1
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.01.551527. [PMID: 37577460 PMCID: PMC10418163 DOI: 10.1101/2023.08.01.551527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P. Knejski
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
- Present address: Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich 8093, Switzerland
| | - Satchal K. Erramilli
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Present address: Meso Scale Diagnostics, LLC, Rockville, Maryland 20850, USA
| | - Anthony A. Kossiakoff
- Deparment of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Knejski PP, Erramilli SK, Kossiakoff AA. Chaperone-assisted cryo-EM structure of P. aeruginosa PhuR reveals molecular basis for heme binding. Structure 2024; 32:411-423.e6. [PMID: 38325368 PMCID: PMC10997469 DOI: 10.1016/j.str.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.
Collapse
Affiliation(s)
- Paweł P Knejski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Di Cesare M, Kaplan E, Rendon J, Gerbaud G, Valimehr S, Gobet A, Ngo TAT, Chaptal V, Falson P, Martinho M, Dorlet P, Hanssen E, Jault JM, Orelle C. The transport activity of the multidrug ABC transporter BmrA does not require a wide separation of the nucleotide-binding domains. J Biol Chem 2024; 300:105546. [PMID: 38072053 PMCID: PMC10821409 DOI: 10.1016/j.jbc.2023.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 01/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins responsible for the translocation of a wide diversity of substrates across biological membranes. Some of them confer multidrug or antimicrobial resistance to cancer cells and pathogenic microorganisms, respectively. Despite a wealth of structural data gained in the last two decades, the molecular mechanism of these multidrug efflux pumps remains elusive, including the extent of separation between the two nucleotide-binding domains (NBDs) during the transport cycle. Based on recent outward-facing structures of BmrA, a homodimeric multidrug ABC transporter from Bacillus subtilis, we introduced a cysteine mutation near the C-terminal end of the NBDs to analyze the impact of disulfide-bond formation on BmrA function. Interestingly, the presence of the disulfide bond between the NBDs did not prevent the ATPase, nor did it affect the transport of Hoechst 33342 and doxorubicin. Yet, the 7-amino-actinomycin D was less efficiently transported, suggesting that a further opening of the transporter might improve its ability to translocate this larger compound. We solved by cryo-EM the apo structures of the cross-linked mutant and the WT protein. Both structures are highly similar, showing an intermediate opening between their NBDs while their C-terminal extremities remain in close proximity. Distance measurements obtained by electron paramagnetic resonance spectroscopy support the intermediate opening found in these 3D structures. Overall, our data suggest that the NBDs of BmrA function with a tweezers-like mechanism distinct from the related lipid A exporter MsbA.
Collapse
Affiliation(s)
- Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Elise Kaplan
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Julia Rendon
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | | | - Sepideh Valimehr
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Thu-Anh Thi Ngo
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France
| | | | - Pierre Dorlet
- CNRS, Aix-Marseille Université, BIP, IMM, Marseille, France
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology and ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Bio21 Institute, University of Melbourne, Parkville, VIC, Australia
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Team, Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/University of Lyon, Lyon, France.
| |
Collapse
|
4
|
Lin X, Haller PR, Bavi N, Faruk N, Perozo E, Sosnick TR. Folding of prestin's anion-binding site and the mechanism of outer hair cell electromotility. eLife 2023; 12:RP89635. [PMID: 38054956 PMCID: PMC10699807 DOI: 10.7554/elife.89635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Prestin responds to transmembrane voltage fluctuations by changing its cross-sectional area, a process underlying the electromotility of outer hair cells and cochlear amplification. Prestin belongs to the SLC26 family of anion transporters yet is the only member capable of displaying electromotility. Prestin's voltage-dependent conformational changes are driven by the putative displacement of residue R399 and a set of sparse charged residues within the transmembrane domain, following the binding of a Cl- anion at a conserved binding site formed by the amino termini of the TM3 and TM10 helices. However, a major conundrum arises as to how an anion that binds in proximity to a positive charge (R399), can promote the voltage sensitivity of prestin. Using hydrogen-deuterium exchange mass spectrometry, we find that prestin displays an unstable anion-binding site, where folding of the amino termini of TM3 and TM10 is coupled to Cl- binding. This event shortens the TM3-TM10 electrostatic gap, thereby connecting the two helices, resulting in reduced cross-sectional area. These folding events upon anion binding are absent in SLC26A9, a non-electromotile transporter closely related to prestin. Dynamics of prestin embedded in a lipid bilayer closely match that in detergent micelle, except for a destabilized lipid-facing helix TM6 that is critical to prestin's mechanical expansion. We observe helix fraying at prestin's anion-binding site but cooperative unfolding of multiple lipid-facing helices, features that may promote prestin's fast electromechanical rearrangements. These results highlight a novel role of the folding equilibrium of the anion-binding site, and help define prestin's unique voltage-sensing mechanism and electromotility.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Patrick R Haller
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Navid Bavi
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Nabil Faruk
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | - Eduardo Perozo
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Institute for Neuroscience, The University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, The University of ChicagoChicagoUnited States
| | - Tobin R Sosnick
- Center for Mechanical Excitability, The University of ChicagoChicagoUnited States
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
- Institute for Biophysical Dynamics, The University of ChicagoChicagoUnited States
- Prizker School for Molecular Engineering, The University of ChicagoChicagoUnited States
| |
Collapse
|
5
|
Kyaw A, Roepke K, Arthur T, Howard KP. Conformation of influenza AM2 membrane protein in nanodiscs and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184152. [PMID: 36948480 PMCID: PMC10175228 DOI: 10.1016/j.bbamem.2023.184152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.
Collapse
Affiliation(s)
- Aye Kyaw
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kyra Roepke
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Tyrique Arthur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
6
|
Galazzo L, Bordignon E. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:1-19. [PMID: 37321755 DOI: 10.1016/j.pnmrs.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Macromolecular protein assemblies are of fundamental importance for many processes inside the cell, as they perform complex functions and constitute central hubs where reactions occur. Generally, these assemblies undergo large conformational changes and cycle through different states that ultimately are connected to specific functions further regulated by additional small ligands or proteins. Unveiling the 3D structural details of these assemblies at atomic resolution, identifying the flexible parts of the complexes, and monitoring with high temporal resolution the dynamic interplay between different protein regions under physiological conditions is key to fully understanding their properties and to fostering biomedical applications. In the last decade, we have seen remarkable advances in cryo-electron microscopy (EM) techniques, which deeply transformed our vision of structural biology, especially in the field of macromolecular assemblies. With cryo-EM, detailed 3D models of large macromolecular complexes in different conformational states became readily available at atomic resolution. Concomitantly, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy (EPR) have benefited from methodological innovations which also improved the quality of the information that can be achieved. Such enhanced sensitivity widened their applicability to macromolecular complexes in environments close to physiological conditions and opened a path towards in-cell applications. In this review we will focus on the advantages and challenges of EPR techniques with an integrative approach towards a complete understanding of macromolecular structures and functions.
Collapse
Affiliation(s)
- Laura Galazzo
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1211 Genève 4, Switzerland.
| |
Collapse
|
7
|
Raval P, Dhennin M, Vezin H, Pawlak T, Roussel P, Nguyen TQ, Manjunatha Reddy G. Understanding the p-doping of spiroOMeTAD by tris(pentafluorophenyl)borane. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 DOI: 10.1101/2021.03.12.435132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
9
|
Chaptal V, Zampieri V, Wiseman B, Orelle C, Martin J, Nguyen KA, Gobet A, Di Cesare M, Magnard S, Javed W, Eid J, Kilburg A, Peuchmaur M, Marcoux J, Monticelli L, Hogbom M, Schoehn G, Jault JM, Boumendjel A, Falson P. Substrate-bound and substrate-free outward-facing structures of a multidrug ABC exporter. SCIENCE ADVANCES 2022; 8:eabg9215. [PMID: 35080979 PMCID: PMC8791611 DOI: 10.1126/sciadv.abg9215] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg2+-bound outward-facing conformations of the Bacillus subtilis (homodimeric) BmrA by x-ray crystallography and single-particle cryo-electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in B. subtilis. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1-2 of one monomer and TM5'-6' of the other. They induce a rearrangement of TM1-2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
Collapse
Affiliation(s)
- Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Veronica Zampieri
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Benjamin Wiseman
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Cédric Orelle
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Juliette Martin
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Kim-Anh Nguyen
- University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France
| | - Alexia Gobet
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Margot Di Cesare
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Sandrine Magnard
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Waqas Javed
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Jad Eid
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Arnaud Kilburg
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Marine Peuchmaur
- University of Grenoble Alpes, CNRS, DPM UMR 5063, 38041 Grenoble, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Luca Monticelli
- Modeling Biological Macromolecules Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | - Martin Hogbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Guy Schoehn
- University of Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Jean-Michel Jault
- Bacterial Nucleotide-Binding Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
| | | | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367 Lyon, France
- Corresponding author.
| |
Collapse
|
10
|
Yang D, Gouaux E. Illumination of serotonin transporter mechanism and role of the allosteric site. SCIENCE ADVANCES 2021; 7:eabl3857. [PMID: 34851672 PMCID: PMC8635421 DOI: 10.1126/sciadv.abl3857] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 05/10/2023]
Abstract
The serotonin transporter (SERT) terminates serotonin signaling by using sodium and chloride gradients to drive reuptake of serotonin into presynaptic neurons and is the target of widely used medications to treat neuropsychiatric disorders. Despite decades of study, the molecular mechanism of serotonin transport, the coupling to ion gradients, and the role of the allosteric site have remained elusive. Here, we present cryo–electron microscopy structures of SERT in serotonin-bound and serotonin-free states, in the presence of sodium or potassium, resolving all fundamental states of the transport cycle. From the SERT-serotonin complex, we localize the substrate-bound allosteric site, formed by an aromatic pocket positioned in the scaffold domain in the extracellular vestibule, connected to the central site via a short tunnel. Together with elucidation of multiple apo state conformations, we provide previously unseen structural understanding of allosteric modulation, demonstrating how SERT binds serotonin from synaptic volumes and promotes unbinding into the presynaptic neurons.
Collapse
Affiliation(s)
- Dongxue Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Ge J, Elferich J, Dehghani-Ghahnaviyeh S, Zhao Z, Meadows M, von Gersdorff H, Tajkhorshid E, Gouaux E. Molecular mechanism of prestin electromotive signal amplification. Cell 2021; 184:4669-4679.e13. [PMID: 34390643 PMCID: PMC8674105 DOI: 10.1016/j.cell.2021.07.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
Hearing involves two fundamental processes: mechano-electrical transduction and signal amplification. Despite decades of studies, the molecular bases for both remain elusive. Here, we show how prestin, the electromotive molecule of outer hair cells (OHCs) that senses both voltage and membrane tension, mediates signal amplification by coupling conformational changes to alterations in membrane surface area. Cryoelectron microscopy (cryo-EM) structures of human prestin bound with chloride or salicylate at a common "anion site" adopt contracted or expanded states, respectively. Prestin is ensconced within a perimeter of well-ordered lipids, through which it induces dramatic deformation in the membrane and couples protein conformational changes to the bulk membrane. Together with computational studies, we illustrate how the anion site is allosterically coupled to changes in the transmembrane domain cross-sectional area and the surrounding membrane. These studies provide insight into OHC electromotility by providing a structure-based mechanism of the membrane motor prestin.
Collapse
Affiliation(s)
- Jingpeng Ge
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Johannes Elferich
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Sepehr Dehghani-Ghahnaviyeh
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Marc Meadows
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Portland, OR 97239, USA.
| |
Collapse
|
12
|
Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol 2021; 652:3-30. [PMID: 34059287 DOI: 10.1016/bs.mie.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent developments in cryogenic electron microscopy (cryo-EM) led to an exponential increase in high-resolution structures of membrane proteins, and in particular ion channels. However, structures alone can only provide limited information about the workings of these proteins. In order to understand ion channel function and regulation in molecular detail, the obtained structural data need to be correlated to functional states of the same protein. Here, we describe several techniques that can be employed to study ion channel structure and function in vitro and under defined, similar conditions. Lipid nanodiscs provide a native-like environment for membrane proteins and have become a valuable tool in membrane protein structural biology and biophysics. Combined with liposome-based flux assays for the kinetic analysis of ion channel activity as well as electrophysiological recordings, researchers now have access to an array of experimental techniques allowing for detailed structure-function correlations using purified components. Two examples are presented where we put emphasis on the lipid environment and time-resolved techniques together with mutations and protein engineering to interpret structural data obtained from single particle cryo-EM on cyclic nucleotide-gated or Ca2+-gated K+ channels. Furthermore, we provide short protocols for all the assays used in our work so that others can adapt these techniques to their experimental needs. Comprehensive structure-function correlations are essential in order to pharmacologically target channelopathies.
Collapse
Affiliation(s)
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
13
|
Yu J, Zhu H, Lape R, Greiner T, Du J, Lü W, Sivilotti L, Gouaux E. Mechanism of gating and partial agonist action in the glycine receptor. Cell 2021; 184:957-968.e21. [PMID: 33567265 PMCID: PMC8115384 DOI: 10.1016/j.cell.2021.01.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.
Collapse
Affiliation(s)
- Jie Yu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Remigijus Lape
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Timo Greiner
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK
| | - Juan Du
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Wei Lü
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lucia Sivilotti
- Department of Neuroscience, Physiology and Pharmacology, University College London, Medical Sciences Building, Gower Street, London WC1E 6BT, UK.
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
14
|
Das A, Raghuraman H. Conformational heterogeneity of the voltage sensor loop of KvAP in micelles and membranes: A fluorescence approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183568. [PMID: 33529577 DOI: 10.1016/j.bbamem.2021.183568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/06/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
KvAP is a tetrameric voltage-gated potassium channel that is composed of a pore domain and a voltage-sensing domain (VSD). The VSD is crucial for sensing transmembrane potential and gating. At 0 mV, the VSD adopts an activated conformation in both n-octylglucoside (OG) micelles and phospholipid membranes. Importantly, gating-modifier toxins that bind at S3b-S4 loop of KvAP-VSD exhibit pronounced differences in binding affinity in these membrane-mimetic systems. However, the conformational heterogeneity of this functionally-important sensor loop in membrane mimetics is poorly understood, and is the focus of this work. In this paper, we establish, using intrinsic fluorescence of the uniquely positioned W70 in KvAP-VSD and environment-sensitive NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl-ethylenediamine) fluorescence of the labelled S3b-S4 loop, that the surface charge of the membrane does not significantly affect the topology and structural dynamics of the sensor loop in membranes. Importantly, the dynamic variability of the sensor loop is preserved in both zwitterionic (POPC) and anionic (POPC/POPG) membranes. Further, the lifetime distribution analysis for the NBD-labelled residues by maximum entropy method (MEM) demonstrates that, in contrast to micelles, the membrane environment not only reduces the relative discrete population of sensor loop conformations, but also broadens the lifetime distribution peaks. Overall, our results strongly suggest that the conformational heterogeneity of the sensor loop is significantly altered in membranes and this correlates well with its environmental heterogeneity. This constitutes the first report demonstrating that MEM-lifetime distribution could be a powerful tool to distinguish changes in conformational heterogeneity in potassium channels with similar architecture and topology.
Collapse
Affiliation(s)
- Anindita Das
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, 1/AF Bidhannagar, Kolkata, India.
| |
Collapse
|
15
|
Wise JG, Nanayakkara AK, Aljowni M, Chen G, De Oliveira MC, Ammerman L, Olengue K, Lippert AR, Vogel PD. Optimizing Targeted Inhibitors of P-Glycoprotein Using Computational and Structure-Guided Approaches. J Med Chem 2019; 62:10645-10663. [PMID: 31702922 DOI: 10.1021/acs.jmedchem.9b00966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of ABC transporters like P-glycoprotein (P-gp) has been correlated with resistances in cancer chemotherapy. Intensive efforts to identify P-gp inhibitors for use in combination therapy have not led to clinically approved inhibitors to date. Here, we describe computational approaches combined with structure-based design to improve the characteristics of a P-gp inhibitor previously identified by us. This hit compound represents a novel class of P-gp inhibitors that specifically targets and inhibits P-gp ATP hydrolysis while not being transported by the pump. We describe here a new program for virtual chemical synthesis and computational assessment, ChemGen, to produce hit compound variants with improved binding characteristics. The chemical syntheses of several variants, efficacy in reversing multidrug resistance in cell culture, and biochemical assessment of the inhibition mechanism are described. The usefulness of the computational predictions of binding characteristics of the inhibitor variants is discussed and compared to more traditional structure-based approaches.
Collapse
|
16
|
Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, Caboni M, Mori M, Niles S, Ghiglieri M, Honrao C, Ma X, Guo JJ, Makriyannis A, Linares-Otoya L, Böhringer N, Wuisan ZG, Kaur H, Wu R, Mateus A, Typas A, Savitski MM, Espinoza JL, O'Rourke A, Nelson KE, Hiller S, Noinaj N, Schäberle TF, D'Onofrio A, Lewis K. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019; 576:459-464. [PMID: 31747680 PMCID: PMC7188312 DOI: 10.1038/s41586-019-1791-1] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
The current need for novel antibiotics is especially acute for
drug-resistant Gram-negative pathogens1,2. These
microorganisms have a highly restrictive permeability barrier, which limits
penetration of most compounds3,4. As a result, the last class of
antibiotics acting against Gram-negative bacteria was developed in the
60s2. We reason that
useful compounds can be found in bacteria that share similar requirements for
antibiotics with humans, and focus on Photorhabdus symbionts of
entomopathogenic nematode microbiomes. Here we report a new antibiotic that we
name darobactin, from a screen of Photorhabdus isolates.
Darobactin is coded by a silent operon with little production under laboratory
conditions, and is ribosomally synthesized. Darobactin has an unusual structure
with two fused rings that form post-translationally. The compound is active
against important Gram-negative pathogens both in vitro and in
animal models of infection. Mutants resistant to darobactin map to BamA, an
essential chaperone and translocator that folds outer membrane proteins. Our
study suggests that bacterial symbionts of animals harbor antibiotics that are
particularly suitable for development into therapeutics.
Collapse
Affiliation(s)
- Yu Imai
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Kirsten J Meyer
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Akira Iinishi
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Quentin Favre-Godal
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Robert Green
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sylvie Manuse
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Mariaelena Caboni
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Miho Mori
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Samantha Niles
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Meghan Ghiglieri
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Chandrashekhar Honrao
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Jason J Guo
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA.,Barnett Institute for Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Nils Böhringer
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Zerlina G Wuisan
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Hundeep Kaur
- Biozentrum, University of Basel, Basel, Switzerland
| | - Runrun Wu
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.,Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Josh L Espinoza
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Aubrie O'Rourke
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Karen E Nelson
- Department of Human Biology, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Human Biology, J. Craig Venter Institute, Rockville, MD, USA.,Department of Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA
| | | | - Nicholas Noinaj
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.,Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Giessen, Germany.,Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Anthony D'Onofrio
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
17
|
Mächtel R, Narducci A, Griffith DA, Cordes T, Orelle C. An integrated transport mechanism of the maltose ABC importer. Res Microbiol 2019; 170:321-337. [PMID: 31560984 PMCID: PMC6906923 DOI: 10.1016/j.resmic.2019.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to transport a large diversity of molecules actively across biological membranes. A combination of biochemical, biophysical, and structural studies has established the maltose transporter MalFGK2 as one of the best characterized proteins of the ABC family. MalF and MalG are the transmembrane domains, and two MalKs form a homodimer of nucleotide-binding domains. A periplasmic maltose-binding protein (MalE) delivers maltose and other maltodextrins to the transporter, and triggers its ATPase activity. Substrate import occurs in a unidirectional manner by ATP-driven conformational changes in MalK2 that allow alternating access of the substrate-binding site in MalF to each side of the membrane. In this review, we present an integrated molecular mechanism of the transport process considering all currently available information. Furthermore, we summarize remaining inconsistencies and outline possible future routes to decipher the full mechanistic details of transport by MalEFGK2 complex and that of related importer systems.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Douglas A Griffith
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152 Planegg-Martinsried, Germany.
| | - Cédric Orelle
- Université de Lyon, CNRS, UMR5086 "Molecular Microbiology and Structural Biochemistry", IBCP, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
18
|
Camp T, McLean M, Kato M, Cheruzel L, Sligar S. The hydrodynamic motion of Nanodiscs. Chem Phys Lipids 2019; 220:28-35. [PMID: 30802435 DOI: 10.1016/j.chemphyslip.2019.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/02/2023]
Abstract
We present a fluorescence-based methodology for monitoring the rotational dynamics of Nanodiscs. Nanodiscs are nano-scale lipid bilayers surrounded by a helical membrane scaffold protein (MSP) that have found considerable use in studying the interactions between membrane proteins and their lipid bilayer environment. Using a long-lifetime Ruthenium label covalently attached to the Nanodiscs, we find that Nanodiscs of increasing diameter, made by varying the number of helical repeats in the MSP, display increasing rotational correlation times. We also model our system using both analytical equations that describe rotating spheroids and numerical calculations performed on atomic models of Nanodiscs. Using these methods, we observe a linear relationship between the experimentally determined rotational correlation times and those calculated from both analytical equations and numerical solutions. This work sets the stage for accurate, label-free quantification of protein-lipid interactions at the membrane surface.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mark McLean
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States
| | - Mallory Kato
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Lionel Cheruzel
- Department of Chemistry, San Jose State University, San Jose, CA, 95192-0101, United States
| | - Stephen Sligar
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 314F Roger Adams Laboratory (MC-712), 600 S Mathews Ave, Urbana, IL, 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, 417 RAL (MC-712), 600 South Mathews Avenue, Urbana, IL, 61801, United States.
| |
Collapse
|
19
|
CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. Methods Mol Biol 2018. [PMID: 30536012 DOI: 10.1007/978-1-4939-8861-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron-electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.
Collapse
|
20
|
Kintzer AF, Green EM, Dominik PK, Bridges M, Armache JP, Deneka D, Kim SS, Hubbell W, Kossiakoff AA, Cheng Y, Stroud RM. Structural basis for activation of voltage sensor domains in an ion channel TPC1. Proc Natl Acad Sci U S A 2018; 115:E9095-E9104. [PMID: 30190435 PMCID: PMC6166827 DOI: 10.1073/pnas.1805651115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca2+-binding site (Cai2+), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca2+ to a cytoplasmic site (Caa2+). An X-ray structure with Caa2+ removed and a near-atomic resolution cryo-EM structure with Cai2+ removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca2+ ions for activation.
Collapse
Affiliation(s)
- Alexander F Kintzer
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Evan M Green
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Pawel K Dominik
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Michael Bridges
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Jean-Paul Armache
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Dawid Deneka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Wayne Hubbell
- Jules Stein Eye Institute, University of California, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
- Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
| |
Collapse
|
21
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
22
|
Bajaj R, Park MI, Stauffacher CV, Davidson AL. Conformational Dynamics in the Binding-Protein-Independent Mutant of the Escherichia coli Maltose Transporter, MalG511, and Its Interaction with Maltose Binding Protein. Biochemistry 2018; 57:3003-3015. [PMID: 29637782 DOI: 10.1021/acs.biochem.8b00266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MalG511 is a genetically selected binding-protein-independent mutant of the Escherichia coli maltose transporter MalFGK2, which retains specificity for maltose and shows a high basal ATPase activity in the absence of maltose binding protein (MBP). It shows an intriguing biphasic behavior in maltose transport assays in the presence of MBP, with low levels of MBP stimulating the activity and higher levels (>50 μM) inhibiting the transport activity. Remarkably, the rescuing effect of the MBP suppressor mutant, MBPG13D, turns it into an attractive model for studying regulatory mechanisms in the ABC transporter superfamily. It is hypothesized that the special characteristics of MalG511 result from mutations that shift its equilibrium toward the transition state of MalFGK2. We tested this hypothesis by using site-directed spin labeling in combination with electron paramagnetic resonance spectroscopy, which showed conformational changes in MalG511 and its interaction with MBP and MBPG13D during its catalytic cycle. We found that MalG511 utilizes the same alternate access mechanism as MalFGK2, including all three open, semi-open, and closed states of the MalK dimer, to transport maltose across the membrane. However, the equilibrium of this mutant is shifted toward the semi-open state in its resting state and interacts with MBP with high affinity, providing an explanation for the inhibition of MalG511 by MBP at higher concentrations. In contrast, the mutant binding protein, MBPG13D, interacts with lower affinity and could restore MalG511 to a normal catalytic cycle.
Collapse
|
23
|
Mukherjee S, Griffin DH, Horn JR, Rizk SS, Nocula-Lugowska M, Malmqvist M, Kim SS, Kossiakoff AA. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins. J Biol Chem 2018; 293:2815-2828. [PMID: 29321208 DOI: 10.1074/jbc.ra117.000656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/27/2017] [Indexed: 11/06/2022] Open
Abstract
Conformational changes in proteins due to ligand binding are ubiquitous in biological processes and are integral to many biological systems. However, it is often challenging to link ligand-induced conformational changes to a resulting biological function because it is difficult to distinguish between the energetic components associated with ligand binding and those due to structural rearrangements. Here, we used a unique approach exploiting conformation-specific and regio-specific synthetic antibodies (sABs) to probe the energetic contributions of ligand binding to conformation changes. Using maltose-binding protein (MBP) as a model system, customized phage-display selections were performed to generate sABs that stabilize MBP in different conformational states, modulating ligand-binding affinity in competitive, allosteric, or peristeric manners. We determined that the binding of a closed conformation-specific sAB (sAB-11M) to MBP in the absence of maltose is entropically driven, providing new insight into designing antibody-stabilized protein interactions. Crystal structures of sABs bound to MBP, together with biophysical data, delineate the basis of free energy differences between different conformational states and confirm the use of the sABs as energy probes for dissecting enthalpic and entropic contributions to conformational transitions. Our work provides a foundation for investigating the energetic contributions of distinct conformational dynamics to specific biological outputs. We anticipate that our approach also may be valuable for analyzing the energy landscapes of regulatory proteins controlling biological responses to environmental changes.
Collapse
Affiliation(s)
- Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Dionne H Griffin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115
| | - Shahir S Rizk
- Department of Chemistry and Biochemistry, Indiana University, South Bend, Indiana 46615
| | | | - Magnus Malmqvist
- Ridgeview Diagnostics AB, Uppsala Science Park, S-751 83 Uppsala, Sweden
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637; Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, Illinois 60637.
| |
Collapse
|
24
|
Hsu WL, Furuta T, Sakurai M. The mechanism of nucleotide-binding domain dimerization in the intact maltose transporter as studied by all-atom molecular dynamics simulations. Proteins 2017; 86:237-247. [PMID: 29194754 DOI: 10.1002/prot.25433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 11/12/2022]
Abstract
The Escherichia coli maltose transporter MalFGK2 -E belongs to the protein superfamily of ATP-binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide-binding domains (NBDs) MalK2 . In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all-atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward-facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF-P2), and thus prevented the incorrect arrangement of the MalF C-terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2 . This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| |
Collapse
|
25
|
Ter Beek J, Kahle M, Ädelroth P. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1951-1961. [PMID: 28668220 DOI: 10.1016/j.bbamem.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/03/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O2-binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O2, and found that the pKa of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed.
Collapse
Affiliation(s)
- Josy Ter Beek
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
26
|
Xu L, Öjemyr LN, Bergstrand J, Brzezinski P, Widengren J. Protonation Dynamics on Lipid Nanodiscs: Influence of the Membrane Surface Area and External Buffers. Biophys J 2017; 110:1993-2003. [PMID: 27166807 PMCID: PMC4939474 DOI: 10.1016/j.bpj.2016.03.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 11/29/2022] Open
Abstract
Lipid membrane surfaces can act as proton-collecting antennae, accelerating proton uptake by membrane-bound proton transporters. We investigated this phenomenon in lipid nanodiscs (NDs) at equilibrium on a local scale, analyzing fluorescence fluctuations of individual pH-sensitive fluorophores at the membrane surface by fluorescence correlation spectroscopy (FCS). The protonation rate of the fluorophores was ∼100-fold higher when located at 9- and 12-nm diameter NDs, compared to when in solution, indicating that the proton-collecting antenna effect is maximal already for a membrane area of ∼60 nm2. Fluorophore-labeled cytochrome c oxidase displayed a similar increase when reconstituted in 12 nm NDs, but not in 9 nm NDs, i.e., an acceleration of the protonation rate at the surface of cytochrome c oxidase is found when the lipid area surrounding the protein is larger than 80 nm2, but not when below 30 nm2. We also investigated the effect of external buffers on the fluorophore proton exchange rates at the ND membrane-water interfaces. With increasing buffer concentrations, the proton exchange rates were found to first decrease and then, at millimolar buffer concentrations, to increase. Monte Carlo simulations, based on a simple kinetic model of the proton exchange at the membrane-water interface, and using rate parameter values determined in our FCS experiments, could reconstruct both the observed membrane-size and the external buffer dependence. The FCS data in combination with the simulations indicate that the local proton diffusion coefficient along a membrane is ∼100 times slower than that observed over submillimeter distances by proton-pulse experiments (Ds ∼ 10−5cm2/s), and support recent theoretical studies showing that proton diffusion along membrane surfaces is time- and length-scale dependent.
Collapse
Affiliation(s)
- Lei Xu
- Experimental Biomolecular Physics, Department of Applied Physics, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Jan Bergstrand
- Experimental Biomolecular Physics, Department of Applied Physics, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, KTH-Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden.
| |
Collapse
|
27
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
28
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Neumann J, Rose-Sperling D, Hellmich UA. Diverse relations between ABC transporters and lipids: An overview. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:605-618. [PMID: 27693344 DOI: 10.1016/j.bbamem.2016.09.023] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/19/2022]
Abstract
It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. Lipids on the other hand need to undergo a 180° degree turn as they translocate from one membrane leaflet to the other. Lipids and lipidated molecules are highly diverse, so there may be various ways how to achieve their flipping and flopping. Nonetheless, an increase in biophysical, biochemical and structural data is beginning to shed some light on specific aspects of lipid transport by ABC transporters. In addition, there is now abundant evidence that lipids affect ABC transporter conformation, dynamics as well as transport and ATPase activity in general. In this review, we will discuss different ways in which lipids and ABC transporters interact and how lipid translocation may be achieved with a focus on the techniques used to investigate these processes. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Neumann
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dania Rose-Sperling
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Ute A Hellmich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
30
|
Matthies D, Dalmas O, Borgnia MJ, Dominik PK, Merk A, Rao P, Reddy BG, Islam S, Bartesaghi A, Perozo E, Subramaniam S. Cryo-EM Structures of the Magnesium Channel CorA Reveal Symmetry Break upon Gating. Cell 2016; 164:747-56. [PMID: 26871634 DOI: 10.1016/j.cell.2015.12.055] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
CorA, the major Mg(2+) uptake system in prokaryotes, is gated by intracellular Mg(2+) (KD ∼ 1-2 mM). X-ray crystallographic studies of CorA show similar conformations under Mg(2+)-bound and Mg(2+)-free conditions, but EPR spectroscopic studies reveal large Mg(2+)-driven quaternary conformational changes. Here, we determined cryo-EM structures of CorA in the Mg(2+)-bound closed conformation and in two open Mg(2+)-free states at resolutions of 3.8, 7.1, and 7.1 Å, respectively. In the absence of bound Mg(2+), four of the five subunits are displaced to variable extents (∼ 10-25 Å) by hinge-like motions as large as ∼ 35° at the stalk helix. The transition between a single 5-fold symmetric closed state and an ensemble of low Mg(2+), open, asymmetric conformational states is, thus, the key structural signature of CorA gating. This mechanism is likely to apply to other structurally similar divalent ion channels.
Collapse
Affiliation(s)
- Doreen Matthies
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Mario J Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Prashant Rao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bharat G Reddy
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shahidul Islam
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Bajaj R, Bruce KE, Davidson AL, Rued BE, Stauffacher CV, Winkler ME. Biochemical characterization of essential cell division proteins FtsX and FtsE that mediate peptidoglycan hydrolysis by PcsB in Streptococcus pneumoniae. Microbiologyopen 2016; 5:738-752. [PMID: 27167971 PMCID: PMC5061712 DOI: 10.1002/mbo3.366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The FtsEX:PcsB complex forms a molecular machine that carries out peptidoglycan (PG) hydrolysis during normal cell division of the major respiratory pathogenic bacterium, Streptococcus pneumoniae (pneumococcus). FtsX is an integral membrane protein and FtsE is a cytoplasmic ATPase that together structurally resemble ABC transporters. Instead of transport, FtsEX transduces signals from the cell division apparatus to stimulate PG hydrolysis by PcsB, which interacts with extracellular domains of FtsX. Structural studies of PcsB and one extracellular domain of FtsX have recently appeared, but little is known about the biochemical properties of the FtsE ATPase or the intact FtsX transducer protein. We report here purifications and characterizations of tagged FtsX and FtsE proteins. Pneumococcal FtsX‐GFP‐His and FtsX‐His could be overexpressed in Escherichia coli without toxicity, and FtsE‐His remained soluble during purification. FtsX‐His dimerizes in detergent micelles and when reconstituted in phospholipid nanodiscs. FtsE‐His binds an ATP analog with an affinity comparable to that of ATPase subunits of ABC transporters, and FtsE‐His preparations have a low, detectable ATPase activity. However, attempts to detect complexes of purified FtsX‐His, FtsE‐His, and PcsB‐His or coexpressed tagged FtsX and FtsE were not successful with the constructs and conditions tested so far. In working with nanodiscs, we found that PcsB‐His has an affinity for charged phospholipids, mediated partly by interactions with its coiled‐coil domain. Together, these findings represent first steps toward reconstituting the FtsEX:PcsB complex biochemically and provide information that may be relevant to the assembly of the complex on the surface of pneumococcal cells.
Collapse
Affiliation(s)
- Ruchika Bajaj
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Kevin E Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Amy L Davidson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Britta E Rued
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, 47405.
| |
Collapse
|
32
|
Benjamin CJ, Wright KJ, Hyun SH, Krynski K, Yu G, Bajaj R, Guo F, Stauffacher CV, Jiang W, Thompson DH. Nonfouling NTA-PEG-Based TEM Grid Coatings for Selective Capture of Histidine-Tagged Protein Targets from Cell Lysates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:551-9. [PMID: 26726866 PMCID: PMC5310270 DOI: 10.1021/acs.langmuir.5b03445] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.
Collapse
Affiliation(s)
- Christopher J Benjamin
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle J Wright
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Seok-Hee Hyun
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Kyle Krynski
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Guimei Yu
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Ruchika Bajaj
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Fei Guo
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Cynthia V Stauffacher
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - Wen Jiang
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| | - David H Thompson
- Department of Chemistry and ‡Department of Biological Sciences, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Dominik PK, Borowska MT, Dalmas O, Kim SS, Perozo E, Keenan RJ, Kossiakoff AA. Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. Structure 2015; 24:300-9. [PMID: 26749445 DOI: 10.1016/j.str.2015.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023]
Abstract
A major challenge in membrane biophysics is to define the mechanistic linkages between a protein's conformational transitions and its function. We describe a novel approach to stabilize transient functional states of membrane proteins in native-like lipid environments allowing for their structural and biochemical characterization. This is accomplished by combining the power of antibody Fab-based phage display selection with the benefits of embedding membrane protein targets in lipid-filled nanodiscs. In addition to providing a stabilizing lipid environment, nanodiscs afford significant technical advantages over detergent-based formats. This enables the production of a rich pool of high-performance Fab binders that can be used as crystallization chaperones, as fiducial markers for single-particle cryoelectron microscopy, and as probes of different conformational states. Moreover, nanodisc-generated Fabs can be used to identify detergents that best mimic native membrane environments for use in biophysical studies.
Collapse
Affiliation(s)
- Pawel K Dominik
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Olivier Dalmas
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Sangwoo S Kim
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Raschle T, Lin C, Jungmann R, Shih WM, Wagner G. Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold. ACS Chem Biol 2015; 10:2448-54. [PMID: 26356202 DOI: 10.1021/acschembio.5b00627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanodiscs constitute a tool for the solubilization of membrane proteins in a lipid bilayer, thus offering a near-native membrane environment. Many membrane proteins interact with other membrane proteins; however, the co-reconstitution of multiple membrane proteins in a single nanodisc is a random process that is adversely affected by several factors, including protein aggregation. Here, we present an approach for the controlled co-reconstitution of multiple membrane proteins in a single nanodisc. The temporary attachment of designated oligonucleotides to individual membrane proteins enables the formation of stable, detergent-solubilized membrane protein complexes by base-pairing of complementary oligonucleotide sequences, thus facilitating the insertion of the membrane protein complex into nanodiscs with defined stoichiometry and composition. As a proof of principle, nanodiscs containing a heterodimeric and heterotrimeric membrane protein complex were reconstituted using a fluorescently labeled voltage-gated anion channel (VDAC) as a model system.
Collapse
Affiliation(s)
- Thomas Raschle
- Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chenxiang Lin
- Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Ralf Jungmann
- Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - William M. Shih
- Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Gerhard Wagner
- Department of Biological Chemistry
and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
35
|
Alvarez FJD, Orelle C, Huang Y, Bajaj R, Everly RM, Klug CS, Davidson AL. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter. Mol Microbiol 2015; 98:878-94. [PMID: 26268698 DOI: 10.1111/mmi.13165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 01/31/2023]
Abstract
MalFGK2 is an ATP-binding cassette (ABC) transporter that mediates the uptake of maltose/maltodextrins into Escherichia coli. A periplasmic maltose-binding protein (MBP) delivers maltose to the transmembrane subunits (MalFG) and stimulates the ATPase activity of the cytoplasmic nucleotide-binding subunits (MalK dimer). This MBP-stimulated ATPase activity is independent of maltose for purified transporter in detergent micelles. However, when the transporter is reconstituted in membrane bilayers, only the liganded form of MBP efficiently stimulates its activity. To investigate the mechanism of maltose stimulation, electron paramagnetic resonance spectroscopy was used to study the interactions between the transporter and MBP in nanodiscs and in detergent. We found that full engagement of both lobes of maltose-bound MBP unto MalFGK2 is facilitated by nucleotides and stabilizes a semi-open MalK dimer. Maltose-bound MBP promotes the transition to the semi-open state of MalK when the transporter is in the membrane, whereas such regulation does not require maltose in detergent. We suggest that stabilization of the semi-open MalK2 conformation by maltose-bound MBP is key to the coupling of maltose transport to ATP hydrolysis in vivo, because it facilitates the progression of the MalK dimer from the open to the semi-open conformation, from which it can proceed to hydrolyze ATP.
Collapse
Affiliation(s)
| | - Cédric Orelle
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yan Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruchika Bajaj
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - R Michael Everly
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
36
|
Rice AJ, Alvarez FJD, Davidson AL, Pinkett HW. Effects of lipid environment on the conformational changes of an ABC importer. Channels (Austin) 2015; 8:327-33. [PMID: 24852576 PMCID: PMC4203734 DOI: 10.4161/chan.29294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability.
Collapse
|
37
|
Active transporters as enzymes: an energetic framework applied to major facilitator superfamily and ABC importer systems. Biochem J 2015; 467:193-9. [DOI: 10.1042/bj20140675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Active membrane transporters are dynamic molecular machines that catalyse transport across a membrane by coupling solute movement to a source of energy such as ATP or a secondary ion gradient. A central question for many active transporters concerns the mechanism by which transport is coupled to a source of energy. The transport process and associated energetic coupling involve conformational changes in the transporter. For efficient transport, the conformational changes must be tightly regulated and they must link energy use to movement of the substrate across the membrane. The present review discusses active transport using the well-established energetic framework for enzyme-mediated catalysis. In particular, membrane transport systems can be viewed as ensembles consisting of low-energy and high-energy conformations. The transport process involves binding interactions that selectively stabilize the higher energy conformations, and in this way promote conformational changes in the system that are coupled to decreases in free energy and substrate translocation. The major facilitator superfamily of secondary active transporters is used to illustrate these ideas, which are then be expanded to primary active transport mediated by ABC (ATP-binding cassette) import systems, with a focus on the well-studied maltose transporter.
Collapse
|
38
|
Abstract
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.
Collapse
|
39
|
Rice AJ, Harrison A, Alvarez FJD, Davidson AL, Pinkett HW. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment. J Biol Chem 2014; 289:15005-13. [PMID: 24722984 PMCID: PMC4031551 DOI: 10.1074/jbc.m114.563783] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria.
Collapse
Affiliation(s)
- Austin J Rice
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Alistair Harrison
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus Ohio 43205, and
| | | | - Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Heather W Pinkett
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208,
| |
Collapse
|
40
|
Pomorski TG, Nylander T, Cárdenas M. Model cell membranes: discerning lipid and protein contributions in shaping the cell. Adv Colloid Interface Sci 2014; 205:207-20. [PMID: 24268587 DOI: 10.1016/j.cis.2013.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/01/2023]
Abstract
The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes controlled by membrane structure, permeability and curvature as well as membrane proteins by using a wide range of biochemical, biophysical and microscopic techniques. This review gives an overview of some currently used model biomembrane systems. We will also discuss some key membrane protein properties that are relevant for protein-membrane interactions in terms of protein structure and how it is affected by membrane composition, phase behavior and curvature.
Collapse
Affiliation(s)
- Thomas Günther Pomorski
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | - Tommy Nylander
- Department of Chemistry, Division of Physical Chemistry, Lund University, Gettingevägen 60, SE-22100 Lund, Sweden
| | - Marité Cárdenas
- Department of Chemistry/Nano-Science Center, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
41
|
The Maltose ABC Transporter: Where Structure Meets Function. SPRINGER SERIES IN BIOPHYSICS 2014. [DOI: 10.1007/978-3-642-53839-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Nasr ML, Singh SK. Radioligand binding to nanodisc-reconstituted membrane transporters assessed by the scintillation proximity assay. Biochemistry 2013; 53:4-6. [PMID: 24344975 DOI: 10.1021/bi401412e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scintillation proximity assay is a powerful technique for measuring radioligand binding to membrane transporters and has become an integral part of high-throughput drug discovery screening efforts. Here we adapt the method for use with purified LeuT, a prokaryotic secondary transporter, reconstituted into phospholipid bilayer nanodiscs. This application surmounts potential challenges with background interference from endogenously expressed proteins, aggregation and loss of binding activity often accompanying detergent solubilization from native cell membranes, and heterogeneity in size and transporter orientation, where at least some ligand binding sites are inaccessible, associated with reconstitution into lipid vesicles.
Collapse
Affiliation(s)
- Mahmoud L Nasr
- Department of Cellular and Molecular Physiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | | |
Collapse
|
43
|
Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci U S A 2013; 110:18132-7. [PMID: 24145421 DOI: 10.1073/pnas.1311407110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are molecular pumps that harness the chemical energy of ATP hydrolysis to translocate solutes across the membrane. The substrates transported by different ABC transporters are diverse, ranging from small ions to large proteins. Although crystal structures of several ABC transporters are available, a structural basis for substrate recognition is still lacking. For the Escherichia coli maltose transport system, the selectivity of sugar binding to maltose-binding protein (MBP), the periplasmic binding protein, does not fully account for the selectivity of sugar transport. To obtain a molecular understanding of this observation, we determined the crystal structures of the transporter complex MBP-MalFGK2 bound with large malto-oligosaccharide in two different conformational states. In the pretranslocation structure, we found that the transmembrane subunit MalG forms two hydrogen bonds with malto-oligosaccharide at the reducing end. In the outward-facing conformation, the transmembrane subunit MalF binds three glucosyl units from the nonreducing end of the sugar. These structural features explain why modified malto-oligosaccharides are not transported by MalFGK2 despite their high binding affinity to MBP. They also show that in the transport cycle, substrate is channeled from MBP into the transmembrane pathway with a polarity such that both MBP and MalFGK2 contribute to the overall substrate selectivity of the system.
Collapse
|
44
|
Abate A, Hollman DJ, Teuscher J, Pathak S, Avolio R, D’Errico G, Vitiello G, Fantacci S, Snaith HJ. Protic Ionic Liquids as p-Dopant for Organic Hole Transporting Materials and Their Application in High Efficiency Hybrid Solar Cells. J Am Chem Soc 2013; 135:13538-48. [DOI: 10.1021/ja406230f] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Antonio Abate
- Clarendon Laboratory,
Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Derek J. Hollman
- Clarendon Laboratory,
Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Joël Teuscher
- Clarendon Laboratory,
Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Sandeep Pathak
- Clarendon Laboratory,
Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| | - Roberto Avolio
- Institute of Polymer Chemistry and Technology (ICTP), National Research Council
of Italy, Via Campi Flegrei 34, 80078 Pozzuoli (NA), Italy
| | - Gerardino D’Errico
- Department
of Chemical
sciences, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy
| | - Giuseppe Vitiello
- Department
of Chemical
sciences, University of Naples “Federico II”, Via Cinthia, 80126 Napoli, Italy
| | - Simona Fantacci
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), via Elce di
Sotto 8, I-06213 Perugia, Italy
| | - Henry J. Snaith
- Clarendon Laboratory,
Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom
| |
Collapse
|
45
|
Karasawa A, Swier LJYM, Stuart MCA, Brouwers J, Helms B, Poolman B. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J Biol Chem 2013; 288:29862-71. [PMID: 23979139 DOI: 10.1074/jbc.m113.499327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells control their volume through the accumulation of compatible solutes. The bacterial ATP-binding cassette transporter OpuA couples compatible solute uptake to ATP hydrolysis. Here, we study the gating mechanism and energy coupling of OpuA reconstituted in lipid nanodiscs. We show that anionic lipids are essential both for the gating and the energy coupling. The tight coupling between substrate binding on extracellular domains and ATP hydrolysis by cytoplasmic nucleotide-binding domains allows the study of transmembrane signaling in nanodiscs. From the tight coupling between processes at opposite sides of the membrane, we infer that the ATPase activity of OpuA in nanodiscs reflects solute translocation. Intriguingly, the substrate-dependent, ionic strength-gated ATPase activity of OpuA in nanodiscs is at least an order of magnitude higher than in lipid vesicles (i.e. with identical membrane lipid composition, ionic strength, and nucleotide and substrate concentrations). Even with the chemical components the same, the lateral pressure (profile) of the nanodiscs will differ from that of the vesicles. We thus propose that membrane tension limits translocation in vesicular systems. Increased macromolecular crowding does not activate OpuA but acts synergistically with ionic strength, presumably by favoring gating interactions of like-charged surfaces via excluded volume effects.
Collapse
Affiliation(s)
- Akira Karasawa
- From the Departments of Biochemistry and Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Netherlands Proteomics Centre
| | | | | | | | | | | |
Collapse
|
46
|
Involvement of FtsE ATPase and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell division of Streptococcus pneumoniae D39. mBio 2013; 4:mBio.00431-13. [PMID: 23860769 PMCID: PMC3735124 DOI: 10.1128/mbio.00431-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The FtsEX protein complex has recently been proposed to play a major role in coordinating peptidoglycan (PG) remodeling by hydrolases with the division of bacterial cells. According to this model, cytoplasmic FtsE ATPase interacts with the FtsZ divisome and FtsX integral membrane protein and powers allosteric activation of an extracellular hydrolase interacting with FtsX. In the major human respiratory pathogen Streptococcus pneumoniae (pneumococcus), a large extracellular-loop domain of FtsX (ECL1FtsX) is thought to interact with the coiled-coil domain of the PcsB protein, which likely functions as a PG amidase or endopeptidase required for normal cell division. This paper provides evidence for two key tenets of this model. First, we show that FtsE protein is essential, that depletion of FtsE phenocopies cell defects caused by depletion of FtsX or PcsB, and that changes of conserved amino acids in the FtsE ATPase active site are not tolerated. Second, we show that temperature-sensitive (Ts) pcsB mutations resulting in amino acid changes in the PcsB coiled-coil domain (CCPcsB) are suppressed by ftsX mutations resulting in amino acid changes in the distal part of ECL1FtsX or in a second, small extracellular-loop domain (ECL2FtsX). Some FtsX suppressors are allele specific for changes in CCPcsB, and no FtsX suppressors were found for amino acid changes in the catalytic PcsB CHAP domain (CHAPPcsB). These results strongly support roles for both ECL1FtsX and ECL2FtsX in signal transduction to the coiled-coil domain of PcsB. Finally, we found that pcsBCC(Ts) mutants (Ts mutants carrying mutations in the region of pcsB corresponding to the coiled-coil domain) unexpectedly exhibit delayed stationary-phase autolysis at a permissive growth temperature. Little is known about how FtsX interacts with cognate PG hydrolases in any bacterium, besides that ECL1FtsX domains somehow interact with coiled-coil domains. This work used powerful genetic approaches to implicate a specific region of pneumococcal ECL1FtsX and the small ECL2FtsX in the interaction with CCPcsB. These findings identify amino acids important for in vivo signal transduction between FtsX and PcsB for the first time. This paper also supports the central hypothesis that signal transduction between pneumococcal FtsX and PcsB is linked to ATP hydrolysis by essential FtsE, which couples PG hydrolysis to cell division. The classical genetic approaches used here can be applied to dissect interactions of other integral membrane proteins involved in PG biosynthesis. Finally, delayed autolysis of the pcsBCC(Ts) mutants suggests that the FtsEX-PcsB PG hydrolase may generate a signal in the PG necessary for activation of the major LytA autolysin as pneumococcal cells enter stationary phase.
Collapse
|
47
|
Ritz S, Hulko M, Zerfass C, May S, Hospach I, Krasteva N, Nelles G, Sinner EK. Cell-free expression of a mammalian olfactory receptor and unidirectional insertion into small unilamellar vesicles (SUVs). Biochimie 2013; 95:1909-16. [PMID: 23816872 DOI: 10.1016/j.biochi.2013.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/20/2013] [Indexed: 01/29/2023]
Abstract
Although the identification of the multigene family encoding mammalian olfactory receptors were identified more than 20 years ago, we are far from understanding olfactory perception because of the difficulties in functional expression of these receptors in heterologous cell systems. Cell-free (CF) or in vitro expression systems offer an elegant alternative route to cell based protein expression, as the functional expression of membrane proteins can be directly achieved from the genetic template without the need of cell cultivation and protein isolation. Here we investigated in detail the cell-free expression and membrane insertion of the olfactory receptor OR5 in dependence of different experimental conditions like probing different origins of the cell-free expression system (from bacteria, via plants and insects toward mammalian system) and lipid composition of the respective extracts. We provided substantial biochemical indications by radioactive labeling based on [(35)S]-methionine, followed by proteolytic digestion, and we found that the insertion of the olfactory receptor OR5 into liposomes resulted in an unidirectional orientation with the binding side exposed into the aqueous space, resembling the native orientation in the cilia of the olfactory neurons. We report the different results in synthesis capacity for the different in vitro systems employed as we like to demonstrate the first in vitro kit toward and ex situ and ex vivo odorant receptor array.
Collapse
Affiliation(s)
- Sandra Ritz
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Carbon catabolite repression of the maltose transporter revealed by X-ray crystallography. Nature 2013; 499:364-8. [PMID: 23770568 PMCID: PMC3875231 DOI: 10.1038/nature12232] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 02/03/2023]
Abstract
Efficient carbon utilization is critical to the survival of microorganisms in competitive environments. To optimize energy usage, bacteria have developed an integrated control system to preferentially uptake carbohydrates that support rapid growth. The availability of a preferred carbon source such as glucose represses the synthesis and activities of proteins necessary for the transport and metabolism of secondary carbon sources. This regulatory phenomenon is defined as carbon catabolite repression (CCR)1. In enteric bacteria, the key player of CCR is a component of the glucose-specific phosphotransferase system, enzyme IIA (EIIAGlc)1,2. It is known that unphosphorylated EIIAGlc binds and inhibits a variety of transporters when glucose is available1,2. However, understanding the underlying molecular mechanism has been hindered by the complete absence of structures for any EIIAGlc-transporter complexes. Here, we present the 3.9 Å crystal structure of EIIAGlc in complex with the maltose transporter, an ATP-binding cassette (ABC) transporter. The structure shows that two EIIAGlc molecules bind to the cytoplasmic ATPase subunits, stabilizing the transporter in an inward-facing conformation and preventing the structural rearrangements necessary for ATP hydrolysis. We also show that the half maximal inhibitory concentrations of the full-length EIIAGlc and an N-terminal truncation mutant differ by 60 fold, consistent with the hypothesis that the N-terminal region, disordered in the crystal structure, functions as a membrane-anchor to increase the effective EIIAGlc concentration at the membrane3,4. Together these data suggest a model of how the central regulatory protein EIIAGlc allosterically inhibits maltose uptake in E. coli.
Collapse
|
49
|
Molecular mechanism of the Escherichia coli maltose transporter. Curr Opin Struct Biol 2013; 23:492-8. [PMID: 23628288 DOI: 10.1016/j.sbi.2013.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 03/30/2013] [Indexed: 01/20/2023]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that import and export a large variety of materials across the lipid bilayer. A key question that drives ABC transporter research is how ATP hydrolysis is coupled to substrate translocation. This review uses the maltose transporter of Escherichia coli as a model system to understand the molecular mechanism of ABC importers. X-ray crystallography was used to capture the structures of the maltose transporter in multiple conformations. These structures, interpreted in the light of functional data, are discussed to address the following questions: first, what is the nature of conformational changes in a transport cycle? Second, how does substrate activate ATPase activity? Third, how does ATP hydrolysis enable substrate transport?
Collapse
|
50
|
Bao H, Dalal K, Wang V, Rouiller I, Duong F. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1723-30. [PMID: 23562402 DOI: 10.1016/j.bbamem.2013.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 01/25/2023]
Abstract
The coupling between ATP hydrolysis and substrate transport remains a key question in the understanding of ABC-mediated transport. We show using the MalFGK2 complex reconstituted into nanodiscs, that membrane lipids participate directly to the coupling reaction by stabilizing the transporter in a low energy conformation. When surrounded by short acyl chain phospholipids, the transporter is unstable and hydrolyzes large amounts of ATP without inducing maltose. The presence of long acyl chain phospholipids stabilizes the conformational dynamics of the transporter, reduces its ATPase activity and restores dependence on maltose. Membrane lipids therefore play an essential allosteric function, they restrict the transporter ATPase activity to increase coupling to the substrate. In support to the notion, we show that increasing the conformational dynamics of MalFGK2 with mutations in MalF increases the transporter ATPase activity but decreases the maltose transport efficiency.
Collapse
Affiliation(s)
- Huan Bao
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|