1
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2024. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
2
|
van der Tol JJB, Hafeez S, Bänziger APG, Su H, Heuts JPA, Meijer EW, Vantomme G. Supramolecular Polymer Additives as Repairable Reinforcements for Dynamic Covalent Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410723. [PMID: 39417726 PMCID: PMC11619224 DOI: 10.1002/adma.202410723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Employing rigid (in)organic materials as reinforcement for dynamic covalent networks (DCNs) is an effective approach to develop high-performance materials. Yet, recycling of these materials after failure often necessitates inefficient chemical reprocessing or inevitably alters their performance due to unrepairable inert components. Here, a non-covalent reinforcement strategy is presented by introducing a supramolecular additive to a DCN that can reversibly depolymerize and reform on demand, therefore acting as an adaptive and repairable reinforcement. The strong hydrogen-bonding interactions in the supramolecular polymer of triazine-1,3,5-tribenzenecarboxamide (S-T) strengthen the DCN at room temperature, while its non-covalent nature allows for easy one-pot reprocessing at high temperatures. Depending on wether S-T is covalently bond to the DCN or not, it can play either the role of compatibilizer or filler, providing a synthetic tool to control the relaxation dynamics, reprocessability and mechanical properties. Moreover, the S-T reinforcement can be chemically recovered with high yield and purity, showcasing the recyclability of the composite. This conceptually novel supramolecular reinforcement strategy with temperature-controlled dynamics highlights the potential of supramolecular polymer additives to replace conventional unrepairable reinforcements.
Collapse
Affiliation(s)
- Joost J. B. van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Shahzad Hafeez
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Andy P. G. Bänziger
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Hao Su
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Johan P. A. Heuts
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyP.O. Box 513Eindhoven5600 MBNetherlands
| |
Collapse
|
3
|
Ren C, Wang F, Meng X, Zhou R, Sun Z, Cheng Y, Chu H, Wang Y. Supramolecular Modulator Assisted Cryo-Engineered Porous Cu-DNA Nano-Vehicles for Versatile Theranostic Agent Delivery. Adv Healthc Mater 2024; 13:e2401885. [PMID: 39036819 DOI: 10.1002/adhm.202401885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Indexed: 07/23/2024]
Abstract
DNA nanotechnology combines structural design with therapeutic functions via programmable DNA motifs, but faces challenges in drug loading capacity. Herein a pore-engineering strategy is reported to develop a highly porous, universal DNA nano-vehicle through coordination self-assembly, cryo-engineering, and supramolecular chemistry, adapting to diverse cargo loading with desired theranostic agents. Thus, the complex synthesis and compatibility challenges typically associated with switching between different drug carriers are avoided. To this end, Cu2+ and nucleic acid therapeutic G3139 self-assemble into a prefabricated solid nanostructure, which subsequently undergoes ultrafast freezing and sublimation to introduce porosity, forming highly porous Cu-G3139 nanoparticles (CG NPs). The porous CG NPs efficiently accommodate diverse therapeutic molecules, from chemotherapeutics to non-chemotherapeutic agents, facilitated by positively-charged cyclodextrin. As a proof-of-concept, the photosensitizer indocyanine green (ICG) is loaded and coated with tannic acid (TA) to form CICG@TA, enabling remarkable photothermal and fluorescence imaging-guided synergistic tumor ablation. This work represents the first demonstration of sublimation-induced pore formation in metal-DNA hybrid nanoparticles without chemical etching, offering a scalable "plug-and-play" platform for personalized cancer therapy without redesign. This versatile pore-engineering strategy, merging supramolecular chemistry with cryo-engineered porosity, opens up new avenues for efficient, customized multidrug delivery for diverse tumor theranostic applications.
Collapse
Affiliation(s)
- Cui Ren
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xiaoyi Meng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Ruiang Zhou
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Balszuweit J, Stahl P, Cappellari V, Lorberg RY, Wölper C, Niemeyer FC, Koch J, Prymak O, Knauer SK, Strassert CA, Voskuhl J. Merging of a Supramolecular Ligand with a Switchable Luminophore - Light-Responsiveness, Photophysics and Bioimaging. Chemistry 2024; 30:e202402578. [PMID: 39054904 DOI: 10.1002/chem.202402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/27/2024]
Abstract
In this contribution we report on a novel approach towards luminescent light-responsive ligands. To this end, cyanostilbene- guanidiniocarbonyl-pyrrole hybrids were designed and investigated. Merging of a luminophore with a supramolecular bioactive ligand bears numerous advantages by overcoming the typical drawbacks of drug-labelling, influencing the overall performance of the active species by attachment of a large luminophore. Here we were able to establish a simple and easily accessible synthesis route to different cyanostyryl-guanidininiocarbonyl-pyrrole (CGCP) derivatives. These compounds were investigated regarding their light-responsive double bond isomerisation, their molecular structures in single crystals by means of X-ray diffractometry, their emission properties by state of the art photophysical characterisation as well as bioimaging and assessment of cell toxicity.
Collapse
Affiliation(s)
- Jan Balszuweit
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Paul Stahl
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Victoria Cappellari
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Rick Y Lorberg
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| | - Johannes Koch
- Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Oleg Prymak
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117, Essen, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg Essen, Universitätsstr. 2, 45141, Essen, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Universität Münster, Heisenbergstr. 11, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45117, Essen, Germany
| |
Collapse
|
5
|
Hommel K, Kauth AMA, Kirupakaran A, Theisen S, Hayduk M, Niemeyer FC, Beuck C, Zadmard R, Bayer P, Jan Ravoo B, Voskuhl J, Schrader T, Knauer SK. Functional Linkers Support Targeting of Multivalent Tweezers to Taspase1. Chemistry 2024; 30:e202401542. [PMID: 38958349 DOI: 10.1002/chem.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.
Collapse
Affiliation(s)
- Katrin Hommel
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Alisa-Maite A Kauth
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Sebastian Theisen
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
6
|
Ghosh A, Zhao Y. Site-Selective Functionalization of Molecularly Imprinted Nanoparticles to Recognize Lysine-Rich Peptides. Biomacromolecules 2024; 25:6188-6194. [PMID: 39092916 DOI: 10.1021/acs.biomac.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sequence-selective binding of peptides has been a long-standing goal of chemists. As one of the most abundant amino acids in proteins, lysine plays an important role in protein functions as well as in antimicrobial and cell-penetrating peptides. Herein, we report molecularly imprinted nanoparticles (NPs) with high sequence selectivity for lysine-rich peptides. The NPs are prepared from molecular imprinting of cross-linkable surfactant micelles and postmodification of the imprinted pockets by photoaffinity labeling. The method allows carboxylic acids to be installed precisely near the lysine amino side chains, greatly enhancing the binding strengths of lysine-rich peptides. Small variations in the peptide sequence can be distinguished, and the binding affinity correlates positively with the number of lysine groups in model tripeptides. The method applies to complex lysine-rich biological peptides, achieving hundreds of nanomolar binding affinities and excellent binding specificities.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
7
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
8
|
Mashima T, Yamanaka M, Yoshida A, Kobayashi N, Kanaoka Y, Uchihashi T, Hirota S. Construction of ligand-binding controlled hemoprotein assemblies utilizing 3D domain swapping. Chem Commun (Camb) 2024; 60:9440-9443. [PMID: 39139060 DOI: 10.1039/d4cc03129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Association-controllable hemoprotein assemblies were constructed from a fusion protein containing two c-type cytochrome units using 3D domain swapping. The hemoprotein assembly exhibited a dynamic exchange between cyclic and linear structures and could be regulated by carbon monoxide (CO) and imidazole binding.
Collapse
Affiliation(s)
- Tsuyoshi Mashima
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
- Medilux Research Center, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masaru Yamanaka
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Atsuki Yoshida
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Naoya Kobayashi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-0864, Japan
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
9
|
Salazar Marcano DE, Lentink S, Chen JJ, Anyushin AV, Moussawi MA, Bustos J, Van Meerbeek B, Nyman M, Parac-Vogt TN. Supramolecular Self-Assembly of Proteins Promoted by Hybrid Polyoxometalates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312009. [PMID: 38213017 DOI: 10.1002/smll.202312009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range. Insights into the self-assembly process and the nature of the resulting biohybrid materials are obtained by a combination of Small Angle X-ray Scattering (SAXS), Transmission Electron Microscopy (TEM), and Dynamic Light Scattering (DLS), along with fluorescence, UV-vis, and Circular Dichroism (CD) spectroscopy. The formation of hybrid supramolecular assemblies is determined to be driven by biotin binding to the protein and electrostatic interactions between the anionic metal-oxo cluster and the protein, both of which also influence the stability of the resulting assemblies. As a result, the rate of formation, size, and stability of the supramolecular assemblies can be tuned by controlling the electrostatic interactions between the cluster and the protein (e.g., through varying the ionic strength of the solution), thereby paving the way toward biomaterials with tunable assembly and disassembly properties.
Collapse
Affiliation(s)
| | - Sarah Lentink
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Jenna Bustos
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, KU Leuven, Kapucijnenvoer 7, Leuven, 3000, Belgium
| | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331, USA
| | | |
Collapse
|
10
|
Chen J, Moreno JL, Zhang W, Gibson-Elias LJ, Lian R, Najafi S, Zhang H, Zhong W, Hooley RJ. Optical discrimination of terpenes in citrus peels with a host:guest sensing array. Chem Commun (Camb) 2024; 60:5598-5601. [PMID: 38712724 DOI: 10.1039/d4cc01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A simple aqueous host:guest sensing array can selectively discriminate between different types of citrus varietal from peel extract samples. It can also distinguish between identical citrus samples at varying stages of ripening. The discrimination effects stem from detection of changes in the terpenoid composition of the peel extracts by the host:guest array, despite the overwhelming excess of a single component, limonene, in each sample. The hosts are insensitive to limonene but bind other monoterpenes strongly, even though they are similar in structure to the major limonene component. This work demonstrates the capability of host:guest arrays in sensing target molecules in environments with the competing agents present at high abundances in the sample matrix.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Jose L Moreno
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Wen Zhang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Ria Lian
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Saba Najafi
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Haofei Zhang
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
| |
Collapse
|
11
|
Yau JCK, Hung KL, Ren Y, Kajitani T, Stuart MCA, Leung FKC. Red-light-controlled supramolecular assemblies of indigo amphiphiles at multiple length scales. J Colloid Interface Sci 2024; 662:391-403. [PMID: 38359503 DOI: 10.1016/j.jcis.2024.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Amphiphilic molecules functionalized with photoresponsive motifs have attractive prospects for applications in smart functional bio-material ranging from cell-material interfaces to drug delivery systems owing to the precisely controllable functionality of self-assembled hierarchical supramolecular structures in aqueous media by a non-invasive light stimulation with high temporal- and spatial-resolution. However, most of reported photoresponsive amphiphiles are triggered by bio-damaging UV-light, which greatly limits the potential in bio-related applications. Herein, we present newly designed red-light controlled N,N'-diaryl-substituted indigo amphiphiles (IA), exhibiting excellent photoswitchablity and photostability with dual red-/green-light in organic media. Meanwhile, aqueous solutions of IA assembled into supramolecular structures in both microscopic and macroscopic length-scale, though the photoresponsiveness of IA is slightly compromised in aqueous media. At macroscopic length-scale, morphological changes of IA macroscopic scaffold prepared by a shear-flow method can be fine adjusted upon red-light irradiation. Moreover, the preferential attachment of live h-MSCs to IA macroscopic scaffold surface also indicates a good biocompatibility of IA macroscopic scaffold. These results provide the potential for developing the next generation of red-light controlled soft functional materials with good biocompatibility.
Collapse
Affiliation(s)
- Jerry Chun-Kit Yau
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Lung Hung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Marc C A Stuart
- Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Franco King-Chi Leung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
12
|
Ghosh A, Sharma M, Zhao Y. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting. Nat Commun 2024; 15:3731. [PMID: 38702306 PMCID: PMC11068882 DOI: 10.1038/s41467-024-48131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA.
| |
Collapse
|
13
|
Pramod M, Alnajjar MA, Schöpper SN, Schwarzlose T, Nau WM, Hennig A. Adamantylglycine as a high-affinity peptide label for membrane transport monitoring and regulation. Chem Commun (Camb) 2024; 60:4810-4813. [PMID: 38602391 DOI: 10.1039/d4cc00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The non-canonical amino acid adamantylglycine (Ada) is introduced into peptides to allow high-affinity binding to cucurbit[7]uril (CB7). Introduction of Ada into a cell-penetrating peptide (CPP) sequence had minimal influence on the membrane transport, yet enabled up- and down-regulation of the membrane transport activity.
Collapse
Affiliation(s)
- Malavika Pramod
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Sandra N Schöpper
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| | - Thomas Schwarzlose
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, Bremen 28759, Germany.
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, Osnabrück 49069, Germany.
| |
Collapse
|
14
|
Porfetye AT, Stege P, Rebollido-Rios R, Hoffmann D, Schrader T, Vetter IR. How Do Molecular Tweezers Bind to Proteins? Lessons from X-ray Crystallography. Molecules 2024; 29:1764. [PMID: 38675584 PMCID: PMC11051928 DOI: 10.3390/molecules29081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.
Collapse
Affiliation(s)
- Arthur T. Porfetye
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Patricia Stege
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Rocio Rebollido-Rios
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Daniel Hoffmann
- Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117 Essen, Germany
| | - Ingrid R. Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| |
Collapse
|
15
|
Chaudhary KN, Brosnahan KI, Gibson-Elias LJ, Moreno JL, Hickey BL, Hooley RJ, Caulkins BG. Investigation of the effects on proton relaxation times upon encapsulation in a water-soluble synthetic receptor. Phys Chem Chem Phys 2024; 26:10183-10190. [PMID: 38497123 DOI: 10.1039/d3cp06099c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sequestration of small molecule guests in the cavity of a water-soluble deep cavitand host has a variety of effects on their NMR properties. The effects of encapsulation on the longitudinal (T1) and transverse (T2) relaxation times of the protons in variably sized guest molecules are analyzed here, using inversion recovery and spin-echo experiments. Sequestration of neutral organic species from the bulk solvent reduces the overall proton relaxation times, but the magnitude of this effect on different protons in the same molecule has a variety of contributors, from the motion of the guest when bound, to the position of the protons in the cavity and the magnetic anisotropy induced by the aromatic walls of the host. These subtle effects can have large consequences on the environment experienced by the bound guest, and this sheds light on the nature of small molecules in enclosed environments.
Collapse
Affiliation(s)
- Krishna N Chaudhary
- Department of Natural Sciences, Pitzer and Scripps Colleges, Claremont, California, 91711, USA.
| | - Kyra I Brosnahan
- Department of Natural Sciences, Pitzer and Scripps Colleges, Claremont, California, 91711, USA.
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Jose L Moreno
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Briana L Hickey
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA
| | - Bethany G Caulkins
- Department of Natural Sciences, Pitzer and Scripps Colleges, Claremont, California, 91711, USA.
| |
Collapse
|
16
|
Flood R, Mockler NM, Thureau A, Malinska M, Crowley PB. Supramolecular Synthons in Protein-Ligand Frameworks. CRYSTAL GROWTH & DESIGN 2024; 24:2149-2156. [PMID: 38463617 PMCID: PMC10921380 DOI: 10.1021/acs.cgd.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Supramolecular synthons, defined as reproducible intermolecular structural units, have greatly aided small molecule crystal engineering. In this paper, we propose that supramolecular synthons guide ligand-mediated protein crystallization. The protein RSL and the macrocycle sulfonato-calix[8]arene cocrystallize in at least four ways. One of these cocrystals is a highly porous cube comprising protein nodes connected by calixarene dimers. We show that mutating an aspartic acid to an asparagine results in two new cubic assemblies that depend also on the crystallization method. One of the new cubic arrangements is mediated by calixarene trimers and has a ∼30% increased cell volume relative to the original crystal with calixarene dimers. Crystals of the sulfonato-calix[8]arene sodium salt were obtained from buffered conditions similar to those used to grow the protein-calix[8]arene cocrystals. X-ray analysis reveals a coordination polymer of the anionic calix[8]arene and sodium cation in which the macrocycle is arranged as staggered stacks of the pleated loop conformation. Remarkably, the calixarene packing arrangement is the same in the simple salt as in the protein cocrystal. With the pleated loop conformation, the calixarene presents an extended surface for binding other calixarenes (oligomerization) as well as binding to a protein patch (biomolecular complexation). Small-angle X-ray scattering data suggest pH-dependent calixarene assembly in solution. Therefore, the calix[8]arene-calix[8]arene structural unit may be regarded as a supramolecular synthon that directs at least two types of protein assembly, suggesting applications in protein crystal engineering.
Collapse
Affiliation(s)
- Ronan
J. Flood
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| | - Niamh M. Mockler
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| | - Aurélien Thureau
- Synchrotron
SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, Cedex, Gif-sur-Yvette 91192, France
| | - Maura Malinska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Peter B. Crowley
- SSPC,
Science Foundation Ireland Research Centre for Pharmaceuticals, School
of Biological and Chemical Sciences, University
of Galway, University
Road, Galway H91 TK33, Ireland
| |
Collapse
|
17
|
Arockiaraj M, Celin Fiona J, Abraham J, Klavžar S, Balasubramanian K. Guanidinium and hydrogen carbonate rosette layers: Distance and degree topological indices, Szeged-type indices, entropies, and NMR spectral patterns. Heliyon 2024; 10:e24814. [PMID: 39668855 PMCID: PMC11637096 DOI: 10.1016/j.heliyon.2024.e24814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 12/14/2024] Open
Abstract
Supramolecular chemistry explores non-covalent interactions between molecules, and it has facilitated the design of functional materials and understanding of molecular self-assembly processes. We investigate a captivating class of supramolecular structures, the guanidinium and hydrogen carbonate rosette layers. These rosette layers are composed of guanidinium cations and carbonate anions, exhibiting intricate hydrogen-bonding networks that lead to their unique structural properties. Topological and entropy indices unveil the connectivity and complexity of the structures, providing valuable insights for diverse applications. We have developed the cut method technique to deconstruct the guanidinium and hydrogen carbonate rosette layers into smaller components and obtain the distance, Szeged-type and entropy measures. Subsequently, we conducted a comparative analysis between topological indices and entropies which contributes to a deeper understanding of the structural complexity of these intriguing supramolecular systems. We have derived the degree based topological indices and entropies of the underlying rosette layers. Furthermore, our computations reveal several isentropic structures associated with degree and entropy indices. We have employed distance vector sequence-based graph theoretical techniques in conjunction with symmetry-based combinatorial methods to enumerate and construct the various NMR spectral patterns which are demonstrated to contrast the isomers and networks of the rosettes.
Collapse
Affiliation(s)
| | - J. Celin Fiona
- Department of Mathematics, Loyola College, Chennai 600034, India
| | - Jessie Abraham
- Department of Mathematics, KCG College of Technology, Chennai 600097, India
| | - Sandi Klavžar
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
- Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| | | |
Collapse
|
18
|
Chen J, Fasihianifard P, Raz AAP, Hickey BL, Moreno JL, Chang CEA, Hooley RJ, Zhong W. Selective recognition and discrimination of single isomeric changes in peptide strands with a host : guest sensing array. Chem Sci 2024; 15:1885-1893. [PMID: 38303931 PMCID: PMC10829040 DOI: 10.1039/d3sc06087j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
An indirect competitive binding mechanism can be exploited to allow a combination of cationic fluorophores and water-soluble synthetic receptors to selectively recognize and discriminate peptide strands containing a single isomeric residue in the backbone. Peptide isomerization occurs in long-lived proteins and has been linked with diseases such as Alzheimer's, cataracts and cancer, so isomers are valuable yet underexplored targets for selective recognition. Planar cationic fluorophores can selectively bind hydrophobic, Trp-containing peptide strands in solution, and when paired with receptors that provide a competitive host for the fluorophore, can form a differential sensing array that enables selective discrimination of peptide isomers. Residue variations such as D- and L-Asp, D- and L-isoAsp, D-Ser and D-Glu can all be recognized, simply by their effects on the folded structure of the flexible peptide. Molecular dynamics simulations were applied to determine the most favorable conformation of the peptide : fluorophore conjugate, indicating that favorable π-stacking with internal tryptophan residues in a folded binding pocket enables micromolar binding affinity.
Collapse
Affiliation(s)
- Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Parisa Fasihianifard
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Alexie Andrea P Raz
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Briana L Hickey
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Jose L Moreno
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Chia-En A Chang
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| |
Collapse
|
19
|
Solozabal N, Tapia L, Solà J, Pérez Y, Alfonso I. Molecular Recognition of Tyrosine-Containing Polypeptides with Pseudopeptidic Cages Unraveled by Fluorescence and NMR Spectroscopies. Bioconjug Chem 2023; 34:2345-2357. [PMID: 38078839 PMCID: PMC10859922 DOI: 10.1021/acs.bioconjchem.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
The molecular recognition of Tyr-containing peptide copolymers with pseudopeptidic cages has been studied using a combination of fluorescence and NMR spectroscopies. Fluorescence titrations rendered a reasonable estimation of the affinities, despite the presence of dynamic quenching masking the unambiguous detection of the supramolecular complexes. Regarding NMR, the effect of polypeptide (PP) binding on relaxation and diffusion parameters of the cages is much more reliable than the corresponding chemical shift perturbations. To that, purification of the commercial PPs is mandatory to obtain biopolymers with lower polydispersity. Thus, the relaxation/diffusion-filtered 1H spectra of the cages in the absence vs presence of the PPs represent a suitable setup for the fast detection of the noncovalent interactions. Additional key intermolecular NOE cross-peaks supported by molecular models allow the proposal of a structure of the supramolecular species, stabilized by the Tyr encapsulation within the cage cavity and additional attractive polar interactions between the side chains of cage and PP, thus defining a binding epitope with a potential for implementing sequence selectivity. Accordingly, the cages bearing positive/negative residues prefer to bind the peptides having complementary negative/positive side chains close to the target Tyr, suggesting an electrostatic contribution to the interaction. Overall, our results show that both techniques represent a powerful and complementary combination for studying cage-to-PP molecular recognition processes.
Collapse
Affiliation(s)
- Naiara Solozabal
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Lucía Tapia
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jordi Solà
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Yolanda Pérez
- NMR
Facility, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| | - Ignacio Alfonso
- Department
of Biological Chemistry, Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
20
|
Huang F, Liu J, Li M, Liu Y. Nanoconstruction on Living Cell Surfaces with Cucurbit[7]uril-Based Supramolecular Polymer Chemistry: Toward Cell-Based Delivery of Bio-Orthogonal Catalytic Systems. J Am Chem Soc 2023; 145:26983-26992. [PMID: 38032103 DOI: 10.1021/jacs.3c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Employing living cells as carriers to transport transition metal-based catalysts for target-specific bio-orthogonal catalysis represents a cutting-edge approach in advancing precision biomedical applications. One of the initial hurdles in this endeavor involves effectively attaching the catalysts to the carrier cells while preserving the cells' innate ability to interact with biological systems and maintaining the unaltered catalytic activity. In this study, we have developed an innovative layer-by-layer method that leverages a noncovalent interaction between cucurbit[7]uril and adamantane as the primary driving force for crafting polymeric nanostructures on the surfaces of these carrier cells. The strong binding affinity between the host-guest pair ensures the creation of a durable polymer coating on the cell surfaces. Meanwhile, the layer-by-layer process offers high adaptability, facilitating the efficient loading of bio-orthogonal catalysts onto cell surfaces. Importantly, the polymeric coating shows no discernible impact on the cells' physiological characteristics, including their tropism, migration, and differentiation, while preserving the effectiveness of the bio-orthogonal catalysts.
Collapse
Affiliation(s)
- Fang Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jiaxiong Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Mengru Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yiliu Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
21
|
Pal I, Pathak NK, Majumdar S, Lepcha G, Dey A, Yatirajula SK, Tripathy U, Dey B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16584-16595. [PMID: 37934977 DOI: 10.1021/acs.langmuir.3c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The generation of solvent-directed self-healing supramolecular Ni(II) metallogels of glutaric acid (i.e., Ni-Glu-DMF and Ni-Glu-DMSO) is described in this article. Polar aprotic solvents like N,N'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) are separately entrapped into the Ni(II)-acetate salt and glutaric acid-mediated networks to attain the semisolid flexible scaffolds. The gel nature of the fabricated materials is experimentally proven through different rheological tests such as amplitude sweep, frequency sweep, and thixotropic (time sweep) measurements. The self-repairing strategy and load-bearing features of the synthesized metallogel are studied in this work. The different supramolecular noncovalent interactions working within the soft scaffold are clearly explored. The formation strategy and the microstructural features of these synthesized metallogels are scrutinized through a Fourier transform infrared (FT-IR) spectroscopy study and field-emission scanning electron microscopy (FESEM) morphological analyses. The FT-IR spectroscopy observation displays a considerable amount of shifting of the infrared (IR) peaks of the xerogel samples of both the metallogels Ni-Glu-DMF and Ni-Glu-DMSO. The electrospray ionization (ESI)-mass spectroscopy result demonstrates the plausible construction of the metallogel network. In order to examine the nonlinear optical characteristics of the two synthesized self-healing metallogels Ni-Glu-DMSO and Ni-Glu-DMF, Z-scan measurements are carried out with a continuous wave (CW) diode-pumped solid-state (DPSS) laser at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, thermo-optical coefficient, and third-order susceptibility of these metallogels were evaluated by analyzing the experimental data from the Sheik-Bahae formalism. The nonlinear thermo-optical study reveals that these solvent-dependent metallogels show negative signs of nonlinear refractive index and nonlinear absorption coefficient. The figure of merit calculated for these compounds shows good agreement for their use in nonlinear photonic devices.
Collapse
Affiliation(s)
- Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Suresh Kumar Yatirajula
- Department of Chemical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
22
|
Guo Y, Li S, Tong Z, Tang J, Zhang R, Lv Z, Song N, Yang D, Yao C. Telomerase-Mediated Self-Assembly of DNA Network in Cancer Cells Enabling Mitochondrial Interference. J Am Chem Soc 2023; 145:23859-23873. [PMID: 37857277 DOI: 10.1021/jacs.3c09529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The precise control of the artificially induced reactions inside living cells is emerging as an effective strategy for the regulation of cell functions. Nevertheless, the manipulation of the assembly of exogenous molecules into artificial architectures in response to intracellular-specific signals remains a grand challenge. Herein, we achieve the precise self-assembly of deoxyribonucleic acid (DNA) network inside cancer cells, specifically responding to telomerase, and realize effective mitochondrial interference and the consequent regulation of cellular behaviors. Two functional DNA modules were designed: a mitochondria-targeting branched DNA and a telomerase-responsive linear DNA. Upon uptake by cancer cells, the telomerase primer in linear DNA responded to telomerase, and a strand displacement reaction was triggered by the reverse transcription of telomerase, thus releasing a linker DNA from the linear DNA. The linker DNA afterward hybridized with the branched DNA to form a DNA network on mitochondria. The DNA network interfered with the function of mitochondria, realizing the apoptosis of cancer cells. This system was further administered in a nude mouse tumor model, showing remarkable suppression of tumor growth. We envision that the telomerase-mediated intracellular self-assembly of the DNA network provides a promising route for cancer therapy.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Siqi Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaoyue Lv
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Nachuan Song
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
23
|
Chen J, Tabaie EZ, Hickey BL, Gao Z, Raz AAP, Li Z, Wilson EH, Hooley RJ, Zhong W. Selective Molecular Recognition and Indicator Displacement Sensing of Neurotransmitters in Cellular Environments. ACS Sens 2023; 8:3195-3204. [PMID: 37477362 DOI: 10.1021/acssensors.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Flexible, water-soluble hosts are capable of selective molecular recognition in cellular environments and can detect neurotransmitters such as choline in cells. Both cationic and anionic water-soluble self-folded deep cavitands can recognize suitable styrylpyridinium dyes in cellular interiors. The dyes selectively accumulate in nucleotide-rich regions of the cell nucleus and cytoplasm. The hosts bind the dyes and promote their relocation to the outer cell membrane: the lipophilic cavitands predominantly reside in membrane environments but are still capable of binding suitable targets in other cellular organelles. Incubating the cells with structurally similar biomarkers such as choline, cholamine, betaine, or butyrylcholine illustrates the selective recognition. Choline and butyrylcholine can be bound by the hosts, but minimal binding is seen with betaine or cholamine. Varying the dye allows control of the optical detection method, and both "turn-on" sensing and "turn-off" sensing are possible.
Collapse
|
24
|
Seiler T, Lennartz A, Klein K, Hommel K, Figueroa Bietti A, Hadrovic I, Kollenda S, Sager J, Beuck C, Chlosta E, Bayer P, Juul-Madsen K, Vorup-Jensen T, Schrader T, Epple M, Knauer SK, Hartmann L. Potentiating Tweezer Affinity to a Protein Interface with Sequence-Defined Macromolecules on Nanoparticles. Biomacromolecules 2023; 24:3666-3679. [PMID: 37507377 DOI: 10.1021/acs.biomac.3c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.
Collapse
Affiliation(s)
- Theresa Seiler
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| | - Annika Lennartz
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Kai Klein
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Katrin Hommel
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Antonio Figueroa Bietti
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Inesa Hadrovic
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Jonas Sager
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Emilia Chlosta
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Skou Building (1115), Høegh-Guldbergs Gade 10, DK-8000 Aarhus C, Denmark
| | - Thomas Schrader
- Institute of Organic Chemistry I, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, Essen 45117, Germany
| | - Shirley K Knauer
- Department for Molecular Biology II, Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Universitaetsstrasse 5, Essen 45117, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstraße 1, Duesseldorf 40225, Germany
| |
Collapse
|
25
|
Neblik J, Kirupakaran A, Beuck C, Mieres-Perez J, Niemeyer F, Le MH, Telgheder U, Schmuck JF, Dudziak A, Bayer P, Sanchez-Garcia E, Westermann S, Schrader T. Multivalent Molecular Tweezers Disrupt the Essential NDC80 Interaction with Microtubules. J Am Chem Soc 2023. [PMID: 37392180 DOI: 10.1021/jacs.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.
Collapse
Affiliation(s)
- Jonas Neblik
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Abbna Kirupakaran
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Christine Beuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Joel Mieres-Perez
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Felix Niemeyer
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Jessica Felice Schmuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Alexander Dudziak
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Peter Bayer
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Elsa Sanchez-Garcia
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Stefan Westermann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| |
Collapse
|
26
|
Lepcha G, Majumdar S, Pal B, Ahmed KT, Pal I, Satpati B, Biswas SR, Ray PP, Dey B. Suberic Acid-Based Supramolecular Metallogels of Ni(II), Zn(II), and Cd(II) for Anti-Pathogenic Activity and Semiconducting Diode Fabrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7469-7483. [PMID: 37192598 DOI: 10.1021/acs.langmuir.3c00765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The importance of three synthesized metallogels of suberic acid distinctly with nickel, zinc, and cadmium acetate salts has been uncovered. For the creation of these soft materials, N,N'-dimethyl formamide was utilized as a source of the trapped solvent. The synthesized metallogels display intriguing viscoelasticity, and the interpretation of experimental parameters obtained from rheological results advocates the gel behavior. Microstructural analysis combined with energy-dispersive X-ray confirms the occurrence of individual gel-developing constituents as observed in different hierarchical microstructural patterns. Significant variations in microstructural arrangements with diverse extent of supramolecular non-covalent patterns inside gel networks were perceived through field emission scanning electron microscopy, atomic force microscopy, and transmission electron microscopy analyses. Fourier transform infrared and electrospray ionization-mass spectral analyses and powder X-ray diffraction analysis of metallogel samples of different gel-establishing ingredients help to investigate the possible supramolecular interactions dictating the metallogel scaffolds. Thermogravimetric analysis of xerogel samples was collected from the synthesized metallogels to understand the thermal stability. These gel materials were characterized by their potential antibacterial efficiency. The potency of metallogels against selective Gram-positive and Gram-negative bacteria was visualized via a spectrophotometer. Human pathogens like Klebsiella pneumoniae (MTCC 109), Salmonella typhi (MTCC 733), Vibrio parahaemolyticus, Bacillus cereus (MTCC 1272), Lactobacillus fermentum (NCDO 955), and Staphylococcus aureus (MTCC 96) are employed in this study. Apart from the biological significance, our metallogels demonstrate as incredible diode performance of fabricated semiconducting systems, which exhibit a considerable amount of non-linearity demonstrating a non-ohmic conduction mechanism at room temperature in dark conditions. Device fabrication was achieved from these metallogels employing the sandwich model with indium tin oxide-coated glass substrates/metallogel/Al structure.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Baishakhi Pal
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Kazi Tawsif Ahmed
- Department of Botany, Visva-Bharati University, Santiniketan 731235, India
| | - Indrajit Pal
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
27
|
Le Ouay B, Minami R, Boruah PK, Kunitomo R, Ohtsubo Y, Torikai K, Ohtani R, Sicard C, Ohba M. Water-Soluble Ionic Metal-Organic Polyhedra as a Versatile Platform for Enzyme Bio-immobilization. J Am Chem Soc 2023. [PMID: 37192338 DOI: 10.1021/jacs.2c13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal-organic polyhedra (MOPs) can act as elementary structural units for the design of modular porous materials; however, their association with biological systems remains greatly restricted by their typically low stabilities and solubilities in water. Herein, we describe the preparation of novel MOPs bearing either anionic or cationic groups and exhibiting a high affinity for proteins. Simple mixing of the protein bovine serum albumin (BSA) and ionic MOP aqueous solutions resulted in the spontaneous formation of MOP-protein assemblies, in a colloidal state or as solid precipitates depending on the initial mixing ratio. The versatility of the method was further illustrated using two enzymes, catalase and cytochrome c, with different sizes and isoelectric points (pI's) below and above 7. This mode of assembly led to the high retention of catalytic activity and enabled recyclability. Furthermore, the co-immobilization of cytochrome c with highly charged MOPs resulted in a substantial 44-fold increase of its catalytic activity.
Collapse
Affiliation(s)
- Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Purna K Boruah
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rin Kunitomo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuta Ohtsubo
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Torikai
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Faculty of Chemistry, National University of Uzbekistan Named after Mirzo Ulugbek, 4 University Street, Tashkent 100174, Uzbekistan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Clémence Sicard
- Institut Lavoisier de Versailles, UVSQ, CNRS, Université Paris-Saclay, 45 Avenue des États-Unis, Bâtiment Lavoisier, Versailles 78035, France
- Institut Universitaire de France (IUF), 103 Boulevard St Michel, Paris 75005, France
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
28
|
Zhang X, Du Y, Feng R, Ren X, Wu T, Jia Y, Zhang N, Li F, Wei Q, Ju H. An electrochemiluminescence insulin sensing platform based on the molecular recognition properties of cucurbit[7]uril. Biosens Bioelectron 2023; 227:115170. [PMID: 36827794 DOI: 10.1016/j.bios.2023.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The establishment of new mechanisms for target identification and signal amplification continues to drive innovation in electrochemiluminescence (ECL) sensing platforms. In this paper, a novel ECL insulin sensing platform was constructed by utilizing the molecular recognition properties of cucurbit[7]uril. Specifically, the macrocyclic host molecule cucurbit[7]uril was immobilized on the surface of the sensing platform as an identification probe, which could selectively capture insulin according to the inherent properties of the protein N-terminal. Introducing the rigid molecule cucurbit[7]uril into the sensing interface could reduce the influence of the environmental parameters on the sensing system, which provides a reliable guarantee for the accurate detection of insulin. Furthermore, gold nanoclusters were modified by utilizing the molecular recognition properties of cucurbit[7]uril, and used as anode signal probes for ECL sensing platform. The macrocyclic molecules cucurbit[7]uril passivated the surface of the nanoclusters, inhibited the non-radiative relaxation and improved the physical stability of the luminophore, leading to a significant increase in the sensitivity and stability of the ECL probe. The ECL sensing platforms exhibited a linear range from 50.00 fg/mL to 100.0 ng/mL, with a detection limit of 5.44 fg/mL. This study revealed the critical role of cucurbit[7]uril in target recognition and signal amplification, extending the scope of supramolecular applications in ECL.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
29
|
Maity D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophys Chem 2023; 297:107022. [PMID: 37058879 DOI: 10.1016/j.bpc.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Misfolding of proteins is associated with many incurable diseases in human beings. Understanding the process of aggregation from monomers to fibrils, the characterization of all intermediate species, and the origin of toxicity is very challenging. Extensive research including computational and experimental shed some light on these tricky phenomena. Non-covalent interactions between amyloidogenic domains of proteins play a major role in their self-assembly which can be disrupted by designed chemical tools. This will lead to the development of inhibitors of detrimental amyloid formations. In supramolecular host-guest chemistry approaches, different macrocycles function as hosts for encapsulating hydrophobic guests, i.e. phenylalanine residues of proteins, in their hydrophobic cavities via non-covalent interactions. In this way, they can disrupt the interactions between adjacent amyloidogenic proteins and prevent their self-aggregation. This supramolecular approach has also emerged as a prospective tool to modify the aggregation of several amyloidogenic proteins. In this review, we discussed recent supramolecular host-guest chemistry-based strategies for the inhibition of amyloid protein aggregation.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
30
|
Xie H, Sun Y, Zhang R, Zhang Y, Zhao M. Surface imprinted bio-nanocomposites for affinity separation of a cellular DNA repair protein. Biopolymers 2023; 114:e23537. [PMID: 36972353 DOI: 10.1002/bip.23537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and "interactomes" of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly(ethylene glycol) amine (mPEG-NH2 ). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.
Collapse
Affiliation(s)
- Huaisyuan Xie
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuxuan Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
31
|
Himiyama T, Hamaguchi T, Yonekura K, Nakamura T. Unnaturally Distorted Hexagonal Protein Ring Alternatingly Reorganized from Two Distinct Chemically Modified Proteins. Bioconjug Chem 2023. [PMID: 36888722 DOI: 10.1021/acs.bioconjchem.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In this study, we constructed a semiartificial protein assembly of alternating ring type, which was modified from the natural assembly state via incorporation of a synthetic component at the protein interface. For the redesign of a natural protein assembly, a scrap-and-build approach employing chemical modification was used. Two different protein dimer units were designed based on peroxiredoxin from Thermococcus kodakaraensis, which originally forms a dodecameric hexagonal ring with six homodimers. The two dimeric mutants were reorganized into a ring by reconstructing the protein-protein interactions via synthetic naphthalene moieties introduced by chemical modification. Cryo-electron microscopy revealed the formation of a uniquely shaped dodecameric hexagonal protein ring with broken symmetry, distorted from the regular hexagon of the wild-type protein. The artificially installed naphthalene moieties were arranged at the interfaces of dimer units, forming two distinct protein-protein interactions, one of which is highly unnatural. This study deciphered the potential of the chemical modification technique that constructs semiartificial protein structures and assembly hardly accessible by conventional amino acid mutations.
Collapse
Affiliation(s)
- Tomoki Himiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai, Miyagi 980-8577, Japan
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Tsutomu Nakamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
32
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
33
|
Aggarwal S, Ikram S. A comprehensive review on bio-mimicked multimolecular frameworks and supramolecules as scaffolds for enzyme immobilization. Biotechnol Bioeng 2023; 120:352-398. [PMID: 36349456 DOI: 10.1002/bit.28282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Immobilization depicts a propitious route to optimize the catalytic performances, efficient recovery, minimizing autocatalysis, and also augment the stabilities of enzymes, particularly in unnatural environments. In this opinion, supramolecules and multimolecular frameworks have captivated immense attention to achieve profound controllable interactions between enzyme molecules and well-defined natural or synthetic architectures to yield protein bioconjugates with high accessibility for substrate binding and enhanced enantioselectivities. This scholastic review emphasizes the possibilities of associating multimolecular complexes with biological entities via several types of interactions, namely covalent interactions, host-guest complexation, π - π ${\rm{\pi }}-{\rm{\pi }}$ interactions, intra/inter hydrogen bondings, electrostatic interactions, and so forth offers remarkable applications for the modulations of enzymes. The potential synergies between artificial supramolecular structures and biological systems are the primary concern of this pedagogical review. The majority of the research primarily focused on the dynamic biomolecule-responsive supramolecular assemblages and multimolecular architectures as ideal platforms for the recognition and modulation of proteins and cells. Embracing sustainable green demeanors of enzyme immobilizations in a quest to reinforce site-selectivity, catalytic efficiency, and structural integrality of enzymes are the contemporary requirements of the biotechnological sectors that instigate the development of novel biocatalytic systems.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
34
|
Sun XR, Yang HP, Zhang W, Zhang S, Hu JH, Liu M, Zeng X, Li Q, Redshaw C, Tao Z, Xiao X. Supramolecular Room-Temperature Phosphorescent Hydrogel Based on Hexamethyl Cucurbit[5]uril for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4668-4676. [PMID: 36640109 DOI: 10.1021/acsami.2c17891] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The host-guest interaction between hexamethyl cucurbit[5]uril (HmeQ[5]) and 1,4-diaminobenzene (DB) was investigated, and a new low-molecular-weight supramolecular gel was prepared by a simple heating/mixing cooling method. The structure and properties of the supramolecular gel were characterized. Results revealed that DB molecules did not enter the cavity of HmeQ[5] and that hydrogen bonding between the carbonyl group at the HmeQ[5] port and the DB amino groups, together with dipole-dipole interactions and outer wall interactions, were the main driving forces for the formation of the supramolecular gel. The HmeQ[5]/DB gel system exhibits temperature sensitivity. The phosphor 6-bromo-2-naphthol (BrNp) was embedded in the gel to give the gel fluorescent phosphorescence double emission. The double emission ability at room temperature can be attributed to the ordered microstructure of the supramolecular gel, which effectively avoids the nonradiative transition of BrNp. Meanwhile, HmeQ[5]/DB-BrNp has good biocompatibility and low biotoxicity, which is compatible with HeLa cells to achieve cytoplasmic staining of HeLa in the red channel. The supramolecular gels constructed by this supramolecular assembly strategy not only have good temperature sensitivity but also extend the application of Q[n]s in biomedical fields.
Collapse
Affiliation(s)
- Xi-Ran Sun
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Hai-Ping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Shuai Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Jian-Hang Hu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, U.K
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
35
|
Anderson HR, Reeves WL, Bockus AT, Suating P, Grice AG, Gallagher M, Urbach AR. Semisynthesis of Aminomethyl-Insulin: An Atom-Economic Strategy to Increase the Affinity and Selectivity of a Protein for Recognition by a Synthetic Receptor. Bioconjug Chem 2023; 34:212-217. [PMID: 36534758 DOI: 10.1021/acs.bioconjchem.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advancements in the molecular recognition of insulin by nonantibody-based means would facilitate the development of methodology for the continuous detection of insulin for the management of diabetes mellitus. Herein, we report a novel insulin derivative that binds to the synthetic receptor cucurbit[7]uril (Q7) at a single site and with high nanomolar affinity. The insulin derivative was prepared by a four-step protein semisynthetic method to present a 4-aminomethyl group on the side chain of the PheB1 position. The resulting aminomethyl insulin binds to Q7 with an equilibrium dissociation constant value of 99 nM in neutral phosphate buffer, as determined by isothermal titration calorimetry. This 6.8-fold enhancement in affinity versus native insulin was gained by an atom-economical modification (-CH2NH2). To the best of our knowledge, this is the highest reported binding affinity for an insulin derivative by a synthetic receptor. This strategy for engineering protein affinity tags induces minimal change to the protein structure while increasing affinity and selectivity for a synthetic receptor.
Collapse
Affiliation(s)
- Hayden R Anderson
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Wei L Reeves
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Andrew T Bockus
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Amy G Grice
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Madeleine Gallagher
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| |
Collapse
|
36
|
Oohora K, Hayashi T. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. Methods Mol Biol 2023; 2671:95-108. [PMID: 37308640 DOI: 10.1007/978-1-0716-3222-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural protein assemblies have encouraged scientists to create large supramolecular systems consisting of various protein motifs. In the case of hemoproteins containing heme as a cofactor, several approaches have been reported to form artificial assemblies with various structures such as fibers, sheets, networks, and cages. This chapter describes the design, preparation, and characterization of cage-like micellar assemblies for chemically modified hemoproteins including hydrophilic protein units attached to hydrophobic molecules. Detailed procedures are described for constructing specific systems using cytochrome b562 and hexameric tyrosine-coordinated heme protein as hemoprotein units with heme-azobenzene conjugate and poly-N-isopropylacrylamide as attached molecules.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
37
|
Controlled drug delivery mediated by cyclodextrin-based supramolecular self-assembled carriers: From design to clinical performances. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Flint AJ, Davis AP. Vancomycin mimicry: towards new supramolecular antibiotics. Org Biomol Chem 2022; 20:7694-7712. [PMID: 36165239 DOI: 10.1039/d2ob01381a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vancomycin is the best-known of the glycopeptide group antibiotics (GPAs), a family of agents which operate by binding the C-terminal deptide D-Ala-D-Ala. This anionic epitope is an interesting target because it plays a central role in bacterial cell wall synthesis, and is not readily modified by evolution. Accordingly, vancomycin has been in use for >60 years but has only provoked limited resistance. Agents which mimic vancomycin but are easier to synthesise and modify could serve as valuable weapons against pathogenic bacteria, broadening the scope of the GPAs and addressing the resistance that does exist. This article gives an overview of vancomycin's structure and action, surveys past work on vancomycin mimicry, and makes the case for renewed effort in the future.
Collapse
Affiliation(s)
- Alister J Flint
- University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK.
| | - Anthony P Davis
- University of Bristol, School of Chemistry, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
39
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity Directed Chiral Self‐Assembly and Aggregation‐Induced Emission: Diacetylene‐Cored Pseudopeptide Chiral Dopants. Angew Chem Int Ed Engl 2022; 61:e202209806. [DOI: 10.1002/anie.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Govind P. Maurya
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Deepak Verma
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Aloka Sinha
- Department of Physics Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| | - Luc Brunsveld
- Department of Biomedical Engineering Laboratory of Chemical Biology and Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - V. Haridas
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi- 110016 India
| |
Collapse
|
40
|
Maurya GP, Verma D, Sinha A, Brunsveld L, Haridas V. Hydrophobicity directed chiral self‐assembly and aggregation induced emission: Diacetylene‐cored pseudopeptide chiral dopants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Govind P. Maurya
- Indian Institute of Technology Delhi Department of Chemistry Chemistry Hauz Khas 110016 New Delhi INDIA
| | - Deepak Verma
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Aloka Sinha
- Indian Institute of Technology Delhi Physics Hauz Khas 110016 New Delhi INDIA
| | - Luc Brunsveld
- Eindhoven University of Technology: Technische Universiteit Eindhoven Chemical Biology 5600 MB Eindhoven 5600 MB Eindhovan NETHERLANDS
| | - V Haridas
- Indian Institute of Technology Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| |
Collapse
|
41
|
Zhou X, Shi M, Wang X, Xu D. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Front Chem 2022; 10:921695. [PMID: 35646830 PMCID: PMC9133541 DOI: 10.3389/fchem.2022.921695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Using supramolecules for protein function regulation is an effective strategy in chemical biology and drug discovery. However, due to the presence of multiple binding sites on protein surfaces, protein function regulation via selective binding of supramolecules is challenging. Recently, the functions of 14-3-3 proteins, which play an important role in regulating intracellular signaling pathways via protein–protein interactions, have been modulated using a supramolecular tweezer, CLR01. However, the binding mechanisms of the tweezer molecule to 14-3-3 proteins are still unclear, which has hindered the development of novel supramolecules targeting the 14-3-3 proteins. Herein, the binding mechanisms of the tweezer to the lysine residues on 14-3-3σ (an isoform in 14-3-3 protein family) were explored by well-tempered metadynamics. The results indicated that the inclusion complex formed between the protein and supramolecule is affected by both kinetic and thermodynamic factors. In particular, simulations confirmed that K214 could form a strong binding complex with the tweezer; the binding free energy was calculated to be −10.5 kcal·mol−1 with an association barrier height of 3.7 kcal·mol−1. In addition, several other lysine residues on 14-3-3σ were identified as being well-recognized by the tweezer, which agrees with experimental results, although only K214/tweezer was co-crystallized. Additionally, the binding mechanisms of the tweezer to all lysine residues were analyzed by exploring the representative conformations during the formation of the inclusion complex. This could be helpful for the development of new inhibitors based on tweezers with more functions against 14-3-3 proteins via modifications of CLR01. We also believe that the proposed computational strategies can be extended to understand the binding mechanism of multi-binding sites proteins with supramolecules and will, thus, be useful toward drug design.
Collapse
Affiliation(s)
- Xin Zhou
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
- Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
- *Correspondence: Xin Wang, ; Dingguo Xu,
| |
Collapse
|
42
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
43
|
Dergham M, Lin S, Geng J. Supramolecular Self-Assembly in Living Cells. Angew Chem Int Ed Engl 2022; 61:e202114267. [PMID: 35037350 DOI: 10.1002/anie.202114267] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 12/17/2022]
Abstract
Supramolecular interactions rely on non-covalent forces, such as hydrophobic effects, hydrogen-bonding, and electrostatic interactions, which govern many intracellular biological pathways. In cellulo supramolecular self-assembly is mainly based on host-guest interactions, changes in pH, enzymes, and polymerization-induced self-assembly to accurately induce various unnatural reactions without disturbing natural biological processes. This process can produce synthetic biocompatible macromolecules to control cell properties and regulate biological functions, such as cell proliferation and differentiation. This Minireview focuses on the latest reports in the field of in cellulo supramolecular self-assembly and anticipates future advances regarding its activation in response to internal and external stimuli, such as pH changes, reactive oxygen species, and enzymes, as well as external light illumination.
Collapse
Affiliation(s)
- Mohamed Dergham
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Shanmeng Lin
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China
| | - Jin Geng
- Centre for Polymers in Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Nanshan, 518055, China
| |
Collapse
|
44
|
Host-guest liquid gating mechanism with specific recognition interface behavior for universal quantitative chemical detection. Nat Commun 2022; 13:1906. [PMID: 35393415 PMCID: PMC8991241 DOI: 10.1038/s41467-022-29549-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Universal visual quantitative chemical detection technology has emerged as an increasingly crucial tool for convenient testing with immediate results in the fields of environmental assessment, homeland security, clinical drug testing and health care, particularly in resource-limited settings. Here, we show a host-guest liquid gating mechanism to translate molecular interface recognition behavior into visually quantifiable detection signals. Quantitative chemical detection is achieved, which has obvious advantages for constructing a portable, affordable, on-site sensing platform to enable the visual quantitative testing of target molecules without optical/electrical equipment. Experiments and theoretical calculations confirm the specificity and scalability of the system. This mechanism can also be tailored by the rational design of host-guest complexes to quantitatively and visually detect various molecules. With the advantages of versatility and freedom from additional equipment, this detection mechanism has the potential to revolutionize environmental monitoring, food safety analysis, clinical drug testing, and more. In field, visual, chemical detection is of use for a wide range of possible applications. Here, the authors report on the creation of a host-guest liquid gating mechanism where detection of the target host triggers gate opening allowing for gas through the liquid gate, which can be used for visual detection.
Collapse
|
45
|
Zhong W, Hooley RJ. Combining Excellent Selectivity with Broad Target Scope: Biosensing with Arrayed Deep Cavitand Hosts. Acc Chem Res 2022; 55:1035-1046. [PMID: 35302733 DOI: 10.1021/acs.accounts.2c00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Simple macrocyclic water-soluble hosts such as cucurbiturils, cyclophanes, and calixarenes have long been used for biosensing via indicator displacement assays. Using multiple hosts and dyes in an arrayed format allows pattern recognition-based "chemical nose" sensing, which confers exquisite selectivity, even rivaling the abilities of biological recognition tools such as antibodies. However, a challenge in indicator displacement-based biosensing with macrocyclic hosts is that selectivity and scope are often inversely correlated: strong selectivity for a specific target can limit wide application, and broad scope sensing can suffer from a lack of selectivity between similar targets. This problem can be addressed by using water-soluble, self-folding deep cavitands as hosts. These flexible bowl-shaped receptors can be easily functionalized with different motifs at the upper and lower rim, and the large cavities can bind many different fluorescent dyes, causing either fluorescence enhancement or quenching upon binding.Cavity-based affinity is strongest for NMe3+ groups such as trimethyl-lysine, and we have exploited this for the site-selective recognition of post-translational lysine methylations in oligopeptides. The host recognizes the NMe3+ group, and by applying differently functionalized hosts in an arrayed format, discrimination between identical modifications at different positions on the oligopeptide is possible. Multiple recognition elements can be exploited for selectivity, including a defined, yet "breathable" cavity, and variable upper rim functions oriented toward the target.While the performance of the host/guest sensing system is impressive for lysine methylations, the most important advance is the use of multiple different sensing mechanisms that can target a broad range of different biorelevant species. The amphiphilic deep cavitands can both bind fluorescent dyes and interact with charged biomolecules. These non-cavity-based interactions, when paired with additives such as heavy metal ions, modulate fluorescence response in an indirect manner, and these different mechanisms allow selective recognition of serine phosphorylation, lysine acetylation, and arginine citrullination. Other targets include heavy metals, drugs of abuse, and protein isoforms. Furthermore, the hosts can be applied in supramolecular tandem assays of enzyme function: the broad scope allows analysis of such different enzymes as chromatin writers/erasers, kinases, and phosphatases, all from a single host scaffold. Finally, the indirect sensing concept allows application in sensing different oligonucleotide secondary structures, including G-quadruplexes, hairpins, triplexes, and i-motifs. Discrimination between DNA strands with highly similar structures such as G-quadruplex strands with bulges and vacancies can be achieved. Instead of relying on a single highly specific fluorescent probe, the synthetic hosts tune the fluorophore-DNA interaction, introducing multiple recognition equilibria that modulate the fluorescence signal. By applying machine learning algorithms, a classification model can be established that can accurately predict the folding state of unknown sequences. Overall, the unique recognition profile of self-folded deep cavitands provides a powerful, yet simple sensing platform, one that can be easily tuned for a wide scope of biorelevant targets, in complex biological media, without sacrificing selectivity in the recognition.
Collapse
|
46
|
El-Barghouthi MI, Bodoor K, Abuhasan OM, Assaf KI, Al Hourani BJ, Rawashdeh AMM. Binary and Ternary Complexes of Cucurbit[8]uril with Tryptophan, Phenylalanine, and Tyrosine: A Computational Study. ACS OMEGA 2022; 7:10729-10737. [PMID: 35382313 PMCID: PMC8973077 DOI: 10.1021/acsomega.2c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Selective binding of amino acids, peptides, and proteins by synthetic molecules and elucidation of the geometry and dynamics of the resulting complexes and their strengths are active areas of contemporary research. In recent work, we analyzed via molecular dynamics (MD) simulations the complexes formed between cucurbit[7]uril (CB7) and three aromatic amino acids: tryptophan (W), phenylalanine (F), and tyrosine (Y). Herein, we continue this line of research by performing MD simulations lasting 100 ns to investigate the formation, stabilities, binding modes, dynamics, and specific host-guest noncovalent interactions contributing to the formation of the binary (1:1) and ternary (2:1) complexes in aqueous solution between W, F, and Y amino acids and cucurbit[8]uril (CB8). All complexes were found to be stable, with the binding in each complex dominated by one mode (except for the F-CB8 complex, which had two) characterized by encapsulation of the aromatic side chains of the amino acids within the cavity of CB8 and the exclusion of their ammonium and carboxylate groups. Using the molecular mechanics/Poisson-Boltzmann surface area method to estimate the individual contributions to the overall free energies of binding, results revealed that the key role is played by the amino acid side chains in stabilizing the complexes through their favorable van der Waals interactions with the CB8 cavity and the importance of favorable electrostatic interactions between the carbonyl portal of CB8 and the ammonium group of the amino acid. Visual analysis of structures of the ternary complexes indicated the presence of π-π stacking between the aromatic side chains of the included amino acids. The insights provided by this work may be of value for further efforts aiming to employ the recognition properties of CB8 toward amino acids in applications requiring more elaborate recognition of short peptides and proteins.
Collapse
Affiliation(s)
- Musa I. El-Barghouthi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaled Bodoor
- Department
of Physics, The University of Jordan, Amman 11942, Jordan
| | - Osama M. Abuhasan
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaleel I. Assaf
- Faculty
of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Baker Jawabrah Al Hourani
- Department
of Biology and Chemistry, Embry Riddle Aeronautical
University, 3700 Willow
Creek Rd, Prescott, Arizona 86304, USA
| | | |
Collapse
|
47
|
Chen K, Zhao Y. Molecular recognition of enzymes and modulation of enzymatic activity by nanoparticle conformational sensors. Chem Commun (Camb) 2022; 58:1732-1735. [PMID: 35029260 DOI: 10.1039/d1cc05699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of enzyme activity is key to dynamic processes in biology but is difficult to achieve with synthetic systems. We here report molecularly imprinted nanoparticles with strong binding for the N- and C-terminal peptides on lysozyme. Binding affinity for the enzyme correlated with conformational flexibility of the peptides in the protein structure. Significantly, binding at the C-terminus of lysozyme enhanced the performance of the enzyme at elevated temperatures and that at the N-terminus lowered the enzyme activity. These nanoparticles, when clicked onto magnetic nanoparticles, could also be used to fish out the protein of interest from a mixture in a single step.
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
48
|
Dergham M, Lin S, Geng J. Supramolecular Self‐assembly in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed Dergham
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Shanmeng Lin
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Biomedicine and Biotechnology CHINA
| | - Jin Geng
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Institute of Biomedicine and Biotechnology Xuyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
49
|
Máximo P, Colaço M, Pauleta SR, Costa PJ, Pischel U, Parola AJ, Basílio N. Photomodulation of ultrastable host–guest complexes in water and their application in light-controlled steroid release. Org Chem Front 2022. [DOI: 10.1039/d2qo00423b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host–guest complexation of dithienylethene photoswitches with cucurbit[8]uril leads to photoresponsive binding pairs with picomolar affinity in water.
Collapse
Affiliation(s)
- Patrícia Máximo
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miriam Colaço
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Sofia R. Pauleta
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Microbial Stress Lab, UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Paulo J. Costa
- BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Uwe Pischel
- CIQSO – Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain
| | - A. Jorge Parola
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Nuno Basílio
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
50
|
Wang H, Zheng X. Theoretical Study of Macrocyclic Host Molecules: From Supramolecular Recognition to Self-Assembly. Phys Chem Chem Phys 2022; 24:19011-19028. [DOI: 10.1039/d2cp02152h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular chemistry focuses on molecular recognition and self-assembly of various building blocks through weak non-covalent interactions, including anion-π, hydrogen bond (HB), hydrophobic interactions, van der Waals (vdW) interactions, etc, which...
Collapse
|