1
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
2
|
Shi T, Sun D, Dang Y, Xue Y, Liu X. Enhancement of electron transfer via magnetite in nitrite-dependent anaerobic methane oxidation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120843. [PMID: 38588621 DOI: 10.1016/j.jenvman.2024.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.
Collapse
Affiliation(s)
- Tianjing Shi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Dezhi Sun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Yan Dang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Yiting Xue
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| | - Xinying Liu
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Li B, Wang S, Fessler M, Zou R, Su Y, Zhang Y. Differential interactions between natural clay minerals and dissolved organic matter affect reactive oxygen species formation. WATER RESEARCH 2024; 249:120984. [PMID: 38101046 DOI: 10.1016/j.watres.2023.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Naturally occurring reactive oxygen species (ROS) are widely involved in many environmental processes. Here we investigated the ROS generation associated with the interaction between complexed natural clay minerals (CMs) and dissolved organic matter (DOM). Our results showed that among the nine chemical-reduced CMs (CR-CMs), the light brown CR-CM (CR-CM 7) generated the highest ROS via oxygenation, relying on the reactive structural Fe(II) (Fe species that can transfer electrons to oxygen) instead of total structural Fe(II) as previously reported. Moreover, DOM affected the oxygenation of CR-CMs differently. The tight interaction between DOM and CR-CM 7 formed DOM-complexed Fe, while the weak interaction between DOM and the dark gold CR-CM (CR-CM 1) and the black CR-CM (CR-CM 5) exhibited decreased efficiencies. Mechanism studies revealed that ROS were generated through three pathways but all followed a similar one-electron transfer process in the presence of DOM. We further developed a three-layer geobattery model system and demonstrated that long electron transfer driven by CR-CMs/DOM could extend ROS generation to several centimetres across the oxic-anoxic interface, even without redox switching. These findings offer new insights into CMs-involved ROS generation and associated organic matter transformation in natural environments.
Collapse
Affiliation(s)
- Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Song Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Rusen Zou
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
4
|
Hu D, Zeng Q, Zhu J, He C, Shi Q, Dong H. Promotion of Humic Acid Transformation by Abiotic and Biotic Fe Redox Cycling in Nontronite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19760-19771. [PMID: 37972299 DOI: 10.1021/acs.est.3c05646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The redox activity of Fe-bearing minerals is coupled with the transformation of organic matter (OM) in redox dynamic environments, but the underlying mechanism remains unclear. In this work, a Fe redox cycling experiment of nontronite (NAu-2), an Fe-rich smectite, was performed via combined abiotic and biotic methods, and the accompanying transformation of humic acid (HA) as a representative OM was investigated. Chemical reduction and subsequent abiotic reoxidation of NAu-2 produced abundant hydroxyl radicals (thereafter termed as ·OH) that effectively transformed the chemical and molecular composition of HA. More importantly, transformed HA served as a more premium electron donor/carbon source to couple with subsequent biological reduction of Fe(III) in reoxidized NAu-2 by Geobacter sulfurreducens, a model Fe-reducing bacterium. Destruction of aromatic structures and formation of carboxylates were mechanisms responsible for transforming HA into an energetically more bioavailable substrate. Relative to unaltered HA, transformed HA increased the extent of the bioreduction by 105%, and Fe(III) reduction was coupled with oxidation and even mineralization of transformed HA, resulting in bleached HA and formation of microbial products and cell debris. ·OH transformation slightly decreased the electron shuttling capacity of HA in bioreduction. Our results provide a mechanistic explanation for rapid OM mineralization driven by Fe redox cycling in redox-fluctuating environments.
Collapse
Affiliation(s)
- Dafu Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jin Zhu
- Zhejiang Institute of Metrology, Hangzhou, Zhejiang 310018, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
5
|
Rothwell KA, Pentrak MP, Pentrak LA, Stucki JW, Neumann A. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37418593 DOI: 10.1021/acs.est.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Structural Fe in clay minerals is an important, potentially renewable source of electron equivalents for contaminant reduction, yet our knowledge of how clay mineral Fe reduction pathways and Fe reduction extent affect clay mineral Fe(II) reactivity is limited. Here, we used a nitroaromatic compound (NAC) as a reactive probe molecule to assess the reactivity of chemically reduced (dithionite) and Fe(II)-reduced nontronite across a range of reduction extents. We observed biphasic transformation kinetics for all nontronite reduction extents of ≥5% Fe(II)/Fe(total) regardless of the reduction pathway, indicating that two Fe(II) sites of different reactivities form in nontronite at environmentally relevant reduction extents. At even lower reduction extents, Fe(II)-reduced nontronite completely reduced the NAC whereas dithionite-reduced nontronite could not. Our 57Fe Mössbauer spectroscopy, ultraviolet-visible spectroscopy, and kinetic modeling results suggest that the highly reactive Fe(II) entities likely comprise di/trioctahedral Fe(II) domains in the nontronite structure regardless of the reduction mechanism. However, the second Fe(II) species, of lower reactivity, varies and for Fe(II)-reacted NAu-1 likely comprises Fe(II) associated with an Fe-bearing precipitate formed during electron transfer from aqueous to nontronite Fe. Both our observation of biphasic reduction kinetics and the nonlinear relationship of rate constant and clay mineral reduction potential EH have major implications for contaminant fate and remediation.
Collapse
Affiliation(s)
- Katherine A Rothwell
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin P Pentrak
- Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, United States
| | - Linda A Pentrak
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph W Stucki
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anke Neumann
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, United Kingdom
- GFZ German Research Centre for Geosciences, Interface Geochemistry, 14473 Potsdam, Germany
| |
Collapse
|
6
|
Wang D, Liu J, Wang C, Zhang W, Yang G, Chen Y, Zhang X, Wu Y, Gu L, Chen H, Yuan W, Chen X, Liu G, Gao B, Chen Q, Zhao Y. Microbial synthesis of Prussian blue for potentiating checkpoint blockade immunotherapy. Nat Commun 2023; 14:2943. [PMID: 37221237 DOI: 10.1038/s41467-023-38796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Cancer immunotherapy is revolutionizing oncology. The marriage of nanotechnology and immunotherapy offers a great opportunity to amplify antitumor immune response in a safe and effective manner. Here, electrochemically active Shewanella oneidensis MR-1 can be applied to produce FDA-approved Prussian blue nanoparticles on a large-scale. We present a mitochondria-targeting nanoplatform, MiBaMc, which consists of Prussian blue decorated bacteria membrane fragments having further modifications with chlorin e6 and triphenylphosphine. We find that MiBaMc specifically targets mitochondria and induces amplified photo-damages and immunogenic cell death of tumor cells under light irradiation. The released tumor antigens subsequently promote the maturation of dendritic cells in tumor-draining lymph nodes, eliciting T cell-mediated immune response. In two tumor-bearing mouse models using female mice, MiBaMc triggered phototherapy synergizes with anti-PDL1 blocking antibody for enhanced tumor inhibition. Collectively, the present study demonstrates biological precipitation synthetic strategy of targeted nanoparticles holds great potential for the preparation of microbial membrane-based nanoplatforms to boost antitumor immunity.
Collapse
Affiliation(s)
- Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
- The Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029, Beijing, P.R. China
| | - Changlai Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Weiyun Zhang
- School of Biomedical Engineering, Shenzhen University, 518060, Shenzhen, P.R. China
| | - Guangbao Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Long Gu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hongzhong Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Guofeng Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Bin Gao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, P.R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
7
|
Qian A, Lu Y, Zhang Y, Yu C, Zhang P, Liao W, Yao Y, Zheng Y, Tong M, Yuan S. Mechanistic Insight into Electron Transfer from Fe(II)-Bearing Clay Minerals to Fe (Hydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8015-8025. [PMID: 37204932 DOI: 10.1021/acs.est.3c01250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Electron transfer (ET) is the essence of most biogeochemical processes related to element cycling and contaminant attenuation, whereas ET between different minerals and the controlling mechanism remain elusive. Here, we used surface-associated Fe(II) as a proxy to explore ET between reduced nontronite NAu-2 (rNAu-2) and Fe (hydr)oxides in their coexisting systems. Results showed that ET could occur from rNAu-2 to ferrihydrite but not to goethite, and the ET amount was determined by the number of reactive sites and the reduction potential difference between rNAu-2 and ferrihydrite. ET proceeded mainly through the mineral-mineral interface, with a negligible contribution of dissolved Fe2+/Fe3+. Control experiments by adding K+ and increasing salinity together with characterizations by X-ray diffraction, scanning electron microscopy/energy-dispersive spectrometry, and atomic force microscopy suggested that ferrihydrite nanoparticles inserted the interlayer space in rNAu-2 where structural Fe(II) in rNAu-2 transferred electrons mainly through the basal plane to ferrihydrite. This study implicates the occurrence of ET between different redox-active minerals through the mineral-mineral interface. As minerals at different reduction potentials often coexist in soils/sediments, the mineral-mineral ET may play an important role in subsurface biogeochemical processes.
Collapse
Affiliation(s)
- Ao Qian
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yanting Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Chenglong Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yao Yao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Yunsong Zheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan 430078, P. R. China
| |
Collapse
|
8
|
Helmy ET, Ayyad MA, Ali MA, Mohamedbakr HG, Pan JH. Biochemical, Histological Changes, Protein Electrophoretic Pattern, and Field Application of CuPb-Ferrite/TiO 2 Nanocomposites for Controlling Terrestrial Gastropod Eobania vermiculata (Müller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6626-6634. [PMID: 37070858 DOI: 10.1021/acs.jafc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Eobania vermiculata is a hazardous snail that can damage ornamental plants and cause significant harm to plant sections in Egyptian areas. Herein, the molluscicidal activity of CuPb-Ferrite/TiO2 and TiO2 nanoparticles (NPs) against E. vermiculata was evaluated using the poisonous bait method. LC50 values were determined using the leaf dipping and contact methods, with values of 631.23 and 1703.49 ppm for CuPb-Ferrite/TiO2 and 193.67 and 574.97 ppm for TiO2. Exposure to both NPs resulted in a significant increase in the biochemical parameters of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), as well as a decrease in total protein (TP) percentage of E. vermiculata. Histological examinations revealed that many digestive cells had ruptured, and their contents had been lost, while the foot's epithelial layer became ruptured. The average reduction was 66.36% for CuPb-Ferrite/TiO2 NPs compared to the recommended molluscicide, Neomyl, with a 70.23% reduction in the field application. Electrophoretic separation of total protein using sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment with LC50 concentrations of TiO2 and CuPb-Ferrite/TiO2 demonstrated the potency of these synthetic compounds as molluscicidal agents. Therefore, we recommend the use of CuPb-Ferrite/TiO2 NPs as a novel land snail molluscicide because it is safe to use, and the baits are arranged to not affect irrigation water, with a high molluscicidal effect.
Collapse
Affiliation(s)
- Elsayed T Helmy
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
- Environment Division, National Institute of Oceanography and Fisheries, KayetBey, Elanfoushy, Alexandria 12345, Egypt
| | - Mohamed A Ayyad
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - Mona A Ali
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12345, Egypt
| | - H G Mohamedbakr
- Faculty of Science, Chemistry Department, Jazan University, P.O. Box 2097, Jazan 45142, Kingdom of Saudi Arabia
- Faculty of Science, Chemistry Department, Suez Canal University, Ismailia 41522, Egypt
| | - Jia Hong Pan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
9
|
Sheng Y, Hu J, Kukkadapu R, Guo D, Zeng Q, Dong H. Inhibition of Extracellular Enzyme Activity by Reactive Oxygen Species upon Oxygenation of Reduced Iron-Bearing Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3425-3433. [PMID: 36795461 DOI: 10.1021/acs.est.2c09634] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The dual roles of minerals in inhibiting and prolonging extracellular enzyme activity in soils and sediments are governed by enzyme adsorption to mineral surfaces. Oxygenation of mineral-bound Fe(II) generates reactive oxygen species (ROS), yet it is unknown whether and how this process alters the activity and functional lifespan of extracellular enzymes. Here, the effect of mineral-bound Fe(II) oxidation on the hydrolytic activity of a cellulose-degrading enzyme β-glucosidase (BG) was studied using two pre-reduced Fe-bearing clay minerals (nontronite and montmorillonite) and one pre-reduced iron oxide (magnetite) at pH 5 and 7. Under anoxic conditions, BG adsorption to mineral surfaces decreased its activity but prolonged its lifespan. Under oxic conditions, ROS was produced, with the amount of •OH, the most abundant ROS, being positively correlated with the extent of structural Fe(II) oxidation in reduced minerals. •OH decreased BG activity and shortened its lifespan via conformational change and structural decomposition of BG. These results suggest that under oxic conditions, the ROS-induced inhibitory role of Fe(II)-bearing minerals outweighed their adsorption-induced protective role in controlling enzyme activity. These results disclose a previously unknown mechanism of extracellular enzyme inactivation, which have pivotal implications for predicting the active enzyme pool in redox-oscillating environments.
Collapse
Affiliation(s)
- Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Jinglong Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ravi Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
10
|
Zhang W, Li X, Shen J, Sun Z, Zhou X, Li F, Ma F, Gu Q. Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130401. [PMID: 36403451 DOI: 10.1016/j.jhazmat.2022.130401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
In-situ thermal desorption (ISTD) has attracted increasing attention owing to the efficient removal of organic contaminants from contaminated sites. However, it is poorly understood that whether and to what extent contamination degradation occurs upon oxygenation of reduced Fe-bearing clay minerals (RFC) in the subsurface during ISTD. In this study, we evaluated the mechanism of contaminant degradation upon oxygenation of reduced clay minerals during the ISTD. Reduced nontronite (rNAu-2) and montmorillonite (rSWy-3) were selected as RFC models. Results showed that thermal treatment during ISTD could significantly enhance phenol degradation, which increased from 25.8 % at 10 °C to 74.4 % at 70 °C in rNAu-2 and from 17.7 % at 10 °C to 49.8 % at 70 °C in rSWy-3. Correspondingly, the cumulative •OH at steady-state ([•OH]ss) increased by 3.7 and 1.5 times, respectively. The acceleration of Fe(II) oxidation with increasing temperature could be mainly responsible for [•OH]ss generation, which degrades phenol. Moreover, thermal treatment improved the fast oxidation of trioctahedral entities Fe(II)Fe(II)Fe(II) (TOF) and the slow oxidation of dioctahedral entities Fe(II)Fe(II) (DTF1), AlFe(II) (DAF1), and Fe(II)Fe(III) (DTF2). Our study suggests that the overlooked degradation progress of phenol by oxygenation of RFC during ISTD, and it could be favorable for contaminant degradation during remediation.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaodong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jialun Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zongquan Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Qingbao Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
11
|
Cui HJ, Ning Y, Wu C, Peng W, Cheng D, Yin L, Zhou W, Liao W. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H 2O 2. J Environ Sci (China) 2023; 124:688-698. [PMID: 36182174 DOI: 10.1016/j.jes.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/16/2023]
Abstract
It has been documented that organic contaminants can be degraded by hydroxyl radicals (•OH) produced by the activation of H2O2 by Fe(II)-bearing clay. However, the interfacial electron transfer reactions between structural Fe(II) and H2O2 for •OH generation and its effects on contaminant remediation are unclear. In this study, we first investigated the relation between •OH generation sites and sulfamethoxazole (SMX) degradation by activating H2O2 using nontronite with different reduction extents. SMX (5.2-16.9 µmol/L) degradation first increased and then decreased with an increase in the reduction extent of nontronite from 22% to 62%, while the •OH production increased continually. Passivization treatment of edge sites and structural variation results revealed that interfacial electron transfer reactions between Fe(II) and H2O2 occur at both the edge and basal plane. The enhancement on basal plane interfacial electron transfer reactions in a high reduction extent rNAu-2 leads to the enhancement on utilization efficiencies of structural Fe(II) and H2O2 for •OH generation. However, the •OH produced at the basal planes is less efficient in oxidizing SMX than that of at edge sites. Oxidation of SMX could be sustainable in the H2O2/rNAu-2 system through chemically reduction. The results of this study show the importance role of •OH generation sites on antibiotic degradation and provide guidance and potential strategies for antibiotic degradation by Fe(II)-bearing clay minerals in H2O2-based treatments.
Collapse
Affiliation(s)
- Hao-Jie Cui
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaqi Ning
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Cong Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wei Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Dong Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lichu Yin
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Volatile fatty acids changed the microbial community during feammox in coastal saline-alkaline paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41755-41765. [PMID: 36635475 DOI: 10.1007/s11356-023-25215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023]
Abstract
In order to indicate the effect of volatile fatty acids (VFAs) on the characteristics of feammox and dissimilatory iron reducing bacteria (DIRB) in paddy soils, different VFAs were selected with paddy soils for anaerobic cultivation. Five treatments were set up, respectively, only adding N and both adding N and C (formate + NH4+ (Fo-N), acetate + NH4+ (Ac-N), propionate + NH4+ (Pr-N), and butyrate + NH4+ (Bu-N)) treatments. The concentration of Fe(II), Fe(III), NH4+, and VFAs was assessed within 45 d, and the bacterial community was determined after cultivation. The oxidation rates of NH4+ were the highest in N treatment, while it was the lowest in Fo-N treatment. Under the four C treatments, the consumption of NH4+ and Fe(III) was the fastest in Pr-N treatment, which was consumed by 31.2% and 76.3%, respectively. Different VFAs selected for distinct DIRB. Compared with N treatment, Ac-N and Bu-N treatment increased the relative abundance of DIRB, such as Geobacter and Clostridia, which increased the consumption of VFAs during incubation. Overall, VFAs, especially formate, could promote Fe(III) reduction and compete with the feammox process for the electron acceptors to decrease the feammox reaction, and prohibited soil NH4+ loss. Therefore, VFAs, which was released from organic fertilizer, could reduce NH4+ loss in feammox process of saline-alkaline paddy soils.
Collapse
|
13
|
Fan Q, Wang L, Fu Y, Li Q, Liu Y, Wang Z, Zhu H. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159003. [PMID: 36155041 DOI: 10.1016/j.scitotenv.2022.159003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Huaiyong Zhu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
14
|
Sun Y, Su J, Ali A, Huang T, Zhang S, Min Y. Enhanced nitrate and cadmium removal performance at low carbon to nitrogen ratio through immobilized redox mediator granules and functional strains in a bioreactor. CHEMOSPHERE 2023; 312:137255. [PMID: 36402354 DOI: 10.1016/j.chemosphere.2022.137255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of multiple pollutants and lack of carbon sources are challenges for the biological treatment of wastewater. To achieve simultaneous removal of nitrate (NO3--N) and cadmium (Cd2+) at low carbon to nitrogen (C/N) ratios, 2-hydroxy-1,4-naphthoquinone (HNQ) was selected from three redox mediators as an accelerator for denitrification of heterotrophic strain Pseudomonas stutzeri sp. GF2 and autotrophic strain Zoogloea sp. FY6. Then, halloysite nanotubes immobilized with 2-hydroxy-1,4-naphthoquinone (HNTs-HNQ) were prepared and a bioreactor was constructed with immobilized redox mediator granules (IRMG) as the carrier, which was immobilized with HNTs-HNQ and inoculated with the two strains. The immobilized HNQ and the inoculated strains jointly improved the removal ability of NO3--N and Cd2+ and the removal efficiency of NO3--N (25.0 mg L-1) and Cd2+ (5.0 mg L-1) were 92.81% and 93.94% at C/N = 1.5 and hydraulic retention time (HRT) = 4 h. The Cd2+ was removed by adsorption of iron oxides (FeO(OH) and Fe3O4) and IRMG. The electron transport system activity (ETSA) of bacteria was improved and the composition of dissolved organic matter in the effluent was not affected by HNQ. The HNQ promoted the production of FeO(OH) and up-regulated the proportion of Zoogloea (54.75% in the microbial community), indicating that Zoogloea sp. FY6 was dominant in the microbial community. In addition, HNQ influenced the metabolic pathways and improved the relative abundance of some genes involved in nitrogen metabolism and the iron redox cycle.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Zhou N, Kupper RJ, Catalano JG, Thompson A, Chan CS. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer Sideroxydans lithotrophicus Using Dual Mto and Cyc2 Iron Oxidation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17443-17453. [PMID: 36417801 PMCID: PMC9731265 DOI: 10.1021/acs.est.2c05142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Fe(II) clays are common across many environments, making them a potentially significant microbial substrate, yet clays are not well established as an electron donor. Therefore, we explored whether Fe(II)-smectite supports the growth of Sideroxydans lithotrophicus ES-1, a microaerophilic Fe(II)-oxidizing bacterium (FeOB), using synthesized trioctahedral Fe(II)-smectite and 2% oxygen. S. lithotrophicus grew substantially and can oxidize Fe(II)-smectite to a higher extent than abiotic oxidation, based on X-ray near-edge spectroscopy (XANES). Sequential extraction showed that edge-Fe(II) is oxidized before interior-Fe(II) in both biotic and abiotic experiments. The resulting Fe(III) remains in smectite, as secondary minerals were not detected in biotic and abiotic oxidation products by XANES and Mössbauer spectroscopy. To determine the genes involved, we compared S. lithotrophicus grown on smectite versus Fe(II)-citrate using reverse-transcription quantitative PCR and found that cyc2 genes were highly expressed on both substrates, while mtoA was upregulated on smectite. Proteomics confirmed that Mto proteins were only expressed on smectite, indicating that ES-1 uses the Mto pathway to access solid Fe(II). We integrate our results into a biochemical and mineralogical model of microbial smectite oxidation. This work increases the known substrates for FeOB growth and expands the mechanisms of Fe(II)-smectite alteration in the environment.
Collapse
Affiliation(s)
- Nanqing Zhou
- School
of Marine Science and Policy, University
of Delaware, Newark, Delaware 19716, United
States
| | - Robert J. Kupper
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, Saint
Louis, Missouri 63130, United States
| | - Jeffrey G. Catalano
- Department
of Earth and Planetary Sciences, Washington
University in St. Louis, Saint
Louis, Missouri 63130, United States
| | - Aaron Thompson
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
| | - Clara S. Chan
- School
of Marine Science and Policy, University
of Delaware, Newark, Delaware 19716, United
States
- Department
of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Ren J, Liu Y, Cao W, Zhang L, Xu F, Liu J, Wen Y, Xiao J, Wang L, Zhuo X, Ji J, Liu Y. A process-based model for describing redox kinetics of Cr(VI) in natural sediments containing variable reactive Fe(II) species. WATER RESEARCH 2022; 225:119126. [PMID: 36179427 DOI: 10.1016/j.watres.2022.119126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Sediment-associated Fe(II) is a critical reductant for immobilizing groundwater contaminants, such as Cr(VI). The reduction reactivity of sediment-associated Fe(II) is dependent on its binding environment and influenced by the biogeochemical transformation of other elements (i.e., C, N and Mn), challenging the description and prediction of the reactivity of Fe(II) in natural sediments. Here, anaerobic batch experiments were conducted to study the variation in sediment-associated Fe(II) reactivity toward Cr(VI) in natural sediments collected from an intensive agricultural area located in Guangxi, China, where nitrate is a common surface water and groundwater contaminant. Then, a process-based model was developed to describe the coupled biogeochemical processes of C, N, Mn, Fe, and Cr. In the process-based model, Cr(VI) reduction by sediment-associated Fe(II) was described using a previously developed multirate model, which categorized the reactive Fe(II) into three fractions based on their extractabilities in sodium acetate and HCl solutions. The experimental results showed that Fe(II) generation was inhibited by NO3- and/or NO2-. After NO3- and NO2- were exhausted, the Fe(II) content and its reduction rate toward Cr(VI) increased rapidly. As the Fe(II) content increased, the three reactive Fe(II) fractions exhibited approximately linear correlations with aqueous Fe(II) concentrations ( [Formula: see text] ), which was probably driven by sorptive equilibrium and redox equilibrium between aqueous and solid phases. The model results indicated that the reaction rate constants of the three Fe(II) fractions (kn) significantly increased with incubation time, and log(kn) correlated well with [Formula: see text] [ [Formula: see text] , [Formula: see text] and [Formula: see text] ]. The numerical model developed in this study provides an applicable method to describe and predict Cr(VI) removal from groundwater under dynamic redox conditions.
Collapse
Affiliation(s)
- Jingli Ren
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Yutong Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Weimin Cao
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Liyang Zhang
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Fen Xu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yubo Wen
- School of Geographical Science, Nantong University, Nantong, Jiangsu 226007, China
| | - Jian Xiao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lei Wang
- Office of Land Quality Geochemical Assessment of Guangxi, Nanning, Guangxi 530023, China; Geology Team No. 4 of Guangxi Zhuang Autonomic Region, Nanning, Guangxi 530031, China
| | - Xiaoxiong Zhuo
- Office of Land Quality Geochemical Assessment of Guangxi, Nanning, Guangxi 530023, China
| | - Junfeng Ji
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China
| | - Yuanyuan Liu
- Key Laboratory of Surficial Geochemistry (Ministry of Education), School of Earth Sciences and Engineering, Nanjing University, Xianlin Ave. 163, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
17
|
Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen H. A critical review of mineral-microbe interaction and coevolution: mechanisms and applications. Natl Sci Rev 2022; 9:nwac128. [PMID: 36196117 PMCID: PMC9522408 DOI: 10.1093/nsr/nwac128] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The mineral-microbe interactions play important roles in environmental change, biogeochemical cycling of elements, and formation of ore deposits. Minerals provide both beneficial (physical and chemical protection, nutrients, and energy) and detrimental (toxic substances and oxidative pressure) effects to microbes, resulting in mineral-specific microbial colonization. Microbes impact dissolution, transformation, and precipitation of minerals through their activity, resulting in either genetically-controlled or metabolism-induced biomineralization. Through these interactions minerals and microbes coevolve through Earth history. The mineral-microbe interactions typically occur at microscopic scale but the effect is often manifested at global scale. Despite advances achieved through decades of research, major questions remain. Four areas are identified for future research: integrating mineral and microbial ecology, establishing mineral biosignatures, linking laboratory mechanistic investigation to field observation, and manipulating mineral-microbe interactions for the benefit of humankind.
Collapse
Affiliation(s)
- Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Linduo Zhao
- Illinois Sustainable Technology Center , Illinois State Water Survey, , Champaign , IL 61820 , USA
- University of Illinois at Urbana-Champaign , Illinois State Water Survey, , Champaign , IL 61820 , USA
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Xiaolei Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Li Zhang
- Department of Geology and Environmental Earth Science, Miami University , Oxford , OH 45056 , USA
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| |
Collapse
|
18
|
Chi ZL, Yu GH, Teng HH, Liu HG, Wang J, Liu CQ, Shen QR, Gadd GM. Molecular Trade-Offs between Lattice Oxygen and Oxygen Vacancy Drive Organic Pollutant Degradation in Fungal Biomineralized Exoskeletons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8132-8141. [PMID: 35561278 DOI: 10.1021/acs.est.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal-mineral interactions can effectively alleviate cellular stress from organic pollutants, the production of which are expected to rapidly increase owing to the Earth moving into an unprecedented geological epoch, the Anthropocene. The underlying mechanisms that may enable fungi to combat organic pollution during fungal-mineral interactions remain unclear. Inspired by the natural fungal sporulation process, we demonstrate for the first time that fungal biomineralization triggers the formation of an ultrathin (hundreds of nanometers thick) exoskeleton, enriched in nanosized iron (oxyhydr)oxides and biomolecules, on the hyphae. Mapped biochemical composition of this coating at a subcellular scale via high spatial resolution (down to 50 nm) synchrotron radiation-based techniques confirmed aromatic C, C-N bonds, amide carbonyl, and iron (oxyhydr)oxides as the major components of the coatings. This nanobiohybrid system appeared to impart a strong (×2) biofunctionality for fungal degradation of bisphenol A through altering molecular-level trade-offs between lattice oxygen and oxygen vacancy. Together, fungal coatings could act as "artificial spores", which enable fungi to combat physical and chemical stresses in natural environments, providing crucial insights into fungal biomineralization and coevolution of the Earth's lithosphere and biosphere.
Collapse
Affiliation(s)
- Zhi-Lai Chi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Hui Yu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry, George Washington University, Washington, District of Columbia 20006, United States
| | - Hai-Gang Liu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qi-Rong Shen
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, U.K
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
19
|
Zhao Z, Yuan Q, Meng Y, Luan F. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44874-44882. [PMID: 35138538 DOI: 10.1007/s11356-022-19028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Iron-bearing clay minerals and arsenic commonly coexist in soils and sediments. Redox oscillation from anoxic to oxic conditions can result in structural Fe(II) oxidation in clay minerals. However, the role of structural Fe(II) oxidation in clay minerals on arsenic immobilization is still unclear. In this study, we found that oxidation of structural Fe(II) in bioreduced clay mineral nontronite (NAu-2) triggered As(III) adsorption onto NAu-2. As(III) was adsorbed onto NAu-2 through ligand exchange with hydroxyl groups which were generated by the oxidation of structural Fe(II) in NAu-2. In addition, oxidation of structural Fe(II) led to the oxidation of As(III) to As(V), which further enhanced the adsorption of dissolved As(III) on NAu-2. Therefore, the adsorption capacity of As(III) onto oxidized NAu-2 was 1.6 times higher than that of native NAu-2. Oxidation of structural Fe(II) was a two-stage process that proceeded from exterior sites to interior sites, and the immobilization and oxidation of As(III) occurred predominantly at the rapid exterior structural Fe(II) oxidation stage. Our findings highlight that the oxidation of structural Fe(II) in iron-bearing clay minerals may play an important role in arsenic immobilization and transformation in the subsurface environment.
Collapse
Affiliation(s)
- Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
20
|
Pang S, Li N, Luo H, Luo X, Shen T, Yang Y, Jiang J. Autotrophic Fe-Driven Biological Nitrogen Removal Technologies for Sustainable Wastewater Treatment. Front Microbiol 2022; 13:895409. [PMID: 35572701 PMCID: PMC9100419 DOI: 10.3389/fmicb.2022.895409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Fe-driven biological nitrogen removal (FeBNR) has become one of the main technologies in water pollution remediation due to its economy, safety and mild reaction conditions. This paper systematically summarizes abiotic and biotic reactions in the Fe and N cycles, including nitrate/nitrite-dependent anaerobic Fe(II) oxidation (NDAFO) and anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox). The biodiversity of iron-oxidizing microorganisms for nitrate/nitrite reduction and iron-reducing microorganisms for ammonium oxidation are reviewed. The effects of environmental factors, e.g., pH, redox potential, Fe species, extracellular electron shuttles and natural organic matter, on the FeBNR reaction rate are analyzed. Current application advances in natural and artificial wastewater treatment are introduced with some typical experimental and application cases. Autotrophic FeBNR can treat low-C/N wastewater and greatly benefit the sustainable development of environmentally friendly biotechnologies for advanced nitrogen control.
Collapse
Affiliation(s)
- Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, School of Municipal and Environmental Engineering, Ministry of Education, Jilin Jianzhu University, Changchun, China
| | - Ning Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
- *Correspondence: Ning Li, ;
| | - Huan Luo
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tong Shen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanan Yang
- Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Water Resources Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
21
|
Zhou Z, Zeng Q, Li G, Hu D, Xia Q, Dong H. Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral. CHEMOSPHERE 2022; 290:133265. [PMID: 34914951 DOI: 10.1016/j.chemosphere.2021.133265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Improper disposal of chlorinated solvents such as trichloroethylene (TCE) and its stabilizer 1,4-dioxane has resulted in extensive contamination in soils and groundwater. Oxidative degradation of these contaminants by strong oxidants has been proposed recently as a remediation strategy, but specific mechanisms and degradation efficiencies are still poorly understood, especially in commingled systems. In this study, a reduced iron-bearing clay (RIC), nontronite (rNAu-2), was oxygenated to produce hydroxyl radicals (•OH) for degradation of TCE and 1,4-dioxane under circumneutral and dark conditions. Results showed that TCE and 1,4-dioxane could be effectively degraded during oxygenation of rNAu-2 in both single and commingled systems. Compared with the single compound system, the degradation rates and efficiencies of TCE and 1,4-dioxane decreased in the commingled system. The negative effect was more significant for TCE than 1,4-dioxane. The commingled TCE and 1,4-dioxane impacted the degradation pattern of each other, due to their difference in •OH scavenging efficiency, surface affinity to rNAu-2 and solubility. Moreover, solution pH, buffer type, rNAu-2 dosage, and dissolved organic matter all affected •OH production and contaminant degradation efficiency. Our findings provide new insights for investigating the natural attenuation of commingled chlorinated solvents and 1,4-dioxane by RIC in redox-fluctuating environments and offer guidance for developing possible in-situ remediation strategies.
Collapse
Affiliation(s)
- Ziqi Zhou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; Institute of Earth Sciences, China University of Geosciences, Beijing, 100083, China
| | - Dafu Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
22
|
Xia Q, Jin Q, Chen Y, Zhang L, Li X, He S, Guo D, Liu J, Dong H. Combined Effects of Fe(III)-Bearing Nontronite and Organic Ligands on Biogenic U(IV) Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1983-1993. [PMID: 35012308 DOI: 10.1021/acs.est.1c04946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioreduction of soluble U(VI) to sparingly soluble U(IV) solids was proposed as a remediation method for uranium contamination. Therefore, the stability and longevity of biogenic U(IV) are critical to the success of uranium remediation. However, co-occurrence of clay minerals and organic ligands could potentially reoxidize U(IV) to U(VI). Herein, we report a combined effect of Fe(III)-rich nontronite (NAu-2) and environmentally prevalent organic ligands on reoxidation of biogenic U(IV) at circumneutral pH. After 30 days of incubation, structural Fe(III) in NAu-2 oxidized 45.50% U(IV) with an initial rate of 2.7 × 10-3 mol m-2 d-1. Addition of citrate and ethylenediaminetetraacetic acid (EDTA) greatly promoted the oxidative dissolution of U(IV) by structural Fe(III) in NAu-2, primarily through the formation of aqueous ligand-U(IV) complexes. In contrast, a model siderophore, desferrioxamine B (DFOB), partially inhibited U(IV) oxidation due to the formation of stable DFOB-Fe3+ complexes. The resulting U(VI) species intercalated into an NAu-2 interlayer or adsorbed onto an NAu-2 surface. Our results highlight the importance of organic ligands in oxidative dissolution of U(IV) minerals by Fe(III)-bearing clay minerals and have important implications for the design of nuclear waste storage and remediation strategies, especially in clay- and organic-rich environments.
Collapse
Affiliation(s)
- Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Yu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Limin Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sheng He
- Beijing Research Institute of Uranium Geology, Beijing 100029, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
23
|
Zhao Z, Meng Y, Wang Y, Lin L, Xie F, Luan F. Anaerobic oxidation of arsenite by bioreduced nontronite. J Environ Sci (China) 2021; 110:21-27. [PMID: 34593191 DOI: 10.1016/j.jes.2021.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
The redox state of arsenic controls its toxicity and mobility in the subsurface environment. Understanding the redox reactions of arsenic is particularly important for addressing its environmental behavior. Clay minerals are commonly found in soils and sediments, which are an important host for arsenic. However, limited information is known about the redox reactions between arsenic and structural Fe in clay minerals. In this study, the redox reactions between As(III)/As(V) and structural Fe in nontronite NAu-2 were investigated in anaerobic batch experiments. No oxidation of As(III) was observed by the native Fe(III)-NAu-2. Interestingly, anaerobic oxidation of As(III) to As(V) occurred after Fe(III)-NAu-2 was bioreduced. Furthermore, anaerobic oxidization of As(III) by bioreduced NAu-2 was significantly promoted by increasing Fe(III)-NAu-2 reduction extent and initial As(III) concentrations. Bioreduction of Fe(III)-NAu-2 generated reactive Fe(III)-O-Fe(II) moieties at clay mineral edge sites. Anaerobic oxidation of As(III) was attributed to the strong oxidation activity of the structural Fe(III) within the Fe(III)-O-Fe(II) moieties. Our results provide a potential explanation for the presence of As(V) in the anaerobic subsurface environment. Our findings also highlight that clay minerals can play an important role in controlling the redox state of arsenic in the natural environment.
Collapse
Affiliation(s)
- Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yahua Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Yang R, Cai J, Yang H. Enhanced reactivity of zero-valent aluminum/O 2 by using Fe-bearing clays in 4-chlorophenol oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145661. [PMID: 33940749 DOI: 10.1016/j.scitotenv.2021.145661] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Zero-valent aluminum (ZVAl) is a promising reductant because of its relatively low redox potential, which can efficiently activate molecular oxygen to generate reactive oxygen species. However, its long-term performance is limited by the intrinsic dense oxide layer and the passivation effect of the accumulative Al-(hydr)oxide on its surface during the reaction. In this study, four clay minerals with different compositions were mixed with ZVAl by ball milling to obtain four composites of ZVAl and clay (ZVAl-Clay), which were used to degrade a high concentration of 4-chlorophenol (4-CP) under ambient conditions. The oxidation efficiencies of different ZVAl-Clays were strongly relevant to Fe contained in the clay minerals. The Fe-free ZVAl-Clay presented poor oxidation performance, whereas the reaction efficiencies of those ZVAl composites with Fe-bearing clays exhibited varying degrees of improvement. In comparison with the original ZVAl, the highest oxidation rate increased by 23 times, the maximum increased OH production was approximately 8 times, and the corresponding mineralization efficiency improved by 38.7%. However, the levels of improved oxidation performance of various ZVAl-Clays were not positively correlated with their actual total Fe contents, and their degradation efficiencies might also be affected by other physical and/or chemical properties of different clays. The synergistic mechanism revealed by various characterizations was that electron transfer might occur from ZVAl to the structural Fe(III) of the clay through the basal plane or edge of clays triggered by ball milling. Thus, the partially produced Fe(II) on the clay surface promoted the Fenton-like reaction to decompose H2O2 into OH for efficient oxidation of 4-CP. In short, the ZVAl composites with Fe-bearing clays deserved further exploration as potential materials for efficient degradation of organic matters in wastewater samples.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Jun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Hu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
25
|
Zhang L, Chen Y, Xia Q, Kemner KM, Shen Y, O'Loughlin EJ, Pan Z, Wang Q, Huang Y, Dong H, Boyanov MI. Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5929-5938. [PMID: 33822593 DOI: 10.1021/acs.est.0c08645] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reduction of U(VI) to U(IV) drastically reduces its solubility and has been proposed as a method for remediation of uranium contamination. However, much is still unknown about the kinetics, mechanisms, and products of U(VI) bioreduction in complex systems. In this study, U(VI) bioreduction experiments were conducted with Shewanella putrefaciens strain CN32 in the presence of clay minerals and two organic ligands: citrate and EDTA. In reactors with U and Fe(III)-clay minerals, the rate of U(VI) bioreduction was enhanced due to the presence of ligands, likely because soluble Fe3+- and Fe2+-ligand complexes served as electron shuttles. In the presence of citrate, bioreduced U(IV) formed a soluble U(IV)-citrate complex in experiments with either Fe-rich or Fe-poor clay mineral. In the presence of EDTA, U(IV) occurred as a soluble U(IV)-EDTA complex in Fe-poor montmorillonite experiments. However, U(IV) remained associated with the solid phase in Fe-rich nontronite experiments through the formation of a ternary U(IV)-EDTA-surface complex, as suggested by the EXAFS analysis. Our study indicates that organic ligands and Fe(III)-bearing clays can significantly affect the microbial reduction of U(VI) and the stability of the resulting U(IV) phase.
Collapse
Affiliation(s)
- Limin Zhang
- State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Chen
- State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qingyin Xia
- State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yanghao Shen
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zezhen Pan
- Environmental Microbiology Laboratory Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qihuang Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailiang Dong
- State Key Laboratory of Biology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Maxim I Boyanov
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia 1113, Bulgaria
| |
Collapse
|
26
|
Wang R, Li H, Sun J, Zhang L, Jiao J, Wang Q, Liu S. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004051. [PMID: 33325567 DOI: 10.1002/adma.202004051] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Electrochemically active bacteria can transport their metabolically generated electrons to anodes, or accept electrons from cathodes to synthesize high-value chemicals and fuels, via a process known as extracellular electron transfer (EET). Harnessing of this microbial EET process has led to the development of microbial bio-electrochemical systems (BESs), which can achieve the interconversion of electrical and chemical energy and enable electricity generation, hydrogen production, electrosynthesis, wastewater treatment, desalination, water and soil remediation, and sensing. Here, the focus is on the current understanding of the microbial EET process occurring at both the bacteria-electrode interface and the biotic interface, as well as some attempts to improve the EET by using various nanomaterials. The behavior of nanomaterials in different EET routes and their influence on the performance of BESs are described. The inherent mechanisms will guide rational design of EET-related materials and lead to a better understanding of EET mechanisms.
Collapse
Affiliation(s)
- Ruiwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huidong Li
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinzhi Sun
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jia Jiao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingqing Wang
- School of Chemistry and Chemical Engineering, Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin, 150090, China
| | - Shaoqin Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
27
|
Zuo H, Kukkadapu R, Zhu Z, Ni S, Huang L, Zeng Q, Liu C, Dong H. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140213. [PMID: 32603937 DOI: 10.1016/j.scitotenv.2020.140213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that humic substances can serve as electron shuttle to catalyze bioreduction of structural Fe(III) in clay minerals, but it is unclear if clay-sorbed humic substances can serve the same function. It is unknown if the electron shuttling function is dependent on electron donor type and if humic substances undergo change as a result. In this study, humic acid (HA) and fulvic acid (FA) were sorbed onto nontronite (NAu-2) surface. Structural Fe(III) in HA- and FA-coated NAu-2 samples was bioreduced by Shewanella putrefaciens CN32 using H2 and lactate as electron donors. The results showed a contrasting effect of humic substances on bioreduction of structural Fe(III), depending on the electron donor type. With H2 as electron donor, humic substances had little effect on bioreduction of Fe(III) (the reduction extent: 26.2%, 27.4%, 29.3% for HA-coated, FA-coated, and uncoated NAu-2, respectively). In contrast, these substances significantly enhanced bioreduction of Fe(III) with lactate as electron donor (the reduction extent: 20.2%, 20.7%, 11.5% for HA-coated, FA-coated, and uncoated NAu-2, respectively). This contrasting behavior is likely caused by the difference in reaction free energy and electron transport process between H2 and lactate. When H2 served as electron donor, more energy was released than when lactate served as electron donor. In addition, because of different cellular locations of lactate dehydrogenase (inner membrane) and H2 hydrogenase (the periplasm), electrons generated by H2 hydrogenase may pass through the electron transport chain more rapidly than those generated from lactate dehydrogenase. Through their functions as electron shuttle and/or carbon source, clay-sorbed HA/FA underwent partial transformation to amino acids and other compounds. The availability of external carbon source played an important role in the amount and type of secondary product generation. These results have important implications for coupled iron and carbon biogeochemical cycles in clay- and humic substance-rich environments.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| | - Ravi Kukkadapu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Qiang Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
28
|
Zhao S, Jin Q, Sheng Y, Agrawal A, Guo D, Dong H. Promotion of Microbial Oxidation of Structural Fe(II) in Nontronite by Oxalate and NTA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13026-13035. [PMID: 32845130 DOI: 10.1021/acs.est.0c03702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Iron redox cycling occurs extensively in soils and sediments. Previous research has focused on microbially mediated redox cycling of aqueous Fe. At circumneutral pH, most Fe occurs in solid phase, where Fe and organic ligands interact closely. However, the role of organic ligands in microbial oxidation of solid-phase Fe(II) is not well understood. Here, we incubated reduced nontronite NAu-2 (rNAu-2) with an iron-oxidizing bacterium and in the presence of oxalate and nitrilotriacetic acid. These ligands significantly enhanced the rate and extent of microbial oxidation of structural Fe(II) in rNAu-2. Aqueous and solid-phase analyses, coupled with biogeochemical modeling, revealed a pathway for ligand-enhanced bio-oxidation of solid-phase Fe(II): (1) dissolution of rNAu-2 to form aqueous Fe(II)-ligand complex; (2) bio-oxidation to Fe(III)-ligand complex; (3) rapid reduction of Fe(III)-ligand complex to Fe(II)-ligand complex by structural Fe(II) in rNAu-2. In this process, the Fe(II)-ligand and Fe(III)-ligand complexes effectively serve as electron shuttle to expand the bioavailable pool of solid-phase Fe(II). These results have important implications for a better understanding of the bioavailability and reactivity of solid-phase Fe pool in the environment.
Collapse
Affiliation(s)
- Simin Zhao
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Abinash Agrawal
- Department of Earth & Environmental Sciences, Wright State University, Dayton, Ohio 45435, United States
| | - Dongyi Guo
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
29
|
Electrochemical removal of nitrate using a nanosheet structured Co3O4/Ti cathode: Effects of temperature, current and pH adjusting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116485] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Liu X, Yuan S, Zhang P, Zhu J, Tong M. Reduced nontronite-activated H 2O 2 for contaminants degradation: The beneficial role of clayed fractions in ISCO treatments. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121945. [PMID: 31893557 DOI: 10.1016/j.jhazmat.2019.121945] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Clayed fractions in aquifers are generally deemed to be detrimental for in situ chemical oxidation (ISCO) treatments due to the difficulty of oxidant injection/transport and the retention/rebound of contaminants. Using a model clay mineral nontronite and a real sediment, here we show that the component of structural Fe(II) in clay minerals is particularly effective in activating hydrogen peroxide (H2O2) to hydroxyl radicals (OH) for contaminants degradation under pH-neutral conditions. Using reduced nontronite (Fe(II)/Fetotal : 40 %) as a model Fe(II)-bearing clay mineral, 2 mg/L trichloroethylene (TCE) was degraded by 82.0 % and 95.3 %at 2.5 min and 30 min, respectively, under the condition of 0.6 g/L reduced nontronite, 0.5 mM H2O2and pH 7.5. Reactive structural Fe(II) in nontronite was responsible for the initial quick reaction. The degradation was also efficient for phenol, benzoic, toluene and naphthalene, but exhibited higher efficiencies for those with stronger sorption to nontronite. With similar concentrations of H2O2 and Fe(II), nontronite-activated H2O2 at pH 7.5 led to similar efficiencies of TCE degradation and H2O2 utilization to classic homogeneous Fenton at pH 3. A real clayed sediment showed similar performance in activating H2O2 for contaminant degradation. Our findings implicate that clayed fractions in aquifers may probably contribute to contaminants degradation in H2O2-based ISCO treatments.
Collapse
Affiliation(s)
- Xixiang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning 530006, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Peng Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Jian Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| |
Collapse
|
31
|
LeTourneau MK, Marshall MJ, Grant M, Freeze PM, Strawn DG, Lai B, Dohnalkova AC, Harsh JB, Weller DM, Thomashow LS. Phenazine-1-Carboxylic Acid-Producing Bacteria Enhance the Reactivity of Iron Minerals in Dryland and Irrigated Wheat Rhizospheres. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14273-14284. [PMID: 31751506 DOI: 10.1021/acs.est.9b03962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenazine-1-carboxylic acid (PCA) is a broad-spectrum antibiotic produced by rhizobacteria in the dryland wheat fields of the Columbia Plateau. PCA and other phenazines reductively dissolve Fe and Mn oxyhydroxides in bacterial culture systems, but the impact of PCA upon Fe and Mn cycling in the rhizosphere is unknown. Here, concentrations of dithionite-extractable and poorly crystalline Fe were approximately 10% and 30-40% higher, respectively, in dryland and irrigated rhizospheres inoculated with the PCA-producing (PCA+) strain Pseudomonas synxantha 2-79 than in rhizospheres inoculated with a PCA-deficient mutant. However, rhizosphere concentrations of Fe(II) and Mn did not differ significantly, indicating that PCA-mediated redox transformations of Fe and Mn were transient or were masked by competing processes. Total Fe and Mn uptake into wheat biomass also did not differ significantly, but the PCA+ strain significantly altered Fe translocation into shoots. X-ray absorption near edge spectroscopy revealed an abundance of Fe-bearing oxyhydroxides and phyllosilicates in all rhizospheres. These results indicate that the PCA+ strain enhanced the reactivity and mobility of Fe derived from soil minerals without producing parallel changes in plant Fe uptake. This is the first report that directly links significant alterations of Fe-bearing minerals in the rhizosphere to a single bacterial trait.
Collapse
Affiliation(s)
- Melissa K LeTourneau
- Department of Crop & Soil Sciences , Washington State University , Pullman , Washington 99164-6420 , United States
- United State Department of Agriculture - Agricultural Research Service , Wheat Health, Genetics and Quality Research Unit , Pullman , Washington 99164-6430 , United States
| | - Matthew J Marshall
- Earth & Biological Sciences Directorate , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Michael Grant
- Department of Crop & Soil Sciences , Washington State University , Pullman , Washington 99164-6420 , United States
| | - Patrick M Freeze
- Department of Crop & Soil Sciences , Washington State University , Pullman , Washington 99164-6420 , United States
| | - Daniel G Strawn
- Department of Soil and Water Systems , University of Idaho , Moscow , Idaho 83844-2340 , United States
| | - Barry Lai
- Advanced Photon Source , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Alice C Dohnalkova
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - James B Harsh
- Department of Crop & Soil Sciences , Washington State University , Pullman , Washington 99164-6420 , United States
| | - David M Weller
- United State Department of Agriculture - Agricultural Research Service , Wheat Health, Genetics and Quality Research Unit , Pullman , Washington 99164-6430 , United States
| | - Linda S Thomashow
- United State Department of Agriculture - Agricultural Research Service , Wheat Health, Genetics and Quality Research Unit , Pullman , Washington 99164-6430 , United States
| |
Collapse
|
32
|
Chen N, Huang M, Liu C, Fang G, Liu G, Sun Z, Zhou D, Gao J, Gu C. Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions. WATER RESEARCH 2019; 165:114997. [PMID: 31470282 DOI: 10.1016/j.watres.2019.114997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Smectite clays are widely found in subsurface soils and waters. Although they strongly sequester tetracyclines (TCs), little is known about their reactions with these antibiotics under dark anoxic conditions. This study investigated the interactions between TCs and Fe-bearing smectite clays and the influences of environmental factors. Fe-bearing smectite clays were shown to significantly induce the transformation of TCs, including tautomerization, dechlorination, and dehydration. Moreover, the adsorbed TCs reduced the structural Fe(III) in clay particles to structural Fe(II) through electron transfer. The transformation of TCs was more readily induced by smectite clays with a higher rather than a lower Fe content. Tetrahedral Fe(III), and distorted cis- or trans-octahedral Fe(III), were more reactive as an electron acceptor than cis-octahedral Fe(III), as observed on the Mössbauer and FTIR spectra. A lower pH facilitated the adsorption of TCs through dimethyl-amino, amide, and conjugated -OH functional groups and induced a higher rate of TCs transformation. The transformation of chlortetracycline (CTC) was faster than that of oxytetracycline or tetracycline (TTC) due to -Cl substitution. The major transformation CTC products included keto-CTC, epi-CTC, iso-CTC, anhydro-CTC and TTC. Mixtures of these transformed products were found to have a higher acute toxicity than their parent compounds to Photobacterium phosphoreum T3. Our study revealed several previously overlooked interactions between TCs and clay particles that could cause these antibiotics to become unstable in the subsurface environment, with negative effects on the soil-borne microbial community.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China
| | - Guangxia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Zhaoyue Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
33
|
Biswas B, Warr LN, Hilder EF, Goswami N, Rahman MM, Churchman JG, Vasilev K, Pan G, Naidu R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev 2019; 48:3740-3770. [PMID: 31206104 DOI: 10.1039/c8cs01019f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the wide range of materials used for remediating environmental contaminants, modified and functionalised nanoclays show particular promise as advanced sorbents, improved dispersants, or biodegradation enhancers. However, many chemically modified nanoclay materials are incompatible with living organisms when they are used in natural systems with detrimental implications for ecosystem recovery. Here we critically review the pros and cons of functionalised nanoclays and provide new perspectives on the synthesis of environmentally friendly varieties. Particular focus is given to finding alternatives to conventional surfactants used in modified nanoclay products, and to exploring strategies in synthesising nanoclay-supported metal and metal oxide nanoparticles. A large number of promising nanoclay-based sorbents are yet to satisfy environmental biocompatibility in situ but opportunities are there to tailor them to produce "biocompatible" or regenerative/reusable materials.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia. and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Laurence N Warr
- Institute for Geography and Geology, University of Greifswald, D-17487 Greifswald, Germany
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Nirmal Goswami
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mohammad M Rahman
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jock G Churchman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
34
|
Xia D, Yi X, Lu Y, Huang W, Xie Y, Ye H, Dang Z, Tao X, Li L, Lu G. Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:524-531. [PMID: 30861440 DOI: 10.1016/j.ecoenv.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 05/25/2023]
Abstract
The bacterial (dissimilatory) iron and sulfate reduction (BIR and BSR) are intimately linked to the biogeochemical cycling of C, Fe, and S in acid mine drainage (AMD) environments. This study examined the response of native microbial communities to the reduction of iron and sulfate in bench experimental systems. Results showed that the reduction of ferric iron and sulfate took place when the electron acceptors coexist. Existence of Fe(III) can postpone the reduction of sulfate, but can enhance the reduction rate. Cultures grown in the presence of 10 mM iron can reach the final level of sulfate bio-reduction rate (~100%) after 35 days incubation. 16 S rDNA -based microbial community analysis revealed that the three genera Anaeromusa, Acinetobacter and Bacteroides were dominated in the ferric-reducing conditions. SRB (Desulfobulbus, Desulfosporosinus and Desulfovibrio) were dominated in the sulfate reduction process. Results in this study highlighted the highly coupled nature of C, Fe, and S biogeochemical cycles in AMD and provided insights into the potential of environmental remediation by native microbial.
Collapse
Affiliation(s)
- Di Xia
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, (MEP), Guangzhou 510655, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Yang Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yingying Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| | - Han Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Xueqin Tao
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Li Li
- College of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| |
Collapse
|
35
|
Li X, Yuan Y, Huang Y, Bi Z. Simultaneous removal of ammonia and nitrate by coupled S 0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:235-242. [PMID: 30677671 DOI: 10.1016/j.scitotenv.2019.01.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/12/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
To achieve the simultaneous removal of NH4+-N and NO3--N in F--containing semiconductor wastewater by coupled S0-driven autotrophic denitrification and Anammox process, the effect of variable F- concentration on the Anammox process was investigated by batch experiments. The denitrifying ammonium oxidation (Deamox) reactor was then started-up to explore the feasibility of the coupling of Anammox and sulfur autotrophic denitrification (SADN) for the treatment of semiconductor wastewater. Short-term variation of F- concentration has an obviously effect on the activity of Anammox sludge, but didn't affect the nitrogen conversion rate. The activity of Anammox obviously decreased after long-term operation of the Deamox reactor when influent F- concentrations reached 552 mg/L. The sensitivity of Anammox bacteria to F- concentration is stronger than that of SADN bacteria. Total nitrogen removal efficiency of 98% and total nitrogen removal rate of 4.11 kg/(m3·d) were achieved in the Deamox reactor, when the F- was pre-treated by calcium ions. Moreover, the high-throughput 16S rRNA gene sequence analysis indicated that variation in F- concentrations could influence the structure and functional of microbial communities in the Deamox process. Candidatus Kuenenia, Thiobacillus and Sulfurimonas were main functional bacteria that achieved symbiotic.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yan Yuan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China.
| | - Zhen Bi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou 215009, China
| |
Collapse
|
36
|
Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1275-1286. [DOI: 10.1007/s11427-018-9464-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
|
37
|
Huang J, Cao J, Tu N, Dong H, Li J, Shou J, Li Y. Effect of surfactants on the removal of nitrobenzene by Fe-bearing montmorillonite/Fe(II). J Colloid Interface Sci 2019; 533:409-415. [DOI: 10.1016/j.jcis.2018.08.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/30/2022]
|
38
|
Zhao L, Lu X, Polasko A, Johnson NW, Miao Y, Yang Z, Mahendra S, Gu B. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:573-581. [PMID: 30216889 DOI: 10.1016/j.envpol.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of 1,4-dioxane was examined in packed quartz and soil column flow-through systems. The inhibitory effects of co-contaminants, specifically trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and copper (Cu2+) ions, were investigated in the columns either with or without bioaugmentation with a 1,4-dioxane degrading bacterium Pseudonocardia dioxanivorans CB1190. Results indicate that CB1190 cells readily grew and colonized in the columns, leading to significant degradation of 1,4-dioxane under oxic conditions. Degradation of 1,4-dioxane was also observed in the native soil (without bioaugmentation), which had been previously subjected to enhanced reductive dechlorination treatment for co-contaminants TCE and 1,1-DCE. Bioaugmentation of the soil with CB1190 resulted in nearly complete degradation at influent concentrations of 3-10 mg L-1 1,4-dioxane and a residence reaction time of 40-80 h, but the presence of co-contaminants, 1,1-DCE and Cu2+ ions (up to 10 mg L-1), partially inhibited 1,4-dioxane degradation in the untreated and bioaugmented soil columns. However, the inhibitory effects were much less severe in the column flow-through systems than those previously observed in planktonic cultures, which showed near complete inhibition at the same co-contaminant concentrations. These observations demonstrate a low susceptibility of soil microbes to the toxicity of 1,1-DCE and Cu2+ in packed soil flow-through systems, and thus have important implications for predicting biodegradation potential and developing sustainable, cost-effective technologies for in situ remediation of 1,4-dioxane contaminated soils and groundwater.
Collapse
Affiliation(s)
- Linduo Zhao
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xia Lu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Alexandra Polasko
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Baohua Gu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
39
|
Chen N, Fang G, Liu G, Zhou D, Gao J, Gu C. The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H 2O 2. JOURNAL OF HAZARDOUS MATERIALS 2018; 357:483-490. [PMID: 29936346 DOI: 10.1016/j.jhazmat.2018.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/19/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
The natural formation of hydroxyl radicals (OH) is important for the attenuation of organic contaminants. In this study, seven model polyphenols were selected to react with four types of smectite clays with varied Fe contents in the presence of H2O2. Diethyl phthalate (DEP) was selected as a model organic contaminant due to its wide distribution in environment. The results show the appearance of Fe-bearing smectite clays can significantly promote ·OH formation with polyphenols and H2O2 under anoxic conditions; clay particle size, the content and location of lattice Fe in smectite clays greatly affect OH formation. Hydrogen bond between phenolic group and smectite surfaces, and cation assisted hydrogen bond between carboxylic group and clay surfaces are important types of complexation. Electrons can be transferred from coordinated polyphenols to structural Fe(III) atoms in tetrahedral layers or at broken edges to form structural Fe(II) and/or semiquinone radicals, both of which can induce H2O2 decomposition to OH. DEP can be degraded by OH attack, and the main products are proposed as phthalic acid, monomethyl phthalate, hydroxyl-diethyl phthalates. Our findings suggest that Fe(III)-bearing smectite clay can be reduced by polyphenol and produce OH in anoxic environments, which can induce organic contaminants transformation.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China
| | - Guangxia Liu
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation Institute of Soil Science, CAS, Nanjing, Jiangsu Province, 210008, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse School of the Environment, Nanjing University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
40
|
Zhang W, Ruan X, Bai Y, Yin L. The characteristics and performance of sustainable-releasing compound carbon source material applied on groundwater nitrate in-situ remediation. CHEMOSPHERE 2018; 205:635-642. [PMID: 29729621 DOI: 10.1016/j.chemosphere.2018.04.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 04/07/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Recently, reductant and carbon source were frequently used in groundwater nitrate remediation worldwide. Agricultural waste as a promising organic carbon source, has been paid much attention but the problem of sustainability, bioavailability and secondary pollution remained unsolved. This study was conducted to depict the characteristic and performance of developed sustainable-releasing compound carbon source material (SCCM) applied on the in-situ remediation of nitrate in shallow groundwater. Results showed the SCCM based on agricultural waste and zero valent-iron (ZVI) has a stable carbon releasing rate, which is suitable for stimulating the low microbial active environment in groundwater continuously, and capable of avoiding rapid TOC releasing in the early stage. The released carbon sources in SCCM leachate were mainly small molecular alcohols and acids with high microbial availability. As in-situ permeable reactive barrier (PRB) filling material, SCCM can form an optimal carbon source radiation range of 20 cm, with a maximum efficient carbon source radius of 1 m, which can reach an extended active zone. A positive correlation between the ZVI content and nitrate removal rate was found. The chemical and microbiological evidence both indicated that the expected chemical reduction and biological denitrification was gradually established. Additionally, the absorption of ammonia and chroma by attapulgite effectively avoided the secondary pollution. In conclusion, the application of SCCM in groundwater nitrate in-situ remediation optimized the nitrate removal efficiency and provided theoretical basis for engineer carbon sources development from straw-type agricultural waste.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, 210023, Nanjing, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, 210023, Nanjing, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China.
| | - Ying Bai
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Nanjing University, 210023, Nanjing, China; School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China
| | - Lin Yin
- School of Earth Science and Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
41
|
Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol Adv 2018; 36:1815-1827. [PMID: 30196813 DOI: 10.1016/j.biotechadv.2018.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022]
Abstract
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
Collapse
|
42
|
Xu P, Xiao E, Xu D, Li J, Zhang Y, Dai Z, Zhou Q, Wu Z. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination. ENVIRONMENTAL TECHNOLOGY 2018; 39:1144-1157. [PMID: 28443365 DOI: 10.1080/09593330.2017.1323955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/23/2017] [Indexed: 06/07/2023]
Abstract
The phosphorus reduction in water column was attempted by integrating sediment microbial fuel cells (SMFCs) with the submerged macrophyte Vallisneria spiralis. A comparative study was conducted to treat simulated water rich in phosphate with a control and three treatments: SMFC alone (SMFC), submerged macrophytes alone (macophyte), and combined macrophytes and fuel cells (M-SMFC). All treatments promoted phosphorus flux from the water column to sediments. Maximum phosphorus reduction was obtained in proportion to the highest stable phosphorus level in sediments in M-SMFC. For the initial phosphate concentrations of 0.2, 1, 2, and 4 mg/L, average phosphate values in the overlying water during four phases decreased by 33.3% (25.0%, 8.3%), 30.8% (5.1%, 17.9%), 36.5% (27.8%, 15.7%), and 36.2% (0.7%, 22.1%) for M-SMFC (macrophyte, SMFC), compared with the control. With macrophyte treatment, the obvious phosphorus release from sediments was observed during the declining period. However, such phenomenon was significantly inhibited with M-SMFC. The electrogenesis bacteria achieved stronger phosphorus adsorption and assimilation was significantly enriched on the closed-circuit anodes. The higher abundance of Geobacter and Pseudomonas in M-SMFC might in part explain the highest phosphorus reduction in the water column. M-SMFC treatment could be promising to control the phosphorus in eutrophic water bodies.
Collapse
Affiliation(s)
- Peng Xu
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
- b University of Chinese Academy of Sciences , Beijing , People' Republic of China
| | - Enrong Xiao
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Dan Xu
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
- c College of Resources and Environmental Engineering , Wuhan University of Technology , Wuhan , People's Republic of China
| | - Juan Li
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
- c College of Resources and Environmental Engineering , Wuhan University of Technology , Wuhan , People's Republic of China
| | - Yi Zhang
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Zhigang Dai
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Qiaohong Zhou
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Zhenbin Wu
- a State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
43
|
Liu X, Dong H, Yang X, Kovarik L, Chen Y, Zeng Q. Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:245-254. [PMID: 28963888 DOI: 10.1016/j.jhazmat.2017.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have shown that organic ligands could influence Cr(VI) reduction by aqueous Fe2+ and pyrite. In this study, the effects of citrate on Cr(VI) reduction by structural Fe(II) in nontronite (NAu-2) were investigated at pH 6. Our results showed that the presence of citrate decreased the rate but increased the amount of Cr(VI) reduction. The decreased rate was likely due to competitive sorption of citrate and anionic dichromate (Cr2O7-) to NAu-2 surface sites, because sorption of dichromate appeared to be the first step for subsequent Cr(VI) reduction. The increased amount of Cr(VI) reduction was likely because citrate served as an additional electron donor to reduce Cr(VI) through ligand-metal electron transfer in the presence of soluble Fe3+, which was possibly derived from dissolution of reduced NAu-2. Soluble Cr(III)-citrate complex was a possible form of reduced Cr(VI) when citrate was present. Without citrate, nanometer-sized Cr2O3 particles were the product of Cr(VI) reduction. Our study highlights the importance of citrate on Cr(VI) reduction and immobilization when iron-rich smectite is applied to treat Cr(VI) contaminant in organic carbon rich environments.
Collapse
Affiliation(s)
- Xiaolei Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA.
| | - Xuewei Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yu Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
44
|
Chemtob SM, Nickerson RD, Morris RV, Agresti DG, Catalano JG. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2469-2488. [PMID: 32802700 PMCID: PMC7427814 DOI: 10.1002/2017je005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Collapse
Affiliation(s)
- Steven M Chemtob
- Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA 19122, U.S.A
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | - Ryan D Nickerson
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | | | - David G Agresti
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
45
|
Zhang Y, Douglas GB, Pu L, Zhao Q, Tang Y, Xu W, Luo B, Hong W, Cui L, Ye Z. Zero-valent iron-facilitated reduction of nitrate: Chemical kinetics and reaction pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:1140-1150. [PMID: 28482461 DOI: 10.1016/j.scitotenv.2017.04.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
The kinetics and mechanisms of the reduction of NO3- in solution to NH3 by 1.5μm diameter zero-valent iron (ZVI1.5) particles has been examined. The effects of initial pH, ZVI1.5 particle concentration and initial NO3- concentration were also investigated. Results indicate that denitrification by ZVI1.5 is primarily a pH-dependent, surface-mediated process. At an initial ZVI1.5 concentrations of 0.832g/L, and an optimal initial pH of 1.62, the NO3- concentration was reduced by 95% from 12.50mg/L-N to 0.65mg/L-N, in 120min. Several kinetic models were used to describe the denitrification process based on the ZVI1.5:NO3- ratio. Based on mineralogical and surface analysis of the reacted ZVI1.5, and detailed solution chemical analysis, the denitrification reaction pathway involves oxidation and partial dissolution of the ZVI1.5 with the generation of Fe2+ and NO2- intermediates prior to formation of Fe3+ oxyhydroxide (goethite) and NH3.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Grant B Douglas
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag 5, Wembley, 6913, WA, Australia
| | - Long Pu
- Sichuan Jinsha Nano Technology Co., Ltd., Panzhihua Vanadium and Titanium Industrial Park, Panzhihua, Sichuan Province 730900, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yan Tang
- Sichuan Jinsha Nano Technology Co., Ltd., Panzhihua Vanadium and Titanium Industrial Park, Panzhihua, Sichuan Province 730900, China
| | - Wei Xu
- Sichuan Jinsha Nano Technology Co., Ltd., Panzhihua Vanadium and Titanium Industrial Park, Panzhihua, Sichuan Province 730900, China
| | - Bihuan Luo
- Sichuan Jinsha Nano Technology Co., Ltd., Panzhihua Vanadium and Titanium Industrial Park, Panzhihua, Sichuan Province 730900, China
| | - Wei Hong
- Sichuan Jinsha Nano Technology Co., Ltd., Panzhihua Vanadium and Titanium Industrial Park, Panzhihua, Sichuan Province 730900, China
| | - Lili Cui
- Zhangjiakou, Hebei Energy and Environmental Engineering, Hebei Institute of Architectural Engineering, Hebei 075000, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
46
|
Wu G, Huang L, Jiang H, Peng Y, Guo W, Chen Z, She W, Guo Q, Dong H. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Front Microbiol 2017; 8:1336. [PMID: 28769902 PMCID: PMC5509915 DOI: 10.3389/fmicb.2017.01336] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
Abstract
Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.
Collapse
Affiliation(s)
- Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Yue’e Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Ziyu Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesBeijing, China
- Department of Geology and Environmental Earth Science, Miami University, OxfordOH, United States
| |
Collapse
|
47
|
Wang X, Dong H, Zeng Q, Xia Q, Zhang L, Zhou Z. Reduced Iron-Containing Clay Minerals as Antibacterial Agents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7639-7647. [PMID: 28570809 DOI: 10.1021/acs.est.7b00726] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous work documented the general antibacterial mechanism of iron containing clays that involved hydroxyl radical (•OH) production from soluble Fe2+, and attack of cell membrane and intracellular proteins. Here we explore the role of clay structural Fe(II) in •OH production at near neutral pH and identify a lipid involved in the antibacterial process. Structural Fe(III) in nontronite NAu-2 was reduced (rNAu-2) and E. coli, a model bacterium, was exposed to rNAu-2 in oxic suspension. The antibacterial activity of rNAu-2 was dependent on pH and Fe(II) concentration, where E. coli were completely killed at pH 6, but survived at pH 7 and 8. In the presence of a •OH scavenger or in anaerobic atmosphere, E. coli survived better, suggesting that cell death may be caused by •OH generated from oxidation of structural Fe(II) in rNAu-2. In-situ imaging revealed damage of a membrane lipid, cardiolipin, in the polar region of E. coli cells, where reactive oxygen species and redox-active labile Fe were enriched. Our results advance the previous antibacterial model by demonstrating that the structural Fe(II) is the primary source of •OH, which damages cardiolipin, triggers the influx of soluble Fe2+ into the cell, and ultimately leads to cell death.
Collapse
Affiliation(s)
- Xi Wang
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
- Department of Geology and Environmental Earth Science, Miami University , Oxford, Ohio 45056, United States
| | - Qiang Zeng
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
| | - Qingyin Xia
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
| | - Limin Zhang
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
| | - Ziqi Zhou
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083, China
| |
Collapse
|
48
|
Zeng Q, Dong H, Wang X, Yu T, Cui W. Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:88-98. [PMID: 28249183 DOI: 10.1016/j.jhazmat.2017.01.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/06/2017] [Accepted: 01/21/2017] [Indexed: 05/08/2023]
Abstract
1,4-Dioxane is causing a general concern as an emerging contaminant in groundwater environment. Traditional remediation methods can be either inefficient or costly. In this study, we present a cost effective method for possible in situ remediation of 1,4-dioxane. Hydroxyl radicals (OH) produced from oxygenation of structural Fe(II) in ferruginous clay minerals significantly degraded high concentrations of 1,4-dioxane (up to 400μmol/L) within 120h under circumneutral pH and dark condition. The amount of 1,4-dioxane degradation was positively correlated with the amount of OH. The major degradation product of 1,4-dioxane was formic acid. Different clay mineral types, initial Fe(II) concentration, and buffer composition all affected OH production and 1,4-dioxane degradation efficiency. Nontronite, an iron-rich smectite, was a reusable and effective material for sustainable production of OH and 1,4-dioxane degradation, through regeneration of Fe(II) either biologically or chemically. The non-selectivity and strong oxidative power of OH make it a promising agent for remediating various kinds of organic contaminants in aqueous environment.
Collapse
Affiliation(s)
- Qiang Zeng
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, OH 45056, USA.
| | - Xi Wang
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Tian Yu
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Weihua Cui
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| |
Collapse
|
49
|
Liu X, Yuan S, Tong M, Liu D. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite. WATER RESEARCH 2017; 113:72-79. [PMID: 28199864 DOI: 10.1016/j.watres.2017.02.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Reduction by Fe(II)-bearing silicate minerals has been proposed as an important mechanism for the attenuation of chlorinated hydrocarbons (CHCs) in anoxic subsurfaces. The redox condition of subsurface often changes from anoxic to oxic due to natural processes and human activities, but little is known about the transformation of CHCs induced by Fe(II)-bearing silicate minerals under oxic conditions. This study reveals that trichloroethylene (TCE) can be efficiently oxidized during the oxygenation of reduced nontronite at pH 7.5, whereas the reduction was negligible under anoxic conditions. The maximum oxidation of TCE (initially 1 mg/L) attained 89.6% for 3 h oxygenation of 2 g/L nontronite with 50% reduction extent. TCE oxidation is attributed to the strongly oxidizing hydroxyl radicals (OH) produced by the oxygenation of Fe(II) in nontronite. Fe(II) on the edges is preferentially oxygenated for OH production, and the interior Fe(II) serves as an electron pool to regenerate the Fe(II) on the edges. Oxidation of TCE could be sustainable through chemically or biologically reducing the oxidized silicate minerals. Our findings present a new mechanism for the transformation of CHCs and other redox-active substances in the redox-fluctuation environments.
Collapse
Affiliation(s)
- Xixiang Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China.
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Deng Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| |
Collapse
|
50
|
Lu Y, Xu L, Shu W, Zhou J, Chen X, Xu Y, Qian G. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal. BIORESOURCE TECHNOLOGY 2017; 224:34-40. [PMID: 27806884 DOI: 10.1016/j.biortech.2016.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/07/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL-1)h-1 were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL-1 of NH4+-N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO2--N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species.
Collapse
Affiliation(s)
- Yongsheng Lu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| | - Lu Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| | - Weikang Shu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| | - Jizhi Zhou
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China.
| | - Yunfeng Xu
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Rd., Shanghai 200444, PR China
| |
Collapse
|