1
|
Lin C, Wu Q, Wang Y, Chong Q, Meng F. Recent advances in catalytic enantioselective carbometallation of cyclopropenes and cyclobutenes. Chem Commun (Camb) 2024; 60:12830-12839. [PMID: 39380324 DOI: 10.1039/d4cc04192e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Enantioenriched small carbocycles are key structures in numerous natural products and pharmaceutically important molecules as well as vital intermediates in organic synthesis. Although various catalytic approaches for the construction of such molecules from acyclic precursors have been developed, direct enantioselective functionalization of preformed three-membered and four-membered rings represents the most straightforward and modular strategy, enabling rapid and diversified synthesis of enantioenriched cyclopropanes and cyclobutanes from a single set of starting materials without the need for the incorporation of specific functional groups. In this Feature Article, we have summarized the recent advances in catalytic enantioselective functionalization of cyclopropenes and cyclobutenes through carbometallation. The plausible mechanisms of such reactions and future of this field are also discussed.
Collapse
Affiliation(s)
- Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Yu Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
2
|
Moyer CL, Lanier A, Qian J, Coleman D, Hill J, Vuligonda V, Sanders ME, Mazumdar A, Brown PH. IRX4204 Induces Senescence and Cell Death in HER2-positive Breast Cancer and Synergizes with Anti-HER2 Therapy. Clin Cancer Res 2024; 30:2558-2570. [PMID: 38578278 PMCID: PMC11145169 DOI: 10.1158/1078-0432.ccr-23-3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Rexinoids, agonists of nuclear retinoid X receptor (RXR), have been used for the treatment of cancers and are well tolerated in both animals and humans. However, the usefulness of rexinoids in treatment of breast cancer remains unknown. This study examines the efficacy of IRX4204, a highly specific rexinoid, in breast cancer cell lines and preclinical models to identify a biomarker for response and potential mechanism of action. EXPERIMENTAL DESIGN IRX4204 effects on breast cancer cell growth and viability were determined using cell lines, syngeneic mouse models, and primary patient-derived xenograft (PDX) tumors. In vitro assays of cell cycle, apoptosis, senescence, and lipid metabolism were used to uncover a potential mechanism of action. Standard anti-HER2 therapies were screened in combination with IRX4204 on a panel of breast cancer cell lines to determine drug synergy. RESULTS IRX4204 significantly inhibits the growth of HER2-positive breast cancer cell lines, including trastuzumab and lapatinib-resistant JIMT-1 and HCC1954. Treatment with IRX4204 reduced tumor growth rate in the MMTV-ErbB2 mouse and HER2-positive PDX model by 49% and 44%, respectively. Mechanistic studies revealed IRX4204 modulates lipid metabolism and induces senescence of HER2-positive cells. In addition, IRX4204 demonstrates additivity and synergy with HER2-targeted mAbs, tyrosine kinase inhibitors, and antibody-drug conjugates. CONCLUSIONS These findings identify HER2 as a biomarker for IRX4204 treatment response and demonstrate a novel use of RXR agonists to synergize with current anti-HER2 therapies. Furthermore, our results suggest that RXR agonists can be useful for the treatment of anti-HER2 resistant and metastatic HER2-positive breast cancer.
Collapse
Affiliation(s)
- Cassandra L. Moyer
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda Lanier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Qian
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darian Coleman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Pan T, Li P. Sulfur-Mediated Formal Allylic C-H Cyclopropanation of α-Methylstyrenes. J Org Chem 2023. [PMID: 37137822 DOI: 10.1021/acs.joc.3c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Allylic C-H cyclopropanation of α-methylstyrene and its derivatives was realized through a one-pot two-step sequence, formally converting two aliphatic C-H bonds to C-C bonds with a good yield and high diastereoselectivity, thus providing a quick entry to the synthetically useful vinyl cyclopropane structures.
Collapse
Affiliation(s)
- Tong Pan
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pingfan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
An Isochroman Analog of CD3254 and Allyl-, Isochroman-Analogs of NEt-TMN Prove to Be More Potent Retinoid-X-Receptor (RXR) Selective Agonists Than Bexarotene. Int J Mol Sci 2022; 23:ijms232416213. [PMID: 36555852 PMCID: PMC9782500 DOI: 10.3390/ijms232416213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.
Collapse
|
5
|
Thangavelu G, Zaiken MC, Mohamed FA, Flynn R, Du J, Rhee SY, Riddle MJ, Aguilar EG, Panoskaltsis-Mortari A, Sanders ME, Blazar BR. Targeting the Retinoid X Receptor Pathway Prevents and Ameliorates Murine Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:765319. [PMID: 35359939 PMCID: PMC8963714 DOI: 10.3389/fimmu.2022.765319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive peripheral blood stem cell grafts resulting in a 30%-70% incidence of chronic graft-versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term survivors. While systemic steroids remain the standard of care for first-line therapy, patients may require long-term administration, and those with steroid-resistant or refractory cGVHD have a worse prognosis. Although durable and deep responses with second-line therapies can be achieved in some patients, there remains an urgent need for new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in two complementary murine models. In a major histocompatibility complex mismatched, non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204 prevented and reversed cGVHD including associated pulmonary dysfunction with restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17 differentiation due to anti-inflammatory properties. Together, these results indicate that IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or sclerodermatous manifestations.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael C. Zaiken
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Flynn
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jing Du
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G. Aguilar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Wester RA, van Voorthuijsen L, Neikes HK, Dijkstra JJ, Lamers LA, Frölich S, van der Sande M, Logie C, Lindeboom RG, Vermeulen M. Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. iScience 2021; 24:103444. [PMID: 34877501 PMCID: PMC8633980 DOI: 10.1016/j.isci.2021.103444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 01/15/2023] Open
Abstract
Retinoic acid (RA) signaling is an important and conserved pathway that regulates cellular proliferation and differentiation. Furthermore, perturbed RA signaling is implicated in cancer initiation and progression. However, the mechanisms by which RA signaling contributes to homeostasis, malignant transformation, and disease progression in the intestine remain incompletely understood. Here, we report, in agreement with previous findings, that activation of the Retinoic Acid Receptor and the Retinoid X Receptor results in enhanced transcription of enterocyte-specific genes in mouse small intestinal organoids. Conversely, inhibition of this pathway results in reduced expression of genes associated with the absorptive lineage. Strikingly, this latter effect is conserved in a human organoid model for colorectal cancer (CRC) progression. We further show that RXR motif accessibility depends on progression state of CRC organoids. Finally, we show that reduced RXR target gene expression correlates with worse CRC prognosis, implying RA signaling as a putative therapeutic target in CRC. RA signaling contributes to enterocyte differentiation in murine intestinal organoids Inhibition of RXR decreases enterocyte gene expression in colon cancer organoids Accessibility of RXR motifs correlates with RXRi susceptibility High expression of RA signaling targets correlates with higher CRC patient survival
Collapse
Affiliation(s)
- Roelof A. Wester
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Lisa van Voorthuijsen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Hannah K. Neikes
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Jelmer J. Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Lieke A. Lamers
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Siebren Frölich
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Maarten van der Sande
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
| | - Rik G.H. Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Corresponding author
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525GA Nijmegen, the Netherlands
- Corresponding author
| |
Collapse
|
7
|
Jurutka PW, di Martino O, Reshi S, Mallick S, Sabir ZL, Staniszewski LJP, Warda A, Maiorella EL, Minasian A, Davidson J, Ibrahim SJ, Raban S, Haddad D, Khamisi M, Suban SL, Dawson BJ, Candia R, Ziller JW, Lee MY, Liu C, Liu W, Marshall PA, Welch JS, Wagner CE. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid-X-Receptor (RXR) Selective Agonists: Analogs of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahyro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(4-isobutoxy-3-isopropylphenyl)amino)nicotinic Acid (NEt-4IB). Int J Mol Sci 2021; 22:ijms222212371. [PMID: 34830251 PMCID: PMC8624485 DOI: 10.3390/ijms222212371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/05/2022] Open
Abstract
Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid—or NEt-4IB—in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.
Collapse
Affiliation(s)
- Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Orsola di Martino
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Sabeeha Reshi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Sanchita Mallick
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Zhela L. Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Lech J. P. Staniszewski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ankedo Warda
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Emma L. Maiorella
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Ani Minasian
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Jesse Davidson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Samir J. Ibrahim
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - San Raban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Dena Haddad
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Madleen Khamisi
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Stephanie L. Suban
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Bradley J. Dawson
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Riley Candia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, CA 92697, USA;
| | - Ming-Yue Lee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Chang Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Wei Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85201, USA; (M.-Y.L.); (C.L.); (W.L.)
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
| | - John S. Welch
- Department of Internal Medicine, Washington University, St. Louis, MO 63110, USA; (O.d.M.); (J.S.W.)
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA; (P.W.J.); (S.R.); (S.M.); (Z.L.S.); (L.J.P.S.); (A.W.); (E.L.M.); (A.M.); (J.D.); (S.J.I.); (S.R.); (D.H.); (M.K.); (S.L.S.); (B.J.D.); (R.C.); (P.A.M.)
- Correspondence: ; Tel.: +1-602-543-6937
| |
Collapse
|
8
|
Repurposing a novel anti-cancer RXR agonist to attenuate murine acute GVHD and maintain graft-versus-leukemia responses. Blood 2021; 137:1090-1103. [PMID: 32976550 PMCID: PMC7907720 DOI: 10.1182/blood.2020005628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) subclass, retinoid X receptors (RXRs), exert immunomodulatory functions that control inflammation and metabolism via homodimers and heterodimers, with several other NRs, including retinoic acid receptors. IRX4204 is a novel, highly specific RXR agonist in clinical trials that potently and selectively activates RXR homodimers, but not heterodimers. In this study, in vivo IRX4204 compared favorably with FK506 in abrogating acute graft-versus-host disease (GVHD), which was associated with inhibiting allogeneic donor T-cell proliferation, reducing T-helper 1 differentiation, and promoting regulatory T-cell (Treg) generation. Recipient IRX4204 treatment reduced intestinal injury and decreased IFN-γ and TNF-α serum levels. Transcriptional analysis of donor T cells isolated from intestines of GVHD mice treated with IRX4204 revealed significant decreases in transcripts regulating proinflammatory pathways. In vitro, inducible Treg differentiation from naive CD4+ T cells was enhanced by IRX4204. In vivo, IRX4204 increased the conversion of donor Foxp3- T cells into peripheral Foxp3+ Tregs in GVHD mice. Using Foxp3 lineage-tracer mice in which both the origin and current FoxP3 expression of Tregs can be tracked, we demonstrated that IRX4204 supports Treg stability. Despite favoring Tregs and reducing Th1 differentiation, IRX4204-treated recipients maintained graft-versus-leukemia responses against both leukemia and lymphoma cells. Notably, IRX4204 reduced in vitro human T-cell proliferation and enhanced Treg generation in mixed lymphocyte reaction cultures. Collectively, these beneficial effects indicate that targeting RXRs with IRX4204 could be a novel approach to preventing acute GVHD in the clinic.
Collapse
|
9
|
Willems S, Zaienne D, Merk D. Targeting Nuclear Receptors in Neurodegeneration and Neuroinflammation. J Med Chem 2021; 64:9592-9638. [PMID: 34251209 DOI: 10.1021/acs.jmedchem.1c00186] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors, also known as ligand-activated transcription factors, regulate gene expression upon ligand signals and present as attractive therapeutic targets especially in chronic diseases. Despite the therapeutic relevance of some nuclear receptors in various pathologies, their potential in neurodegeneration and neuroinflammation is insufficiently established. This perspective gathers preclinical and clinical data for a potential role of individual nuclear receptors as future targets in Alzheimer's disease, Parkinson's disease, and multiple sclerosis, and concomitantly evaluates the level of medicinal chemistry targeting these proteins. Considerable evidence suggests the high promise of ligand-activated transcription factors to counteract neurodegenerative diseases with a particularly high potential of several orphan nuclear receptors. However, potent tools are lacking for orphan receptors, and limited central nervous system exposure or insufficient selectivity also compromises the suitability of well-studied nuclear receptor ligands for functional studies. Medicinal chemistry efforts are needed to develop dedicated high-quality tool compounds for the therapeutic validation of nuclear receptors in neurodegenerative pathologies.
Collapse
Affiliation(s)
- Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Zaienne
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Zhang H, Huang W, Wang T, Meng F. Cobalt‐Catalyzed Diastereo‐ and Enantioselective Hydroalkenylation of Cyclopropenes with Alkenylboronic Acids. Angew Chem Int Ed Engl 2019; 58:11049-11053. [DOI: 10.1002/anie.201904994] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/08/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Zhang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Huang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tongtong Wang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Fanke Meng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
11
|
Zhang H, Huang W, Wang T, Meng F. Cobalt‐Catalyzed Diastereo‐ and Enantioselective Hydroalkenylation of Cyclopropenes with Alkenylboronic Acids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904994] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haiyan Zhang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Huang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tongtong Wang
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Fanke Meng
- State Key Laboratory of Organometallic ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Zhang D, Leal AS, Carapellucci S, Shahani PH, Bhogal JS, Ibrahim S, Raban S, Jurutka PW, Marshall PA, Sporn MB, Wagner CE, Liby KT. Testing Novel Pyrimidinyl Rexinoids: A New Paradigm for Evaluating Rexinoids for Cancer Prevention. Cancer Prev Res (Phila) 2019; 12:211-224. [PMID: 30760500 DOI: 10.1158/1940-6207.capr-18-0317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/10/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022]
Abstract
Rexinoids, selective ligands for retinoid X receptors (RXR), have shown promise in preventing many types of cancer. However, the limited efficacy and undesirable lipidemic side-effects of the only clinically approved rexinoid, bexarotene, drive the search for new and better rexinoids. Here we report the evaluation of novel pyrimidinyl (Py) analogues of two known chemopreventive rexinoids, bexarotene (Bex) and LG100268 (LG268) in a new paradigm. We show that these novel derivatives were more effective agents than bexarotene for preventing lung carcinogenesis induced by a carcinogen. In addition, these new analogues have an improved safety profile. PyBex caused less elevation of plasma triglyceride levels than bexarotene, while PyLG268 reduced plasma cholesterol levels and hepatomegaly compared with LG100268. Notably, this new paradigm mechanistically emphasizes the immunomodulatory and anti-inflammatory activities of rexinoids. We reveal new immunomodulatory actions of the above rexinoids, especially their ability to diminish the percentage of macrophages and myeloid-derived suppressor cells in the lung and to redirect activation of M2 macrophages. The rexinoids also potently inhibit critical inflammatory mediators including IL6, IL1β, CCL9, and nitric oxide synthase (iNOS) induced by lipopolysaccharide. Moreover, in vitro iNOS and SREBP (sterol regulatory element-binding protein) induction assays correlate with in vivo efficacy and toxicity, respectively. Our results not only report novel pyrimidine derivatives of existing rexinoids, but also describe a series of biological screening assays that will guide the synthesis of additional rexinoids. Further progress in rexinoid synthesis, potency, and safety should eventually lead to a clinically acceptable and useful new drug for patients with cancer.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Sarah Carapellucci
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Pritika H Shahani
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Jaskaran S Bhogal
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Samir Ibrahim
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - San Raban
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Peter W Jurutka
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Pamela A Marshall
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Michael B Sporn
- Geisel School of Medicine at Dartmouth, Department of Pharmacology, Lebanon, New Hampshire
| | - Carl E Wagner
- Arizona State University, School of Mathematical and Natural Sciences, Glendale, Arizona
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
13
|
Trefzger OS, das Neves AR, Barbosa NV, Carvalho DB, Pereira IC, Perdomo RT, Matos MFC, Yoshida NC, Kato MJ, de Albuquerque S, Arruda CCP, Baroni ACM. Design, synthesis and antitrypanosomatid activities of 3,5-diaryl-isoxazole analogues based on neolignans veraguensin, grandisin and machilin G. Chem Biol Drug Des 2018; 93:313-324. [DOI: 10.1111/cbdd.13417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Ozildéia S. Trefzger
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Amarith R. das Neves
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Natália V. Barbosa
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Diego B. Carvalho
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Indiara C. Pereira
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Renata T. Perdomo
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Maria F. C. Matos
- Laboratorio de Biologia Molecular e Cultura de Celulas; FACFAN - Faculdade de Ciências Farmacêuticas; Alimentos e Nutricao; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| | - Nidia C. Yoshida
- Instituto de Química; Universidade Federal do Mato Grosso do Sul, UFMS; Campo Grande MS Brazil
| | - Massuo J. Kato
- Institute of Chemistry; University of São Paulo; São Paulo SP Brazil
| | - Sérgio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas; Faculdade de Ciências Farmacêuticas de Ribeirão Preto; USP; Ribeirão Preto SP Brazil
| | - Carla C. P. Arruda
- Laboratorio de Parasitologia Humana; INBIO - Instituto de Biologia; Universidade Federal do Mato Grosso do Sul; Campo Grande MS Brazil
| | - Adriano C. M. Baroni
- LASQUIM - Laboratório de Síntese e Química Medicinal; FACFAN - Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição; Universidade Federal do Mato Grosso do Sul; UFMS; Campo Grande MS Brazil
| |
Collapse
|
14
|
Watanabe M, Kakuta H. Retinoid X Receptor Antagonists. Int J Mol Sci 2018; 19:ijms19082354. [PMID: 30103423 PMCID: PMC6121510 DOI: 10.3390/ijms19082354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
15
|
Shoucri BM, Hung VT, Chamorro-García R, Shioda T, Blumberg B. Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte. Endocrinology 2018; 159:2863-2883. [PMID: 29860300 PMCID: PMC6669823 DOI: 10.1210/en.2018-00056] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023]
Abstract
Early life exposure to endocrine-disrupting chemicals (EDCs) is an emerging risk factor for the development of obesity and diabetes later in life. We previously showed that prenatal exposure to the EDC tributyltin (TBT) results in increased adiposity in the offspring. These effects linger into adulthood and are propagated through successive generations. TBT activates two nuclear receptors, the peroxisome proliferator-activated receptor (PPAR) γ and its heterodimeric partner retinoid X receptor (RXR), that promote adipogenesis in vivo and in vitro. We recently employed a mesenchymal stem cell (MSC) model to show that TBT promotes adipose lineage commitment by activating RXR, not PPARγ. This led us to consider the functional consequences of PPARγ vs RXR activation in developing adipocytes. We used a transcriptomal approach to characterize genome-wide differences in MSCs differentiated with the PPARγ agonist rosiglitazone (ROSI) or TBT. Pathway analysis suggested functional deficits in TBT-treated cells. We then compared adipocytes differentiated with ROSI, TBT, or a pure RXR agonist IRX4204 (4204). Our data show that RXR activators ("rexinoids," 4204 and TBT) attenuate glucose uptake, blunt expression of the antidiabetic hormone adiponectin, and fail to downregulate proinflammatory and profibrotic transcripts, as does ROSI. Finally, 4204 and TBT treatment results in an inability to induce markers of adipocyte browning, in part due to sustained interferon signaling. Taken together, these data implicate rexinoids in the development of dysfunctional white adipose tissue that could potentially exacerbate obesity and/or diabetes risk in vivo. These data warrant further screening and characterization of EDCs that activate RXR.
Collapse
Affiliation(s)
- Bassem M Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
- Medical Scientist Training Program, University of California, Irvine, Irvine, California
| | - Victor T Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Raquel Chamorro-García
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| |
Collapse
|
16
|
Shoucri BM, Martinez ES, Abreo TJ, Hung VT, Moosova Z, Shioda T, Blumberg B. Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology 2017; 158:3109-3125. [PMID: 28977589 PMCID: PMC5659689 DOI: 10.1210/en.2017-00348] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
Abstract
Developmental exposure to environmental factors has been linked to obesity risk later in life. Nuclear receptors are molecular sensors that play critical roles during development and, as such, are prime candidates to explain the developmental programming of disease risk by environmental chemicals. We have previously characterized the obesogen tributyltin (TBT), which activates the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor (RXR) to increase adiposity in mice exposed in utero. Mesenchymal stem cells (MSCs) from these mice are biased toward the adipose lineage at the expense of the osteoblast lineage, and MSCs exposed to TBT in vitro are shunted toward the adipose fate in a PPARγ-dependent fashion. To address where in the adipogenic cascade TBT acts, we developed an in vitro commitment assay that permitted us to distinguish early commitment to the adipose lineage from subsequent differentiation. TBT and RXR activators (rexinoids) had potent effects in committing MSCs to the adipose lineage, whereas the strong PPARγ activator rosiglitazone was inactive. We show that activation of RXR is sufficient for adipogenic commitment and that rexinoids act through RXR to alter the transcriptome in a manner favoring adipogenic commitment. RXR activation alters expression of enhancer of zeste homolog 2 (EZH2) and modifies genome-wide histone 3 lysine 27 trimethylation (H3K27me3) in promoting adipose commitment and programming subsequent differentiation. These data offer insights into the roles of RXR and EZH2 in MSC lineage specification and shed light on how endocrine-disrupting chemicals such as TBT can reprogram stem cell fate.
Collapse
Affiliation(s)
- Bassem M. Shoucri
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Medical Scientist Training Program, University of California, Irvine, Irvine, California 92697
| | - Eric S. Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Timothy J. Abreo
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Victor T. Hung
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
| | - Zdena Moosova
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Masaryk University, Faculty of Science, RECETOX, 625 00 Brno, Czech Republic
| | - Toshi Shioda
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, Massachusetts 02129
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697-2300
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697
| |
Collapse
|
17
|
Müller DS, Werner V, Akyol S, Schmalz HG, Marek I. Tandem Hydroalumination/Cu-Catalyzed Asymmetric Vinyl Metalation as a New Access to Enantioenriched Vinylcyclopropane Derivatives. Org Lett 2017; 19:3970-3973. [DOI: 10.1021/acs.orglett.7b01661] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel S. Müller
- The
Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of
Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Veronika Werner
- The
Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of
Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Sema Akyol
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Koeln, Germany
| | - Hans-Günther Schmalz
- University of Cologne, Department of Chemistry, Greinstrasse 4, 50939 Koeln, Germany
| | - Ilan Marek
- The
Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of
Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
18
|
Heck MC, Wagner CE, Shahani PH, MacNeill M, Grozic A, Darwaiz T, Shimabuku M, Deans DG, Robinson NM, Salama SH, Ziller JW, Ma N, van der Vaart A, Marshall PA, Jurutka PW. Modeling, Synthesis, and Biological Evaluation of Potential Retinoid X Receptor (RXR)-Selective Agonists: Analogues of 4-[1-(3,5,5,8,8-Pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic Acid (Bexarotene) and 6-(Ethyl(5,5,8,8-tetrahydronaphthalen-2-yl)amino)nicotinic Acid (NEt-TMN). J Med Chem 2016; 59:8924-8940. [DOI: 10.1021/acs.jmedchem.6b00812] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael C. Heck
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Carl E. Wagner
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Pritika H. Shahani
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Mairi MacNeill
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Aleksandra Grozic
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Tamana Darwaiz
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Micah Shimabuku
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - David G. Deans
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Nathan M. Robinson
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Samer H. Salama
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Joseph W. Ziller
- Department
of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, California 92697, United States
| | - Ning Ma
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Arjan van der Vaart
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Pamela A. Marshall
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| | - Peter W. Jurutka
- School
of Mathematical and Natural Sciences, New College of Interdisciplinary
Arts and Sciences, Arizona State University, 4701 West Thunderbird Road, Glendale, Arizona 85306, United States
| |
Collapse
|
19
|
Costa EC, Cassamale TB, Carvalho DB, Bosquiroli LSS, Ojeda M, Ximenes TV, Matos MFC, Kadri MCT, Baroni ACM, Arruda CCP. Antileishmanial Activity and Structure-Activity Relationship of Triazolic Compounds Derived from the Neolignans Grandisin, Veraguensin, and Machilin G. Molecules 2016; 21:E802. [PMID: 27331807 PMCID: PMC6273954 DOI: 10.3390/molecules21060802] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022] Open
Abstract
Sixteen 1,4-diaryl-1,2,3-triazole compounds 4-19 derived from the tetrahydrofuran neolignans veraguensin 1, grandisin 2, and machilin G 3 were tested against Leishmania (Leishmania) amazonensis intracellular amastigotes. Triazole compounds 4-19 were synthetized via Click Chemistry strategy by 1,3-dipolar cycloaddition between terminal acetylenes and aryl azides containing methoxy and methylenedioxy groups as substituents. Our results suggest that most derivatives were active against intracellular amastigotes, with IC50 values ranging from 4.4 to 32.7 µM. The index of molecular hydrophobicity (ClogP) ranged from 2.8 to 3.4, reflecting a lipophilicity/hydrosolubility rate suitable for transport across membranes, which may have resulted in the potent antileishmanial activity observed. Regarding structure-activity relationship (SAR), compounds 14 and 19, containing a trimethoxy group, were the most active (IC50 values of 5.6 and 4.4 µM, respectively), with low cytotoxicity on mammalian cells (SI = 14.1 and 10.6). These compounds induced nitric oxide production by the host macrophage cells, which could be suggested as the mechanism involved in the intracellular killing of parasites. These results would be useful for the planning of new derivatives with higher antileishmanial activities.
Collapse
Affiliation(s)
- Eduarda C Costa
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Tatiana B Cassamale
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Lauriane S S Bosquiroli
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Mariáh Ojeda
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Thalita V Ximenes
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Maria F C Matos
- Laboratório de Biologia Molecular e Culturas Celulares, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Mônica C T Kadri
- Laboratório de Biofisiofarmacologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal-LASQUIM, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, 79090-900 Campo Grande-MS, Brazil.
| |
Collapse
|
20
|
Rankin AC, Hendry BM, Corcoran JP, Xu Q. An in vitro model for the pro-fibrotic effects of retinoids: mechanisms of action. Br J Pharmacol 2014; 170:1177-89. [PMID: 23992207 DOI: 10.1111/bph.12348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/21/2013] [Accepted: 07/14/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinoids, including all-trans retinoic acid (tRA), have dose-dependent pro-fibrotic effects in experimental kidney diseases. To understand and eventually prevent such adverse effects, it is important to establish relevant in vitro models and unravel their mechanisms. EXPERIMENTAL APPROACH Fibrogenic effects of retinoids were assessed in NRK-49F renal fibroblasts using picro-Sirius red staining for collagens and quantified by spectrophotometric analysis of the eluted stain. Other methods included RT-qPCR, immunoassays and matrix metalloproteinase (MMP) activity assays. KEY RESULTS With or without TGF-β1, tRA was dose-dependently pro-fibrotic, notably increasing collagen accumulation. tRA and TGF-β1 additively suppressed expression of mRNA for MMP2, 3 and 13 and suppressed MMP activity. tRA, in the presence of TGF-β1, induced plasminogen activator inhibitor-1 (PAI-1) mRNA and they additively induced PAI-1 protein expression. A PAI-1 inhibitor, a pan-retinoic acid receptor (RAR) antagonist and a pan-retinoid X receptor (RXR) antagonist each partially prevented the pro-fibrotic effect of tRA. The dose-dependent pro-fibrotic effects of a pan-RXR agonist were similar to those of tRA. A pan-RAR agonist showed weaker, less dose-dependent pro-fibrotic effects and the pro-fibrotic effects of RARα and RARβ-selective agonists were even smaller. An RARγ-selective agonist did not affect fibrogenesis. CONCLUSIONS AND IMPLICATIONS An in vitro model for the pro-fibrotic effects of retinoids was established in NRK-49F cells. It was associated with reduced MMP activity and increased PAI-1 expression, and was probably mediated by RXR and RAR. To avoid or antagonize the pro-fibrotic activity of tRA, further studies on RAR isotype-selective agonists and PAI-1 inhibitors might be of value.
Collapse
Affiliation(s)
- A C Rankin
- Department of Renal Medicine, King's College London, London, UK
| | | | | | | |
Collapse
|
21
|
Santana AS, Carvalho DB, Cassemiro NS, Viana LH, Hurtado GR, Amaral MS, Kassab NM, Guerrero PG, Barbosa SL, Dabdoub MJ, Baroni AC. Synthesis of 3-iodothiophenes via iodocyclization of (Z)-thiobutenynes. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.10.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Methyl-substituted conformationally constrained rexinoid agonists for the retinoid X receptors demonstrate improved efficacy for cancer therapy and prevention. Bioorg Med Chem 2013; 22:178-85. [PMID: 24359708 DOI: 10.1016/j.bmc.2013.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
(2E,4E,6Z,8Z)-8-(3',4'-Dihydro-1'(2H)-naphthalen-1'-ylidene)-3,7-dimethyl-2,3,6-octatrienoinic acid, 9cUAB30, is a selective rexinoid for the retinoid X nuclear receptors (RXR). 9cUAB30 displays substantial chemopreventive capacity with little toxicity and is being translated to the clinic as a novel cancer prevention agent. To improve on the potency of 9cUAB30, we synthesized 4-methyl analogs of 9cUAB30, which introduced chirality at the 4-position of the tetralone ring. The syntheses and biological evaluations of the racemic homolog and enantiomers are reported. We demonstrate that the S-enantiomer is the most potent and least toxic even though these enantiomers bind in a similar conformation in the ligand binding domain of RXR.
Collapse
|
23
|
Jurutka PW, Kaneko I, Yang J, Bhogal JS, Swierski JC, Tabacaru CR, Montano LA, Huynh CC, Jama RA, Mahelona RD, Sarnowski JT, Marcus LM, Quezada A, Lemming B, Tedesco MA, Fischer AJ, Mohamed SA, Ziller JW, Ma N, Gray GM, van der Vaart A, Marshall PA, Wagner CE. Modeling, synthesis, and biological evaluation of potential retinoid X receptor (RXR) selective agonists: novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) and (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254). J Med Chem 2013; 56:8432-54. [PMID: 24180745 PMCID: PMC3916150 DOI: 10.1021/jm4008517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three unreported analogues of 4-[1-(3,5,5,8,8-pentamethyl-5-6-7-8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), otherwise known as bexarotene, as well as four novel analogues of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid (CD3254), are described and evaluated for their retinoid X receptor (RXR) selective agonism. Compound 1 has FDA approval as a treatment for cutaneous T-cell lymphoma (CTCL), although treatment with 1 can elicit side-effects by disrupting other RXR-heterodimer receptor pathways. Of the seven modeled novel compounds, all analogues stimulate RXR-regulated transcription in mammalian 2 hybrid and RXRE-mediated assays, possess comparable or elevated biological activity based on EC50 profiles, and retain similar or improved apoptotic activity in CTCL assays compared to 1. All novel compounds demonstrate selectivity for RXR and minimal crossover onto the retinoic acid receptor (RAR) compared to all-trans-retinoic acid, with select analogues also reducing inhibition of other RXR-dependent pathways (e.g., VDR-RXR). Our results demonstrate that further improvements in biological potency and selectivity of bexarotene can be achieved through rational drug design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, 576 Rowland Hall, Irvine, CA 92697
| | - Ning Ma
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | - Geoffrey M. Gray
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | | | - Carl E. Wagner
- Corresponding author: School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306. Tele: (602) 543-6937. Fax: (6020 543-6073.
| |
Collapse
|
24
|
Furmick JK, Kaneko I, Walsh AN, Yang J, Bhogal JS, Gray GM, Baso JC, Browder DO, Prentice JL, Montano LA, Huynh CC, Marcus LM, Tsosie DG, Kwon JS, Quezada A, Reyes NM, Lemming B, Saini P, van der Vaart A, Groy TL, Marshall PA, Jurutka PW, Wagner CE. Modeling, synthesis and biological evaluation of potential retinoid X receptor-selective agonists: novel halogenated analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). ChemMedChem 2012; 7:1551-66. [PMID: 22927238 PMCID: PMC3479356 DOI: 10.1002/cmdc.201200319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Indexed: 11/12/2022]
Abstract
The synthesis of halogenated analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), known commonly as bexarotene, and their evaluation for retinoid X receptor (RXR)-specific agonist performance is described. Compound 1 is FDA approved to treat cutaneous T-cell lymphoma (CTCL); however, bexarotene treatment can induce hypothyroidism and elevated triglyceride levels, presumably by disrupting RXR heterodimer pathways for other nuclear receptors. The novel halogenated analogues in this study were modeled and assessed for their ability to bind to RXR and stimulate RXR homodimerization in an RXRE-mediated transcriptional assay as well as an RXR mammalian-2-hybrid assay. In an array of eight novel compounds, four analogues were discovered to promote RXR-mediated transcription with EC(50) values similar to that of 1 and are selective RXR agonists. Our approach also uncovered a periodic trend of increased binding and homodimerization of RXR when substituting a halogen atom for a proton ortho to the carboxylic acid on 1.
Collapse
Affiliation(s)
- Julie K. Furmick
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Ichiro Kaneko
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Angela N. Walsh
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Joanna Yang
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Jaskaran S. Bhogal
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Geoffrey M. Gray
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | - Juan C. Baso
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | - Drew O. Browder
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Jessica L.S. Prentice
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Luis A. Montano
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Chanh C. Huynh
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Lisa M. Marcus
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Dorian G. Tsosie
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Jungeun S. Kwon
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Alexis Quezada
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Nicole M. Reyes
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Brittney Lemming
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Puneet Saini
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 E Fowler Ave, CHE 205, Tampa, FL, 33620
| | - Thomas L. Groy
- Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85287
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85306
| |
Collapse
|
25
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
26
|
Barnard JH, Collings JC, Whiting A, Przyborski SA, Marder TB. Synthetic retinoids: structure-activity relationships. Chemistry 2010; 15:11430-42. [PMID: 19821467 DOI: 10.1002/chem.200901952] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retinoid signalling pathways are involved in numerous processes in cells, particularly those mediating differentiation and apoptosis. The endogenous ligands that bind to the retinoid receptors, namely all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid, are prone to double-bond isomerisation and to oxidation by metabolic enzymes, which can have significant and deleterious effects on their activities and selectivities. Many of these problems can be overcome through the use of synthetic retinoids, which are often much more stable, as well as being more active. Modification of their molecular structures can result in retinoids that act as antagonists, rather than agonists, or exhibit a large degree of selectivity for particular retinoid-receptor isotypes. Several such selective retinoids are likely to be of value as pharmaceutical agents with reduced toxicities, particularly in cancer therapy, as reagents for controlling cell differentiation, and as tools for elucidating the precise roles that specific retinoid signalling pathways play within cells.
Collapse
Affiliation(s)
- Jonathan H Barnard
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
27
|
Liby K, Risingsong R, Royce DB, Williams CR, Ma T, Yore MM, Sporn MB. Triterpenoids CDDO-methyl ester or CDDO-ethyl amide and rexinoids LG100268 or NRX194204 for prevention and treatment of lung cancer in mice. Cancer Prev Res (Phila) 2009; 2:1050-8. [PMID: 19952361 DOI: 10.1158/1940-6207.capr-09-0085] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We tested members of two noncytotoxic classes of drugs, synthetic oleanane triterpenoids and rexinoids, both as individual agents and in combination, for the prevention and treatment of carcinogenesis in a highly relevant animal model of lung cancer. Lung adenocarcinomas were induced in A/J mice by injection of the carcinogen vinyl carbamate. Mice were fed drugs in diet, beginning 1 week after the carcinogen challenge for prevention or 8 weeks later for treatment. The number, size, and severity of tumors in the lungs were then evaluated. In the prevention studies, the triterpenoids CDDO-ethyl amide and CDDO-methyl ester reduced the average tumor burden (ATB) in the lungs 86% to 92%, respectively, compared with the controls, and the rexinoid LG100268 (268) reduced ATB by 50%. The combination of CDDO-ethyl amide and 268 reduced ATB by 93%. We show for the first time that these drugs also were highly effective for treatment of experimental lung cancer, and all triterpenoid and rexinoid combinations reduced ATB 85% to 87% compared with the control group. The triterpenoids also potently inhibited proliferation of VC1 mouse lung carcinoma cells and directly interacted with key regulatory proteins in these cells. In contrast, the rexinoids had little antiproliferative activity in VC1 cells but were potent inhibitors of the toll-like receptor pathway in macrophage-like cells. Triterpenoids and rexinoids are multifunctional, well-tolerated drugs that target different signaling pathways and are thus highly effective for prevention and treatment of experimental lung cancer.
Collapse
Affiliation(s)
- Karen Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Wagner CE, Jurutka PW, Marshall PA, Groy TL, van der Vaart A, Ziller JW, Furmick JK, Graeber ME, Matro E, Miguel BV, Tran IT, Kwon J, Tedeschi JN, Moosavi S, Danishyar A, Philp JS, Khamees RO, Jackson JN, Grupe DK, Badshah SL, Hart JW. Modeling, synthesis and biological evaluation of potential retinoid X receptor (RXR) selective agonists: novel analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene). J Med Chem 2009; 52:5950-66. [PMID: 19791803 DOI: 10.1021/jm900496b] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This report describes the synthesis of analogues of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (1), commonly known as bexarotene, and their analysis in acting as retinoid X receptor (RXR)-specific agonists. Compound 1 has FDA approval to treat cutaneous T-cell lymphoma (CTCL); however, its use can cause side effects such as hypothyroidism and increased triglyceride concentrations, presumably by disruption of RXR heterodimerization with other nuclear receptors. The novel analogues in the present study have been evaluated for RXR activation in an RXR mammalian-2-hybrid assay as well as an RXRE-mediated transcriptional assay and for their ability to induce apoptosis as well as for their mutagenicity and cytotoxicity. Analysis of 11 novel compounds revealed the discovery of three analogues that best induce RXR-mediated transcriptional activity, stimulate apoptosis, have comparable K(i) and EC(50) values to 1, and are selective RXR agonists. Our experimental approach suggests that rational drug design can develop new rexinoids with improved biological properties.
Collapse
Affiliation(s)
- Carl E Wagner
- Division of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, Glendale, Arizona 85306, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pérez-Rodríguez S, Ortiz MA, Pereira R, Rodríguez-Barrios F, de Lera AR, Piedrafita FJ. Highly twisted adamantyl arotinoids: synthesis, antiproliferative effects and RXR transactivation profiles. Eur J Med Chem 2009; 44:2434-46. [PMID: 19216008 DOI: 10.1016/j.ejmech.2009.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/20/2008] [Accepted: 01/09/2009] [Indexed: 12/23/2022]
Abstract
Retinoid-related molecules with an adamantyl group (adamantyl arotinoids) have been described with selective activities towards the retinoid receptors as agonists for NR1B2 and NR1B3 (RARbeta,gamma) (CD437, MX3350-1) or RAR antagonists (MX781) that induce growth arrest and apoptosis in cancer cells. Since these molecules induce apoptosis independently of RAR transactivation, we set up to synthesize novel analogs with impaired RAR binding. Here we describe adamantyl arotinoids with 2,2'-disubstituted biaryl rings prepared using the Suzuki coupling of the corresponding fragments. Those with cinnamic and naphthoic acid end groups showed significant antiproliferative activity in several cancer cell lines, and this effect correlated with the induction of apoptosis as measured by caspase activity. Strikingly, some of these compounds, whereas devoid of RAR binding capacity, were able to activate RXR.
Collapse
|
30
|
Mohler ML, He Y, Wu Z, Hwang DJ, Miller DD. Recent and emerging anti-diabetes targets. Med Res Rev 2009; 29:125-95. [DOI: 10.1002/med.20142] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Qin S, Okawa Y, Atangan LI, Brown G, Chandraratna RA, Zhao Y. Integrities of A/B and C domains of RXR are required for rexinoid-induced caspase activations and apoptosis. J Steroid Biochem Mol Biol 2008; 112:25-31. [PMID: 18761406 DOI: 10.1016/j.jsbmb.2008.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/19/2008] [Accepted: 08/05/2008] [Indexed: 11/16/2022]
Abstract
Here we have delineated regions of the retinoid X receptor alpha (RXRalpha) that are required for rexinoid (RXR agonist)-induced growth inhibition and apoptosis. Stable over-expression of RXRalpha in DT40 B lymphoma cells dramatically increased sensitivity to rexinoid-induced growth inhibition. By contrast, DT40 cells that over-expressed RXRalpha with a deletion of either the A/B or DNA binding domain (C domain) were resistant. We confirmed the importance of C domain integrity by point-mutating Cys(135) to Ser (C135S) to disrupt zinc-finger formation. Point mutating RXR Lys(201) to Thr and Arg(202) to Ala (KTRA) impairs RXR homodimer formation and does not affect RXR heterodimerization. When these mutated RXRs were over-expressed in DT40 cells, they failed to increase sensitivity to rexinoid. Over-expression did sensitize to growth inhibition by RAR and PPARgamma agonists. Over-expression of C135S mutated RXRalpha did not sensitize to RAR and PPARgamma agonists. Inhibitors of caspase-3 and/or caspase-9 blocked rexinoid-induced apoptosis, and activations of these caspases correlated with the ability of RXR mutants to induce cell death. These data show that the A/B and C domains of RXR and the ability of RXR to form homodimers are required for rexinoid-driven growth inhibition, caspase activation and subsequent apoptosis.
Collapse
Affiliation(s)
- Suofu Qin
- Retinoid Research, Department of Biology and Chemistry, Allergan Inc., Irvine, CA 92612, USA
| | | | | | | | | | | |
Collapse
|
32
|
Christie VB, Barnard JH, Batsanov AS, Bridgens CE, Cartmell EB, Collings JC, Maltman DJ, Redfern CPF, Marder TB, Przyborski S, Whiting A. Synthesis and evaluation of synthetic retinoid derivatives as inducers of stem cell differentiation. Org Biomol Chem 2008; 6:3497-507. [PMID: 19082150 DOI: 10.1039/b808574a] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-trans-retinoic acid (ATRA) and its associated analogues are important mediators of cell differentiation and function during the development of the nervous system. It is well known that ATRA can induce the differentiation of neural tissues from human pluripotent stem cells. However, it is not always appreciated that ATRA is highly susceptible to isomerisation when in solution, which can influence the effective concentration of ATRA and subsequently its biological activity. To address this source of variability, synthetic retinoid analogues have been designed and synthesised that retain stability during use and maintain biological function in comparison to ATRA. It is also shown that subtle modifications to the structure of the synthetic retinoid compound impacts significantly on biological activity, as when exposed to cultured human pluripotent stem cells, synthetic retinoid 4-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4a (para-isomer), induces neural differentiation similarly to ATRA. In contrast, stem cells exposed to synthetic retinoid 3-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-ylethynyl)benzoic acid, 4b (meta-isomer), produce very few neurons and large numbers of epithelial-like cells. This type of structure-activity-relationship information for such synthetic retinoid compounds will further the ability to design more targeted systems capable of mediating robust and reproducible tissue differentiation.
Collapse
Affiliation(s)
- Victoria B Christie
- Department of Biological Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Colorectal cancer is the third most prevalent cancer in the world. If detected at an early stage, treatment often might lead to cure. As prevention is better than cure, epidemiological studies reveal that having a healthy diet often protects from promoting/ developing cancer. An important consideration in evaluating new drugs and devices is determining whether a product can effectively treat a targeted disease. There are quite a number of biomarkers making their way into clinical trials and few are awaiting the preclinical efficacy and safety results to enter into clinical trials. Researchers are facing challenges in modifying trial design and defining the right control population, validating biomarker assays from the biological and analytical perspective and using biomarker data as a guideline for decision making. In spite of following all guidelines, the results are disappointing from many of the large clinical trials. To avoid these disappointments, selection of biomarkers and its target drug needs to be evaluated in appropriate animal models for its toxicities and efficacies. The focus of this review is on the few of the potential molecular targets and their biomarkers in colorectal cancers. Strengths and limitations of biomarkers/surrogate endpoints are also discussed. Various pathways involved in tumor cells and the specific agents to target the altered molecular biomarker in biomolecular pathway are elucidated. Importance of emerging new platforms siRNAs and miRNAs technology for colorectal cancer therapeutics is reviewed.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Department of Medicine, Hem-Onc Section, OU Cancer Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
34
|
Liby K, Royce DB, Risingsong R, Williams CR, Wood MD, Chandraratna RA, Sporn MB. A new rexinoid, NRX194204, prevents carcinogenesis in both the lung and mammary gland. Clin Cancer Res 2007; 13:6237-43. [PMID: 17947492 DOI: 10.1158/1078-0432.ccr-07-1342] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We evaluated the anti-inflammatory and growth-inhibitory properties of the novel rexinoid NRX194204 (4204) in vitro and then tested its ability to prevent and/or treat experimental lung and estrogen receptor (ER)-negative breast cancer in vivo. EXPERIMENTAL DESIGN In cell culture studies, we measured the ability of 4204 to block the effects of lipopolysaccharide and induce apoptosis. For the lung cancer prevention studies, A/J mice were injected with the carcinogen vinyl carbamate and then fed 4204 (30-60 mg/kg diet) for 15 weeks, beginning 1 week after the administration of the carcinogen. For breast cancer prevention studies, mouse mammary tumor virus-neu mice were fed control diet or 4204 (20 mg/kg diet) for 50 weeks; for treatment, tumors at least 32 mm3 in size were allowed to form, and then mice were fed control diet or 4204 (60 mg/kg diet) for 4 weeks. RESULTS Low nanomolar concentrations of 4204 blocked the ability of lipopolysaccharide and tumor necrosis factor-alpha to induce the release of nitric oxide and interleukin 6 and the degradation of IKBalpha in RAW264.7 macrophage-like cells. In the A/J mouse model of lung cancer, 4204 significantly (P < 0.05) reduced the number and size of tumors on the surface of the lungs and reduced the total tumor volume per slide by 64% to 81% compared with the control group. In mouse mammary tumor virus-neu mice, 4204 not only delayed the development of ER-negative mammary tumors in the prevention studies but also caused marked tumor regression (92%) or growth arrest (8%) in all of the mammary tumors when used therapeutically. CONCLUSIONS The combined anti-inflammatory and anticarcinogenic actions of 4204 suggest that it is a promising new rexinoid that should be considered for future clinical trials.
Collapse
Affiliation(s)
- Karen Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lagu B, Lebedev R, Pio B, Yang M, Pelton PD. Dihydro-[1H]-quinolin-2-ones as retinoid X receptor (RXR) agonists for potential treatment of dyslipidemia. Bioorg Med Chem Lett 2007; 17:3491-6. [PMID: 17490875 DOI: 10.1016/j.bmcl.2007.01.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 11/29/2022]
Abstract
A number of RXR modulators with novel structural features were synthesized and screened in the functional assays. The synthesis and the structure-activity relationship within the series of compounds will be presented. Some in vivo data generated in the models for dyslipidemia and diabetes will also be presented.
Collapse
Affiliation(s)
- Bharat Lagu
- Johnson and Johnson Pharmaceutical Research and Development, Cranbury, NJ 08512, USA.
| | | | | | | | | |
Collapse
|
36
|
Liby KT, Yore MM, Sporn MB. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat Rev Cancer 2007; 7:357-69. [PMID: 17446857 DOI: 10.1038/nrc2129] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic oleanane triterpenoids and rexinoids are two new classes of multifunctional drugs. They are neither conventional cytotoxic agents, nor are they monofunctional drugs that uniquely target single steps in signal transduction pathways. Synthetic oleanane triterpenoids have profound effects on inflammation and the redox state of cells and tissues, as well as being potent anti-proliferative and pro-apoptotic agents. Rexinoids are ligands for the nuclear receptor transcription factors known as retinoid X receptors. Both classes of agents can prevent and treat cancer in experimental animals. These drugs have unique molecular and cellular mechanisms of action and might prove to be synergistic with standard anti-cancer treatments.
Collapse
Affiliation(s)
- Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
37
|
Stephensen CB, Borowsky AD, Lloyd KCK. Disruption of Rxra gene in thymocytes and T lymphocytes modestly alters lymphocyte frequencies, proliferation, survival and T helper type 1/type 2 balance. Immunology 2007; 121:484-98. [PMID: 17433077 PMCID: PMC2265968 DOI: 10.1111/j.1365-2567.2007.02595.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Retinoid X receptor (RXR) agonists, including the vitamin A metabolite 9-cis retinoic acid, decrease T-lymphocyte apoptosis and promote T helper type 2 (Th2) development ex vivo. To examine the in vivo role of RXR-alpha in T-lymphocyte development and function, we disrupted the Rxra gene in thymocytes and T lymphocytes using cyclization recombinase (Cre)-loxP-mediated excision of Rxra exon 4. Expression of Cre was targeted to these cells using the Lck promoter. Successful disruption of exon 4 was seen in thymus and T lymphocytes. Mice were healthy and the thymus, spleen and lymph nodes appeared normal. However, knockout mice had a lower percentage of double-positive (CD4(+) CD8(+)) and a higher percentage of double-negative thymocytes than wild-type mice. The percentage of splenic B lymphocytes was lower in unimmunized and ovalbumin-immunized knockout mice and the percentage of T lymphocytes was lower in immunized knockout mice. Ex vivo proliferation was decreased and apoptosis was increased in T lymphocytes from knockout mice. Memory CD4(+) T lymphocytes from knockout mice produced more interferon-gamma and interleukin-2 (IL-2) and less IL-5 and IL-10 than memory cells from wild-type mice, indicating a Th1 bias in vivo. However, Rxra disruption did not similarly bias ex vivo differentiation of naive CD4(+) T lymphocytes, nor did Rxra disruption alter the serum immunoglobulin G1/immunoglobulin G2a response to immunization. In summary, disruption of Rxra altered the percentages of T and B lymphocytes, produced a Th1 bias in vivo, and altered T-lymphocyte proliferation and apoptosis ex vivo. These differences were modest in magnitude and their impact on disease resistance is yet to be examined.
Collapse
Affiliation(s)
- Charles B Stephensen
- USDA Western Human Nutrition Research Center and Nutrition Department, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
38
|
Pinaire JA, Reifel-Miller A. Therapeutic potential of retinoid x receptor modulators for the treatment of the metabolic syndrome. PPAR Res 2007; 2007:94156. [PMID: 17497022 PMCID: PMC1852898 DOI: 10.1155/2007/94156] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 01/30/2023] Open
Abstract
The increasing prevalence of obesity is a fundamental contributor
to the growing prevalence of the metabolic syndrome. Rexinoids, a
class of compounds that selectively bind and activate RXR,
are being studied as a potential option for the treatment of
metabolic syndrome. These compounds have glucose-lowering,
insulin-sensitizing, and antiobesity effects in animal models
of insulin resistance and type 2 diabetes. However,
undesirable side effects such as hypertriglyceridemia and
suppression of the thyroid hormone axis also occur.
This review examines and compares the effects of four RXR-selective
ligands: LGD1069, LG100268, AGN194204, and LG101506, a selective
RXR modulator. Similar to selective modulators of other nuclear
receptors such as the estrogen receptor (SERMs), LG101506
binding to RXR selectively maintains the desirable characteristic
effects of rexinoids while minimizing the undesirable effects.
These recent findings suggest that, with continued research efforts,
RXR-specific ligands with improved pharmacological profiles may
eventually be available as additional treatment options for the
current epidemic of obesity, insulin resistance, type 2 diabetes,
and all of the associated metabolic sequelae.
Collapse
Affiliation(s)
- Jane A. Pinaire
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
- *Jane A. Pinaire:
| | - Anne Reifel-Miller
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
39
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2007; 58:760-72. [PMID: 17132853 DOI: 10.1124/pr.58.4.7] [Citation(s) in RCA: 377] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological effects of retinoic acids (RAs) are mediated by members of two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which are encoded by three distinct human genes, RXRalpha, RXRbeta, and RXRgamma. RARs bind both all-trans- and 9-cis-RA, whereas only the 9-cis-RA stereoisomer binds to RXRs. As RXR/RAR heterodimers, these receptors control the transcription of RA target genes through binding to RA-response elements. This review is focused on the structure, mode of action, ligands, expression, and pharmacology of RXRs. Given their role as common partners to many other members of the nuclear receptor superfamily, these receptors have been the subject of intense scrutiny. Moreover, and despite numerous studies since their initial discovery, RXRs remain enigmatic nuclear receptors, and there is still no consensus regarding their role. Indeed, multiple questions about the actual biological role of RXRs and the existence of an endogenous ligand have still to be answered.
Collapse
Affiliation(s)
- Pierre Germain
- Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Illkirch, Communauté Urbaine de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang W, Meng H, Li ZH, Shu Z, Ma X, Zhang BX. Regulation of STIM1, store-operated Ca2+ influx, and nitric oxide generation by retinoic acid in rat mesangial cells. Am J Physiol Renal Physiol 2006; 292:F1054-64. [PMID: 17090780 DOI: 10.1152/ajprenal.00286.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been shown that store-operated Ca(2+) influx (SOC) plays critical roles in the activation of endothelial nitric oxide (NO) synthase (eNOS) and generation of NO in endothelial cells. Recent studies indicate stromal interaction molecule 1 (STIM1) is the molecule responsible for SOC activation following Ca(2+) depletion in the ER. Retinoic acids (RA) have beneficial effects in the treatment of renal diseases. The mechanism of the RA action is still largely unknown. In the current study, we used primary cultured rat mesangial cells to examine the effect of RA on SOC and STIM1. In these cells, BK caused concentration-dependent [Ca(2+)](i) mobilization. Treatment of the cells with RA, while it had no effect on the initial peak, reduced the plateau phase of BK-mediated [Ca(2+)](i) response, indicating the inhibition of SOC by RA. The level of STIM1 protein but not mRNA in RA-treated cells was significantly reduced. RA treatment did not affect TGF-beta-mediated gradual Ca(2+) influx which occurred by superoxide anion-mediated mechanism, indicating RA treatment specifically inhibited SOC in mesangial cells. RT-PCR and Western blot analysis demonstrated that eNOS was expressed in rat mesangial cells grown in media containing 11 and 30 but not 5.5 mM glucose. Downregulation of STIM1 protein and BK-induced SOC by RA treatment or STIM1 dsRNA were associated with abolished NO production. The 26S proteasome inhibitor lactacystin blocked the RA-mediated downregulation of BK-induced SOC, suggesting that ubiquitin-proteasome pathway may be involved in RA-mediated STIM1 protein downregulation in rat mesangial cells. Our data suggest that glucose-induced eNOS expression and NO production in mesangial cells may contribute to hyperfiltration in diabetes and RA may exert beneficial effects by downregulation of STIM1 and SOC in mesangial cells.
Collapse
Affiliation(s)
- Wanke Zhang
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Audie L. Murphy Division, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
41
|
Hughes PJ, Zhao Y, Chandraratna RA, Brown G. Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARalpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J Cell Biochem 2006; 97:327-50. [PMID: 16178010 DOI: 10.1002/jcb.20579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All-trans retinoic acid and 9-cis-retinoic acid stimulate the activity of steroid sulfatase in HL60 acute myeloid leukemia cells in a concentration- and time-dependent manner. Neither of these 'natural retinoids' augmented steroid sulfatase activity in a HL60 sub-line that expresses a dominant-negative retinoic acid receptor alpha (RARalpha). Experiments with synthetic RAR and RXR agonists and antagonists suggest that RARalpha/RXR heterodimers play a role in the retinoid-stimulated increase in steroid sulfatase activity. The retinoid-driven increase in steroid sulfatase activity was attenuated by inhibition of phospholipase D (PLD), but not by inhibitors of phospholipase C. Experiments with inhibitors of protein kinase C (PKC) show that PKCalpha and PKCdelta play an important role in modulating the retinoid-stimulation of steroid sulfatase activity in HL60 cells. Furthermore, we show that pharmacological inhibition of the RAF-1 and ERK MAP kinases blocked the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells and, by contrast, inhibition of the p38-MAP kinase or JNK-MAP kinase had no effect. Pharmacological inhibitors of the phosphatidylinositol 3-kinase, Akt, and PDK-1 also abrogated the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells. These results show that crosstalk between the retinoid-stimulated genomic and non-genomic pathways is necessary to increase steroid sulfatase activity in HL60 cells.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
42
|
Rasooly R, Schuster GU, Gregg JP, Xiao JH, Chandraratna RAS, Stephensen CB. Retinoid x receptor agonists increase bcl2a1 expression and decrease apoptosis of naive T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 175:7916-29. [PMID: 16339527 DOI: 10.4049/jimmunol.175.12.7916] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.
Collapse
Affiliation(s)
- Reuven Rasooly
- U.S. Department of Agriculture (USDA) Western Human Nutrition Research Center and Nutrition Department, University of California, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
43
|
Farmer LJ, Marron KS, Canan Koch SS, Hwang CK, Kallel EA, Zhi L, Nadzan AM, Robertson DW, Bennani YL. Aza-retinoids as novel retinoid X receptor-specific agonists. Bioorg Med Chem Lett 2005; 16:2352-6. [PMID: 16364638 DOI: 10.1016/j.bmcl.2005.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 11/30/2005] [Accepted: 12/01/2005] [Indexed: 11/18/2022]
Abstract
A new structurally simple series of potent lipophilic aza-retinoids RXR agonists has been developed. SAR studies for the N-alkyl-azadienoic acids described here demonstrate that the RXR activity profile is sensitive to the N-alkyl chain length. Further, we have expanded the work to include azadienoic acids, which exhibited many accessible conformations leading to a better understanding of the SAR around the series.
Collapse
Affiliation(s)
- Luc J Farmer
- Ligand Pharmaceuticals Inc., 10255 Science Center Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu B, Lee KW, Li H, Ma L, Lin GL, Chandraratna RAS, Cohen P. Combination therapy of insulin-like growth factor binding protein-3 and retinoid X receptor ligands synergize on prostate cancer cell apoptosis in vitro and in vivo. Clin Cancer Res 2005; 11:4851-6. [PMID: 16000583 DOI: 10.1158/1078-0432.ccr-04-2160] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously identified the retinoid X receptor-alpha (RXRalpha) as an insulin-like growth factor binding protein-3 (IGFBP-3) nuclear binding partner, which is required for IGFBP-3-induced apoptosis. In the current study, we investigated the biological interactions of the RXR ligand, VTP194204 and rhIGFBP-3, in vitro and in vivo. In vitro, IGFBP-3 and VTP194204 individually induced apoptosis, and suppressed cell growth in prostate cancer cell lines in an additive manner. In vivo, LAPC-4 xenograft-bearing severe combined immunodeficiency mice treated daily with saline, IGFBP-3, and/or VTP194204 for 3 weeks showed no effect of individual treatments with IGFBP-3 or VTP194204 on tumor growth. However, the combination of IGFBP-3 and VTP194204 treatments inhibited tumor growth by 50% and induced a significant reduction in serum prostate-specific antigen levels. In terminal nucleotidyl transferase-mediated nick end labeling immunohistochemistry of LAPC-4 xenografts, there was modest induction of apoptosis with either IGFBP-3 or VTP194204 individual treatment, but combination therapy resulted in massive cell death, indicating that IGFBP-3 and VTP194204 have a synergistic effect in preventing tumor growth by apoptosis induction. In summary, this is an initial description of the successful therapeutic use of IGFBP-3 as a cancer therapy in vivo, and shows that combination treatment of IGFBP-3 and RXR ligand has a synergistic effect on apoptosis induction leading to substantial inhibition of prostate cancer xenograft growth. Taken together, these observations suggest that combination therapy with IGFBP-3 and RXR ligands may have therapeutic potential for prostate cancer treatment.
Collapse
Affiliation(s)
- Bingrong Liu
- Division of Pediatric Endocrinology, Mattel Children's Hospital at UCLA, California, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sussman F, de Lera AR. Ligand recognition by RAR and RXR receptors: binding and selectivity. J Med Chem 2005; 48:6212-9. [PMID: 16190748 DOI: 10.1021/jm050285w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.
Collapse
Affiliation(s)
- Fredy Sussman
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | | |
Collapse
|
46
|
Kogai T, Kanamoto Y, Li AI, Che LH, Ohashi E, Taki K, Chandraratna RA, Saito T, Brent GA. Differential regulation of sodium/iodide symporter gene expression by nuclear receptor ligands in MCF-7 breast cancer cells. Endocrinology 2005; 146:3059-69. [PMID: 15817668 DOI: 10.1210/en.2004-1334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The sodium/iodide symporter (NIS) mediates iodide uptake in lactating breast tissue and is expressed in some breast cancers. We have previously demonstrated that all-trans retinoic acid (tRA) stimulates NIS gene expression and the selective cytotoxic effect of beta-emitting radioiodide-131 ((131)I) in both in vitro and in vivo MCF-7 breast cancer cell systems. We studied the ability of natural and synthetic retinoids, in combination with other nuclear receptor ligands, to achieve greater and more sustained induction of NIS in MCF-7 cells and enhance (131)I-mediated cytotoxicity. Selective stimulation of retinoic acid receptor (RAR) beta/gamma produced marked NIS induction; and selective stimulation of RARalpha, RARgamma, or retinoid X receptor produced more modest induction. Maximal NIS induction was seen with 9-cis retinoic acid and AGN190168, a RAR beta/gamma-agonist. Dexamethasone (Dex), but not the other nuclear receptor ligands, in combination with tRA synergistically induced iodide uptake and NIS mRNA expression, predominantly by prolonging NIS mRNA half-life. The addition of Dex reduced the EC(50) of tRA for NIS stimulation to approximately 7%, such that 10(-7) m tRA with addition of Dex enhanced iodide uptake and selective cytotoxicity of (131)I greater than 10(-6) m tRA alone. AGN190168 combined with Dex synergistically increased iodide uptake and significantly prolonged induction (5 d) of iodide uptake compared with that induced by the combination of tRA/Dex or 9-cis retinoic acid/Dex. The addition of Dex reduced the effective dose of retinoid and prolonged the induction of NIS, especially with AGN190168, suggesting higher efficacy of (131)I after combination treatment.
Collapse
Affiliation(s)
- Takahiko Kogai
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, David Geffen School of Medicine at the University of California, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Balasubramanian S, Chandraratna RAS, Eckert RL. A novel retinoid-related molecule inhibits pancreatic cancer cell proliferation by a retinoid receptor independent mechanism via suppression of cell cycle regulatory protein function and induction of caspase-associated apoptosis. Oncogene 2005; 24:4257-70. [PMID: 15856029 DOI: 10.1038/sj.onc.1208586] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Retinoid-related molecules are important potential agents for the treatment of cancer. In the present study, we test the effect of a novel retinoid-related ligand, AGN193198 (4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-prophenyl] benzoic acid), on pancreatic cancer cell proliferation and survival. AGN193198 treatment reduces BxPC-3 cell proliferation more efficiently than high-affinity retinoid acid receptor (RAR)- or retinoid X receptor (RXR)-selective retinoids. Moreover, AGN193198 does not activate transcription from RAR or RXR response elements and its effects on cell survival are not reversed by treatment with RAR- or RXR receptor-selective antagonists. These results suggest that the AGN193198-dependent inhibition of BxPC-3 cell function is not mediated via activation of the classical retinoid receptors. Cell cycle analysis of AGN193198-treated BxPC-3 cells indicates that AGN193198 causes accumulation of cells in G2/M. This change is associated with a marked reduction in regulators of S (cyclin A, cyclin-dependent kinase (cdk)2), G2/M (cyclin B1, cdk1, cdc25c) and G1 (cyclin D1, cyclin E, cdk2, cdk4) phase, and an increase in p21 and p27 level. Kinases assays reveal that cdk1, cdk2 and cdk4 activity are suppressed in AGN193198-treated cells. In addition, reduced cell proliferation is associated with enhanced procaspase (3, 8 and 9) and PARP cleavage. Z-VAD-FMK, a pancaspase inhibitor, inhibits AGN193198-dependent caspase activation and attenuates cell death. Z-VAD-FMK inhibits PARP cleavage, but does not alter the AGN193198-dependent reduction in cell cycle regulatory protein expression and activity, suggesting that caspase activation and suppression of cell cycle regulatory protein levels are independent processes. AGN193198 produces similar responses in other pancreatic cancer cell lines including AsPC-1 and MIA PaCa-2. These studies suggest that AGN193198 may be useful for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sivaprakasam Balasubramanian
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
48
|
|
49
|
Michellys PY, Ardecky RJ, Chen JH, D'Arrigo J, Grese TA, Karanewsky DS, Leibowitz MD, Liu S, Mais DA, Mapes CM, Montrose-Rafizadeh C, Ogilvie KM, Reifel-Miller A, Rungta D, Thompson AW, Tyhonas JS, Boehm MF. Design, synthesis, and structure-activity relationship studies of novel 6,7-locked-[7-(2-alkoxy-3,5-dialkylbenzene)-3-methylocta]-2,4,6-trienoic acids. J Med Chem 2003; 46:4087-103. [PMID: 12954061 DOI: 10.1021/jm020401k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoid X receptor:peroxisome proliferative-activated receptor (RXR:PPAR) heterodimers play a critical role in the regulation of glucose (RXR/PPARgamma) and lipid metabolism (RXR/PPARalpha). Previously, we described a concise structure-activity relationship study of selective RXR modulators possessing a (2E,4E,6Z)-3-methyl-7-(3,5-dialkyl-6-alkoxyphenyl)-octa-2,4,6-trienoic acid scaffold. These studies were focused on the 2-position alkoxy side chain. We describe here the design and synthesis of a novel series of RXR selective modulators possessing the same aromatic core structure with the addition of a ring locked 6-7-Z-olefin on the trienoic acid moiety. The synthesis and structure-activity relationship studies of these 6,7-locked cyclopentenyl, phenyl, thienyl, furan, and pyridine-trienoic acid derivatives is presented herein.
Collapse
Affiliation(s)
- Pierre-Yves Michellys
- Department of Medicinal Chemistry, Ligand Pharmaceuticals, Inc., 10275 Science Center Drive, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N, Cordrey A, Zhao Y, Chandraratna RAS. Adenomatous polyposis coli (APC)-independent regulation of beta-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 2003; 278:29954-62. [PMID: 12771132 DOI: 10.1074/jbc.m304761200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Beta-catenin is a component of stable cell adherent complexes whereas its free form functions as a transcription factor that regulate genes involved in oncogenesis and metastasis. Free beta-catenin is eliminated by two adenomatous polyposis coli (APC)-dependent proteasomal degradation pathways regulated by glycogen synthase kinase 3beta (GSK3 beta) or p53-inducible Siah-1. Dysregulation of beta-catenin turnover consequent to mutations in critical genes of the APC-dependent pathways is implicated in cancers such as colorectal cancer. We have identified a novel retinoid X receptor (RXR)-mediated APC-independent pathway in the regulation of beta-catenin. In this proteasomal pathway, RXR agonists induce degradation of beta-catenin and RXR alpha and repress beta-catenin-mediated transcription. In vivo, beta-catenin interacts with RXR alpha in the absence of ligand, but RXR agonists enhanced the interaction. RXR agonist action was not impaired by GSK3 beta inhibitors or deletion of the GSK3 beta-targeted sequence from beta-catenin. In APC- and p53-mutated colorectal cancer cells, RXR agonists still inactivated endogenous beta-catenin via RXR alpha. Interestingly, deletion of the RXR alpha A/B region abolished ligand-induced beta-catenin degradation but not RXR alpha-mediated transactivation. RXR alpha-mediated inactivation of oncogenic beta-catenin paralleled a reduction in cell proliferation. These results suggest a potential role for RXR and its agonists in the regulation of beta-catenin turnover and related biological events.
Collapse
Affiliation(s)
- Jia-Hao Xiao
- Retinoid Research, the Department of Biology, Allergan, Inc., Irvine, California 92623, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|