1
|
Yang Z, Zhou Y, Jiang Y, Zhao P, Meng X. Reconsideration of the role of hydrogen peroxide in peroxymonocarbonate-based oxidation system for pollutant control. WATER RESEARCH 2024; 268:122750. [PMID: 39522127 DOI: 10.1016/j.watres.2024.122750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Advanced oxidation processes that utilize peroxymonocarbonate (HCO4-), generated in-situ through the reaction of HCO3- and H2O2, are employed for the removal of pollutants in water. Nevertheless, the precise role of H2O2 in these processes remains a subject of debate. This study established a HCO4--based oxidation system using NaHCO3 and H2O2 for the degradation of acetaminophen and investigated the activation mechanisms of coexisting oxidants. Under thermal activation conditions, the OO bond in HCO4- (HOOCOO-) was more readily cleaved than the OO bond in the co-existing oxidant H2O2 (HOOH), leading to the generation of reactive oxygen species (ROS). Based on kinetics and ROS evaluation, H2O2 primarily served to form HCO4- rather than converting to ·OH or O2, with HCO4- acting as the primary oxidant for degradation through the formation of CO3·-and ·OH. In this oxidation system, H2O2 utilization efficiency for ·OH production reached 27.34 %, ·OH yield reached 24.15 % and acetaminophen degradation efficiency realized 83 % at 60 °C with 20 mM HCO3- and 20 mM H2O2. The apparent activation energy of acetaminophen degradation and HCO4- activation were calculated as 90.83 kJ mol-1 and 18.81 kJ mol-1, respectively. Moreover, a novel CO2-derived HCO4--based system led to a comparable acetaminophen degradation efficiency of 82 % and a higher kobs of 0.028 min-1. The system optimization and ROS evaluation suggest that high concentration of H2O2 inhibited the degradation and quenched CO3·- and ·OH to yield ·O2- and 1O2. Furthermore, EPR analysis and quenching experiments indicate that CO3·- was mainly responsible for acetaminophen degradation. This work provides fundamental understanding of the HCO4--based oxidation system.
Collapse
Affiliation(s)
- Zihan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqian Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqing Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xu Meng
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
2
|
Xia Q, Liu X, Zhou J, Khan A, Zhao S, Li X, Xu A. Activation of H 2O 2-HCO 3- by Ca 2Co 2O 5 for pollutant degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48450-48459. [PMID: 39031318 DOI: 10.1007/s11356-024-34398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
The bicarbonate-activated hydrogen peroxide (BAP) system is widely studied for organic pollutant degradation in wastewater treatment. Ca2Co2O5, a heterogeneous catalyst containing multivalent cobalt including Co(II) and Co(III), was herein investigated as a BAP activator, and Acid Orange 7 (AO7) was used as a model pollutant. Ca2Co2O5 exhibited good activation performance. The degradation rate and the initial rate constant of the Ca2Co2O5-activated BAP system were 5.4 and 11.2 times as high as the BAP system, respectively. The removal rate of AO7 reached 90.9% in 30 min under optimal conditions (AO7 20 mg/L, Ca2Co2O5 0.2 g/L, H2O2 1 mM, NaHCO3 5 mM, pH 8.5, 25℃). The Ca2Co2O5 catalyst exhibited good stability and recyclability, retaining 85% of AO7 removal rate in the fifth run. Compared to the BAP system, a lower dosage of H2O2 was required and a higher initial concentration of pollutants allowed for effective degradation in the Ca2Co2O5-BAP system. X-ray photoelectron spectroscopy was used to analyze the catalytic mechanism. The analysis showed that the good catalytic performance of Ca2Co2O5 attributes to its high proportion of oxygen vacancies and Co(III) species, and the presence of Ca. The active species O2•-, •OH, and 1O2 are responsible for the degradation, as indicated by the quenching experiments. The degradation mechanism of AO7 was speculated based on UV-Vis spectral analysis and the identification of degradation intermediates. The azo form, naphthalene and benzoic rings in the AO7 structure are destroyed in the decomposition. This research provides a feasible approach to designing effective and reusable BAP activators for pollutant degradation in wastewater treatment.
Collapse
Affiliation(s)
- Qianna Xia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Jiao Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
3
|
Park EJ, Lee KM, Kim T, Lee D, Kim MS, Lee C. Trivalent Copper Ion-Mediated Dual Oxidation in the Copper-Catalyzed Fenton-Like System in the Presence of Histidine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10852-10862. [PMID: 38843408 DOI: 10.1021/acs.est.4c03689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The Cu(II)/H2O2 system is recognized for its potential to degrade recalcitrant organic contaminants and inactivate microorganisms in wastewater. We investigated its unique dual oxidation strategy involving the selective oxidation of copper-complexing ligands and enhanced oxidation of nonchelated organic compounds. L-Histidine (His) and benzoic acid (BA) served as model compounds for basic biomolecular ligands and recalcitrant organic contaminants, respectively. In the presence of both His and BA, the Cu(II)/H2O2 system rapidly degraded His complexed with copper ions within 30 s; however, BA degraded gradually with a 2.3-fold efficiency compared with that in the absence of His. The primary oxidant responsible was the trivalent copper ion [Cu(III)], not hydroxyl radical (•OH), as evidenced by •OH scavenging, hydroxylated BA isomer comparison with UV/H2O2 (a •OH generating system), electron paramagnetic resonance, and colorimetric Cu(III) detection via periodate complexation. Cu(III) selectively oxidized His owing to its strong chelation with copper ions, even in the presence of excess tert-butyl alcohol. This selectivity extended to other copper-complexing ligands, including L-asparagine and L-aspartic acid. The presence of His facilitated H2O2-mediated Cu(II) reduction and increased Cu(III) production, thereby enhancing the degradation of BA and pharmaceuticals. Thus, the Cu(II)/H2O2 system is a promising option for dual-target oxidation in diverse applications.
Collapse
Affiliation(s)
- Erwin Jongwoo Park
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Myeong Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Taewan Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghyun Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Sik Kim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
4
|
Liu X, Xia Q, Zhou J, Li B, Zhao S, Chen L, Khan A, Li X, Xu A. Morphology-dependent activation of hydrogen peroxide with Cu 2O for tetracycline hydrochloride degradation in bicarbonate aqueous solution. J Environ Sci (China) 2024; 137:567-579. [PMID: 37980040 DOI: 10.1016/j.jes.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 11/20/2023]
Abstract
The design of efficient heterogeneous catalysts in bicarbonate-activated hydrogen peroxide systems (BAP) is a hot topic in wastewater treatment. In this work, Cu2O nanoparticles with different morphologies including cubic shape (c-Cu2O), octahedron shape (o-Cu2O) and spherical shape (s-Cu2O), were applied in BAP for the first time to degrade tetracycline hydrochloride (TC). Compared with Cu2+ ions and CuO, TC degradation was boosted in the presence of Cu2O in the BAP system, with the degradation rate following the order c-Cu2O > o-Cu2O > s-Cu2O. The morphology-dependent effects could be linearly correlated with the ratio of surface oxygen species (OS), but not with the surface area or Cu(I) ratio. The c-Cu2O catalyst with exposure of (100) facets contained 76.6% OS as the active site for H2O2 adsorption and activation, while the value was much lower for o-Cu2O and s-Cu2O with dominant (111) facets. The presence of HCO3- enhanced the interactions among Cu2O, H2O2 and TC, leading to facile oxidation of Cu(I) to Cu(II) by H2O2, and the formation of various reactive species such as hydroxyl radicals and Cu(III) contributed to TC degradation. This work provides a new method for enhancing H2O2 activation with heterogeneous catalysts by crystal facet engineering.
Collapse
Affiliation(s)
- Xiuying Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China
| | - Qianna Xia
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiao Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Bowen Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Long Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
5
|
Letwin NV, Gillespie AW, Ijzerman MM, Kudla YM, Csajaghy JD, Prosser RS. Characterizing the Microplastic Content of Biosolids in Southern Ontario, Canada. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38116985 DOI: 10.1002/etc.5813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
The application of biosolids to agricultural land has been identified as a major pathway of microplastic (MP) pollution to the environment. Very little research, however, has been done on the MP content of biosolids within Canada. Fifteen biosolid samples from different treatment processes (liquid, dewatered, pelletized, and alkali-stabilized) were collected from 11 sources across southern Ontario to quantify and characterize the MP load within them. All samples exhibited MP concentrations ranging from 188 200 (±24 161) to 512 000 (±28 571) MPs/kg dry weight and from 4122 (±231) to 453 746 (±38 194) MPs/kg wet weight. Field amendment of these biosolids can introduce up to 3.73 × 106 to 4.12 × 108 MP/ha of agricultural soil. There was no significant difference in the MP concentrations of liquid, dewatered, and pelletized samples; but a reduction in MP content was observed in alkali-stabilized biosolids. Fragments composed 57.6% of the MPs identified, while 36.7% were fibers. In addition, MPs showed an exponential increase in abundance with decreasing size. Characterization of MPs confirmed that polyester was the most abundant, while polyethylene, polypropylene, polyamide, polyacrylamide, and polyurethane were present across the majority of biosolid samples. The results of the present study provide an estimate of the potential extent of MP contamination to agricultural fields through the amendment of biosolids. Environ Toxicol Chem 2024;00:1-14. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas V Letwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Adam W Gillespie
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Yaryna M Kudla
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Joel D Csajaghy
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Visible light degradation of ibuprofen using PANI coated WO3@TiO2 photocatalyst. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Teng C, Zhou K, Liao L, Zhang X, Zhao K, Korvayan JW, Peng C, Chen W. Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156462. [PMID: 35660580 DOI: 10.1016/j.scitotenv.2022.156462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Fenton oxidation process is effective in organic pollutant degradation during wastewater treatment, but subject to narrow pH range and secondary pollution. In this work, an application-promising alternative, i.e., coordination-driven Cu-based Fenton-like process, was proposed for wastewater treatment using humic-acid (HA) as the target contaminant. The results showed that the removal of HA through Cu-based Fenton-like process can reach 70% under the condition of pH 8.0, 146.8 mmol/L H2O2, 146.8 μmol/L Cu (II), 50 °C, and 4 h. Addition of Cl- could significantly accelerate the reaction process through coordination with copper ions, while HCO3- and P2O74- exhibited opposite effects. Increasing temperature is also beneficial for advancing the reaction, and the removal of HA followed pseudo-first-order kinetics. Fluorescence spectroscopic analyses showed that the removal of HA experienced a two-stage process, i.e., oxidation followed by degradation, which is dependent of the presence of coordination ions. Parallel factor analysis was used to characterize the change of fluorescence components. Three fluorescent components, i.e., terrestrial humic-like, UV/visible terrestrial humic-like and protein-like component were identified, all of which were effectively removed. This study deepens our understanding on Cu-based Fenton-like process, and may provide a promising technology for refractory wastewater treatment.
Collapse
Affiliation(s)
- Chunying Teng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kanggen Zhou
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lijia Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xuekai Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Kunqi Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | | | - Changhong Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
8
|
Dong C, Yang Y, Hu X, Cho Y, Jang G, Ao Y, Wang L, Shen J, Park JH, Zhang K. Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H 2O 2 conversion efficiency of 1.46. Nat Commun 2022; 13:4982. [PMID: 36008378 PMCID: PMC9411154 DOI: 10.1038/s41467-022-32410-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Millions of families around the world remain vulnerable to water scarcity and have no access to drinking water. Advanced oxidation processes (AOPs) are an effective way towards water purification with qualified reactive oxygen species (ROSs) while are impeded by the high-cost and tedious process in either input of consumable reagent, production of ROSs, and the pre-treatment of supporting electrolyte. Herein, we couple solar light-assisted H2O2 production from water and photo-Fenton-like reactions into a self-cyclable system by using an artificial leaf, achieving an unassisted H2O2 production rate of 0.77 μmol/(min·cm2) under 1 Sun AM 1.5 illumination. Furthermore, a large (70 cm2) artificial leaf was used for an unassisted solar-driven bicarbonate-activated hydrogen peroxide (BAP) system with recycled catalysts for real-time wastewater purification with requirements for only water, oxygen and sunlight. This demonstration highlights the feasibility and scalability of photoelectrochemical technology for decentralized environmental governance applications from laboratory benchtops to industry. Continuous generation of reactive oxygen species is desirable in the advanced oxidation process. Here, the authors report a self-cycled photoFenton-like with a scalable artificial leaf for production of H2O2 from water with solar-to-H2O2 efficiency of 1.46%.
Collapse
Affiliation(s)
- Chaoran Dong
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yilong Yang
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Xuemin Hu
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Yoonjun Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Gyuyong Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, China.
| | - Luyang Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, P. R. China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Kan Zhang
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China.
| |
Collapse
|
9
|
Cai H, Ma Y, Li J, Jin Y, Zhu P, Chen M. Norfloxacin Degradation by Persulfate Activated with Cu 2O@WO 3 Composites: Efficiency, Stability, Mechanism, and Degradation Pathway. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haitao Cai
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yujing Ma
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Jun Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Yang Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Pan Zhu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| | - Ming Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
- Engineering Research Center of Comprehensive Utilization and Clean Processing of Phosphorus Resources, Ministry of Education, Chengdu 610065, Sichuan, China
| |
Collapse
|
10
|
Sun F, Chen T, Chu Z, Zhai P, Liu H, Wang Q, Zou X, Chen D. The synergistic effect of calcite and Cu 2+ on the degradation of sulfadiazine via PDS activation: A role of Cu(Ⅲ). WATER RESEARCH 2022; 219:118529. [PMID: 35569277 DOI: 10.1016/j.watres.2022.118529] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
A system of Cu2+/calcite/PDS was constructed to degrade sulfadiazine (SDZ). Different from the traditional Cu-mediated activation, a low concentration of Cu2+ that met drinking water standards (≤ 1 mg/L) transformed into Cu(Ⅱ) solid in the presence of calcite, and then enhanced the degradation of SDZ via PDS activation over a pH range from 3 to 9. According to scavenger and chemical probe experiments, Cu(Ⅲ), rather than radicals (hydroxyl radicals and sulfate radicals) and singlet oxygen, was the predominant reactive species, which was responsible for the degradation of SDZ. Based on the results of XRD, ATR-FTIR, and CV curves et al., CuCO3 was the main complex with high reactivity for PDS activation to form Cu(Ⅲ). Moreover, detailed degradation pathways of sulfadiazine were proposed according to the UPLC-ESI-MS/MS and their toxicity was predicted by ECOSAR. Besides, the real water matrix would not seriously affect the degradation of SDZ in the Cu2+/calcite/PDS system. In summary, this study reveals a new insight into the synergistic effect of Cu2+ and calcite on the SDZ degradation, and promotes an understanding of the environmental benefits of natural calcite.
Collapse
Affiliation(s)
- Fuwei Sun
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ziyang Chu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Peixun Zhai
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haibo Liu
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Qiang Wang
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dong Chen
- Key Laboratory of Nano-Minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
11
|
Zhang L, Deng J, Ou J, Zhou G, Fu Y, Liu Y. Boric acid enhanced degradation of organic pollutant by Cu(II)/peroxymonosulfate: Performance and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Fiorito S, Epifano F, Palumbo L, Collevecchio C, Bastianini M, Cardellini F, Spogli R, Genovese S. Efficient removal of tartrazine from aqueous solutions by solid sorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
El-khalafy S, El-din Etaiw S, Hassanein M. Catalytic activity of CuI/CuII cyanide based phenanthroline- bicarbonate system for enhancing aerobic oxidation of 2,6-di-tert-butylphenol. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Liu F, Shah DS, Csetenyi L, Gadd GM. Application of fungal copper carbonate nanoparticles as environmental catalysts: organic dye degradation and chromate removal. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34882532 PMCID: PMC8745000 DOI: 10.1099/mic.0.001116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biomineralization is a ubiquitous process in organisms to produce biominerals, and a wide range of metallic nanoscale minerals can be produced as a consequence of the interactions of micro-organisms with metals and minerals. Copper-bearing nanoparticles produced by biomineralization mechanisms have a variety of applications due to their remarkable catalytic efficiency, antibacterial properties and low production cost. In this study, we demonstrate the biotechnological potential of copper carbonate nanoparticles (CuNPs) synthesized using a carbonate-enriched biomass-free ureolytic fungal spent culture supernatant. The efficiency of the CuNPs in pollutant remediation was investigated using a dye (methyl red) and a toxic metal oxyanion, chromate Cr(VI). The biogenic CuNPs exhibited excellent catalytic properties in a Fenton-like reaction to degrade methyl red, and efficiently removed Cr(VI) from solution due to both adsorption and reduction of Cr(VI). X-ray photoelectron spectroscopy (XPS) identified the oxidation of reducing Cu species of the CuNPs during the reaction with Cr(VI). This work shows that urease-positive fungi can play an important role not only in the biorecovery of metals through the production of insoluble nanoscale carbonates, but also provides novel and simple strategies for the preparation of sustainable nanomineral products with catalytic properties applicable to the bioremediation of organic and metallic pollutants, solely and in mixtures.
Collapse
Affiliation(s)
- Feixue Liu
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Dinesh Singh Shah
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering, University of Dundee, Dundee, UK
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, UK.,State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, PR China
| |
Collapse
|
15
|
Zhang L, Fu Y, Wang Z, Zhou G, Zhou R, Liu Y. Removal of diclofenac in water using peracetic acid activated by zero valent copper. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wang Z, Fu Y, Peng Y, Wang S, Liu Y. HCO3–/CO32– enhanced degradation of diclofenac by Cu(Ⅱ)-activated peracetic acid: Efficiency and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119434] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Liu X, Xu P, Fu Q, Li R, He C, Yao W, Wang L, Xie S, Xie Z, Ma J, He Q, Crittenden JC. Strong degradation of orange II by activation of peroxymonosulfate using combination of ferrous ion and zero-valent copper. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Zhang Y, Lou J, Wu L, Nie M, Yan C, Ding M, Wang P, Zhang H. Minute Cu 2+ coupling with HCO 3- for efficient degradation of acetaminophen via H 2O 2 activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112422. [PMID: 34144252 DOI: 10.1016/j.ecoenv.2021.112422] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
Homogeneous Cu2+-mediated activation of H2O2 has been widely applied for the removal of organic contaminants, but fairly high dosage of Cu2+ is generally required and may cause secondary pollution. In the present study, minute Cu2+ (2.5 μM) catalyzed H2O2 exhibited excellent efficiency in degradation of organic pollutants with the assistant of naturally occurring level HCO3- (1 mM). In a typical case, acetaminophen (ACE) was completely eliminated within 10 min which followed the pseudo-first-order kinetics. Singlet oxygen and superoxide radical rather than traditionally identified hydroxyl radical were the predominant reactive oxygen species (ROS) responsible for ACE degradation. Meanwhile, Cu3+ was deduced through Cu+ and p-hydroxybenzoic acid formation analysis. CuCO3(aq) was the main complex with high reactivity for the activation of H2O2 to form ROS and Cu3+. The removal efficiency of ACE depended on the operating parameters, such as Cu2+, HCO3- and H2O2 dosage, solution initial pH. The presence of Cl-, HPO42-, humic acid were found to retard ACE removal while other anions such as SO42- and NO3- had no obvious effect. ACE exhibited lower degradation efficiency in real water matrices than that in ultra-pure water. Nevertheless, 58-100% of ACE was removed from domestic wastewater, lake water and tap water within 60 min. Moreover, eight intermediate products were identified and the possible degradation pathways of ACE were proposed. Additionally, other typical organic pollutants including bisphenol A, norfloxacin, lomefloxacin hydrochloride and sulfadiazine, exhibited great removal efficiency in the Cu2+/H2O2/HCO3- system.
Collapse
Affiliation(s)
- Yimin Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Jingkun Lou
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Leliang Wu
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; Key Laboratory of Eco-geochemistry, Ministry of Natural Resource, Beijing 100037, China.
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China.
| | - Mingjun Ding
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Peng Wang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Hua Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
19
|
Zhang BT, Kuang L, Teng Y, Fan M, Ma Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J Environ Sci (China) 2021; 105:100-115. [PMID: 34130827 DOI: 10.1016/j.jes.2020.12.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Sodium percarbonate (SPC) and peroxymonocarbonate (PMC) have been widely used in modified Fenton reactions because of their multiple superior features, such as a wide pH range and environmental friendliness. This broad review is intended to provide the fundamental information, status and progress of SPC and PMC based decontamination technologies according to the peer-reviewed papers in the last two decades. Both SPC and PMC can directly decompose various pollutants. The degradation efficiency will be enhanced and the target contaminants will be expanded after the activation of SPC and PMC. The most commonly used catalysts for SPC activation are iron compounds while cobalt compositions are applied to activate PMC in homogenous and heterogeneous catalytical systems. The generation and participation of hydroxyl, superoxide and/or carbonate radicals are involved in the activated SPC and PMC system. The reductive radicals, such as carbon dioxide and hydroxyethyl radicals, can be generated when formic acid or methanol is added in the Fe(II)/SPC system, which can reduce target contaminants. SPC can also be activated by energy, tetraacetylethylenediamine, ozone and buffered alkaline to generate different reactive radicals for pollutant decomposition. The SPC and activated SPC have been assessed for application in-situ chemical oxidation and sludge dewatering treatment. The challenges and prospects of SPC and PMC based decontamination technologies are also addressed in the last section.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Lulu Kuang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, United States.
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
20
|
Perdisulfate-assisted advanced oxidation of 2,4-dichlorophenol by bio-inspired iron encapsulated biochar catalyst. J Colloid Interface Sci 2021; 592:358-370. [PMID: 33677196 DOI: 10.1016/j.jcis.2021.02.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022]
Abstract
To improve advanced oxidation processes (AOPs), bio-inspired iron-encapsulated biochar (bio-inspired Fe⨀BC) catalysts with superior performance were prepared from iron-rich biomass of Iris sibirica L. using a pyrolysis method under anaerobic condition. The obtained compounds were used as catalysts to activate perdisulfate (PDS) and then degradate 2,4-dichlorophenol (2,4-DCP), and synthetic iron-laden biochar (synthetic Fe-BC) was used for comparison. The highest removal rate of 2,4-DCP was 98.35%, with 37.03% of this being distinguished as the contribution of micro-electrolysis, greater than the contribution of adsorption (32.81%) or advanced oxidation (28.51%). The high performance of micro-electrolysis could be attributable to the formation of Fe (Iron, syn) and austenite (CFe15.1) with strong electron carrier at 700 °C. During micro-electrolysis, Fe2+ and electrons were gradually released and then used as essential active components to enhance the AOPs. The slow-releasing Fe2+ (K = 0.0048) also inhibited the overconsumption of PDS (K = -0.00056). Furthermore, the electrons donated from Fe⨀BC-4 were able to activate PDS directly. The electrons were enriched by the porous structure of Fe⨀BC-4, and the formation of the COFe bond in the π-electron system could also accelerate the electron transfer to activate PDS. Similar reactive oxygen species (ROS) were identified during the micro-electrolysis and AOPs, leading to similar degradation pathways. The higher does concentration of O2- generated during micro-electrolysis than during the AOPs also led to a greater dechlorination effect.
Collapse
|
21
|
Baig N, Shetty S, Moustafa MS, Al-Mousawi S, Alameddine B. Selective removal of toxic organic dyes using Trӧger base-containing sulfone copolymers made from a metal-free thiol-yne click reaction followed by oxidation. RSC Adv 2021; 11:21170-21178. [PMID: 35479362 PMCID: PMC9034147 DOI: 10.1039/d1ra03783h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Three copolymers TCP1–3 bearing Trӧger's base (TB) units intercalated with various thioether groups were synthesized using a catalyst-free thiol-yne click reaction. TCP1–3 display excellent solubility in common organic solvents allowing for their structural, and photophysical characterization. The thioether groups in TCP1–3 were selectively oxidized into their respective sulfone derivatives under mild oxidation reaction conditions affording the postmodified copolymers TCP4–6. Investigation of organic dye uptake from water by TCP1–6 proved their efficiency as selective adsorbents removing up to 100% of the cationic dye methylene blue (MEB) when compared to anionic dyes, such as Congo red (CR), methyl orange (MO) and methyl blue (MB). The sulfone-containing copolymers TCP4–6 display superior and faster MEB removal efficiencies with respect to their corresponding synthons TCP1–3. Copolymers TCP1–3 with Trӧger's base units and aryl thioether groups were made via a click reaction. Selective oxidation of the thioethers into sulfone groups afforded TCP4–6 which display up to 100% removal efficiency of methylene blue from water.![]()
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| | | | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait +965 2530 7476.,Functional Materials Group, CAMB, GUST Kuwait
| |
Collapse
|
22
|
Khagar P, Pratap UR, Zodape SP, Wankhade AV. Self‐assembled CoSe
2
Microspheres with Intrinsic Peroxidase Mimicking Activity for Efficient Degradation of Variety of Dyes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Prerna Khagar
- Department of Chemistry Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 India
| | - Umesh R. Pratap
- Department of Chemistry Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 India
| | - Sangesh P. Zodape
- Department of Chemistry Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 India
| | - Atul V. Wankhade
- Department of Chemistry Visvesvaraya National Institute of Technology South Ambazari Road Nagpur 440010 India
| |
Collapse
|
23
|
Moradihamedani P. Recent advances in dye removal from wastewater by membrane technology: a review. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03603-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
25
|
Wang QB, Jing ZY, Hu XM, Lu WX, Wang P. Synthesis, structure, and heterogeneous Fenton reaction of new Cu( ii)-based discrete Cu 2Lx coordination complexes. CrystEngComm 2021. [DOI: 10.1039/d0ce01363c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cu2L4 cage and Cu2L2 macrocycle were obtained and the heterogeneous Fenton reaction experiments showed that they are good photocatalysts in the photocatalytic degradation process of MB with using hydroxyl radicals and high-valence copper ions.
Collapse
Affiliation(s)
- Qi-Bao Wang
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Zi-Yan Jing
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Xiang-Ming Hu
- College of Safety and Environmental Engineering
- Shandong University of Science and Technology
- P. R. China
| | - Wen-Xin Lu
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Peng Wang
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| |
Collapse
|
26
|
Jiang TJ, Xie C, Peng HD, Lei B, Chen QQ, Li G, Luo CW. Oxygen doped graphitic carbon nitride nanosheets for the degradation of organic pollutants by activating hydrogen peroxide in the presence of bicarbonate in the dark. RSC Adv 2020; 11:296-306. [PMID: 35423051 PMCID: PMC8691115 DOI: 10.1039/d0ra07893j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
The development of novel wastewater treatment processes that use heterogeneous catalysts to activate hydrogen peroxide (H2O2) with bicarbonate (HCO3 -) has been a subject of great interest in recent years; however, significant challenges remain, despite research into numerous metal-based catalysts. The work presented herein employed oxygen-doped graphitic carbon nitride (O/g-C3N4) as a non-metal catalyst for activating H2O2 in the presence of HCO3 -, and this method represented the first system capable of removing organic pollutants in the dark, to our knowledge. The catalysts were characterized using several microscopic imaging, spectroscopic, electrochemical, and crystallographic techniques, as well as N2-physorption procedures. Analysis of the results revealed that the O/g-C3N4 catalyst possessed a high specific surface area and many defect sites. Various operational parameters, including the relative amounts of HCO3 -, H2O2, and O/g-C3N4, were systemically investigated. A clear performance enhancement was observed in the degradation of organic contaminants when subjected to the HCO3 --H2O2-O/g-C3N4 system, and this result was ascribed to the synchronous adsorption and chemical oxidation processes. The novel system presented herein represented a new water treatment technology that was effective for removing organic contaminants.
Collapse
Affiliation(s)
- Tian-Jiao Jiang
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Chao Xie
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Huai-De Peng
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Bo Lei
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Qing-Qing Chen
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Gang Li
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
| | - Cai-Wu Luo
- School of Resource Environmental and Safety Engineering, University of South China 421000 China +86-734-8282345
- State Key Laboratory of Safety and Health for Metal Mines, Sinosteel Maanshan General Institute of Mining Research Co., Ltd 243000 China
- Key Laboratory of Clean Energy Material, LongYan University 364012 China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences 100085 China
| |
Collapse
|
27
|
Al-Hetlani E, Amin MO, Bezzu CG, Carta M. Spirobifluorene-based polymers of intrinsic microporosity for the adsorption of methylene blue from wastewater: effect of surfactants. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200741. [PMID: 33047036 PMCID: PMC7540755 DOI: 10.1098/rsos.200741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Owing to their high surface area and superior adsorption properties, spirobifluorene polymers of intrinsic microporosity (PIMs), namely PIM-SBF-Me (methyl) and PIM-SBF-tBu (tert-butyl), were used for the first time, to our knowledge, for the removal of methylene blue (MB) dye from wastewater. Spirobifluorene PIMs are known to have large surface area (can be up to 1100 m2 g-1) and have been previously used mainly for gas storage applications. Dispersion of the polymers in aqueous solution was challenging owing to their extreme hydrophobic nature leading to poor adsorption efficiency of MB. For this reason, cationic (cetyl-pyridinium chloride), anionic (sodium dodecyl sulfate; SDS) and non-ionic (Brij-35) surfactants were used and tested with the aim of enhancing the dispersion of the hydrophobic polymers in water and hence improving the adsorption efficiencies of the polymers. The effect of surfactant type and concentration were investigated. All surfactants offered a homogeneous dispersion of the polymers in the aqueous dye solution; however, the highest adsorption efficiency was obtained using an anionic surfactant (SDS) and this seems owing to the predominance of electrostatic interaction between its molecules and the positively charges dye molecules. Furthermore, the effect of polymer dosage and initial dye concentration on MB adsorption were also considered. The kinetic data for both polymers were well described by a pseudo-second-order model, while the Langmuir model better simulated the adsorption process of MB dye on PIM-SBF-Me and the Freundlich model was more suitable for PIM-SBF-tBu. Moreover, the maximum adsorption capacities recorded were 84.0 and 101.0 mg g-1 for PIM-SBF-Me and PIM-SBF-tBu, respectively. Reusability of both polymers was tested by performing three adsorption cycles and the results substantiate that both polymers can be effectively re-used with insignificant loss of their adsorption efficiency (%AE). These preliminary results suggested that incorporation of a surfactant to enhance the dispersion of hydrophobic polymers and adsorption of organic contaminants from wastewater is a simple and cost-effective approach that can be adapted for many other environmental applications.
Collapse
Affiliation(s)
- Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, PO Box 5969, 13060 Safat, Kuwait
| | - Mohamed O. Amin
- Department of Chemistry, Faculty of Science, Kuwait University, PO Box 5969, 13060 Safat, Kuwait
| | - C. Grazia Bezzu
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Mariolino Carta
- Department of Chemistry, College of Science, Swansea University, Grove Building, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
28
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
29
|
Spiridonov V, Liu X, Zezin S, Panova I, Sybachin A, Yaroslavov A. Hybrid nanocomposites of carboxymethyl cellulose cross-linked by in-situ formed Cu2O nanoparticles for photocatalytic applications. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Meng ZH, Wu SH, Sun SW, Xu Z, Zhang XC, Wang XM, Liu Y, Ren HT, Jia SY, Bai H, Han X. Formation and Oxidation Reactivity of MnO2+(HCO3–)n in the MnII(HCO3–)–H2O2 System. Inorg Chem 2020; 59:3171-3180. [DOI: 10.1021/acs.inorgchem.9b03524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi-He Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Song-Hai Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Shi-Wei Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Zhi Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Xiao-Cong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Xiang-Ming Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Hai-Tao Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin, P.R. China
| | - Shao-Yi Jia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - He Bai
- China Offshore Environmental Service Ltd., Tianjin, P.R. China
| | - Xu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
31
|
Devi P, Dalai AK, Chaurasia SP. Activity and stability of biochar in hydrogen peroxide based oxidation system for degradation of naphthenic acid. CHEMOSPHERE 2020; 241:125007. [PMID: 31600623 DOI: 10.1016/j.chemosphere.2019.125007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/26/2019] [Accepted: 09/28/2019] [Indexed: 05/20/2023]
Abstract
This study investigated the stability and catalytic activity of wheat straw biochar (WS), hardwood biochar (HW) and commercial activated carbon (AC) in hydrogen peroxide (H2O2) based oxidation system for degradation of model naphthenic acids compound, 1-methyl-1- cyclohexane carboxylic acid (MCCA). WS showed excellent catalytic activity for decomposition of H2O2 and MCCA degradation as demonstrated by high H2O2 decomposition rate (2.0*10-4 M-1s-1), amount of hydroxyl (OH) radicals generated (182 mg/L) and degradation efficiency of MCCA (100% at Co - 100 mg/L). 2-Methyl pentatonic acid was identified as reaction intermediate and 99% mineralization of MCCA was obtained within 4 h. The real wastewater conditions were simulated by addition of chloride (Cl-) and bicarbonate ions (HCO3-) and found that lower concentrations of Cl- and HCO3- have minimal influence on MCCA removal. Overall, biochar catalyzed H2O2 based oxidation process has great potential and can be applied for degradation of NAs in oil-sand processed water.
Collapse
Affiliation(s)
- Parmila Devi
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Saskatoon, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Saskatoon, Canada.
| | - S P Chaurasia
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India
| |
Collapse
|
32
|
Liu X, Yuan B, Zou J, Wu L, Dai L, Ma H, Li K, Ma J. Cu(II)-enhanced degradation of acid orange 7 by Fe(II)-activated persulfate with hydroxylamine over a wide pH range. CHEMOSPHERE 2020; 238:124533. [PMID: 31466004 DOI: 10.1016/j.chemosphere.2019.124533] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The activation of persulfate by Fe(II) coupled with hydroxylamine (the HA/Fe(II)/PS system) was highly effective for the degradation of refractory organic contaminants under acidic pH conditions. However, owing to the precipitation of ferric hydroxide and/or the slow reduction from Fe(III) to Fe(II), the HA/Fe(II)/PS system was invalid under neutral and alkaline pH conditions. In this study, it was observed that the degradation of acid orange 7 (AO7) was strongly enhanced over the wide pH range of 2-9 when trace Cu(II) (0.5-5 μM) was spiked into the HA/Fe(II)/PS system. It was evident that Cu(I) was generated via the reduction of Cu(II) by HA in the bimetallic system at both pH 3 and pH 8, and the steady concentration of Fe(II) in the bimetallic system was much higher than that in the HA/Fe(II)/PS system due to the rapid reaction between Fe(III) and Cu(I). Quenching experiments using tert-butyl alcohol, methanol and sodium bromide as the scavengers and electron spin resonance experiments confirmed that the primary reactive species responsible for AO7 degradation were sulfate radical at both pH 3 and pH 8, rather than hydroxyl radical and Cu(III). Nevertheless, sulfate radical was mainly produced by Fe(II)-activated PS at pH 3, while both Cu(I) and Fe(II) made important contributions to the generation of sulfate radical at pH 8. The bimetallic system was also highly effective in degrading other organic contaminants, such as phenol, diclofenac, reactive red 2 and orange G. This study might provide a promising idea based on Fe(II)-activated PS for degrading organic contaminants over a wide pH range.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China.
| | - Lingbin Wu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Lin Dai
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Hongfang Ma
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
33
|
Yang YC, Wu R, Yang M, Chen X, Weng WZ, Zhou ZH. Formation of N-oxido copper ethylenediaminetetraacetate and propanediaminetetraacetate and their selective degradation to iminodiacetate and propanediaminediacetate. Dalton Trans 2019; 48:13388-13395. [PMID: 31432836 DOI: 10.1039/c9dt02355k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N-Oxido copper(ii) ethylenediaminetetraacetate Na4n[Cu2(edtaO2)2(H2O)4]n·13nH2O (2) (H4edta = ethylenediaminetetraacetic acid, C10H16O8N2) and N-oxido copper(ii) 1,3-propanediaminetetraacetate Na5nOn[Cu2(HpdtaO2)2Cl]n·12.5nH2O (4) (H4pdta = 1,3-propanediaminetetraacetic acid, C11H18O8N2) were obtained from the reactions of copper(ii) edta and pdta respectively with hydrogen peroxide. The copper ions in 2 and 4 are hexa-coordinated by edtaO2 or pdtaO2 ligands, forming 1D chain structures. Further reactions of 2 and 4 at lower pH values result in the isolation of copper(ii) iminodiacetate K[Cu(ida)(H2O)2Cl] (3) (H2ida = iminodiacetate acid, C4H7O4N) and copper(ii) propanediaminediacetate [Cu2(pdda)2]n·nH2O (5) (H2pdda = propanediaminediacetic acid, C7H10O4N2), respectively, which show the selective degradation of ethylenediaminetetraacetate and propanediaminetetraacetate.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A&F University, Yangling 712100, People's Republic of China. and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Rui Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Min Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Xi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Wei-Zheng Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
34
|
Peng J, Zhang C, Zhang Y, Miao D, Zhang Y, Liu H, Li J, Xu L, Shi J, Liu G, Gao S. Enhanced Cu(II)-mediated fenton-like oxidation of antimicrobials in bicarbonate aqueous solution: Kinetics, mechanism and toxicity evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1933-1941. [PMID: 31227352 DOI: 10.1016/j.envpol.2019.05.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/28/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Increasing attention has been attracted in developing new technologies to remove chlorofene (CF) and dichlorofene (DCF), which were active agents in antimicrobials for general cleaning and disinfecting. This study investigated the significant influences of bicarbonate (HCO3-) on the degradation of CF and DCF in the Cu(II)-mediated Fenton-like system Cu2+/H2O2. Our results indicate that HCO3- may play a dual role to act 1) as a ligand to stabilize Cu(II), forming soluble [CuII(HCO3-)(S)]+ species to catalyze H2O2 producing hydroxyl radical (OH) and superoxide ion (O2-) and 2) as a OH scavenger. Furthermore, the reaction kinetics, mechanisms, and intermediates of CF and DCF were assessed. The apparent rate constants of CF and DCF were enhanced by a factor of 8.5 and 5.5, respectively, in the presence of HCO3- at the optimized concentration of 4 mM. Based on the intermediate identification and frontier electron densities (FEDs) calculations, the associated reaction pathways were tentatively proposed, including C-C scission, single or multiple hydroxylation, and coupling reaction. In addition, significant reduction in the aquatic toxicity of CF and DCF was observed after treatment with Cu2+/H2O2-HCO3- system, evaluated by Ecological Structure Activity Relationships (ECOSAR) program. These findings provide new insights into Cu(II)-mediated reactions to better understand the environmental fate of organic contaminants in carbonate-rich waters.
Collapse
Affiliation(s)
- Jianbiao Peng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Chaonan Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Ya Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, People's Republic of China
| | - Dong Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yaozong Zhang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Jinghua Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Lei Xu
- College of Environmental Science and Tourism, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Jialu Shi
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453007, People's Republic of China
| | - Guoguang Liu
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
35
|
Zhao X, Wu W, Yan Y. Efficient abatement of an iodinated X-ray contrast media iohexol by Co(II) or Cu(II) activated sulfite autoxidation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24707-24719. [PMID: 31240657 DOI: 10.1007/s11356-019-05601-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Efficient abatement of an iodinated X-ray contrast media iohexol by an emerging sulfite autoxidation advanced oxidation process is demonstrated, which is based on transition metal ion-catalyzed autoxidation of sulfite to form active oxidizing species. The efficacy of the combination of sulfite and transition metal ions (Ag(I), Mn(II), Co(II), Fe(II), Cu(II), Fe(III), or Ce(III)) was tested for iohexol abatement. Co(II) and Cu(II) are proven to show more pronounced catalytic activity than other metals at pH 8.0. According to the quenching studies, sulfate radical (SO4•-) is identified to be the primary species for oxidation of iohexol. Increasing dosages of metal ion or sulfite and higher pH values are favorable for iohexol abatement. Inhibition of iohexol abatement is observed in the absence of dissolved oxygen, which is vital for the production of SO5•- and subsequent formation of SO4•-. Overall, activation of sulfite to produce reactive radicals with extremely low Co(II) or Cu(II) concentrations (in the range of μg L-1) in circumneutral conditions is confirmed, which offers a potential SO4•--based advanced oxidation process in treatment of aquatic organic contaminants.
Collapse
Affiliation(s)
- Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Wenjing Wu
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yonggui Yan
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
36
|
Jain H, Joshi A, Ramachandran CN, Kumar R. Synthesis of a Highly Efficient Multifunctional Copper (II)‐Pyridyl Complex for Adsorption and Photocatalytic Degradation of Organic Dyes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Harshita Jain
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| | - Ankita Joshi
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - C. N. Ramachandran
- Department of ChemistryIndian Institute of Technology Roorkee-Uttarakhand- 247667 India
| | - Rakesh Kumar
- Department of ChemistryUniversity of Delhi Delhi- 110007 India
| |
Collapse
|
37
|
Narula A, Rao CP. Hydrogel of the Supramolecular Complex of Graphene Oxide and Sulfonatocalix[4]arene as Reusable Material for the Degradation of Organic Dyes: Demonstration of Adsorption and Degradation by Spectroscopy and Microscopy. ACS OMEGA 2019; 4:5731-5740. [PMID: 31459726 PMCID: PMC6648904 DOI: 10.1021/acsomega.9b00545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/23/2023]
Abstract
Industrial modernization causes severe contamination of water resources due to which the presence of organic dyes poses a great threat to human life. To address this, we have synthesized a hydrogel GSCg using graphene oxide (GO), sulphonatocalix[4]arene (SC4a), and l-Cys by heating at 90 °C for 30 min and characterized by analytic, spectroscopy, and microscopy techniques. The GSCg possessing porous structure and adsorbs all three types of dyes, viz., eosin yellow (anionic), neutral red, and methylene blue (cationic), as shown by scanning electron microscopy, and the adsorption kinetics are addressed. The dye adsorbed by the gel (dye@GSCg) has been degraded by the treatment of Cu2+/N2H4, which regenerates the gel. The regenerated gel has been demonstrated for further cycles of adsorption followed by degradation. Alternatively, the degradation of the organic dyes was also demonstrated by an in situ approach by taking GO, SC4a, l-Cys, and the organic dye together and subjecting the mixture to hydrothermal conditions and the process leaves out free gel (GSCg d). This was proven to be true in the case of each of the 12 dyes studied individually and also for their mixture, supporting that this methodology can be employed for large scale purification of contaminated water with high efficiency. GSCg d was repeatedly used for the adsorption and degradation (with the use of Cu2+/N2H4) cycles wherein the gel does not lose its adsorption capability even after several cycles. Therefore, {GO···SC4a} hybrid is a smart, sustainable, and reusable material suitable for the purification of water contaminated with industrial organic dye effluents.
Collapse
|
38
|
Synthesis, characterization, and oxidation catalysis studies of a monofunctionalized copper pyridine-aza macrocycle. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Pourfaraj R, Kazemi SY, Fatemi SJ, Biparva P. Synthesis of α- and β-CoNi binary hydroxides nanostructures and luminol chemiluminescence study for H2O2 detection. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhao T, Li P, Tai C, She J, Yin Y, Qi Y, Zhang G. Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:42-51. [PMID: 29247953 DOI: 10.1016/j.jhazmat.2017.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 12/04/2017] [Indexed: 05/12/2023]
Abstract
The aims of this study as to evaluate and understand the decolorization of azo dyes using carbonate and hydrogen peroxide under low-frequency ultrasonic irradiation. Under optimal conditions, the decolorization ratio of acid orange 8 (AO 8), a typical azo dye, was > 90% after 2 h of irradiation. The decolorization rate of AO 8 was 0.023 min-1 under ultrasonic irradiation, which was about two times that without ultrasound. Different from the results of other published studies, OH played a minor role, while CO3- played the most important role in AO 8 ultrasonic decolorization in the presence of CO32- and H2O2, with a contribution of 56.52%, followed by CO42- (32.61%) and 1O2 (10.87%). Another difference is that CO3- formed through the cleavage of peroxymonocarbonate or peroxydicarbonate under ultrasonic irradiation rather than through reaction between hydroxyl radical and carbonate. Investigations for different azo dyes revealed that the decolorization rate decreased in the order AO 8 ≈ orange II > acid red 9 > acid yellow 11, probably because of molecular differences among the azo dyes.
Collapse
Affiliation(s)
- Tongqian Zhao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Peng Li
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Chao Tai
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center for Coal-Bed Methane and Shale Gas of Henan, Jiaozuo 454000, China.
| | - Jiaping She
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Yong'an Qi
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center for Coal-Bed Methane and Shale Gas of Henan, Jiaozuo 454000, China
| | - Guocheng Zhang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center for Coal-Bed Methane and Shale Gas of Henan, Jiaozuo 454000, China
| |
Collapse
|
41
|
Li Y, Li L, Chen ZX, Zhang J, Gong L, Wang YX, Zhao HQ, Mu Y. Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms. CHEMOSPHERE 2018; 192:372-378. [PMID: 29121567 DOI: 10.1016/j.chemosphere.2017.10.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Advanced oxidation processes offer effective solutions in treating wastewater from various industries. This study is the first time to investigate the potential of carbonate-activated hydrogen peroxide (CAP) oxidation process for the removal of organic pollutant from highly alkaline wastewaters. Azo dye acid orange 7 (AO7) was selected as a model pollutant. The influences of various parameters on AO7 decolorization by the CAP oxidation were evaluated. Furthermore, the active species involved in AO7 degradation were explored using scavenger experiments and electron spin resonance analysis. Additionally, AO7 degradation products by the CAP oxidation were identified to elucidate possible transformation pathways. Results showed that the CAP oxidation had better AO7 decolorization performance compared to bicarbonate-activated hydrogen peroxide method. The AO7 decolorization efficiency augmented from 3.70 ± 0.76% to 54.27 ± 2.65% when carbonate concentration was increased from 0 to 50 mM at pH 13.0, and then changed slightly with further increasing carbonate concentration to 70 mM. It increased almost linearly from 5.95 ± 0.32% to 94.03 ± 0.39% as H2O2 concentration was increased from 5 to 50 mM. Moreover, trace amount of Co(II) could facilitate AO7 decolorization by the CAP reaction. Superoxide and carbonate radicals might be the main reactive oxygen species involved in the CAP process. Finally, a possible degradation pathway of AO7 by the CAP oxidation was proposed based on the identified products.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zi-Xi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jie Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Gong
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Han-Qing Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
42
|
Zilberg S, Mizrahi A, Meyerstein D, Kornweitz H. Carbonate and carbonate anion radicals in aqueous solutions exist as CO3(H2O)62− and CO3(H2O)6˙− respectively: the crucial role of the inner hydration sphere of anions in explaining their properties. Phys Chem Chem Phys 2018; 20:9429-9435. [DOI: 10.1039/c7cp08240a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An effort to reproduce the physical properties of CO32− and CO3˙− in water proves that one has to include an inner hydration sphere of six water molecules for both anions.
Collapse
Affiliation(s)
| | - Amir Mizrahi
- Chemistry Department
- Ben-Gurion University
- Beer-Sheva
- Israel
| | - Dan Meyerstein
- Chemical Sciences Department
- Ariel University
- Ariel
- Israel
- Chemistry Department
| | | |
Collapse
|
43
|
Mizrahi A, Maimon E, Cohen H, Kornweitz H, Zilbermann I, Meyerstein D. Mechanistic Studies on the Role of [Cu II (CO 3 ) n ] 2-2n as a Water Oxidation Catalyst: Carbonate as a Non-Innocent Ligand. Chemistry 2017; 24:1088-1096. [PMID: 28921692 DOI: 10.1002/chem.201703742] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 11/05/2022]
Abstract
Recently it was reported that copper bicarbonate/carbonate complexes are good electro-catalysts for water oxidation. However, the results did not enable a decision whether the active oxidant is a CuIII or a CuIV complex. Kinetic analysis of pulse radiolysis measurements coupled with DFT calculations point out that CuIII (CO3 )n3-2n complexes are the active intermediates in the electrolysis of CuII (CO3 )n2-2n solution. The results enable the evaluation of E°[(CuIII/II (CO3 )n )aq ]≈1.42 V versus NHE at pH 8.4. This redox potential is in accord with the electrochemical report. As opposed to literature suggestions for water oxidation, the present results rule out single-electron transfer from CuIII (CO3 )n3-2n to yield hydroxyl radicals. Significant charge transfer from the coordinated carbonate to CuIII results in the formation of C2 O62- by means of a second-order reaction of CuIII (CO3 )n3-2n . The results point out that carbonate stabilizes transition-metal cations at high oxidation states, not only as a good sigma donor, but also as a non-innocent ligand.
Collapse
Affiliation(s)
- Amir Mizrahi
- Chemistry Department, Nuclear Research Centre Negev Beer-Sheva, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, 84105, Israel
| | - Haim Cohen
- Chemical Sciences Department and the Schlesinger Family Center for, Compact Accelerators Radiation Sources and Applications, Ariel University, Ariel, Israel
| | - Haya Kornweitz
- Chemical Sciences Department, Ariel University, Ariel, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev Beer-Sheva, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, 84105, Israel
| | - Dan Meyerstein
- Chemical Sciences Department and the Schlesinger Family Center for, Compact Accelerators Radiation Sources and Applications, Ariel University, Ariel, Israel.,Chemistry Department, Ben-Gurion University of the Negev Beer-Sheva, 84105, Israel
| |
Collapse
|
44
|
Mian F, Bottaro G, Rancan M, Pezzato L, Gombac V, Fornasiero P, Armelao L. Bi 12O 17Cl 2/(BiO) 2CO 3 Nanocomposite Materials for Pollutant Adsorption and Degradation: Modulation of the Functional Properties by Composition Tailoring. ACS OMEGA 2017; 2:6298-6308. [PMID: 31457238 PMCID: PMC6645116 DOI: 10.1021/acsomega.7b01125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/21/2017] [Indexed: 06/01/2023]
Abstract
Bi12O17Cl2/(BiO)2CO3 nanocomposite materials were studied as bifunctional systems for depuration of wastewater. They are able to efficiently adsorb and decompose rhodamine B (RhB) and methyl orange (MO), used as model pollutants. Bi12O17Cl2/(BiO)2CO3 nanocomposites were synthesized at room temperature and ambient pressure by means of controlled hydrolysis of BiCl3 in the presence of a surfactant (Brij 76). Cold treatments of the pristine samples with UV light or thermal annealing at different temperatures (370-500 °C) and atmospheres (air, Ar/30% O2) were adopted to modulate the relative amounts of Bi12O17Cl2/(BiO)2CO3 and hence the morphology, surface area, ζ-potential, optical absorption in the visible range, and the adsorption/degradation of pollutants. The best performance was achieved by (BiO)2CO3-rich samples, which adsorbed 80% of MO and decomposed the remaining 20% by visible light photocatalysis. Irrespective of the dye, all of the samples were able to almost complete the adsorption step within 10 min contact time. Bi12O17Cl2-rich composite materials displayed a lower adsorption ability, but thanks to the stronger absorption in the visible range they behaved as more effective photocatalysts. The obtained results evidenced the ability of the employed strategy to modulate sample properties in a wide range, thus pointing out the effectiveness of this approach for the synthesis of multifunctional inorganic materials for environmental remediation.
Collapse
Affiliation(s)
- Federica Mian
- ICMATE-CNR and INSTM, c/o Department
of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Gregorio Bottaro
- ICMATE-CNR and INSTM, c/o Department
of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Marzio Rancan
- ICMATE-CNR and INSTM, c/o Department
of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Luigi Pezzato
- Department of Chemical Sciences, University
of Padova, Via F. Marzolo
1, 35131 Padova, Italy
| | - Valentina Gombac
- Department
of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research
Unit and INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, ICCOM-CNR Trieste Research
Unit and INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lidia Armelao
- ICMATE-CNR and INSTM, c/o Department
of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Department of Chemical Sciences, University
of Padova, Via F. Marzolo
1, 35131 Padova, Italy
| |
Collapse
|
45
|
Nassar AM. Catalytic reactivity of new Ni(II), Cu(II) and Sn(II) complexes for decolorization of indigo carmine in aqueous solution, high efficiency of copper complex. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.4056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Amr Mohammad Nassar
- Chemistry Department, College of ScienceAljouf University PO Box 2014 Sakaka Aljouf Saudi Arabia
- Chemistry Department, Faculty of ScienceAl‐Azhar University Nasr city 11884 Cairo Egypt
| |
Collapse
|
46
|
Liu J, Yu H, Liang Q, Liu Y, Shen J, Bai Q. Preparation of polyhedral oligomeric silsesquioxane based cross-linked inorganic-organic nanohybrid as adsorbent for selective removal of acidic dyes from aqueous solution. J Colloid Interface Sci 2017; 497:402-412. [DOI: 10.1016/j.jcis.2017.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 01/22/2023]
|
47
|
Jiang M, Lu J, Ji Y, Kong D. Bicarbonate-activated persulfate oxidation of acetaminophen. WATER RESEARCH 2017; 116:324-331. [PMID: 28359044 DOI: 10.1016/j.watres.2017.03.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/23/2017] [Accepted: 03/18/2017] [Indexed: 06/07/2023]
Abstract
Persulfate (PS) is widely used as an oxidant for in situ chemical remediation of contaminated groundwater. In this study we demonstrated for the first time that PS could be activated by bicarbonate. Acetaminophen was used as the probe compound to examine the reactivity of PS/bicarbonate system. It was found that acetaminophen could be effectively transformed and the reaction rate appeared pseudo-first-order to the concentrations of both acetaminophen and PS. Radical scavenger tests indicated that neither free radicals (SO4- and HO) nor superoxide (O2-) was responsible for acetaminophen transformation. Generation of singlet oxygen (1O2) was verified using furfuryl alcohol (FFA) as a probe. Formation of 1O2 was further quantified in D2O fortified solution based on kinetic solvent isotopic effect (KSIE) but it was found that 1O2 contributed only 51.4% of the total FFA transformation. The other 48.6% was presumed to be ascribed to the reaction with peroxymonocarbonate (HCO4-). However, the transformation of acetaminophen was mostly due to the reaction with HCO4- but not 1O2. Instead of degradation, HCO4- oxidized acetaminophen via a one-electron abstraction mechanism resulting in the generation of acetaminophen radicals which coupled to each other to form dimers and trimers. HCO4- also hydrolyzed rapidly to form hydrogen peroxide (H2O2) which led to the formation of 1O2, during which O2- was a key intermediates. Because bicarbonate is ubiquitously presented in groundwater, the findings of this research provide important insights into the fundamental processes involved in PS oxidation in subsurface.
Collapse
Affiliation(s)
- Mengdi Jiang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042, China
| |
Collapse
|
48
|
Wang Z, Xi H, Kong L, Zuo Y, Shi Z, Zhao S. Solubility and selective oxidation of 2-chloroethyl ethyl sulfide in imidazole-based ionic liquids. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.molcata.2016.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Jawad A, Chen Z, Yin G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61100-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Huang Z, Yao Y, Lu J, Chen C, Lu W, Huang S, Chen W. The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2016; 301:214-221. [PMID: 26364270 DOI: 10.1016/j.jhazmat.2015.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/17/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The design of catalytic oxidation processes with high efficiency has attracted considerable attention for a long while in environmental catalysis. In this work, a novel oxidation system, CFs-CoPc/PMS, was developed by coupling cellulosic fibers-bonded cobalt phthalocyanine (CFs-CoPc) with peroxymonosulfate (PMS). CFs-CoPc/PMS system could effectively decolorize azo dyes such as Acid Red 1 (AR1) with almost 100% decolorization efficiency in 35 min, suggesting that the CFs-CoPc/PMS system was a highly efficient oxidation process. In addition, bicarbonate ion (HCO3(-)) was further introduced to CFs-CoPc/PMS to construct a combined system, CFs-CoPc/PMS/HCO3(-). Remarkably, this system turned the negative effect of HCO3(-) observed in most reported Co/PMS systems into a positive one, which enhanced the AR1 decolorization with over 2-fold increase of the rate constant. The main factor responsible for the enhancement was high-valent cobalt-oxo intermediates (PcCo(IV)=O), which was presumably generated via the heterolytic cleavage of the PMS OO bond by CoPc-HCO3(-) complex. It is noteworthy that high-valent cobalt-oxo intermediates as the major active species is different from most reported mechanisms in Co/PMS systems, in which hydroxyl and sulfate radicals are recognized as the dominant active species. This study paves an avenue for developing highly efficient catalytic oxidation technology for wastewater remediation.
Collapse
Affiliation(s)
- Zhenfu Huang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jiateng Lu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Chenhui Chen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Wangyang Lu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Sanqing Huang
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Wenxing Chen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| |
Collapse
|