1
|
Köche A, Hong K, Seo S, Babbe F, Gim H, Kim KH, Choi H, Jung Y, Oh I, Krishnamurthy GV, Störmer M, Lee S, Kim TH, Bell AT, Khan S, Sutter-Fella CM, Toma FM. Copper Tantalate by a Sodium-Driven Flux-Mediated Synthesis for Photoelectrochemical CO 2 Reduction. SMALL METHODS 2025:e2401432. [PMID: 39815160 DOI: 10.1002/smtd.202401432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Copper-tantalate, Cu2Ta4O11 (CTO), shows significant promise as an efficient photocathode for multi-carbon compounds (C2+) production through photoelectrochemical (PEC) CO2 reduction, owing to its suitable energy bands and catalytic surface. However, synthesizing CTO poses a significant challenge due to its metastable nature and thermal instability. In this study, this challenge is addressed by employing a flux-mediated synthesis technique using a sodium-based flux to create sodium-doped CTO (Na-CTO) thin films, providing enhanced nucleation and stabilization for the CTO phase. To evaluate the PEC performance and catalytic properties of the films, copper(II) oxide (CuO) at the Na-CTO surface is selectively etched. The etched Na-CTO shows a lower dark current, with decreased contribution from photocorrosion, unlike the non-etched Na-CTO which has remaining CuO on the surface. Furthermore, Na-CTO exhibits 7.3-fold ethylene selectivity over hydrogen, thus highlighting its promising potential as a photocathode for C2+ production through PEC CO2 reduction.
Collapse
Affiliation(s)
- Ariadne Köche
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Postgraduate Program in Materials Science, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91540-000, Brazil
| | - Kootak Hong
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sehun Seo
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
| | - Finn Babbe
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
| | - Hyeongyu Gim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Keon-Han Kim
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Hojoong Choi
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
| | - Yoonsung Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Inhyeok Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | | | - Michael Störmer
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Alexis T Bell
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, 94720, United States
| | - Sherdil Khan
- Postgraduate Program in Materials Science, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS, 91540-000, Brazil
| | - Carolin M Sutter-Fella
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
| | - Francesca M Toma
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
| |
Collapse
|
2
|
Chen G, Fu C, Zhang W, Gong W, Ma J, Ji X, Qian L, Feng X, Hu C, Long R, Xiong Y. Solar-driven production of renewable chemicals via biomass hydrogenation with green methanol. Nat Commun 2025; 16:665. [PMID: 39809823 PMCID: PMC11733029 DOI: 10.1038/s41467-025-56094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Solar-driven, selective biomass hydrogenation is recognized as a promising route to renewable chemicals production, but remains challenging. Here, we report a TiO2 supported Cu single-atom catalyst with a four-coordinated Cu1-O4 structure, which can be universally applied for solar-driven production of various renewable chemicals from lignocellulosic biomass-derived platform molecules with good yields using green methanol as a hydrogen donor, to address this challenge. It is significant that the biomass upgrading driven by natural sunlight on a gram scale demonstrates the great practical potential. By combining in situ soft X-ray absorption spectroscopy with theoretical calculations, we successfully identify the dynamic evolution of Cu sites along with the biomass hydrogenation and methanol oxidation, where the tandem process is enabled by the photogenerated electrons and holes to complete a chemical cycle. The concept of solar-driven biomass hydrogenation proposed here provides an efficient and sustainable methodology for the sustainable production of renewable chemicals.
Collapse
Affiliation(s)
- Guangyu Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Cenfeng Fu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Wenhua Zhang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Wanbing Gong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Jun Ma
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China
| | - Xiaomin Ji
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Lisheng Qian
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xuefei Feng
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chuansheng Hu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ran Long
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
| | - Yujie Xiong
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, PR China.
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, PR China.
| |
Collapse
|
3
|
Ni S, Wu W, Yang Z, Zhang M, Yang J. Influence of Copper Valence in CuO x/TiO 2 Catalysts on the Selectivity of Carbon Dioxide Photocatalytic Reduction Products. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1930. [PMID: 39683318 DOI: 10.3390/nano14231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
The Cu cocatalyst supported on the surface of TiO2 photocatalysts has demonstrated unique activity and selectivity in photocatalytic CO2 reduction. The valence state of copper significantly influences the catalytic process; however, due to the inherent instability of copper's valence states, the precise role of different valence states in CO2 reduction remains inadequately understood. In this study, CuOx/TiO2 catalysts were synthesized using an in situ growth reduction method, and we investigated the impact of various valence copper species on CO2 photocatalytic reduction. Our results indicate that Cu+ and Cu0 serve as primary active sites, with the selectivity for CH4 and CO products during CO2 photoreduction being closely related to their respective ratios on the catalyst surface. The adsorption and activation mechanisms of CO on both Cu+ and Cu0 surfaces are identified as critical factors determining product selectivity in photocatalytic processes. Furthermore, it is confirmed that Cu+ primarily facilitates CH4 production while Cu0 is responsible for generating CO. This study provides valuable insights into developing highly selective photocatalysts.
Collapse
Affiliation(s)
- Sha Ni
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Wenjing Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Zichao Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Min Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475001, China
| |
Collapse
|
4
|
Xie C, Chen W, Wang Y, Yang Y, Wang S. Dynamic evolution processes in electrocatalysis: structure evolution, characterization and regulation. Chem Soc Rev 2024; 53:10852-10877. [PMID: 39382539 DOI: 10.1039/d3cs00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Reactions on electrocatalytic interfaces often involve multiple processes, including the diffusion, adsorption, and conversion of reaction species and the interaction between reactants and electrocatalysts. Generally, these processes are constantly changing rather than being in a steady state. Recently, dynamic evolution processes on electrocatalytic interfaces have attracted increasing attention owing to their significant roles in catalytic reaction kinetics. In this review, we aim to provide insights into the dynamic evolution processes in electrocatalysis to emphasize the importance of unsteady-state processes in electrocatalysis. Specifically, the dynamic structure evolution of electrocatalysts, methods for the characterization of the dynamic evolution and the strategies for the regulation of the dynamic evolution for improving electrocatalytic performance are summarized. Finally, the conclusion and outlook on the research on dynamic evolution processes in electrocatalysis are presented. It is hoped that this review will provide a deeper understanding of dynamic evolution in electrocatalysis, and studies of electrocatalytic reaction processes and kinetics on the unsteady-state microscopic spatial and temporal scales will be given more attention.
Collapse
Affiliation(s)
- Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Wei Chen
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Chen M, Liu L, Chen X, Qin X, Zhang J, Xie S, Liu F, He H, Zhang C. Sulfate residuals on Ru catalysts switch CO 2 reduction from methanation to reverse water-gas shift reaction. Nat Commun 2024; 15:9478. [PMID: 39488527 PMCID: PMC11531589 DOI: 10.1038/s41467-024-53909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
Efficient heterogeneous catalyst design primarily focuses on engineering the active sites or supports, often neglecting the impact of trace impurities on catalytic performance. Herein, we demonstrate that even trace amounts of sulfate (SO42-) residuals on Ru/TiO2 can totally change the CO2 reduction from methanation to reverse-water gas shift (RWGS) reaction under atmospheric pressure. We reveal that air annealing causes the trace amount of SO42- to migrate from TiO2 to Ru/TiO2 interface, leading to the significant changes in product selectivity from CH4 to CO. Detailed characterizations and DFT calculations show that the sulfate at Ru/TiO2 interface notably enhances the H transfer from Ru particles to the TiO2 support, weakening the CO intermediate activation on Ru particles and inhibiting the further hydrogenation of CO to CH4. This discovery highlights the vital role of trace impurities in CO2 hydrogenation reaction, and also provides broad implications for the design and development of more efficient and selective heterogeneous catalysts.
Collapse
Affiliation(s)
- Min Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Longgang Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
| | - Xueyan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jianghao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, CA, USA
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, CA, USA.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Li M, Han Z, Hu Q, Fan W, Hu Q, He D, Chen Q, Jiao X, Xie Y. Recent progress in solar-driven CO 2 reduction to multicarbon products. Chem Soc Rev 2024; 53:9964-9975. [PMID: 39269194 DOI: 10.1039/d4cs00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Currently, most catalysts used for photoconverting carbon dioxide (CO2) typically produce C1 products. Achieving multicarbon (C2+) products, which are highly desirable due to their greater energy density and economic potential, still remains a significant challenge. This difficulty is primarily due to the kinetic hurdles associated with the C-C coupling step in the process. Given this, devising diverse strategies to accelerate C-C coupling for generating multicarbon products is requisite. Herein, we first give a classification of catalysts involved in the photoconversion of CO2 to C2+ fuels. We summarize metallic oxides, metallic sulfides, MXenes, and metal-organic frameworks as catalysts for CO2 photoreduction to C2+ products, attributing their efficacy to the inherent dual active sites facilitating C-C coupling. In addition, we survey covalent organic frameworks, carbon nitrides, metal phosphides, and graphene as cocatalysts for CO2 photoreduction to C2+ products, owing to the incorporated dual active sites that induce C-C coupling. In the end, we provide a brief conclusion and an outlook on designing new photocatalysts, understanding the catalytic mechanisms, and considering the practical application requirements for photoconverting CO2 into multicarbon products.
Collapse
Affiliation(s)
- Mengqian Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Zequn Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Wenya Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Qing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - QingXia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
7
|
Zhang Y, Li Y, Gao N, Delmo EP, Hou G, Luo A, Wang D, Chen K, Antonietti M, Liu T, Tian Z. Altering the CO 2 Electroreduction Pathways Towards C 1 or C 2+ Products via Engineering the Strength of Interfacial Cu-O Bond. Angew Chem Int Ed Engl 2024; 63:e202404676. [PMID: 38880900 DOI: 10.1002/anie.202404676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Copper (Cu)-based catalysts have established their unique capability for yielding wide value-added products from CO2. Herein, we demonstrate that the pathways of the electrocatalytic CO2 reduction reaction (CO2RR) can be rationally altered toward C1 or C2+ products by simply optimizing the coordination of Cu with O-containing organic species (squaric acid (H2C4O4) and cyclohexanehexaone (C6O6)). It is revealed that the strength of Cu-O bonds can significantly affect the morphologies and electronic structures of derived Cu catalysts, resulting in the distinct behaviors during CO2RR. Specifically, the C6O6-Cu catalysts made up from organized nanodomains shows a dominant C1 pathway with a total Faradaic efficiency (FE) of 63.7 % at -0.6 V (versus reversible hydrogen electrode, RHE). In comparison, the C4O4-Cu with an about perfect crystalline structure results in uniformly dispersed Cu-atoms, showing a notable FE of 65.8 % for C2+ products with enhanced capability of C-C coupling. The latter system also shows stable operation over at least 10 h with a high current density of 205.1 mA cm-2 at -1.0 VRHE, i.e., is already at the boarder of practical relevance. This study sheds light on the rational design of Cu-based catalysts for directing the CO2RR reaction pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Yicheng Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Nana Gao
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guoyu Hou
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China
| | - Ali Luo
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| | - Dongyang Wang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, 475004, Kaifeng, China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, 475004, Kaifeng, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Zhihong Tian
- Engineering Research Center for Nanomaterials, Henan University, 475004, Kaifeng, P. R. China
| |
Collapse
|
8
|
Liu Q, Bai C, Zhu C, Guo W, Li G, Guo S, Kripalani D, Zhou K, Chen R. M/BiOCl-(M = Pt, Pd, and Au) Boosted Selective Photocatalytic CO 2 Reduction to C 2 Hydrocarbons via *CHO Intermediate Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400934. [PMID: 39022985 PMCID: PMC11425252 DOI: 10.1002/advs.202400934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Selective CO2 photoreduction to C2 hydrocarbons is significant but limited by the inadequate adsorption strength of the reaction intermediates and low efficiency of proton transfer. Herein, an ameliorative *CO adsorption and H2O activation strategy is realized via decorating bismuth oxychloride (BiOCl) nanostructures with different metal (Pt, Pd, and Au) species. Experimental and theoretical calculation results reveal that distinct *CO binding energies and *H acquisition abilities of the metal cocatalysts mediate the CO2 reduction activity and hydrocarbon selectivity. The relatively moderate *CO adsorption and *H supply over Pd/BiOCl endows it with the lowest free energy to generate *CHO, leading to its highest activity of hydrocarbon production. Specifically, the Pt cocatalyst can efficiently participate in H2O dissociation to deliver more *H for facilitating the protonation of the *CHO and *CHOH, thereby favoring CH4 production with 76.51% selectivity. A lower *H supply over Pd/BiOCl and Au/BiOCl results in a large energy barrier for *CHO or *CHOH protonation and thus a more thermodynamically favored OC─CHO coupling pathway, which endows them with vastly increased C2 hydrocarbon selectivity of 81.21% and 92.81%, respectively. The understanding of efficient C2 hydrocarbon production in this study sheds light on how materials can be engineered for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Qiong Liu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
- School of Chemistry and Environmental EngineeringWuhan Institute of TechnologyDonghu New & High Technology Development ZoneWuhan430205P. R. China
| | - Chengbo Bai
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Chengxin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Wenjin Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education)Hubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Sheng Guo
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| | - Devesh Kripalani
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Kun Zhou
- School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
- Nanyang Environment and Water Research InstituteNanyang Technological University1 CleanTech LoopSingapore637141Singapore
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhan430200P. R. China
| |
Collapse
|
9
|
Li D, Li Q, Zhou Y, Zhang Q, Ye Q, Yang R, Jiang D. Shaping and Doping Metal-Organic Framework-Derived TiO 2 to Steer the Selectivity of Photocatalytic CO 2 Reduction toward CH 4. Inorg Chem 2024; 63:15398-15408. [PMID: 39096309 DOI: 10.1021/acs.inorgchem.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Steering selectivity in photocatalytic conversion of CO2, especially toward deep reduction products, is vital to energy and environmental goals yet remains a great challenge. In this work, we demonstrate a facet-dependent photocatalytic selective reduction of CO2 to CH4 in Cu-doped TiO2 catalysts exposed with different facets synthesized by a topological transformation from MIL-125 (Ti) precursors. The optimized round cake-like Cu/TiO2 photocatalyst mainly exposed with the (001) facet exhibited a high photocatalytic CO2 reduction performance with a CH4 yield of 40.36 μmol g-1 h-1 with a selectivity of 94.1%, which are significantly higher than those of TiO2 (001) (4.70 μmol g-1 h-1 and 52.6%, respectively), Cu/TiO2 (001 + 101) (18.95 μmol g-1 h-1 and 69.6%, respectively), and Cu/TiO2 (101) (14.73 μmol g-1 h-1 and 78.9%, respectively). The results of experimental and theoretical calculations demonstrate that the Cu doping dominating the promoted separation and migration efficiencies of photogenerated charges and the preferential adsorption on (001) facets synergistically contribute to the selective reduction of CO2 to CH4. This work highlights the significance of synergy between facet engineering and ion doping in the design of high-performance photocatalysts with respect to selective reduction of CO2 to multielectron products.
Collapse
Affiliation(s)
- Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhangjiang 212013, China
| |
Collapse
|
10
|
Zoric M, Basera P, Palmer LD, Aitbekova A, Powers-Riggs N, Lim H, Hu W, Garcia-Esparza AT, Sarker H, Abild-Pedersen F, Atwater HA, Cushing SK, Bajdich M, Cordones AA. Oxidizing Role of Cu Cocatalysts in Unassisted Photocatalytic CO 2 Reduction Using p-GaN/Al 2O 3/Au/Cu Heterostructures. ACS NANO 2024; 18. [PMID: 39037113 PMCID: PMC11295187 DOI: 10.1021/acsnano.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Photocatalytic CO2 reduction to CO under unassisted (unbiased) conditions was recently demonstrated using heterostructure catalysts that combine p-type GaN with plasmonic Au nanoparticles and Cu nanoparticles as cocatalysts (p-GaN/Al2O3/Au/Cu). Here, we investigate the mechanistic role of Cu in p-GaN/Al2O3/Au/Cu under unassisted photocatalytic operating conditions using Cu K-edge X-ray absorption spectroscopy and first-principles calculations. Upon exposure to gas-phase CO2 and H2O vapor reaction conditions, the composition of the Cu nanoparticles is identified as a mixture of CuI and CuII oxide, hydroxide, and carbonate compounds without metallic Cu. These composition changes, indicating oxidative conditions, are rationalized by bulk Pourbaix thermodynamics. Under photocatalytic operating conditions with visible light excitation of the plasmonic Au nanoparticles, further oxidation of CuI to CuII is observed, indicating light-driven hole transfer from Au-to-Cu. This observation is supported by the calculated band alignments of the oxidized Cu compositions with plasmonic Au particles, where light-driven hole transfer from Au-to-Cu is found to be thermodynamically favored. These findings demonstrate that under unassisted (unbiased) gas-phase reaction conditions, Cu is found in carbonate-rich oxidized compositions rather than metallic Cu. These species then act as the active cocatalyst and play an oxidative rather than a reductive role in catalysis when coupled with plasmonic Au particles for light absorption, possibly opening an additional channel for water oxidation in this system.
Collapse
Affiliation(s)
- Marija
R. Zoric
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Pooja Basera
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Levi D. Palmer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Aisulu Aitbekova
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Natalia Powers-Riggs
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Hyeongtaek Lim
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Wenhui Hu
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Angel T. Garcia-Esparza
- Stanford
Synchrotron Radiation Lightsource, SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
- Liquid Sunlight
Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hori Sarker
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Frank Abild-Pedersen
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Harry A. Atwater
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Scott K. Cushing
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Michal Bajdich
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Amy A. Cordones
- Stanford
SUNCAT Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| |
Collapse
|
11
|
Chen P, Li Z, Wang P, Yao Y, Dou T, Qu Y, Jing L. Synergistic effect of atomically dispersed Cu species and Ti-defects for boosting photocatalytic CO 2 reduction over hierarchical TiO 2. NANOSCALE 2024; 16:10727-10736. [PMID: 38721638 DOI: 10.1039/d4nr01229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The photocatalytic water-mediated CO2 reduction reaction, which holds great promise for the conversion of CO2 into valuable chemicals, is often hindered by inefficient separation of photogenerated charges and a lack of suitable catalytic sites. Herein, we have developed a glycerol coordination assembly approach to precisely control the distribution of atomically dispersed Cu species by occupying Ti-defects and adjusting the ratio between Cu species and Ti-defects in a hierarchical TiO2. The optimal sample demonstrates a ∼4-fold improvement in CO2-to-CO conversion compared to normal TiO2 nanoparticles. The high activity could be attributed to the Ti defects, which enhance the photogenerated charge separation and simultaneously facilitate the adsorption of water molecules, thereby promoting the water oxidation reaction. Moreover, by means of in situ EPR and FTIR spectra, we have demonstrated that Cu species can effectively capture photogenerated electrons and facilitate the adsorption of CO2, so as to catalyze the reduction of CO2. This work provides a strategy for the construction of atomic-level synergistic catalytic sites and the utilization of in situ techniques to reveal the underlying mechanism.
Collapse
Affiliation(s)
- Peijiao Chen
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Pengze Wang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yuxin Yao
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Tianwei Dou
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
12
|
Li M, Wu S, Liu D, Ye Z, Wang L, Kan M, Ye Z, Khan M, Zhang J. Engineering Spatially Adjacent Redox Sites with Synergistic Spin Polarization Effect to Boost Photocatalytic CO 2 Methanation. J Am Chem Soc 2024; 146:15538-15548. [PMID: 38769050 DOI: 10.1021/jacs.4c04264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 μmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.
Collapse
Affiliation(s)
- Mingyang Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Shiqun Wu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Dongni Liu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Lijie Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Miao Kan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Mazhar Khan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center for Multimedia Environmental Catalysis and Resource Utilization, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
14
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
15
|
Ruan X, Li S, Huang C, Zheng W, Cui X, Ravi SK. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305285. [PMID: 37818725 DOI: 10.1002/adma.202305285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Titanium dioxide (TiO2) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2-based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2, including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2-based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.
Collapse
Affiliation(s)
- Xiaowen Ruan
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun, 130012, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City Universitsy of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Xie Z, Xu S, Li L, Gong S, Wu X, Xu D, Mao B, Zhou T, Chen M, Wang X, Shi W, Song S. Well-defined diatomic catalysis for photosynthesis of C 2H 4 from CO 2. Nat Commun 2024; 15:2422. [PMID: 38499562 PMCID: PMC10948895 DOI: 10.1038/s41467-024-46745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Owing to the specific electronic-redistribution and spatial proximity, diatomic catalysts (DACs) have been identified as principal interest for efficient photoconversion of CO2 into C2H4. However, the predominant bottom-up strategy for DACs synthesis has critically constrained the development of highly ordered DACs due to the random distribution of heteronuclear atoms, which hinders the optimization of catalytic performance and the exploration of actual reaction mechanism. Here, an up-bottom ion-cutting architecture is proposed to fabricate the well-defined DACs, and the superior spatial proximity of CuAu diatomics (DAs) decorated TiO2 (CuAu-DAs-TiO2) is successfully constructed due to the compact heteroatomic spacing (2-3 Å). Owing to the profoundly low C-C coupling energy barrier of CuAu-DAs-TiO2, a considerable C2H4 production with superior sustainability is achieved. Our discovery inspires a novel up-bottom strategy for the fabrication of well-defined DACs to motivate optimization of catalytic performance and distinct deduction of heteroatom synergistically catalytic mechanism.
Collapse
Affiliation(s)
- Zhongkai Xie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaojie Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dongbo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| |
Collapse
|
17
|
Velisoju VK, Cerrillo JL, Ahmad R, Mohamed HO, Attada Y, Cheng Q, Yao X, Zheng L, Shekhah O, Telalovic S, Narciso J, Cavallo L, Han Y, Eddaoudi M, Ramos-Fernández EV, Castaño P. Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO 2 hydrogenation catalyst. Nat Commun 2024; 15:2045. [PMID: 38448464 PMCID: PMC10918174 DOI: 10.1038/s41467-024-46388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO2 to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO2 hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO2 utilization.
Collapse
Affiliation(s)
- Vijay K Velisoju
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jose L Cerrillo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rafia Ahmad
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hend Omar Mohamed
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yerrayya Attada
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingpeng Cheng
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Xueli Yao
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Osama Shekhah
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Selvedin Telalovic
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Javier Narciso
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yu Han
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, 23955-6900, Saudi Arabia
| | - Enrique V Ramos-Fernández
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica - Instituto Universitario de Materiales de Alicante, Universidad de Alicante, Apartado 99, E-03080, Alicante, Spain
- Advanced Catalytic Materials (ACM), KAUST Catalysis Center (KCC), KAUST, Thuwal, Saudi Arabia
| | - Pedro Castaño
- Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
18
|
Wang W, Zhang W, Deng C, Sheng H, Zhao J. Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angew Chem Int Ed Engl 2024; 63:e202317969. [PMID: 38155103 DOI: 10.1002/anie.202317969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Photocatalytic conversion of CO2 and H2 O into fuels and oxygen is a highly promising solution for carbon-neutral recycling. Traditionally, researchers have studied CO2 reduction and H2 O oxidation separately, overlooking potential synergistic interplay between these processes. This study introduces an innovative approach, spatial synergy, which encourages synergistic progress by bringing the two half-reactions into atomic proximity. To facilitate this, we developed a defective ZnIn2 S4 -supported single-atom Cu catalyst (Cu-SA/D-ZIS), which demonstrates remarkable catalytic performance with CO2 reduction rates of 112.5 μmol g-1 h-1 and water oxidation rates of 52.3 μmol g-1 h-1 , exhibiting a six-fold enhancement over D-ZIS. The structural characterization results indicated that the trapping effect of vacancy associates on single-atom copper led to the formation of an unsaturated coordination structure, Cu-S3 , consequently giving rise to the CuZn 'VS ⋅⋅VZn " defect complexes. FT-IR studies coupled with theoretical calculations reveal the spatially synergistic CO2 reduction and water oxidation on CuZn 'VS ⋅⋅VZn ", where the breakage of O-H in water oxidation is synchronized with the formation of *COOH, significantly lowering the energy barrier. Notably, this study introduces and, for the first time, substantiates the spatial synergy effect in CO2 reduction and H2 O oxidation through a combination of experimental and theoretical analyses, providing a fresh insight in optimizing photocatalytic system.
Collapse
Affiliation(s)
- Wei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Wanyi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chaoyuan Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jincai Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
19
|
Zhang J, Lei H, Li Z, Jiang F, Chen L, Hong M. Halogen-Modulated 2D Coordination Polymers for Efficient Hydrogen Peroxide Photosynthesis under Air and Pure Water Conditions. Angew Chem Int Ed Engl 2024; 63:e202316998. [PMID: 38017354 DOI: 10.1002/anie.202316998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
H2 O2 is a widely used eco-friendly oxidant and a potential energy carrier. Photocatalytic H2 O2 production from water and O2 is an ideal approach with the potential to address the current energy crisis and environmental issues. Three zig-zag two-dimensional coordination polymers (2D CPs), named CuX-dptz, were synthesized by a rapid and facile method at room temperature, showing preeminent H2 O2 photoproduction performance under pure water and open air without any additives. CuBr-dptz exhibits a H2 O2 production rate high up to 1874 μmol g-1 h-1 , exceeding most reported photocatalysts under this condition, even comparable to those supported by sacrificial agents and O2 . The coordination environment of Cu can be modulated by halogen atoms (X=Cl, Br, I), which in turn affects the electron transfer process and finally determines the reaction activity. This is the first time that 2D CPs have been used for photocatalytic H2 O2 production in such challenging conditions, which provides a new pathway for the development of portable in situ H2 O2 photosynthesis devices.
Collapse
Affiliation(s)
- Jieping Zhang
- Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hang Lei
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhijia Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lian Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
20
|
Chen R, Chen S, Wang L, Wang D. Nanoscale Metal Particle Modified Single-Atom Catalyst: Synthesis, Characterization, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304713. [PMID: 37439396 DOI: 10.1002/adma.202304713] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Single-atom catalysts (SACs) have attracted considerable attention in heterogeneous catalysis because of their well-defined active sites, maximum atomic utilization efficiency, and unique unsaturated coordinated structures. However, their effectiveness is limited to reactions requiring active sites containing multiple metal atoms. Furthermore, the loading amounts of single-atom sites must be restricted to prevent aggregation, which can adversely affect the catalytic performance despite the high activity of the individual atoms. The introduction of nanoscale metal particles (NMPs) into SACs (NMP-SACs) has proven to be an efficient approach for improving their catalytic performance. A comprehensive review is urgently needed to systematically introduce the synthesis, characterization, and application of NMP-SACs and the mechanisms behind their superior catalytic performance. This review first presents and classifies the different mechanisms through which NMPs enhance the performance of SACs. It then summarizes the currently reported synthetic strategies and state-of-the-art characterization techniques of NMP-SACs. Moreover, their application in electro/thermo/photocatalysis, and the reasons for their superior performance are discussed. Finally, the challenges and perspectives of NMP-SACs for the future design of advanced catalysts are addressed.
Collapse
Affiliation(s)
- Runze Chen
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, P. R. China
| | - Liqiang Wang
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Chen R, Shen S, Wang K, Wang J, Yang W, Li X, Li J, Dong F. Promoting the efficiency and selectivity of NO 3--to-NH 3 reduction on Cu-O-Ti active sites via preferential glycol oxidation with holes. Proc Natl Acad Sci U S A 2023; 120:e2312550120. [PMID: 38079556 PMCID: PMC10742378 DOI: 10.1073/pnas.2312550120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023] Open
Abstract
The combined reductive and oxidative reaction is the essence of a solar-driven photoredox system. Unfortunately, most of these efforts focus on the specific half-reactions, and the key roles of complete photoredox reactions have been overlooked. Taking the nitrate reduction reaction (NO3-RR) as a typical multiple-electrons involved process, the selective reduction of the NO3- into ammonia (NH3) synthesis with high efficiency is still a grand challenge. Herein, a rational oxidative half-reaction is tailored to achieve the selective conversion of NO3- to NH3 on Cu-O-Ti active sites. Through the coupled NO3-RR with glycol oxidation reaction system, a superior NH3 photosynthesis rate of 16.04 ± 0.40 mmol gcat-1 h-1 with NO3- conversion ratio of 100% and almost 100% of NH3 selectivity is reached on Cu-O-Ti bimetallic oxide cluster-anchored TiO2 nanosheets (CuOx@TNS) catalyst. A combination of comprehensive in situ characterizations and theoretical calculations reveals the molecular mechanism of the synergistic interaction between NO3-RR and glycol oxidation pair on CuOx@TNS. The introduction of glycol accelerates the h+ consumption for the formation of alkoxy (•R) radicals to avoid the production of •OH radicals. The construction of Cu-O-Ti sites facilitates the preferential oxidation of glycol with h+ and enhances the production of e- to participate in NO3-RR. The efficiency and selectivity of NO3--to-NH3 synthesis are thus highly promoted on Cu-O-Ti active sites with the accelerated glycol oxidative half-reaction. This work upgrades the conventional half photocatalysis into a complete photoredox system, demonstrating the tremendous potential for the precise regulation of reaction pathway and product selectivity.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Shujie Shen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing100124, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Weiping Yang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Xin Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| |
Collapse
|
22
|
Chen W, Xue P, Wang Z, Xu T, Pan W, Huang J, Liu J, Tang M, Wang Z. A porous polyacrylonitrile (PAN)/covalent organic framework (COF) fibrous membrane photocatalyst for highly efficient and ultra-stable hydrogen evolution. J Colloid Interface Sci 2023; 652:341-349. [PMID: 37597415 DOI: 10.1016/j.jcis.2023.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
Photocatalytic water splitting has been regarded as one of the most promising technologies to generate hydrogen as an ideal energy carrier in the future. However, most of the experience for such process are derived from the researches based on the suspension powder photocatalysts under a stirring condition and a practical scaling application is urgently calling for the high-efficient panel reactors based on the membrane photocatalysts. Herein, we develop a new series of flexible and ultrastable membrane photocatalysts through a controllable growth of covalent organic framework (COF) photocatalysts on the polyacrylonitrile (PAN) electrospun fiber membrane. Multiple characterization techniques verify the successful anchoring of the COF-photocatalysts on the PAN fibers, forming a three-dimensional porous PAN/COF membrane photocatalyst with excellent light absorption ability, high specific surface area, and good hydrophily. As a result, the optimized PAN/COF membrane photocatalyst exhibits excellent hydrogen evolution rate up to 1.25 mmol g-1h-1 under visible-light irradiation without stirring, which is even higher than that of the corresponding suspension COF-powder photocatalyst with stirring. In particular, the PAN/COF membrane photocatalyst demonstrates a much more superior hydrogen evolution stability and also a much better recyclability. This study gives some experience for the practical scaling application of solar-driven water splitting.
Collapse
Affiliation(s)
- Wanbo Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zijing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ting Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wenhao Pan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiming Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; School of Material and Chemical Engineering, Tongren University, Tongren 554300, China
| | - Junjie Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Mi Tang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhengbang Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China; School of Material and Chemical Engineering, Tongren University, Tongren 554300, China.
| |
Collapse
|
23
|
Shen M, Rackers WH, Sadtler B. Getting the Most Out of Fluorogenic Probes: Challenges and Opportunities in Using Single-Molecule Fluorescence to Image Electro- and Photocatalysis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:692-715. [PMID: 38037609 PMCID: PMC10685636 DOI: 10.1021/cbmi.3c00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 12/02/2023]
Abstract
Single-molecule fluorescence microscopy enables the direct observation of individual reaction events at the surface of a catalyst. It has become a powerful tool to image in real time both intra- and interparticle heterogeneity among different nanoscale catalyst particles. Single-molecule fluorescence microscopy of heterogeneous catalysts relies on the detection of chemically activated fluorogenic probes that are converted from a nonfluorescent state into a highly fluorescent state through a reaction mediated at the catalyst surface. This review article describes challenges and opportunities in using such fluorogenic probes as proxies to develop structure-activity relationships in nanoscale electrocatalysts and photocatalysts. We compare single-molecule fluorescence microscopy to other microscopies for imaging catalysis in situ to highlight the distinct advantages and limitations of this technique. We describe correlative imaging between super-resolution activity maps obtained from multiple fluorogenic probes to understand the chemical origins behind spatial variations in activity that are frequently observed for nanoscale catalysts. Fluorogenic probes, originally developed for biological imaging, are introduced that can detect products such as carbon monoxide, nitrite, and ammonia, which are generated by electro- and photocatalysts for fuel production and environmental remediation. We conclude by describing how single-molecule imaging can provide mechanistic insights for a broader scope of catalytic systems, such as single-atom catalysts.
Collapse
Affiliation(s)
- Meikun Shen
- Department
of Chemistry and Biochemistry, University
of Oregon, Eugene, Oregon 97403, United States
| | - William H. Rackers
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department
of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute
of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
24
|
Pan R, Niu S, Huang Z, Li Y, Liu P, Han X, Wu G, Shi Y, Hu H, Sun R, Zheng X, Jin H, Chen W, Shi Q, Hong X. Amorphization-Induced Cation Exchange in Indium Oxide Nanosheets for CO 2-to-Ethanol Conversion. NANO LETTERS 2023; 23:10004-10012. [PMID: 37877790 DOI: 10.1021/acs.nanolett.3c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cation exchange (CE) in metal oxides under mild conditions remains an imperative yet challenging goal to tailor their composition and enable practical applications. Herein, we first develop an amorphization-induced strategy to achieve room-temperature CE for universally synthesizing single-atom doped In2O3 nanosheets (NSs). Density functional theory (DFT) calculations elucidate that the abundant coordination-unsaturated sites present in a-In2O3 NSs are instrumental in surmounting the energy barriers of CE reactions. Empirically, a-In2O3 NSs as the host materials successfully undergo exchange with unary cations (Cu2+, Co2+, Mn2+, Ni2+), binary cations (Co2+Mn2+, Co2+Ni2+, Mn2+Ni2+), and ternary cations (Co2+Mn2+Ni2+). Impressively, high-loading single-atom doped (over 10 atom %) In2O3 NSs were obtained. Additionally, Cu/a-In2O3 NSs exhibit an excellent ethanol yield (798.7 μmol g-1 h-1) with a high selectivity of 99.5% for the CO2 photoreduction. This work offers a new approach to induce CE reactions in metal oxides under mild conditions and constructs scalable single-atom doped catalysts for critical applications.
Collapse
Affiliation(s)
- Rongrong Pan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shuwen Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Zixiang Huang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Yapeng Li
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Yi Shi
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Haohui Hu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Rongbo Sun
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P.R. China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Qian Shi
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P.R. China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
25
|
Zhao HB, Huang JN, Qin Q, Chen HY, Kuang DB. In Situ Loading of Cu Nanocrystals on CsCuCl 3 for Selective Photoreduction of CO 2 to CH 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302022. [PMID: 37461242 DOI: 10.1002/smll.202302022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Indexed: 11/09/2023]
Abstract
Rational design and facile synthesis of efficient environmentally friendly all-inorganic lead-free halide perovskite catalysts are of great significance in photocatalytic CO2 reduction. Aiming at photogenerated charge carrier separation and CO2 reaction dynamics, in this paper, a CsCuCl3 /Cu nanocrystals (NCs) heterojunction catalyst is designed and synthesized via a simple acid-etching solution process by using Cu2 O as the sacrificed template. Due to the disproportionation reaction of Cu2 O induced by concentrated hydrochloric acid, Cu NCs can be deposited onto the surface of CsCuCl3 microcrystals directly and tightly. As revealed by photoelectrochemical analysis, in situ Fourier transform infrared spectra, etc., the Cu NCs contribute a lot to extracting photoelectrons of CsCuCl3 to improve the charge separation efficiency, regulating the CO2 adsorption and activation, and also stabilizing the reaction intermediates. Therefore, CsCuCl3 /Cu heterojunction exhibits a total electron consumption rate of 58.77 µmol g-1 h-1 , which is 2.9-fold of that of single CsCuCl3 . Moreover, high CH4 selectivity of up to 92.7% is achieved, which is much higher than that of CsCuCl3 (50.4%) and most lead-free halide perovskite-based catalysts. This work provides an ingenious but simple strategy to rationally design cocatalysts in situ decorated perovskite catalysts for manipulating both the catalytic activity and the product selectivity.
Collapse
Affiliation(s)
- Hai-Bing Zhao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jia-Nan Huang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qi Qin
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hong-Yan Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Dai-Bin Kuang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
26
|
Yu Y, He Y, Yan P, Wang S, Dong F. Boosted C-C coupling with Cu-Ag alloy sub-nanoclusters for CO 2-to-C 2H 4 photosynthesis. Proc Natl Acad Sci U S A 2023; 120:e2307320120. [PMID: 37871220 PMCID: PMC10622893 DOI: 10.1073/pnas.2307320120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 10/25/2023] Open
Abstract
The selective photocatalytic conversion of CO2 and H2O to high value-added C2H4 remains a great challenge, mainly attributed to the difficulties in C-C coupling of reaction intermediates and desorption of C2H4* intermediates from the catalyst surface. These two key issues can be simultaneously overcome by alloying Ag with Cu which gives enhanced activity to both reactions. Herein, we developed a facile stepwise photodeposition strategy to load Cu-Ag alloy sub-nanoclusters (ASNCs) on TiO2 for CO2 photoreduction to produce C2H4. The optimized catalyst exhibits a record-high C2H4 formation rate (1110.6 ± 82.5 μmol g-1 h-1) with selectivity of 49.1 ± 1.9%, which is an order-of-magnitude enhancement relative to current work for C2H4 photosynthesis. The in situ FT-IR spectra combined with DFT calculations reveal the synergistic effect of Cu and Ag in Cu-Ag ASNCs, which enable an excellent C-C coupling capability like Ag and promoted C2H4* desorption property like Cu, thus advancing the selective and efficient production of C2H4. The present work provides a deeper understanding on cluster chemistry and C-C coupling mechanism for CO2 reduction on ASNCs and develops a feasible strategy for photoreduction CO2 to C2 fuels or industrial feedstocks.
Collapse
Affiliation(s)
- Yangyang Yu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313000, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Ping Yan
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Shengyao Wang
- College of Science, Huazhong Agricultural University, Wuhan430070, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou313000, China
| |
Collapse
|
27
|
Mishra RP, Mrinalini M, Kumar N, Bastia S, Chaudhary YS. Efficient Photocatalytic CO 2 Reduction with High Selectivity for Ethanol by Synergistically Coupled MXene-Ceria and the Charge Carrier Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14189-14203. [PMID: 37776277 DOI: 10.1021/acs.langmuir.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
The primary factors that govern the selectivity and efficacy of CO2 photoreduction are the degree of activation of CO2 on the active surface sites of photocatalysts and charge separation/transfer kinetics. In this context, the rational synthesis of heterostructured MXene-coupled CeO2-based photocatalysts with different loading concentrations of Ti3C2MXene via a one-step hydrothermal approach has been undertaken. These photocatalysts exhibit a shift in X-ray diffraction peaks to higher 2θ values and changes in stretching vibrations of 5 wt % Ti3C2MXene/CeO2(5-TC/Ce) that indicate interaction between Ti3C2MXene and CeO2. Moreover, XPS analysis confirms the presence of the Ce3+/Ce4+ states. A sharp band at 2335 cm-1 observed during the CO2 photoreduction process corresponds to bidentate b-CO32-, which facilitates the adsorption of CO2 at the surface of the catalyst as revealed by the TPD analysis. Furthermore, the Schryvers test and NMR analysis were undertaken to confirm the formaldehyde intermediate formation during CO2 photoreduction to C2H5OH. The decrease in emission intensity, reduced lifetimes (2.68 ns), and lower interfacial resistance, as revealed by PL, TR-PL, and EIS analysis, imply an efficient charge separation and charge transfer in the case of the Ti3C2MXene/CeO2 heterojunction. The decrease in the intensity of peaks in the EPR spectrum in the case of 5-TC/Ce further confirms efficient charge transfer kinetics across the interface. The optimized 5-TC/Ce shows CO2 reduction with a drastically enhanced yield of ethanol on the order of 6127 μmol g-1 at 5 h with 98% selectivity and 7.54% apparent quantum efficiency, which is 6-fold higher than that of ethanol produced by bare CeO2. Herein, CeO2 that acts as a redox couple (Ce3+/Ce4+) when coupled with MXene having a metallic nature that reduces the electron transfer resistance is in unison, enabling an enhanced mobilization of electrons. Thereby, the synergistic coupling of Ti3C2MXene with CeO2 leads to an efficient photoreduction of CO2 under visible light illumination.
Collapse
Affiliation(s)
- Rajashree P Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Madoori Mrinalini
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
| | - Niharika Kumar
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sweta Bastia
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Yatendra S Chaudhary
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
28
|
Qu JX, Fu YM, Meng X, He YO, Li CJ, Sun HX, Yang RG, Wang HN, Su ZM. Construction of Zr-Metal-Organic Frameworks-Based Composite Materials toward Anhydrous Proton Conduction and Photocatalytic CO 2 Reduction. Inorg Chem 2023; 62:15992-15999. [PMID: 37735108 DOI: 10.1021/acs.inorgchem.3c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Metal-organic frameworks constructed from Zr usually possess excellent chemical and physical stability. Therefore, they have become attractive platforms in various fields. In this work, two families of hybrid materials based on ZrSQU have been designed and synthesized, named Im@ZrSQU and Cu@ZrSQU, respectively. Im@ZrSQU was prepared through the impregnation method and employed for proton conduction. Im@ZrSQU exhibited terrific proton conduction performance in an anhydrous environment, with the highest proton conduction value of 3.6 × 10-2 S cm-1 at 110 °C. In addition, Cu@ZrSQU was synthesized via the photoinduction method for the photoreduction of CO2, which successfully promoted the conversion of CO2 into CO and achieved the CO generation rate of up to 12.4 μmol g-1 h-1. The photocatalytic performance of Cu@ZrSQU is derived from the synergistic effect of Cu NPs and ZrSQU. Based on an in-depth study and discussion toward ZrSQU, we provide a versatile platform with applications in the field of proton conduction and photocatalysis, which will guide researchers in their further studies.
Collapse
Affiliation(s)
- Jian-Xin Qu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yu-Ou He
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Cheng-Jie Li
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Rui-Gang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
29
|
Li G, Li P, Ge Z, Yan D, Sun W, Sun Y, Zhou X. Cu-doped mesoporous SnO 2 nanoparticles with rich grain boundaries and oxygen vacancies for photocatalytic CO 2-to-CO conversion. Phys Chem Chem Phys 2023; 25:23306-23313. [PMID: 37609832 DOI: 10.1039/d3cp02160b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Photocatalytic conversion of carbon dioxide into fuels provides an effective approach to realize carbon resource utilization. However, the photocatalytic efficiency is still relatively low due to the recombination of photogenerated charges. Herein, we have designed Cu-doped SnO2 nanoparticles (Cu-SnO2) using a glucose-involved hydrothermal crystallization method for the photocatalytic reduction of CO2. The rich oxygen vacancies facilitated the separation and transfer of photogenerated charges, and the confined effect of the typical mesoporous structure promoted the adsorption of CO2, especially a high density of grain boundaries (GBs) and the doping of atomic Cu would introduce new active sites to activate CO2 molecules. This elaborately designed catalyst exhibited super and stable photocatalytic conversion activity of CO2-into-CO, with a CO optimal yield of 107 µmol g-1 in 4 h, which was 2.75 times that over pure SnO2. In situ Raman results indicated that the CO2 reduction reaction followed a *COOH pathway on Cu-SnO2. This work provides implications for the construction of a catalyst with rich defects in the field of energy and environmental catalysis.
Collapse
Affiliation(s)
- Guohui Li
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158 Haikou, China.
- School of Science, Qiongtai Normal University, 571127 Haikou, China
| | - Pengyu Li
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158 Haikou, China.
| | - Zhi Ge
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158 Haikou, China.
| | - Dawei Yan
- Shanghai New Tobacco Product Research Institute Co. LTD, Shanghai 201315, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158 Haikou, China.
| | - Yuanyuan Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, 571158 Haikou, China.
| | - Xiaoxia Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
30
|
Liu P, Dörfler A, Tabrizi AA, Skokan L, Rawach D, Wang P, Peng Z, Zhang J, Ruediger AP, Claverie JP. In Operando Photoswitching of Cu Oxidation States in Cu-Based Plasmonic Heterogeneous Photocatalysis for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257196 DOI: 10.1021/acsami.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metal nanoparticles (NP) supported on TiO2 are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO2 decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO2 nanobelts (NBs) are engaged in the photocatalytic generation of H2 from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu+/Cu2+ ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening. By nanoencapsulating the CuOx (Cu/CuO/Cu2O) NPs by a few layers of carbon supported on TiO2 (TC@C), Ostwald ripening can be suppressed. Simultaneously, the resulting CuOx@C NPs are photoreduced under light illumination to generate Cu@C NPs. This photoswitching strategy allows the preparation of a Cu plasmonic photocatalyst with enhanced activity for H2 production. Remarkably, the photocatalyst is even active when illuminated with visible light, indicating a clear plasmonic enhancement of photocatalytic activity from the surface plasmonic resonance (SPR) effect of Cu NPs. Three-dimensional electromagnetic wave-frequency domain (3D-EWFD) simulations were conducted to confirm the SPR enhancement. This advance bodes for the development of scalable multifunctional Cu-based plasmonic photocatalysts for solar energy transfer.
Collapse
Affiliation(s)
- Peipei Liu
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Andreas Dörfler
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Afsaneh Asgariyan Tabrizi
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Lilian Skokan
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Diane Rawach
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Peikui Wang
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| | - Zhiyuan Peng
- Department of Chemistry and Biochemistry, Université du Québec à Montréal, CP8888, Montréal QC H3C 3P8, Canada
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Andreas Peter Ruediger
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Jerome P Claverie
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| |
Collapse
|
31
|
Yuan S, Bai P, He Y, Chen J, Zhao Y, Li Y. Black TiO2-supported copper nanoparticles for efficient photocatalytic N-formylation of N-methylaniline with CO2. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
32
|
Geng Z, Bo T, Zhou W, Tan X, Ye J, Yu T. Deciphering the Superior Electronic Transmission Induced by the Li-N Ligand Pairs Boosted Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206673. [PMID: 36703518 DOI: 10.1002/smll.202206673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Atomic level decoration route is designated as one of the attractive methods to regulate both the charge density and band structure of photocatalysts. Moreover, to enable more efficient separation and transport of photocarriers, the construction of novel active sites can enhance both the reactivity and electrical conductivity of the crystal. Herein, an Li-N ligand is constructed via co-doping lithium and nitrogen atoms into ZnIn2 S4 lattice, which achieves a promoted photocatalytic H2 evolution at 9737 µmol g-1 h-1 . The existence of Li-N ligand pairs and the behaviors of photocarriers on L40 N5 ZIS are determined systematically, which also provides a unique insight into the mechanism of the improved photocarrier migration rate. With the introduction of Li-N dual sites, the vacancy form of ZnIn2 S4 has changed and the photocatalytic stability is significantly improved. Interestingly, the change of charge density around Li-N ligand in ZnIn2 S4 is determined by theoretical simulations, as well as the regulated energy barrier of photocatalytic water splitting caused by Li-N dual sites, which act as both adsorption site for H2 O and stronger reactive sites. This work helps to extend the understanding of ZnIn2 S4 and offers a fresh perspective for the creation of a Li-N co-doped photocatalyst.
Collapse
Affiliation(s)
- Zikang Geng
- School of Chemical Engineering and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Tingting Bo
- School of Science, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Wei Zhou
- School of Science, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| | - Xin Tan
- School of Environmental Science and Engineering, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
- School of Science, Tibet University, No. 36, Jiangsu Road, Lhasa, 850000, P. R. China
| | - Jinhua Ye
- International Center for Materials Nano architectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0047, Japan
| | - Tao Yu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
33
|
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced . First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, No. 2588 Changyang Road, Shanghai, 200090, China
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
34
|
Qi X, Gan J, Zhao Z, Li N, Chen Y, Jin T. Chitosan Sponge/Cu-WO 3-x Composite for Photodynamic Therapy of Wound Infection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2631-2640. [PMID: 36749165 DOI: 10.1021/acs.langmuir.2c03071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
One of the potential treatments for bacterial wound infections is photodynamic therapy. WO3-x semiconductor materials can generate reactive oxygen species when exposed to light, which can inactivate bacteria. In this work, we improved their photocatalytic performance by doping WO3-x with Cu. The wound dressing was prepared by loading Cu-WO3-x into a highly biocompatible chitosan sponge. The composite sponge dressing showed significant inactivation of Escherichia coli and Staphylococcus aureus, and in vitro toxicity assays on L929 cells demonstrated the biosafety of the dressing. Through in vivo wound healing trials, composite sponge dressings have been shown to accelerate wound healing, and this composite chitosan sponge can be possibly used for photodynamic therapy of bacterial wound infections.
Collapse
Affiliation(s)
- Xingrui Qi
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
| | - Jiamin Gan
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
| | - Zhidong Zhao
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
- Guizhou Police College, Guizhou 550005, China
| | - Nian Li
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
| | - Yufang Chen
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
- CAS Testing Technical Services (Guangzhou) Co. Ltd., 510650 Guangzhou, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, P. R. China
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Tao Jin
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, 510650 Guangzhou, P. R. China
- University of Chinese Academy of Sciences, 100000 Beijing, P. R. China
- CAS Testing Technical Services (Guangzhou) Co. Ltd., 510650 Guangzhou, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Chinese Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou 510650, P. R. China
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| |
Collapse
|
35
|
Chen Z, Zhu X, Xiong J, Wen Z, Cheng G. A p-n Junction by Coupling Amine-Enriched Brookite-TiO 2 Nanorods with Cu xS Nanoparticles for Improved Photocatalytic CO 2 Reduction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:960. [PMID: 36769965 PMCID: PMC9918986 DOI: 10.3390/ma16030960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Photocatalytic CO2 reduction is a promising technology for reaching the aim of "carbon peaking and carbon neutrality", and it is crucial to design efficient photocatalysts with a rational surface and interface tailoring. Considering that amine modification on the surface of the photocatalyst could offer a favorable impact on the adsorption and activation of CO2, in this work, amine-modified brookite TiO2 nanorods (NH2-B-TiO2) coupled with CuxS (NH2-B-TiO2-CuxS) were effectively fabricated via a facile refluxing method. The formation of a p-n junction at the interface between the NH2-B-TiO2 and the CuxS could facilitate the separation and transfer of photogenerated carriers. Consequently, under light irradiation for 4 h, when the CuxS content is 16%, the maximum performance for conversion of CO2 to CH4 reaches at a rate of 3.34 μmol g-1 h-1 in the NH2-B-TiO2-CuxS composite, which is approximately 4 times greater than that of pure NH2-B-TiO2. It is hoped that this work could deliver an approach to construct an amine-enriched p-n junction for efficient CO2 photoreduction.
Collapse
Affiliation(s)
- Zhangjing Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Xueteng Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zhipan Wen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, China
| |
Collapse
|
36
|
Integrating Au@TiOx and Co sites in a tandem photocatalyst for efficient C-C coupling synthesis of ethane. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Boosting photocatalytic hydrogen evolution of β-keto-enamine-based covalent organic frameworks by introducing electron-donating functional substituents. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
38
|
Yang G, Xiong J, Lu M, Wang W, Li W, Wen Z, Li S, Li W, Chen R, Cheng G. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO 2, BaTiO 3, and SrTiO 3) nanoassembly for enhanced CO 2 photoreduction through surface/interface synergy. J Colloid Interface Sci 2022; 624:348-361. [PMID: 35660903 DOI: 10.1016/j.jcis.2022.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Photocatalytic CO2 reduction into valuable fuel and chemical production has been regarded as a prospective strategy for tackling with the issues of the increasing of greenhouse gases and shortage of sustainable energy. A composite photocatalysis system employing a semiconductor enriched with oxygen vacancy and coupled with metallic cocatalyst can facilitate charge separation and transfer electrons. In this work, mesoporous TiO2 and titanium-based perovskite oxides (BaTiO3 and SrTiO3) nanoparticle assembly incorporated with abundant oxygen vacancy and copper particles have been successfully synthesized for CO2 photoreduction. As an example, the TiO2 decorated with different amounts of Cu particles has an impact on photocatalytic CO2 reduction into CH4 and CO. Particularly, the optimal TiO2/Cu-0.1 exhibits nearly 13.5 times higher CH4 yield (22.27 μmol g-1 h-1) than that of pristine TiO2 (1.65 μmol g-1 h-1). The as-obtained BaTiO3/Cu-0.1 and SrTiO3/Cu-0.1 also show enhanced CH4 yields towards photocatalytic CO2 reduction compared with pristine ones. Based on the temperature programmed desorption (TPD) and photo/electrochemical measurements, the co-embedding of Cu particles and abundant oxygen vacancy into the titanium-based oxides could promote CO2 adsorption capacity as well as separation and transfer of photoinduced electron-hole pairs, and finally result in efficient CO2 photoreduction upon the TiO2/Cu, SrTiO3/Cu, and BaTiO3/Cu composites.
Collapse
Affiliation(s)
- Ge Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Jinyan Xiong
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| | - Mengjie Lu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Weiming Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Zhipan Wen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Shaozhong Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China
| | - Weijie Li
- Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rong Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Gang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, 1# Meicheng Road, Huaian 223003, PR China.
| |
Collapse
|
39
|
Tian T, Xu J, Xiong Y, Ramanan N, Ryan M, Xie F, Petit C. Cu-functionalised porous boron nitride derived from a metal-organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:20580-20592. [PMID: 36324859 PMCID: PMC9531768 DOI: 10.1039/d2ta05515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal-organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron-hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.
Collapse
Affiliation(s)
- Tian Tian
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Jiamin Xu
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Ying Xiong
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco Madrid 28049 Spain
| | - Nitya Ramanan
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Mary Ryan
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Fang Xie
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
40
|
Li J, Li K, Du J, Yang H, Song C, Guo X. Impact of transition metal incorporation on the photocatalytic CO2 reduction activity of polymeric carbon nitride. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
41
|
Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
Single-atom catalysts on metal-based supports for solar photoreduction catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Murillo-Sierra J, Hernández-Ramírez A, Pino-Sandoval D, Ruiz-Ruiz E, Martínez-Hernández A. Promoting multielectron CO2 reduction using a direct Z-scheme WO3/ZnS photocatalyst. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Jia Q, Zhou J, Gong L, Wang L, Ma X, Zhao Y. Z-scheme heterostructure of Cu2O/Pt/NH2-MIL-125(Ti) for photocatalytic CO2 reduction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Zhu K, Zhu Q, Jiang M, Zhang Y, Shao Z, Geng Z, Wang X, Zeng H, Wu X, Zhang W, Huang K, Feng S. Modulating Ti
t
2g
Orbital Occupancy in a Cu/TiO
2
Composite for Selective Photocatalytic CO
2
Reduction to CO. Angew Chem Int Ed Engl 2022; 61:e202207600. [DOI: 10.1002/anie.202207600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kainan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Qian Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Mengpei Jiang
- Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua RD Shenyang 110016 China
| | - Yaowen Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiyu Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhibin Geng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering Waterloo Institute for Nanotechnology Materials Interface Foundry University of Waterloo Waterloo Ontario N2L3G1 Canada
| | - Hui Zeng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Xiaofeng Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Wei Zhang
- Electron Microscopy Center and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials Jilin University Changchun 130012 China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin Provincial International Cooperation Key Laboratory of Advanced Inorganic Solid Functional Materials College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
46
|
Yang J, Zhang R, Zhao H, Qi H, Li J, Li J, Zhou X, Wang A, Fan K, Yan X, Zhang T. Bioinspired copper single-atom nanozyme as a superoxide dismutase-like antioxidant for sepsis treatment. EXPLORATION (BEIJING, CHINA) 2022; 2:20210267. [PMID: 37325607 PMCID: PMC10191017 DOI: 10.1002/exp.20210267] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Sepsis is a systemic inflammatory response syndrome with high morbidity and mortality mediated by infection-caused oxidative stress. Early antioxidant intervention by removing excessively produced reactive oxygen and nitrogen species (RONS) is beneficial to the prevention and treatment of sepsis. However, traditional antioxidants have failed to improve patient outcomes due to insufficient activity and sustainability. Herein, by mimicking the electronic and structural characteristics of natural Cu-only superoxide dismutase (SOD5), a single-atom nanozyme (SAzyme) featuring coordinately unsaturated and atomically dispersed Cu-N4 site was synthesized for effective sepsis treatment. The de novo-designed Cu-SAzyme exhibits a superior SOD-like activity to efficiently eliminate O2 •-, which is the source of multiple RONS, thus blocking the free radical chain reaction and subsequent inflammatory response in the early stage of sepsis. Moreover, the Cu-SAzyme effectively harnessed systemic inflammation and multi-organ injuries in sepsis animal models. These findings indicate that the developed Cu-SAzyme possesses great potential as therapeutic nanomedicines for the treatment of sepsis.
Collapse
Affiliation(s)
- Ji Yang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hanqing Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Haifeng Qi
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Jingyun Li
- Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Jian‐Feng Li
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
| | - Xinyao Zhou
- School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aiqin Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tao Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- CAS Key Laboratory of Science and Technology on Applied CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| |
Collapse
|
47
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
48
|
Zhang AA, Si D, Huang H, Xie L, Fang ZB, Liu TF, Cao R. Partial Metalation of Porphyrin Moieties in Hydrogen-Bonded Organic Frameworks Provides Enhanced CO 2 Photoreduction Activity. Angew Chem Int Ed Engl 2022; 61:e202203955. [PMID: 35441462 DOI: 10.1002/anie.202203955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 01/09/2023]
Abstract
In natural photosynthesis, the architecture of multiproteins integrates more chromophores than redox centers and simultaneously creates a well-controlled environment around the active site. Herein, we demonstrate that these features can be emulated in a prototype hydrogen-bonded organic framework (HOF) through simply varying the proportion of metalated porphyrin in the structure. Further studies demonstrate that changing the metalloporphyrin content not only realizes a fine tuning of the photosensitizer/catalyst ratio, but also alters the microenvironment surrounding the active site and the charge separation efficiency. As a result, the obtained material achieves the challenging overall CO2 reduction with a high HCOOH production rate (29.8 μmol g-1 h-1 , scavenger free), standing out from existing competitors. This work unveils that the degree of metalation is vital to the catalytic activity of the porphryinic framework, presenting as a new strategy to optimize the performance of heterogeneous catalysts.
Collapse
Affiliation(s)
- An-An Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Duanhui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Haibo Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Bin Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
49
|
Surface engineering improving selective hydrogenation of p-chloronitrobenzene over AuPt alloy/SnNb2O6 ultrathin nanosheets under visible light. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
Affiliation(s)
- Chaitanya B Hiragond
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Niket S Powar
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Junho Lee
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Su-Il In
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|