1
|
Guo Z, Yang B, Pang T, Wei X. CO 2-Promoted and Copper-Catalyzed Dehydroxylative Coupling of Benzylic Alcohols by the NaBH 4/I 2 System. J Org Chem 2024; 89:9810-9815. [PMID: 38922624 DOI: 10.1021/acs.joc.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An efficient and CO2-promoted dehydroxylative coupling of benzylic alcohols catalyzed by ligand-free cuprous chloride has been achieved. The discovered catalytic reductive coupling reaction is a newly C-C bond-forming transformation of alcohols. Mechanistic insight is gained through control reactions.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P.R. China
| | - Boru Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Tengfei Pang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
2
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
3
|
Yuan Y, Zhang S, Duan K, Xu Y, Guo K, Chen C, Chaemchuen S, Cao D, Verpoort F. Multifunctional Biomass-Based Ionic Liquids/CuCl-Catalyzed CO 2-Promoted Hydration of Propargylic Alcohols: A Green Synthesis of α-Hydroxy Ketones. Int J Mol Sci 2024; 25:1937. [PMID: 38339215 PMCID: PMC10856482 DOI: 10.3390/ijms25031937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
α-Hydroxy ketones are a class of vital organic skeletons that generally exist in a variety of natural products and high-value chemicals. However, the traditional synthetic route for their production involves toxic Hg salts and corrosive H2SO4 as catalysts, resulting in harsh conditions and the undesired side reaction of Meyer-Schuster rearrangement. In this study, CO2-promoted hydration of propargylic alcohols was achieved for the synthesis of various α-hydroxy ketones. Notably, this process was catalyzed using an environmentally friendly and cost-effective biomass-based ionic liquids/CuCl system, which effectively eliminated the side reaction. The ionic liquids utilized in this system are derived from natural biomass materials, which exhibited recyclability and catalytic activity under 1 bar of CO2 pressure without volatile organic solvents or additives. Evaluation of the green metrics revealed the superiority of this CuCl/ionic liquid system in terms of environmental sustainability. Further mechanistic investigation attributed the excellent performance to the ionic liquid component, which exhibited multifunctionality in activating substrates, CO2 and the Cu component.
Collapse
Affiliation(s)
- Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Siqi Zhang
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Kang Duan
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Yong Xu
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Kaixuan Guo
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Dongfeng Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.C.); (S.C.); (D.C.)
- School of Material Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (S.Z.); (K.D.); (Y.X.); (K.G.)
- Research School of Chemical and Biomedical Technologies, National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Zhang Z, Li J, Xi C. Nickel-Catalyzed Reductive Allylation of Aldehydes with Allylic Alcohols in the Presence of CO 2. Org Lett 2023; 25:8178-8182. [PMID: 37933552 DOI: 10.1021/acs.orglett.3c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
CO2-assisted and Ni-catalyzed direct reductive allylation of aldehydes utilizing allylic alcohols as allylic precursor has been reported. Various homoallyl alcohols could be synthesized in excellent yield with enhanced regioselectivity and stereoselectivity for alkyl- and aryl-substituted aldehydes under mild conditions. For different substrates, proper collocation of the catalytic precursor and ligand is crucial. Preliminary mechanistic studies supported the reaction pathway through a sequential allyl hydrocarbonate formation/allylnickelation/coordination insertion process by the Ni(I)/Ni(III) catalytic cycle, which has been proven by cyclic voltammetry analysis.
Collapse
Affiliation(s)
- Zeyu Zhang
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiayuan Li
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chanjuan Xi
- MOE Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- State Key Laboratory of Elemento Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
5
|
Oberdorf K, Hanft A, Xie X, Bickelhaupt FM, Poater J, Lichtenberg C. Insertion of CO 2 and CS 2 into Bi-N bonds enables catalyzed CH-activation and light-induced bismuthinidene transfer. Chem Sci 2023; 14:5214-5219. [PMID: 37206406 PMCID: PMC10189873 DOI: 10.1039/d3sc01635h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The uptake and release of small molecules continue to be challenging tasks of utmost importance in synthetic chemistry. The combination of such small molecule activation with subsequent transformations to generate unusual reactivity patterns opens up new prospects for this field of research. Here, we report the reaction of CO2 and CS2 with cationic bismuth(iii) amides. CO2-uptake gives isolable, but metastable compounds, which upon release of CO2 undergo CH activation. These transformations could be transferred to the catalytic regime, which formally corresponds to a CO2-catalyzed CH activation. The CS2-insertion products are thermally stable, but undergo a highly selective reductive elimination under photochemical conditions to give benzothiazolethiones. The low-valent inorganic product of this reaction, Bi(i)OTf, could be trapped, showcasing the first example of light-induced bismuthinidene transfer.
Collapse
Affiliation(s)
- Kai Oberdorf
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - Anna Hanft
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| | - F Matthias Bickelhaupt
- Theoretical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam The Netherlands
- Institute for Molecules and Materials, Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Department of Chemical Sciences, University of Johannesburg Auckland Park Johannesburg 2006 South Africa
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica, IQTCUB, Universitat de Barcelona, ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Str. 4 35043 Marburg Germany
| |
Collapse
|
6
|
Zhang Z, Li D, Xi C. CO 2-Promoted and Nickel-Catalyzed Direct Hydroallylation of Terminal Alkynes with Allylic Alcohols: Access to 1,4-Dienes. Org Lett 2023; 25:698-702. [PMID: 36695512 DOI: 10.1021/acs.orglett.3c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CO2-promoted and Ni-catalyzed direct hydroallylation of terminal alkynes with allylic alcohols has been achieved. Various 1,4-dienes could be synthesized in good yield with excellent Markovnikov selectivity for alkyl- and aryl-substituted terminal alkynes under mild reaction conditions. A gram-scale reaction gives considerable yield. Preliminary mechanistic studies support the reaction pathway through sequential carboxylation/allylnickelation/lithium bicarbonate nickelation/transmetalation in the hydroallylation of alkynes with allylic alcohols in the presence of CO2.
Collapse
Affiliation(s)
- Zeyu Zhang
- Ministry of Education (MOE) Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Danyun Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chanjuan Xi
- Ministry of Education (MOE) Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
7
|
Zhao J, Luo Z, Liu Y, Xu J, Huang Z, Xiong W. Photochemical oxidation of alcohols to ketones or aldehydes using DMSO as an oxidant without activated agent. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Mishra N, Bansal D, Supriya S. Polyoxometalate-Supported Copper(I)-Pyrazole Complex: Unusual Stability, Geometrical Isomers, Organic Transformation, and Computation. ACS OMEGA 2022; 7:31403-31412. [PMID: 36092552 PMCID: PMC9454276 DOI: 10.1021/acsomega.2c03795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
We have described the synthesis and characterization of a polyoxometalate (POM)-supported copper(I)-pyrazole complex, [CuI(C15H12N2)2] [PW12O40{CuI(C15H12N2)2}2]·CH3OH (1). There are three Cu(I)-pyrazole coordination complexes in compound 1, out of which two are supported by the {PW12O40}3- Keggin POM by coordinate covalent bonds from the POM surface through oxygen donors to the Cu(I) centers of two Cu(I) complexes and one remains uncoordinated to the POM surface, acting as a cationic complex species in the crystals of 1. The POM-coordinated Cu(I) complexes have a T-shaped geometry, and the uncoordinated Cu(I) complex is a linear one. During the solvothermal synthesis of compound 1, remarkably, the associated 1,5-diphenylpyrazole ligand is formed from cinnamaldehyde phenylhydrazone through oxidative cyclization at the cost of Cu(II) reduction to Cu(I), and then, these two (copper(I) and pyrazole ligand) form the coordination complex. Compound 1 undergoes desolvation on heating the single crystals of compound 1 at 55 °C in the aerial atmosphere with the formation of the desolvated compound [CuI(C15H12N2)2][PW12O40{CuI(C15H12N2)2}2] (2). Interestingly, when an aqueous suspension of compound 1 is bubbled with O2 gas at room temperature, it undergoes solid-to-solid transformation, resulting in the formation of the compound [CuI(C15H12N2)2]3[PW12O40] (3). Compounds 1, 2, and 3 have been characterized by routine spectral analyses (including cyclic voltammetry and X-ray photoelectron spectroscopy (XPS) studies) and unambiguously by single-crystal X-ray crystallography. We have performed density functional theory (DFT) calculations on compound 1 to understand the rationale of its unusual stability toward oxidation.
Collapse
Affiliation(s)
- Neeraj
Kumar Mishra
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Bansal
- Materials
Research and Technology, Luxembourg Institute
of Science and Technology, 4362 Esch-sur-Alzette, Luxembourg
| | - Sabbani Supriya
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Zhang R, Li X, Gao Z. Pd-catalyzed selective oxidation of allyl alcohols to access enones and enals. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Kadu VD. Recent Advances for Synthesis of Oxazole Heterocycles
via
C‐H/C‐N Bond Functionalization of Benzylamines. ChemistrySelect 2022. [DOI: 10.1002/slct.202104028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vikas D. Kadu
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
11
|
Wang H, Li Y, Liu S, Makha M, Bai JF, Li Y. CO 2 -Promoted Direct Acylation of Amines and Phenols by the Activation of Inert Thioacid Salts. CHEMSUSCHEM 2022; 15:e202200227. [PMID: 35289483 DOI: 10.1002/cssc.202200227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Herein a carbon dioxide-promoted synthetic approach for the direct amidation between unactivated thioacid salts and amines under mild conditions was developed for a wide range of substrates. The method afforded amides in good to excellent yields under transition-metal-free and activation-reagent-free conditions, in sharp contrast to early methodologies on amide synthesis based on transition-metal catalysis. The method offered a greener and transition metal-free protocol applicable to pharmaceuticals preparations. Phenolic compounds were also found to be suitable acylation substrates with potassium thiosulfide KHS as the only byproduct. Moreover, this approach was applied to amide synthesis of valuable bio-active molecules such as moclobemide, melatonin, and a fungicide. Insights into the reaction mechanism involving carbon dioxide were provided through NMR spectroscopy and computational calculations. A plausible mechanism was proposed that involves weak interactions between carbon dioxide and potassium thioacetate in a dynamic equilibrium state formation of a six-membered ring.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yudong Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Shaoli Liu
- College of Chemistry and Chemical Engineering Yantai University, Yantai, 264005, P. R. China
| | - Mohamed Makha
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jian-Fei Bai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
12
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
13
|
Li QW, Zhang XY, Lu L, Wu ZQ, Li J, Li GZ, Sun K, Yang S, Yang B. TFAA/DMSO‐promoted fluorination of P(O)−H and P(O)−OH compounds: Compatible Access to Fluorophosphonates and Phosphonofluoridates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | - Kai Sun
- Anyang Normal University CHINA
| | | | | |
Collapse
|
14
|
Cauwenbergh R, Goyal V, Maiti R, Natte K, Das S. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chem Soc Rev 2022; 51:9371-9423. [DOI: 10.1039/d1cs00921d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformation of carbon dioxide (CO2) into valuable organic carboxylic acids is essential for maintaining sustainability. In this review, such CO2 thermo-, photo- and electrochemical transformations under 3d-transition metal catalysis are described from 2017 until 2022.
Collapse
Affiliation(s)
- Robin Cauwenbergh
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Vishakha Goyal
- Chemical and Material Sciences Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Joggers Road, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Rakesh Maiti
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kishore Natte
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy, 502 285, Telangana, India
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
15
|
Tian YM, Wang H, Ritu, König B. Photocatalytic synthesis of tetra-substituted furans promoted by carbon dioxide. Chem Sci 2022; 13:241-246. [PMID: 35059173 PMCID: PMC8694347 DOI: 10.1039/d1sc06403g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
A CO2-promoted transition metal-free photocatalytic synthesis of tetra-substituted furan derivatives from 1,3-diketones as the only starting material.
Collapse
Affiliation(s)
- Ya-Ming Tian
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Huaiju Wang
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Ritu
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
16
|
Catalyst-free hierarchical reduction of CO2 with BH3N(C2H5)3 for selective N-methylation and N-formylation of amines. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Cu(II)-Based Ionic Liquid Supported on SBA-15 Nanoparticles Catalyst for the Oxidation of Various Alcohols into Carboxylic Acids in the Presence of CO2. Catal Letters 2021. [DOI: 10.1007/s10562-021-03736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Wang Q, Xu B, Wang Y, Wang H, Hu X, Ma P, Niu J, Wang J. Polyoxometalate-Incorporated Framework as a Heterogeneous Catalyst for Selective Oxidation of C-H Bonds of Alkylbenzenes. Inorg Chem 2021; 60:7753-7761. [PMID: 34019402 DOI: 10.1021/acs.inorgchem.1c00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Developing new catalysts for highly efficient and selective oxidation of saturated C-H bonds is significant due to their thermodynamic strength. Via incorporation of PW12O403-, pyridine-2,5-dicarboxylic acids (pydc), and Fe(III) ions into one framework, a new polyoxometalate-based metal-organic framework, [HFe4O2(H2O)4(pydc)3PW12O40]·10.5H2O (FeW-PYDC), was successfully prepared by a hydrothermal method. Interestingly, FeW-PYDC features a three-dimensional porous structure with {Fe4O2} interconnecting with PW12O403- units. FeW-PYDC displayed excellent performance in the selective oxidation of C-H bonds of alkylbenzenes with high conversion (95.7%) and selectivity (96.6%). As an effective heterogeneous catalyst, FeW-PYDC demonstrates good reusability and structural stability.
Collapse
Affiliation(s)
- Quanzhong Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Baijie Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yingyue Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Hui Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Xin Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
19
|
Sahoo PK, Zhang Y, Das S. CO 2-Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05681] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Yu Zhang
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
20
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
21
|
Affiliation(s)
- Prakash Kumar Sahoo
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Tong Zhang
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Shoubhik Das
- Department of Chemistry Universiteit Antwerpen Groenenborgerlaan 171 2020 Antwerpen Belgium
| |
Collapse
|
22
|
Pramudita RA, Motokura K. Heterogeneous Organocatalysts for the Reduction of Carbon Dioxide with Silanes. CHEMSUSCHEM 2021; 14:281-292. [PMID: 33140568 DOI: 10.1002/cssc.202002300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The utilization of carbon dioxide (CO2 ) as feedstock for chemical industries is gaining interest as a sustainable alternative to nonrenewable fossil resources. However, CO2 reduction is necessary to increase its energy content. Hydrosilane is a potential reducing agent that exhibits excellent reactivity under ambient conditions. CO2 hydrosilylation yields versatile products such as silylformate and methoxysilane, whereas formamides and N-methylated products are obtained in the presence of amines. In these transformations, organocatalysts are considered as the more sustainable choice of catalyst. In particular, heterogeneous organocatalysts featuring precisely designed active sites offer higher efficiency due to their recyclability. Herein, an overview is presented of the current development of basic organocatalysts immobilized on various supports for application in the chemical reduction of CO2 with hydrosilanes, and the potential active species parameters that might affect the catalytic activity are identified.
Collapse
Affiliation(s)
- Ria Ayu Pramudita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
| | - Ken Motokura
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 2268502, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama, 3320012, Japan
| |
Collapse
|
23
|
Juhl M, Petersen AR, Lee JW. CO 2 -Enabled Cyanohydrin Synthesis and Facile Iterative Homologation Reactions*. Chemistry 2021; 27:228-232. [PMID: 32812672 DOI: 10.1002/chem.202003623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Indexed: 01/06/2023]
Abstract
Thermodynamic and kinetic control of a chemical process is the key to access desired products and states. Changes are made when a desired product is not accessible; one may manipulate the reaction with additional reagents, catalysts and/or protecting groups. Here we report the use of carbon dioxide to accelerate cyanohydrin synthesis under neutral conditions with an insoluble cyanide source (KCN) without generating toxic HCN. Under inert atmosphere, the reaction is essentially not operative due to the unfavored equilibrium. The utility of CO2 -mediated selective cyanohydrin synthesis was further showcased by broadening Kiliani-Fischer synthesis under neutral conditions. This protocol offers an easy access to a variety of polyols, cyanohydrins, linear alkylnitriles, by simply starting from alkyl- and arylaldehydes, KCN and an atmospheric pressure of CO2 .
Collapse
Affiliation(s)
- Martin Juhl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Allan R Petersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| |
Collapse
|
24
|
Huang YK, Zhang WZ, Zhang K, Wang WL, Lu XB. Carbon dioxide-promoted palladium-catalyzed dehydration of primary allylic alcohols: access to substituted 1,3-dienes. Org Chem Front 2021. [DOI: 10.1039/d0qo01465f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A carbon dioxide promoted dehydration reaction of primary allylic alcohols gives synthetically important substituted 1,3-dienes in good yields under milder conditions compared with the reaction using a heterogeneous catalyst or carbon monoxide.
Collapse
Affiliation(s)
- Yan-Kai Huang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Wen-Zhen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Ke Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Wen-Le Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| |
Collapse
|
25
|
An efficient and recyclable AgNO3/ionic liquid system catalyzed atmospheric CO2 utilization: Simultaneous synthesis of 2-oxazolidinones and α-hydroxyl ketones. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Schilling W, Das S. Transition Metal-Free Synthesis of Carbamates Using CO 2 as the Carbon Source. CHEMSUSCHEM 2020; 13:6246-6258. [PMID: 33107690 DOI: 10.1002/cssc.202002073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Utilization of carbon dioxide as a C1 synthon is highly attractive for the synthesis of valuable chemicals. However, activation of CO2 is highly challenging, owing to its thermodynamic stability and kinetic inertness. With this in mind, several strategies have been developed for the generation of carbon-heteroatom bonds. Among these, formation of C-N bonds is highly attractive, especially, when carbamates can be synthesized directly from CO2 . This Minireview focuses on transition metal-free approaches for the fixation of CO2 to generate carbamates for the production of fine chemicals and pharmaceuticals. Within the past decade, transition metal-free approaches have gained increasing attention, but traditional reviews have rarely focused on these approaches. Direct comparisons between such methods have been even more scarce. This Minireview seeks to address this discrepancy.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institute for Biomolecular and Organic Chemistry, Georg-August-Universität Göttingen, Tammanstraße 2, 37077, Göttingen, Germany
| | - Shoubhik Das
- ORSY division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
27
|
Liu J, Kragh RR, Kamounah FS, Lee JW. Extended Pummerer fragmentation mediated by carbon dioxide and cyanide. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Petersen AR, Lauridsen JMV, Lee J. CO
2
‐Controlled Reductive Amination Reactions with NaBH
4. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Allan R. Petersen
- Department of Chemistry Nano‐Science Center University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | | | - Ji‐Woong Lee
- Department of Chemistry Nano‐Science Center University of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| |
Collapse
|
29
|
Affiliation(s)
- Tong Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| | - Yu Zhang
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Shoubhik Das
- ORSY Division Department of Chemistry University of Antwerp Campus Groenenborger Groenenborgerlaan 171 2020 Antwerp Belgium
| |
Collapse
|
30
|
Deguchi Y, Kono M, Koizumi Y, Izato YI, Miyake A. Study on Autocatalytic Decomposition of Dimethyl Sulfoxide (DMSO). Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00113] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yoshikuni Deguchi
- Kaneka Corporation, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
- Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masafumi Kono
- Nippon Refine Co., Ltd., 2388-22, Yawatakaigandori, Ichihara, Chiba 290-0067, Japan
- Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuto Koizumi
- Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yu-ichiro Izato
- Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Atsumi Miyake
- Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
31
|
Chen TR, Lin YS, Wang YX, Lee WJ, Chen KHC, Chen JD. Graphene oxide-iridium nanocatalyst for the transformation of benzylic alcohols into carbonyl compounds. RSC Adv 2020; 10:4436-4445. [PMID: 35495275 PMCID: PMC9049132 DOI: 10.1039/c9ra10294a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/15/2020] [Indexed: 01/07/2023] Open
Abstract
A catalyst constructed from graphene oxide and iridium chloride exhibited high activity and reliability for the selective transformation of benzylic alcohols into aromatic aldehydes or ketones. Instead of thermal reaction, the transformation was performed under ultrasonication, a green process with low byproduct, high atomic yield and high selectivity. Experimental data obtained from spherical-aberration corrected field emission TEM (ULTRA-HRTEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy and Raman spectra confirm the nanostructure of the title complex. Noticeably, the activity and selectivity for the transformation of benzylic alcohols remained unchanged within 25 catalytic cycles. The average turn over frequency is higher than 5000 h−1, while the total turnover number (TON) is more than one hundred thousand, making it a high greenness and eco-friendly process for alcohol oxidation. Graphene oxide–iridium nanostructure act as a robust catalyst exhibiting high activity and reliability for the selective transformation of benzylic alcohols into aromatic aldehydes or ketones.![]()
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Yi-Sheng Lin
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Yu-Xiang Wang
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Wen-Jen Lee
- Department of Applied Physics, National Ping Tung University Pingtong City Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Ping Tung University Pingtong City Taiwan
| | - Jhy-Der Chen
- Department of Chemistry, Chung-Yuan Christian University Chung-Li Taiwan
| |
Collapse
|
32
|
Kumar N, Naveen K, Bhatia A, Muthaiah S, Siruguri V, Paul AK. Solvent and additive-free efficient aerobic oxidation of alcohols by a perovskite oxide-based heterogeneous catalyst. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00189a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A perovskite oxide has been utilized for the solvent and additive-free heterogeneous oxidation of various alcohols.
Collapse
Affiliation(s)
- Nikhil Kumar
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | - Kumari Naveen
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | - Anita Bhatia
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | | | - Vasudeva Siruguri
- UGC-DAE Consortium for Scientific Research Mumbai Centre
- Mumbai-400085
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| |
Collapse
|
33
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
34
|
Zhou P, Pan Y, Tan H, Liu W. I 2-DMSO-H 2O: A Metal-Free Combination System for the Oxidative Addition of Alkynes to Access ( E)-α-Iodo-β-methylsulfonylalkenes. J Org Chem 2019; 84:15662-15668. [PMID: 31663739 DOI: 10.1021/acs.joc.9b02302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple and green reaction was discovered for iodization-methylsulfoxidation of alkynes to access (E)-α-iodo-β-methylsulfonylalkenes. This is the first report for the synthesis of iodovinyl methylsulfones by employing alkynes to react with molecular iodine (I2), dimethyl sulfoxide (DMSO), and H2O. Additionally, this protocol represents a new avenue for utilizing DMSO as the source of the -SO2Me group and H2O as the "O" source for the construction of the -SO2Me group from DMSO, which is a valuable finding.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| | - Yupeng Pan
- Shenzhen Grubbs Institute , Southern University of Science and Technology (SUSTech) , Shenzhen 518055 , P. R. China
| | - Hua Tan
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| | - Weibing Liu
- College of Chemistry , Guangdong University of Petrochemical Technology , 2 Guandu Road , Maoming 525000 , P. R. China
| |
Collapse
|
35
|
Schilling W, Zhang Y, Riemer D, Das S. Visible-Light-Mediated Dearomatisation of Indoles and Pyrroles to Pharmaceuticals and Pesticides. Chemistry 2019; 26:390-395. [PMID: 31596010 PMCID: PMC6973285 DOI: 10.1002/chem.201904168] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Indexed: 12/22/2022]
Abstract
Dearomatisation of indole derivatives to the corresponding isatin derivatives has been achieved with the aid of visible light and oxygen. It should be noted that isatin derivatives are highly important for the synthesis of pharmaceuticals and bioactive compounds. Notably, this chemistry works excellently with N-protected and protection-free indoles. Additionally, this methodology can also be applied to dearomatise pyrrole derivatives to generate cyclic imides in a single step. Later this methodology was applied for the synthesis of four pharmaceuticals and a pesticide called dianthalexin B. Detailed mechanistic studies revealed the actual role of oxygen and photocatalyst.
Collapse
Affiliation(s)
- Waldemar Schilling
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Yu Zhang
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Daniel Riemer
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| | - Shoubhik Das
- Institut für Biomolekulare und Organische Chemie, Georg-August-Universität Göttingen, Tammannstraße, 37077, Göttingen, Germany
| |
Collapse
|
36
|
Shen HJ, Duan YN, Zheng K, Zhang C. Redetermination of the Structure of a Water-Soluble Hypervalent Iodine(V) Reagent AIBX and Its Synthetic Utility in the Oxidation of Alcohols and Synthesis of Isoxazoline N-Oxides. J Org Chem 2019; 84:14381-14393. [DOI: 10.1021/acs.joc.9b02328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui-Jie Shen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya-Nan Duan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ke Zheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
37
|
Tan J, Liu XB, Chen WF, Hu YL. Synthesis of Magnetically Separable Nanocatalyst CoFe2O4@SiO
2
@MIL‐53(Fe) for Highly Efficient and Selective Oxidation of Alcohols and Benzylic Compounds with Hydrogen Peroxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jin Tan
- College of Materials and Chemical EngineeringKey laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Xiao Bing Liu
- College of Chemistry and Chemical EngineeringJinggangshan University Ji'an 343009 P. R. China
| | - Wei Feng Chen
- College of Materials and Chemical EngineeringKey laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| | - Yu Lin Hu
- College of Materials and Chemical EngineeringKey laboratory of inorganic nonmetallic crystalline and energy conversion materialsChina Three Gorges University Yichang 443002, Hubei province P. R. China
| |
Collapse
|
38
|
Bansode AH, Suryavanshi G. Iodine-Mediated Oxidative Rearrangement of α,β-Unsaturated Diaryl Ketones: A Facile Access to 1,2-Diaryl Diketones. ACS OMEGA 2019; 4:9636-9644. [PMID: 31460054 PMCID: PMC6648810 DOI: 10.1021/acsomega.9b00833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/17/2019] [Indexed: 05/03/2023]
Abstract
A metal-free oxidative rearrangement was explored for the synthesis of 1,2-diaryl diketones by utilizing α,β-unsaturated diaryl ketones and I2/TBHP in good to high yields. The reaction proceeds via oxidative aryl migration, followed by C-C bond cleavage. A simple and high-yielding protocol was developed for the synthesis of a wide range of 1,2-diaryl diketones, which are the backbone for a variety of medicinally important molecules.
Collapse
Affiliation(s)
- Ajay H. Bansode
- Chemical
Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| | - Gurunath Suryavanshi
- Chemical
Engineering & Process Development Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110 025, India
| |
Collapse
|
39
|
Zhang X, He Y, Li J, Wang R, Gu L, Li G. CO 2/Photoredox-Cocatalyzed Tandem Oxidative Cyclization of α-Bromo Ketones and Amines To Construct Substituted Oxazoles. J Org Chem 2019; 84:8225-8231. [PMID: 31117554 DOI: 10.1021/acs.joc.9b00283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CO2/photoredox-cocatalyzed tandem oxidative cyclization of α-bromo ketones and amines for the preparation of substituted oxazoles has been achieved. The avoidance of using both transition-metal catalysts and peroxides makes this method more sustainable and renewable.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Chemistry and Environment , Yunnan Minzu University , Kunming , Yunnan 650500 , China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming , Yunnan 650500 , China
| | - Jing Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming , Yunnan 650500 , China
| | - Rui Wang
- School of Chemistry and Environment , Yunnan Minzu University , Kunming , Yunnan 650500 , China
| | - Lijun Gu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming , Yunnan 650500 , China.,Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Guiyang 550025 , China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming , Yunnan 650500 , China
| |
Collapse
|
40
|
Roy T, Kim MJ, Yang Y, Kim S, Kang G, Ren X, Kadziola A, Lee HY, Baik MH, Lee JW. Carbon Dioxide-Catalyzed Stereoselective Cyanation Reaction. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tamal Roy
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Myungjo J. Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yang Yang
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Suyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Xinyi Ren
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Anders Kadziola
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| |
Collapse
|
41
|
Zha G, Fang W, Leng J, Qin H. A Simple, Mild and General Oxidation of Alcohols to Aldehydes or Ketones by SO
2
F
2
/K
2
CO
3
Using DMSO as Solvent and Oxidant. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900104] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gao‐Feng Zha
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wan‐Yin Fang
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Jing Leng
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Hua‐Li Qin
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
42
|
Li D, Xu Q, Li Y, Qiu Y, Ma P, Niu J, Wang J. A Stable Polyoxometalate-Based Metal–Organic Framework as Highly Efficient Heterogeneous Catalyst for Oxidation of Alcohols. Inorg Chem 2019; 58:4945-4953. [DOI: 10.1021/acs.inorgchem.8b03589] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dandan Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Yingguang Li
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Yueting Qiu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, P. R. China
| |
Collapse
|
43
|
Zhang X, Rakesh KP, Qin HL. Transition-metal-free regioselective construction of 1,5-diaryl-1,2,3-triazoles through dehydrative cycloaddition of alcohols with aryl azides mediated by SO 2F 2. Chem Commun (Camb) 2019; 55:2845-2848. [PMID: 30768105 DOI: 10.1039/c8cc09693g] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel, simple and practical method for mild, efficient, cost-effective and regioselective synthesis of highly valuable 1,5-diaryl-1,2,3-triazoles was achieved through dehydrative annulation of readily available alcohols with aryl azides. The reaction proceeded at room temperature, without any metal catalysts, exhibiting excellent compatibility to a large variety of functional groups (>50 examples), resulting in up to quantitative yields.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science Wuhan University of Technology, Wuhan 430070, China.
| | | | | |
Collapse
|
44
|
He G, Li Y, Yu Z, Chen Z, Tang Y, Song G, Loh TP. Selectfluor™-catalyzed oxidative cyclization of ynamides enables facile synthesis of oxazolidine-2,4-diones. Org Chem Front 2019. [DOI: 10.1039/c9qo00845d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Selectfluor™-catalyzed oxidative cyclization of ynamides employing DMSO as the solvent and oxidant was achieved, affording oxazolidine-2,4-diones in moderate to excellent yields with high chemo-selectivity. The method offers an attractive alternative to existing protocols.
Collapse
Affiliation(s)
- Guangke He
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yuan Li
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Zilun Yu
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Zhaoqiang Chen
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yongming Tang
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Guangliang Song
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Institute of Advanced Synthesis
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
45
|
Wang S, Xi C. Recent advances in nucleophile-triggered CO2-incorporated cyclization leading to heterocycles. Chem Soc Rev 2019; 48:382-404. [DOI: 10.1039/c8cs00281a] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CO2, as a sustainable, feasible, abundant one-carbon synthon, has been utilized in carboxylative cyclization, carbonylative cyclization, and reductive cyclization.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Chanjuan Xi
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
46
|
Ni J, Wu YT, Tao F, Peng Y, Xu P. A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. J Am Chem Soc 2018; 140:16001-16005. [DOI: 10.1021/jacs.8b08177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yu-Tong Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
47
|
CO2-Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03059] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
|
49
|
Abstract
In the last decades, the selective liquid phase oxidation of alcohols to the corresponding carbonyl compounds has been a subject of growing interest. Research has focused on green methods that use “clean” oxidants such as O2 in combination with supported metal nanoparticles as the catalyst. Among the alcohols, benzyl alcohol is one of the most studied substrates. Indeed, benzyl alcohol can be converted to benzaldehyde, largely for use in the pharmaceutical and agricultural industries. This conversion serves as model reaction in testing new potential catalysts, that can then be applied to other systems. Pd based catalysts have been extensively studied as active catalytic metals for alcohol oxidation for their high activity and selectivity to the corresponding aldehyde. Several catalytic materials obtained by careful control of the morphology of Pd nanoparticles, (including bimetallic systems) and by tuning the support properties have been developed. Moreover, reaction conditions, including solvent, temperature, pressure and alcohol concentration have been investigated to tune the selectivity to the desired products. Different reaction mechanisms and microkinetic models have been proposed. The aim of this review is to provide a critical description of the recent advances on Pd catalyzed benzyl alcohol oxidation.
Collapse
|
50
|
Huang R, Li S, Fu L, Li G. Rhodium(II)-Catalyzed C−H Bond Carboxylation of Heteroarenes with CO2. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Raolin Huang
- College of Chemistry; Fuzhou University; Fuzhou, Fujian 350002 P.R. China
- Key Laboratory of Coal to Ethylene Glycol, and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 P.R. China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol, and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 P.R. China
| | - Lei Fu
- Key Laboratory of Coal to Ethylene Glycol, and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 P.R. China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol, and Its Related Technology; Fujian Institute of Research on the Structure of Matter; Chinese Academy of Sciences; Fuzhou, Fujian 350002 P.R. China
| |
Collapse
|