 100876, China
| | - Jun Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center and Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100191, China
| |
Collapse
|
31
|
Lai Z, Choudhury FK, Tang D, Liang X, Dean B, Misaghi S, Sangaraju D. LC-HRMS based Targeted Metabolomics for High-throughput and Quantitative Analysis of 21 Growth Inhibition Related Metabolites in CHO Cell Fed-Batch Cultures. Biomed Chromatogr 2022; 36:e5348. [PMID: 35083760 DOI: 10.1002/bmc.5348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Chinese hamster ovary (CHO) cells have been widely used in the biopharmaceutical industry for production of therapeutic proteins. CHO cells in fed-batch cultures produce various amino acid-derived intermediate metabolites. These small molecule metabolic byproducts have proven to be critical to cell growth, culture performance, and more interestingly antibody drug productivity. Herein, we developed a liquid chromatography - high resolution mass spectrometry (LC-HRMS) based targeted metabolomics approach for comprehensive quantification of total 21 growth inhibition related metabolites generated from 14 different amino acids in CHO cell fed-batch cultures. High throughput derivatization procedures, matrix-matched calibration curves, stable isotope-labeled internal standards, and accurate mass Full MS scan were utilized in order to achieve our goal for wide scope of metabolite screening as well as validity and reliability of metabolite quantification. We further present a novel analytical strategy for extending the assay's dynamic range by utilizing naturally occurring isotope M+1 ion as a quantification analogue in the circumstances where the principal M ion is beyond its calibration range. The integrated method was qualified for selectivity, sensitivity, linearity, accuracy, precision, isotope analysis and other analytical aspects to demonstrate assay robustness. We then applied this metabolomics approach to characterize metabolites of interest in a CHO cell based monoclonal antibody (mAb) production process with fed-batch bioreactor culture mode. Absolute quantification combined with multivariate statistical analysis illustrated that our target analytes derived from amino acids, especially from branched-chain amino acids, closely correlated with cell viability and significantly differentiated cellular stages in production process.
Collapse
Affiliation(s)
- Zijuan Lai
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA, USA
| | - Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA, USA
| | - Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA, USA
| | - Xiaorong Liang
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA, USA
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA, USA
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
32
|
Wang G, Yao H, Gong Y, Lu Z, Pang R, Li Y, Yuan Y, Song H, Liu J, Jin Y, Ma Y, Yang Y, Nie H, Zhang G, Meng Z, Zhou Z, Zhao X, Qiu M, Zhao Z, Jiang K, Zeng Q, Guo L, Yin Y. Metabolic detection and systems analyses of pancreatic ductal adenocarcinoma through machine learning, lipidomics, and multi-omics. SCIENCE ADVANCES 2021; 7:eabh2724. [PMID: 34936449 PMCID: PMC8694594 DOI: 10.1126/sciadv.abh2724] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, characterized by rapid progression, metastasis, and difficulty in diagnosis. However, there are no effective liquid-based testing methods available for PDAC detection. Here we introduce a minimally invasive approach that uses machine learning (ML) and lipidomics to detect PDAC. Through greedy algorithm and mass spectrum feature selection, we optimized 17 characteristic metabolites as detection features and developed a liquid chromatography-mass spectrometry-based targeted assay. In this study, 1033 patients with PDAC at various stages were examined. This approach has achieved 86.74% accuracy with an area under curve (AUC) of 0.9351 in the large external validation cohort and 85.00% accuracy with 0.9389 AUC in the prospective clinical cohort. Accordingly, single-cell sequencing, proteomics, and mass spectrometry imaging were applied and revealed notable alterations of selected lipids in PDAC tissues. We propose that the ML-aided lipidomics approach be used for early detection of PDAC.
Collapse
Affiliation(s)
- Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hantao Yao
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Gong
- Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ruifang Pang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yang Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuyao Yuan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huajie Song
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jia Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongsu Ma
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yinmo Yang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, China
| | - Honggang Nie
- Analytical Instrumentation Center, Peking University, Beijing 100871, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhu Meng
- Beijing University of Posts and Telecommunications, Beijing Key Laboratory of Network System and Network Culture, Beijing 100876, China
| | - Zhe Zhou
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Zhicheng Zhao
- Beijing University of Posts and Telecommunications, Beijing Key Laboratory of Network System and Network Culture, Beijing 100876, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Corresponding author. (K.J.); (Q.Z.); (L.G.); (Y.Y.)
| | - Qiang Zeng
- Health Management Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
- Corresponding author. (K.J.); (Q.Z.); (L.G.); (Y.Y.)
| | - Limei Guo
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
- Department of Pathology, Peking University Third Hospital, Beijing 100191, China
- Corresponding author. (K.J.); (Q.Z.); (L.G.); (Y.Y.)
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Corresponding author. (K.J.); (Q.Z.); (L.G.); (Y.Y.)
| |
Collapse
|
33
|
Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X, Tian D. Towards Higher Sensitivity of Mass Spectrometry: A Perspective From the Mass Analyzers. Front Chem 2021; 9:813359. [PMID: 34993180 PMCID: PMC8724130 DOI: 10.3389/fchem.2021.813359] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023] Open
Abstract
Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers' sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.
Collapse
Affiliation(s)
- Chang Li
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| | - Shiying Chu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Siyuan Tan
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, People’s Republic ofChina
| | - Di Tian
- College of Instrumentation & Electrical Engineering, Jilin University, Changchun, China
| |
Collapse
|
34
|
Puri S, Sahal D, Sharma U. A conversation between hyphenated spectroscopic techniques and phytometabolites from medicinal plants. ANALYTICAL SCIENCE ADVANCES 2021; 2:579-593. [PMID: 38715860 PMCID: PMC10989556 DOI: 10.1002/ansa.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2024]
Abstract
Medicinal plant metabolomics has emerged as a goldmine for the natural product chemists. It provides a pool of bioactive phytoconstituents leading to accelerated novel discoveries and the elucidation of a variety of biosynthetic pathways. Further, it also acts as an innovative tool for herbal medicine's scientific validation and quality assurance. This review highlights different strategies and analytical techniques employed in the practice of metabolomics. Further, it also discusses several other applications and advantages of metabolomics in the area of natural product chemistry. Additional examples of integrating metabolomics with multivariate data analysis techniques for some Indian medicinal plants are also reviewed. Recent technical advances in mass spectrometry-based hyphenated techniques, nuclear magnetic resonance-based techniques, and comprehensive hyphenated technologies for phytometabolite profiling studies have also been reviewed. Mass Spectral Imaging (MSI) has been presented as a highly promising method for high precision in situ spatiotemporal monitoring of phytometabolites. We conclude by introducing GNPS (Global Natural Products Social Molecular Networking) as an emerging platform to make social networks of related molecules, to explore data and to annotate more metabolites, and expand the networks to novel "predictive" metabolites that can be validated.
Collapse
Affiliation(s)
- Shivani Puri
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Dinkar Sahal
- Malaria Drug Discovery Research GroupInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | - Upendra Sharma
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
35
|
Fang Z, Hu Y, Chen J, Xu K, Wang K, Zheng S, Guo C. Mass Spectrometry-Based Targeted Serum Monomethylated Ribonucleosides Profiling for Early Detection of Breast Cancer. Front Mol Biosci 2021; 8:741603. [PMID: 34513933 PMCID: PMC8427278 DOI: 10.3389/fmolb.2021.741603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
RNA methylation plays a significant regulatory role in various of physiological activities and it has gradually become a hotspot of epigenetics in the past decade. 2′-O-methyladenosine (Am), 2′-O-methylguanosine (Gm), 2′-O-methylcytidine (Cm), 2′-O-methyluridine (Um), N6-methyladenosine (m6A), N1-methylguanosine (m1G), 5-methylcytidine (m5C), and 5-methyluridine (m5U) are representative 2′-O-methylation and base-methylation modified epigenetic marks of RNA. Abnormal levels of these ribonucleosides were found to be related to various diseases including cancer. Serum is an important source of biofluid for the discovery of biomarkers, and novel tumor biomarkers can be explored by measuring these ribonucleoside modifications in human serum. Herein, we developed and applied a hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) method to determine the content of monomethylated ribonucleosides in human serum. The developed method enabled sensitive and accurate determination of these monomethylated ribonucleosides. By applying this robust method, we demonstrated the presence of Gm and Um in human serum for the first time, and we successfully quantified m6A, Gm, m1G, Cm, Um and m5U in serum samples collected from 61 patients with breast cancer and 69 healthy controls. We discovered that the levels of Gm, m1G, Cm, Um and m5U in serum were all significantly decreased in breast cancer patients whereas m6A was increased. We performed receiver operating characteristic (ROC) curve analysis, and obtained highest area under curve (AUC) value when combining these six monomethylated ribonucleosides together. These results suggest that m6A, Gm, m1G, Cm, Um and m5U might have great potential to be novel biomarkers for detection of breast cancer in the early stage. In addition, this study may stimulate future investigations about the regulatory roles of monomethylated ribonucleosides on the initiation and development of breast cancer.
Collapse
Affiliation(s)
- Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailun Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kailai Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Nontargeted UHPLC–MS for the Study of the Diversity of Flavonoid Glycosides in Different Fermented Teas. Chromatographia 2021. [DOI: 10.1007/s10337-021-04033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Mass spectrometry based targeted metabolomics precisely characterized new functional metabolites that regulate biofilm formation in Escherichia coli. Anal Chim Acta 2021; 1145:26-36. [DOI: 10.1016/j.aca.2020.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
|
38
|
An ion-pair free LC-MS/MS method for quantitative metabolite profiling of microbial bioproduction systems. Talanta 2021; 222:121625. [DOI: 10.1016/j.talanta.2020.121625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
|
39
|
Rapid liquid chromatography-mass spectrometry quantitation of glucose-regulating hormones from human islets of Langerhans. J Chromatogr A 2020; 1637:461805. [PMID: 33360778 DOI: 10.1016/j.chroma.2020.461805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Glucose homeostasis is maintained through the secretion of peptide hormones, such as insulin, somatostatin, and glucagon, from islets of Langerhans, clusters of endocrine cells found in the pancreas. This report describes an LC-MS method using multiple reaction monitoring for quantitation of insulin, C-peptide, glucagon, and somatostatin secretion from human islet populations. For rapid analysis, a 5 min separation was achieved using a 2.1 × 30 mm (i.d. x length) C18 column with 2.7 µm diameter core shell particles. A sacrificial protein hydrolysate was used with the sample and found to improve signal magnitude, repeatability, and to reduce carryover between runs. At optimized gradient conditions, the gradient run time was 4.55 min producing an average peak width of 0.3 min, a minimum resolution of 1.2, and a peak capacity of 20. As a proof of concept, the method was used to measure secretions from static incubations of human islets from 2 donors. Insulin and C-peptide were quantified and matched well with literature values of these hormones. We expect that this antibody-free quantitation of multiple hormones secreted from islets will provide insights into the temporal relationships of these peptides in the future.
Collapse
|
40
|
Beckmann M, Wilson T, Zubair H, Lloyd AJ, Lyons L, Phillips H, Tailliart K, Gregory N, Thatcher R, Garcia-Perez I, Frost G, Mathers JM, Draper J. A Standardized Strategy for Simultaneous Quantification of Urine Metabolites to Validate Development of a Biomarker Panel Allowing Comprehensive Assessment of Dietary Exposure. Mol Nutr Food Res 2020; 64:e2000517. [PMID: 32926540 DOI: 10.1002/mnfr.202000517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/02/2023]
Abstract
SCOPE Metabolites derived from individual foods found in human biofluids after consumption could provide objective measures of dietary intake. For comprehensive dietary assessment, quantification methods would need to manage the structurally diverse mixture of target metabolites present at wide concentration ranges. METHODS AND RESULTS A strategy for selection of candidate dietary exposure biomarkers is developed. An analytical method for 62 food biomarkers is validated by extensive analysis of chromatographic and ionization behavior characteristics using triple quadrupole mass spectrometry. Urine samples from two food intervention studies are used: a controlled, inpatient study (n = 19) and a free-living study where individuals (n = 15) are provided with food as a series of menu plans. As proof-of-principle, it is demonstrated that the biomarker panel could discriminate between menu plans by detecting distinctive changes in the concentration in urine of targeted metabolites. Quantitative relationships between four biomarker concentrations in urine and dietary intake are shown. CONCLUSION Design concepts for an analytical strategy are demonstrated, allowing simultaneous quantification of a comprehensive panel of chemically-diverse biomarkers of a wide range of commonly-consumed foods. It is proposed that integration of self-reported dietary recording tools with biomarker approaches will provide more robust assessment of dietary exposure.
Collapse
Affiliation(s)
- Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Thomas Wilson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Hassan Zubair
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Amanda J Lloyd
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Laura Lyons
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Kathleen Tailliart
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Nicholas Gregory
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Rhys Thatcher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Isabel Garcia-Perez
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - Gary Frost
- Nutrition and Dietetic Research Group, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, W12 0NN, UK
| | - John M Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, William Leech Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John Draper
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| |
Collapse
|
41
|
Zheng F, Zhao X, Zeng Z, Wang L, Lv W, Wang Q, Xu G. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry. Nat Protoc 2020; 15:2519-2537. [PMID: 32581297 DOI: 10.1038/s41596-020-0341-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/20/2020] [Indexed: 01/20/2023]
Abstract
Untargeted methods are typically used in the detection and discovery of small organic compounds in metabolomics research, and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) is one of the most commonly used platforms for untargeted metabolomics. Although they are non-biased and have high coverage, untargeted approaches suffer from unsatisfying repeatability and a requirement for complex data processing. Targeted metabolomics based on triple-quadrupole mass spectrometry (TQMS) could be a complementary tool because of its high sensitivity, high specificity and excellent quantification ability. However, it is usually applicable to known compounds: compounds whose identities are known and/or are expected to be present in the analyzed samples. Pseudotargeted metabolomics merges the advantages of untargeted and targeted metabolomics and can act as an alternative to the untargeted method. Here, we describe a detailed protocol of pseudotargeted metabolomics using UHPLC-TQMS. An in-depth, untargeted metabolomics experiment involving multiple UHPLC-HRMS runs with MS at different collision energies (both positive and negative) is performed using a mixture obtained using small amounts of the analyzed samples. XCMS, CAMERA and Multiple Reaction Monitoring (MRM)-Ion Pair Finder are used to find and annotate peaks and choose transitions that will be used to analyze the real samples. A set of internal standards is used to correct for variations in retention time. High coverage and high-performance quantitative analysis can be realized. The entire protocol takes ~5 d to complete and enables the simultaneously semiquantitative analysis of 800-1,300 metabolites.
Collapse
Affiliation(s)
- Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhongda Zeng
- Dalian ChemDataSolution Information Technology Co. Ltd., Dalian, China
| | - Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Man L, Dale AL, Klare WP, Cain JA, Sumer-Bayraktar Z, Niewold P, Solis N, Cordwell SJ. Proteomics of Campylobacter jejuni Growth in Deoxycholate Reveals Cj0025c as a Cystine Transport Protein Required for Wild-type Human Infection Phenotypes. Mol Cell Proteomics 2020; 19:1263-1280. [PMID: 32376616 PMCID: PMC8015009 DOI: 10.1074/mcp.ra120.002029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne gastroenteritis. Proteomics by label-based two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) identified proteins associated with growth in 0.1% sodium deoxycholate (DOC, a component of gut bile salts), and system-wide validation was performed by data-independent acquisition (DIA-SWATH-MS). LC-MS/MS quantified 1326 proteins (∼82% of the predicted C. jejuni proteome), of which 1104 were validated in additional biological replicates by DIA-SWATH-MS. DOC resulted in a profound proteome shift with 512 proteins showing significantly altered abundance. Induced proteins were associated with flagellar motility and antibiotic resistance; and these correlated with increased DOC motility and resistance to polymyxin B and ciprofloxacin. DOC also increased human Caco-2 cell adherence and invasion. Abundances of proteins involved in nutrient transport were altered by DOC and aligned with intracellular changes to their respective carbon sources. DOC increased intracellular levels of sulfur-containing amino acids (cysteine and methionine) and the dipeptide cystine (Cys-Cys), which also correlated with reduced resistance to oxidative stress. A DOC induced transport protein was Cj0025c, which has sequence similarity to bacterial Cys-Cys transporters. Deletion of cj0025c (Δcj0025c) resulted in proteome changes consistent with sulfur starvation, as well as attenuated invasion, reduced motility, atypical morphology, increased antimicrobial susceptibility and poor biofilm formation. Targeted metabolomics showed Δcj0025c could use known C. jejuni amino and organic acid substrates commensurate with wild-type. Medium Cys-Cys levels however, were maintained in Δcj0025c relative to wild-type. A toxic Cys-Cys mimic (selenocystine) inhibited wild-type growth, but not Δcj0025c Provision of an alternate sulfur source (2 mm thiosulfate) restored Δcj0025c motility. Our data confirm that Cj0025c is a Cys-Cys transporter that we have named TcyP consistent with the nomenclature of homologous proteins in other species.
Collapse
Affiliation(s)
- Lok Man
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - William P Klare
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Zeynep Sumer-Bayraktar
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia
| | - Paula Niewold
- Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia
| | - Nestor Solis
- School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney, Australia; Charles Perkins Centre, The University of Sydney, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia; Sydney Mass Spectrometry, The University of Sydney, Australia.
| |
Collapse
|
43
|
Zheng J, Zhang L, Johnson M, Mandal R, Wishart DS. Comprehensive Targeted Metabolomic Assay for Urine Analysis. Anal Chem 2020; 92:10627-10634. [PMID: 32634308 DOI: 10.1021/acs.analchem.0c01682] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Among all the human biological fluids used for disease biomarker discovery or clinical chemistry, urine stands out. It can be collected easily and noninvasively, it is readily available in large volumes, it is typically free from protein contamination, and it is chemically complex-reflecting a wide range of physiological states and functions. However, the comprehensive metabolomic analysis of urine has been somewhat less studied compared to blood. Indeed, most published metabolomic assays are specifically optimized for serum or plasma. In an effort to improve this situation, we have developed a comprehensive, quantitative MS-based assay for urine analysis. The assay robustly detects and quantifies 142 urinary metabolites including 28 amino acids and derivatives, 17 organic acids, 22 biogenic amines and derivatives, 40 acylcarnitines, 34 lipids, and glucose/hexose, among which 67 metabolites are absolutely quantified and 75 metabolites are semiquantified. All the analysis methods in this assay are based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) using both positive and negative-mode multiple reaction monitoring (MRM). The recovery rates of spiked urine samples at three different concentration levels, that is, low, medium and high, are in the range of 80% to 120% with satisfactory precision values of less than 20%. This targeted metabolomic assay has been successfully applied to the analysis of large numbers of human urine samples, with results closely matching those reported in the literature as well as those obtained from orthogonal analysis via NMR spectroscopy. Moreover, the assay was specifically developed in a 96-well plate format, which enables automated, high-throughput sample analysis. The assay has already been used to analyze more than 1800 urine samples in our laboratory since early 2019.
Collapse
|
44
|
Cao G, Song Z, Hong Y, Yang Z, Song Y, Chen Z, Chen Z, Cai Z. Large-scale targeted metabolomics method for metabolite profiling of human samples. Anal Chim Acta 2020; 1125:144-151. [PMID: 32674760 DOI: 10.1016/j.aca.2020.05.053] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Targeted metabolomics has significant advantages for quantification but suffers from reduced metabolite coverage. In this study, we developed a large-scale targeted metabolomics method and expanded its applicability to various human samples. This approach initially involved unbiased identification of metabolites in human cells, tissues and body fluids using ultra high-performance liquid chromatography (UHPLC) coupled to high-resolution Orbitrap mass spectrometry (MS). Targeted metabolomics method was established with utility of UHPLC-triple quadrupole MS, which enables targeted profiling of over 400 biologically important metabolites (e.g., amino acids, sugars, nucleotides, dipeptides, coenzymes, and fatty acids), covering 92 metabolic pathways (e.g., Krebs cycle, glycolysis, amino acids metabolism, ammonia recycling, and one-carbon metabolism). The present method displayed better sensitivity, repeatability and linearity than the Orbitrap MS-based untargeted metabolomics approach and demonstrated excellent performance in lung cancer biomarker discovery, in which 107 differential metabolites were able to discriminate between carcinoma and adjacent normal tissues, implicating the Warburg effect, alteration of redox state, and nucleotide metabolism of lung cancer. This new method is flexible and expandable and offers many advantages for metabolomics analysis, such as wide metabolite coverage, good repeatability and linearity and excellent capability in biomarker discovery, making it useful for both basic and clinical metabolic research.
Collapse
Affiliation(s)
- Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhengbo Song
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| | - Zhiyi Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhongjian Chen
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhaobin Chen
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
45
|
Lee HK, Kim K, Lee J, Lee J, Lee J, Kim S, Lee SE, Kim JH. Targeted toxicometabolomics of endosulfan sulfate in adult zebrafish (Danio rerio) using GC-MS/MS in multiple reaction monitoring mode. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122056. [PMID: 32000124 DOI: 10.1016/j.jhazmat.2020.122056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan sulfate is a major oxidative metabolite of the chlorinated insecticide endosulfan. In this study, a targeted metabolomics approach was used to investigate the toxic mechanisms of endosulfan sulfate in adult zebrafish using the multiple reaction monitoring mode of a GC-MS/MS. The LC50 of endosulfan sulfate in adult zebrafish was determined and then zebrafish were exposed to endosulfan sulfate at one-tenth the LC50 (0.1LC50) or the LC50 for 24 and 48 h. After exposure, the fish were extracted, derivatized and analyzed by GC-MS/MS for 379 metabolites to identify 170 metabolites. Three experimental groups (control, 0.1LC50 and LC50) were clearly separated in PLS-DA score plots. Based on the VIP, ANOVA, and fold change results, 40 metabolites were selected as biomarkers. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 4.0 as follows: aminoacyl-tRNA biosynthesis, valine/leucine/isoleucine biosynthesis, citrate cycle, glycerolipid metabolism, and arginine/proline metabolism. Gene expression studies confirmed the activation of citrate cycle and glycerolipids metabolism. MDA levels of the exposed group significantly increased in oxidative toxicity assay tests. Such significant perturbations of important metabolites within key biochemical pathways must result in biologically hazardous effects in zebrafish.
Collapse
Affiliation(s)
- Hwa-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghwa Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiho Lee
- Environmental Medical Center, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Sooyeon Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Gyeongsangnam-do, 52834, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
46
|
Folberth J, Begemann K, Jöhren O, Schwaninger M, Othman A. MS 2 and LC libraries for untargeted metabolomics: Enhancing method development and identification confidence. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122105. [PMID: 32305706 DOI: 10.1016/j.jchromb.2020.122105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
As part of the "omics" technologies in the life sciences, metabolomics is becoming increasingly important. In untargeted metabolomics, unambiguous metabolite identification and the inevitable coverage bias that comes with the selection of analytical conditions present major challenges. Reliable compound annotation is essential for translating metabolomics data into meaningful biological information. Here, we developed a fast and transferable method for generating in-house MS2 libraries to improve metabolite identification. Using the new method we established an in-house MS2 library that includes over 4,000 fragmentation spectra of 506 standard compounds for 6 different normalized collision energies (NCEs). Additionally, we generated a comprehensive liquid chromatography (LC) library by testing 57 different LC-MS conditions for 294 compounds. We used the library information to develop an untargeted metabolomics screen with maximum coverage of the metabolome that was successfully tested in a study of 360 human serum samples. The current work demonstrates a workflow for LC-MS/MS-based metabolomics, with enhanced metabolite identification confidence and the possibility to select suitable analysis conditions according to the specific research interest.
Collapse
Affiliation(s)
- Julica Folberth
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck, Kiel, Germany
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany; Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany; German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck, Kiel, Germany; Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
47
|
Du W, Pan ZY, Hussain SB, Han ZX, Peng SA, Liu YZ. Foliar Supplied Boron Can Be Transported to Roots as a Boron-Sucrose Complex via Phloem in Citrus Trees. FRONTIERS IN PLANT SCIENCE 2020; 11:250. [PMID: 32211005 PMCID: PMC7076173 DOI: 10.3389/fpls.2020.00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/18/2020] [Indexed: 05/07/2023]
Abstract
Although foliar boron (B) fertilization is regarded as an efficient way to remedy B deficiency, the mechanisms of foliar B transport from leaves to roots are still unclear. In this study, performed with 1-year-old "Newhall" navel orange (Citrus sinensis) grafted on trifoliate orange (Poncirus trifoliata) plants, we analyzed the B concentration in leaves and roots, B-sucrose complex in the phloem sap after foliar application of 10B, girdling, and/or shading treatments. Results indicated that 10B concentration was significantly increased in roots after foliar 10B treatment. On the other hand, both girdling the scion stem and shading over the plants with a black plastic net significantly reduced the B and 10B concentration in roots. LC-MS analysis revealed that foliar 10B-treated plants had higher concentration of sucrose and some sugar alcohols in the phloem sap as compared to foliar water-treated plants. Combining with the analysis in the artificial mixture of B and sucrose, a higher peak intensity of the 10B-sucrose complex was found in the phloem sap of foliar 10B-treated plants compared to the control plants. Taken together, it is concluded that foliar B can be long distance transported from leaves to roots via phloem, at least by forming a B-sucrose complex in citrus plants.
Collapse
Affiliation(s)
- Wei Du
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Yong Pan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Xing Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Shu-Ang Peng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Rubio VY, Cagmat JG, Wang GP, Yost RA, Garrett TJ. Analysis of Tryptophan Metabolites in Serum Using Wide-Isolation Strategies for UHPLC-HRMS/MS. Anal Chem 2020; 92:2550-2557. [PMID: 31927994 DOI: 10.1021/acs.analchem.9b04210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current targeted metabolomic workflows are limited by design and thus sacrifice crucial information from a profiling standpoint that could lead to a more fundamental understanding of the metabolic processes of interest. One drawback to performing targeted analysis on ion trapping instruments is the potential for increased variability in analysis when analytes and standards are isolated and trapped individually for fragmentation. In addition, this sequential isolation process increases the duty cycle of the mass spectrometer and reduces the number of points collected across a chromatographic peak. To address this, the use of a wide-isolation window (12 Da) to encompass the target analyte and the isotope standard within a single fragmentation window ensures that fragmentation is consistent when quantitation relies on the ratio of the target to the internal standard. Additionally, the preservation of a faster scan rate ensures that optimal representation of chromatographic peaks is preserved for the purposes of both quantitative and qualitative analyses that require peak integration for statistical analysis. The use of this flexible method is promising in the investigation of pathways that require multiple targets and are highly integrated within the system. Here, we demonstrate the application of this method in a fast ultra-high performance liquid chromatography (UHPLC) analysis to integrate wide-isolation quantitative strategies for high-resolution mass spectrometry (HRMS) combined with profiling qualitative metabolomics for the analysis of tryptophan degradation metabolites in mouse serum. Analysis of tryptophan-deficient states as compared to control in both germ-free or E. coli gut microbiota states was used to quantitate pathway-specific metabolites as well as obtain full profiling information. The quantitative and qualitative results revealed the preservation of the primary pathways of degradation in the kynurenine pathway to potentially produce primary products such as nicotinamide during stress-induced dietary states.
Collapse
Affiliation(s)
- Vanessa Y Rubio
- Department of Chemistry , University of Florida , Gainesville , Florida 32610 , United States
| | - Joy G Cagmat
- Southeast Center for Integrated Metabolomics , University of Florida , Gainesville , Florida 32611 , United States
| | - Gary P Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine , University of Florida , Gainesville , Florida 32610 , United States
| | - Richard A Yost
- Department of Chemistry , University of Florida , Gainesville , Florida 32610 , United States.,Southeast Center for Integrated Metabolomics , University of Florida , Gainesville , Florida 32611 , United States.,Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , Florida 32610 , United States
| | - Timothy J Garrett
- Southeast Center for Integrated Metabolomics , University of Florida , Gainesville , Florida 32611 , United States.,Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , Florida 32610 , United States
| |
Collapse
|
49
|
Srivastava S. Emerging Insights into the Metabolic Alterations in Aging Using Metabolomics. Metabolites 2019; 9:E301. [PMID: 31847272 PMCID: PMC6950098 DOI: 10.3390/metabo9120301] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Metabolomics is the latest 'omics' technology and systems biology science that allows for comprehensive profiling of small-molecule metabolites in biological systems at a specific time and condition. Metabolites are cellular intermediate products of metabolic reactions, which reflect the ultimate response to genomic, transcriptomic, proteomic, or environmental changes in a biological system. Aging is a complex biological process that is characterized by a gradual and progressive decline in molecular, cellular, tissue, organ, and organismal functions, and it is influenced by a combination of genetic, environmental, diet, and lifestyle factors. The precise biological mechanisms of aging remain unknown. Metabolomics has emerged as a powerful tool to characterize the organism phenotypes, identify altered metabolites, pathways, novel biomarkers in aging and disease, and offers wide clinical applications. Here, I will provide a comprehensive overview of our current knowledge on metabolomics led studies in aging with particular emphasis on studies leading to biomarker discovery. Based on the data obtained from model organisms and humans, it is evident that metabolites associated with amino acids, lipids, carbohydrate, and redox metabolism may serve as biomarkers of aging and/or longevity. Current challenges and key questions that should be addressed in the future to advance our understanding of the biological mechanisms of aging are discussed.
Collapse
Affiliation(s)
- Sarika Srivastava
- Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016, USA
| |
Collapse
|
50
|
Liu X, Zhou L, Shi X, Xu G. New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115665] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|