1
|
Staas DD, Bell IM, Burgey CS, Deng JZ, Gallicchio SN, Lim JJ, Paone DV, Potteiger CM, Shaw AW, Stevenson H, Stump CA, Blair Zartman C, Moore EL, Bruno JG, Mosser SD, White RB, Kane SA, Salvatore CA, Graham SL, Williams TM, Selnick HG, Fraley ME. Invention of novel 3-aminopiperidin-2-ones as calcitonin gene-related peptide receptor antagonists. Bioorg Med Chem Lett 2024; 112:129944. [PMID: 39233187 DOI: 10.1016/j.bmcl.2024.129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity. These studies identified compound 23, a structurally novel potent, orally bioavailable CGRP receptor antagonist.
Collapse
Affiliation(s)
- Donnette D Staas
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Ian M Bell
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA.
| | | | - James Z Deng
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Steven N Gallicchio
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - John J Lim
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Daniel V Paone
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Craig M Potteiger
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Anthony W Shaw
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Heather Stevenson
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Craig A Stump
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - C Blair Zartman
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Eric L Moore
- Department of Neuroscience, Merck & Co., Inc., West Point, PA 19486, USA
| | - Joseph G Bruno
- Department of In Vitro Pharmacology, Merck & Co., Inc., West Point, PA 19486, USA
| | - Scott D Mosser
- Department of In Vitro Pharmacology, Merck & Co., Inc., West Point, PA 19486, USA
| | - Rebecca B White
- Department of Drug Metabolism & Pharmacokinetics, Merck & Co., Inc., West Point, PA 19486, USA
| | - Stefanie A Kane
- Department of Neuroscience, Merck & Co., Inc., West Point, PA 19486, USA
| | | | - Samuel L Graham
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Theresa M Williams
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Harold G Selnick
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| | - Mark E Fraley
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, PA 19486, USA
| |
Collapse
|
2
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
3
|
Yuan WJ, Tong CL, Xu XH, Qing FL. N-Trifluoromethoxyphthalimide: A Shelf-Stable Reagent for Nucleophilic Trifluoromethoxylation. J Org Chem 2023; 88:4434-4441. [PMID: 36920884 DOI: 10.1021/acs.joc.2c03031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Due to the unique properties of the OCF3 group, trifluoromethyl ether compounds play an important role in pharmaceuticals and agrochemicals. Recently, considerable attention has been focused on the development of practical and convenient reagents for the direct incorporation of the OCF3 group into organic compounds. Herein, we reported a new trifluoromethoxylating reagent N-trifluoromethoxyphthalimide (Phth-OCF3). The reagent was a stable solid and released an OCF3 anion under mild reaction conditions. We demonstrated the application of Phth-OCF3 for the nucleophilic trifluoromethoxylation of various alkyl electrophiles.
Collapse
Affiliation(s)
- Wen-Juan Yuan
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao-Lai Tong
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
5
|
Marie N, Ma JA, Cahard D. Amphiphilic Polyfluorinated Amino Ethers from Cyclic Sulfamidates. J Org Chem 2022; 87:16665-16675. [PMID: 36417566 DOI: 10.1021/acs.joc.2c02337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Regioselective ring opening of cyclic sulfamidates was achieved by means of nucleophilic polyfluorinated alkoxides to access achiral and chiral β- and γ-ORF amines and α-amino esters. Subsequent transformations provide free amines ready for incorporation into bioactive substances through amide bond formation or nucleophilic aromatic substitution.
Collapse
Affiliation(s)
- Nicolas Marie
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dominique Cahard
- UMR 6014 COBRA, CNRS, Université de Rouen-Normandie, INSA Rouen, IRCOF, Mont Saint Aignan 76821, France
| |
Collapse
|
6
|
Hay DL, Walker CS, Harris PW. Atogepant (Qulipta®) for migraine prevention. Trends Pharmacol Sci 2022; 43:701-702. [DOI: 10.1016/j.tips.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
|
7
|
Logvinenko IG, Kondratov IS, Pridma SO, Tolmachova NA, Morev RN, Dolovanyuk VG, Boretskyi AL, Stepanyuk RO, Trofimchuk SA, Mück-Lichtenfeld C, Daniliuc CG, Haufe G. Synthesis and physical chemical properties of CF3O-containg secondary amines – perspective building blocks for Drug Discovery. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu A, Han J, Nakano A, Konno H, Moriwaki H, Abe H, Izawa K, Soloshonok VA. New pharmaceuticals approved by FDA in 2020: Small-molecule drugs derived from amino acids and related compounds. Chirality 2021; 34:86-103. [PMID: 34713503 DOI: 10.1002/chir.23376] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Amino acids (AAs) play an important role in the modern health industry as key synthetic precursors for pharmaceuticals, biomaterials, biosensors, and drug delivery systems. Currently, over 30% of small-molecule drugs contain residues of tailor-made AAs or derived from them amino-alcohols and di-amines. In this review article, we profile 12 AA-derived new pharmaceuticals approved by the FDA in 2020. These newly introduced drugs include Tazverik (epithelioid sarcoma), Gemtesa (overactive bladder), Zeposia (multiple sclerosis), Byfavo (induction and maintenance of procedural sedation), Cu 64 dotatate, and Gallium 68 PSMA-11 (both PET imaging), Rimegepant (acute migraine), Zepzelca (lung cancer), Remdesivir (COVID-19), Amisulpride (nausea and vomiting), Setmelanotide (obesity), and Lonafarnib (progeria syndrome). For each compound, we describe the spectrum of biological activity, medicinal chemistry discovery, and synthetic preparation.
Collapse
Affiliation(s)
- Aiyao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Arina Nakano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | | | | | | | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Deganutti G, Atanasio S, Rujan RM, Sexton PM, Wootten D, Reynolds CA. Exploring Ligand Binding to Calcitonin Gene-Related Peptide Receptors. Front Mol Biosci 2021; 8:720561. [PMID: 34513925 PMCID: PMC8427520 DOI: 10.3389/fmolb.2021.720561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 01/31/2023] Open
Abstract
Class B1 G protein-coupled receptors (GPCRs) are important targets for many diseases, including cancer, diabetes, and heart disease. All the approved drugs for this receptor family are peptides that mimic the endogenous activating hormones. An understanding of how agonists bind and activate class B1 GPCRs is fundamental for the development of therapeutic small molecules. We combined supervised molecular dynamics (SuMD) and classic molecular dynamics (cMD) simulations to study the binding of the calcitonin gene-related peptide (CGRP) to the CGRP receptor (CGRPR). We also evaluated the association and dissociation of the antagonist telcagepant from the extracellular domain (ECD) of CGRPR and the water network perturbation upon binding. This study, which represents the first example of dynamic docking of a class B1 GPCR peptide, delivers insights on several aspects of ligand binding to CGRPR, expanding understanding of the role of the ECD and the receptor-activity modifying protein 1 (RAMP1) on agonist selectivity.
Collapse
Affiliation(s)
- Giuseppe Deganutti
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Silvia Atanasio
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Roxana-Maria Rujan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | |
Collapse
|
10
|
Luo G, Jiang XJ, Chen L, Conway CM, Gulianello M, Kostich W, Keavy D, Signor LJ, Chen P, Davis C, Whiterock VJ, Schartman R, Widmann KA, Macor JE, Dubowchik GM. Calcitonin gene-related peptide (CGRP) receptor antagonists: Heterocyclic modification of a novel azepinone lead. Bioorg Med Chem Lett 2021; 43:128077. [PMID: 33932522 DOI: 10.1016/j.bmcl.2021.128077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022]
Abstract
In our efforts to identify orally bioavailable CGRP receptor antagonists, we previously discovered a novel series of orally available azepinone derivatives that unfortunately also exhibited the unwanted property of potent time-dependent human CYP3A4 inhibition. Through heterocyclic replacement of the indazole ring, we discovered a series of heterocycle derivatives as high-affinity CGRP receptor antagonists. Some of them showed reasonable oral exposures, and the imidazolone derivatives that showed good oral exposure also exhibited substantially reduced time-dependent CYP3A4 inhibition. Several compounds showed strong in vivo efficacy in our marmoset facial blood flow assay with up to 87% inhibition of CGRP-induced activity. However, oral bioavailability generally remained low, emphasizing the challenges we and others encountered in discovering clinical development candidates for this difficult Class B GPCR target.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Bristol Myers Squibb, Lawrenceville, NJ 08543, United States.
| | | | - Ling Chen
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Bristol Myers Squibb, Lawrenceville, NJ 08543, United States
| | - Charles M Conway
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Biohaven Pharmaceuticals Inc., New Haven, CT 06510, United States
| | - Michael Gulianello
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Sanofi, Framingham, MA 01701, United States
| | - Walter Kostich
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; National Multiple Sclerosis Society, New York, NY 10017, United States
| | - Deborah Keavy
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Medtronic, North Haven, CT 06473, United States
| | - Laura J Signor
- Bristol-Myers Squibb, Wallingford, CT 06492, United States
| | - Ping Chen
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Bristol Myers Squibb, Lawrenceville, NJ 08543, United States
| | - Carl Davis
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Amgen, Inc. Thousand Oaks, CA 91320, United States
| | | | - Richard Schartman
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Preformulation Solutions, LLC, North Ridgeville, OH 44039, United States
| | | | - John E Macor
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Sanofi, Waltham, MA 02451, United States
| | - Gene M Dubowchik
- Bristol-Myers Squibb, Wallingford, CT 06492, United States; Biohaven Pharmaceuticals Inc., New Haven, CT 06510, United States
| |
Collapse
|
11
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
12
|
Yang D, Zhou Q, Labroska V, Qin S, Darbalaei S, Wu Y, Yuliantie E, Xie L, Tao H, Cheng J, Liu Q, Zhao S, Shui W, Jiang Y, Wang MW. G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduct Target Ther 2021; 6:7. [PMID: 33414387 PMCID: PMC7790836 DOI: 10.1038/s41392-020-00435-w] [Citation(s) in RCA: 261] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
As one of the most successful therapeutic target families, G protein-coupled receptors (GPCRs) have experienced a transformation from random ligand screening to knowledge-driven drug design. We are eye-witnessing tremendous progresses made recently in the understanding of their structure-function relationships that facilitated drug development at an unprecedented pace. This article intends to provide a comprehensive overview of this important field to a broader readership that shares some common interests in drug discovery.
Collapse
Affiliation(s)
- Dehua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Qingtong Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shanshan Qin
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Sanaz Darbalaei
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Elita Yuliantie
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Qing Liu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Yi Jiang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ming-Wei Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China. .,School of Pharmacy, Fudan University, 201203, Shanghai, China.
| |
Collapse
|
13
|
Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
15
|
Bucknell SJ, Ator MA, Brown AJH, Brown J, Cansfield AD, Cansfield JE, Christopher JA, Congreve M, Cseke G, Deflorian F, Jones CR, Mason JS, O'Brien MA, Ott GR, Pickworth M, Southall SM. Structure-Based Drug Discovery of N-(( R)-3-(7-Methyl-1 H-indazol-5-yl)-1-oxo-1-((( S)-1-oxo-3-(piperidin-4-yl)-1-(4-(pyridin-4-yl)piperazin-1-yl)propan-2-yl)amino)propan-2-yl)-2'-oxo-1',2'-dihydrospiro[piperidine-4,4'-pyrido[2,3- d][1,3]oxazine]-1-carboxamide (HTL22562): A Calcitonin Gene-Related Peptide Receptor Antagonist for Acute Treatment of Migraine. J Med Chem 2020; 63:7906-7920. [PMID: 32558564 DOI: 10.1021/acs.jmedchem.0c01003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure-based drug design enabled the discovery of 8, HTL22562, a calcitonin gene-related peptide (CGRP) receptor antagonist. The structure of 8 complexed with the CGRP receptor was determined at a 1.6 Å resolution. Compound 8 is a highly potent, selective, metabolically stable, and soluble compound suitable for a range of administration routes that have the potential to provide rapid systemic exposures with resultant high levels of receptor coverage (e.g., subcutaneous). The low lipophilicity coupled with a low anticipated clinically efficacious plasma exposure for migraine also suggests a reduced potential for hepatotoxicity. These properties have led to 8 being selected as a clinical candidate for acute treatment of migraine.
Collapse
Affiliation(s)
- Sarah J Bucknell
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Mark A Ator
- Teva Pharmaceuticals, 145 Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Alastair J H Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Jason Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Andrew D Cansfield
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Julie E Cansfield
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - John A Christopher
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Miles Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Gabriella Cseke
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Francesca Deflorian
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Christopher R Jones
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Jonathan S Mason
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - M Alistair O'Brien
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Gregory R Ott
- Teva Pharmaceuticals, 145 Brandywine Parkway, West Chester, Pennsylvania 19380, United States
| | - Mark Pickworth
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| | - Stacey M Southall
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, U.K
| |
Collapse
|
16
|
Dubowchik GM, Conway CM, Xin AW. Blocking the CGRP Pathway for Acute and Preventive Treatment of Migraine: The Evolution of Success. J Med Chem 2020; 63:6600-6623. [PMID: 32058712 DOI: 10.1021/acs.jmedchem.9b01810] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pivotal role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology was identified over 30 years ago, but the successful clinical development of targeted therapies has only recently been realized. This Perspective traces the decades long evolution of medicinal chemistry required to advance small molecule CGRP receptor antagonists, also called gepants, including the current clinical agents rimegepant, vazegepant, ubrogepant, and atogepant. Providing clinically effective blockade of CGRP signaling required surmounting multiple challenging hurdles, including defeating a sizable ligand with subnanomolar affinity for its receptor, designing antagonists with an extended confirmation and multiple pharmacophores while retaining solubility and oral bioavailability, and achieving circulating free plasma levels that provided near maximal CGRP receptor coverage. The clinical efficacy of oral and intranasal gepants and the injectable CGRP monoclonal antibodies (mAbs) are described, as are recent synthetic developments that have benefited from new structural biology data. The first oral gepant was recently approved and heralds a new era in the treatment of migraine.
Collapse
Affiliation(s)
- Gene M Dubowchik
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Charles M Conway
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| | - Alison W Xin
- Biohaven Pharmaceuticals Inc., 215 Church Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
17
|
Newton JJ, Jelier BJ, Meanwell M, Martin RE, Britton R, Friesen CM. Quaternary Ammonium Trifluoromethoxide Salts as Stable Sources of Nucleophilic OCF 3. Org Lett 2020; 22:1785-1790. [PMID: 32053386 DOI: 10.1021/acs.orglett.0c00099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of nucleophilic tertiary amines with trifluoromethyl and pentafluoroethyl methyl ethers provides quaternary ammonium trifluoromethoxide (NR4OCF3) and pentafluoroethoxide (NR4OCF2CF3) salts, respectively, in good yields. The new trifluoromethoxide salts disclosed herein are uniquely stable for extended periods of time in both the solid state and in solution, which complements contemporary reagents. Here we describe the preparation of a range of NR4OCF3 salts, their long-term stability, and utility in substitution reactions.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6.,Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| | - Benson J Jelier
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Michael Meanwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6
| | - Chadron M Friesen
- Department of Chemistry, Trinity Western University, Langley, British Columbia Canada, V2Y 1Y1
| |
Collapse
|
18
|
Charles A, Pozo-Rosich P. Targeting calcitonin gene-related peptide: a new era in migraine therapy. Lancet 2019; 394:1765-1774. [PMID: 31668411 DOI: 10.1016/s0140-6736(19)32504-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023]
Abstract
Migraine is one of the most prevalent and disabling diseases worldwide, but until recently, few migraine-specific therapies had been developed. Extensive basic and clinical scientific investigation has provided strong evidence that the neuropeptide calcitonin gene-related peptide (CGRP) has a key role in migraine. This evidence led to the development of small molecule CGRP receptor antagonists and monoclonal antibodies targeting either CGRP or its receptor. Clinical trials investigating these therapies have consistently shown statistically significant efficacy for either the acute or preventive treatment of migraine. No serious safety or tolerability issues have been identified in the trials of the monoclonal antibody therapies. Although the appropriate place of these new migraine-specific therapies relative to other available acute and preventive treatments remains to be determined, a growing body of evidence shows that therapeutic approaches targeting CGRP have the potential to transform the clinical management of migraine.
Collapse
Affiliation(s)
- Andrew Charles
- UCLA Goldberg Migraine Program, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Patricia Pozo-Rosich
- Headache Unit, Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Headache Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Wang Z. Advances in the Asymmetric Total Synthesis of Natural Products Using Chiral Secondary Amine Catalyzed Reactions of α,β-Unsaturated Aldehydes. Molecules 2019; 24:E3412. [PMID: 31546876 PMCID: PMC6767148 DOI: 10.3390/molecules24183412] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022] Open
Abstract
Chirality is one of the most important attributes for its presence in a vast majority of bioactive natural products and pharmaceuticals. Asymmetric organocatalysis methods have emerged as a powerful methodology for the construction of highly enantioenriched structural skeletons of the target molecules. Due to their extensive application of organocatalysis in the total synthesis of bioactive molecules and some of them have been used in the industrial synthesis of drugs have attracted increasing interests from chemists. Among the chiral organocatalysts, chiral secondary amines (MacMillan's catalyst and Jorgensen's catalyst) have been especially considered attractive strategies because of their impressive efficiency. Herein, we outline advances in the asymmetric total synthesis of natural products and relevant drugs by using the strategy of chiral secondary amine catalyzed reactions of α,β-unsaturated aldehydes in the last eighteen years.
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
20
|
Wang S, Dong G, Sheng C. Structural simplification: an efficient strategy in lead optimization. Acta Pharm Sin B 2019; 9:880-901. [PMID: 31649841 PMCID: PMC6804494 DOI: 10.1016/j.apsb.2019.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/04/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
The trend toward designing large hydrophobic molecules for lead optimization is often associated with poor drug-likeness and high attrition rates in drug discovery and development. Structural simplification is a powerful strategy for improving the efficiency and success rate of drug design by avoiding "molecular obesity". The structural simplification of large or complex lead compounds by truncating unnecessary groups can not only improve their synthetic accessibility but also improve their pharmacokinetic profiles, reduce side effects and so on. This review will summarize the application of structural simplification in lead optimization. Numerous case studies, particularly those involving successful examples leading to marketed drugs or drug-like candidates, will be introduced and analyzed to illustrate the design strategies and guidelines for structural simplification.
Collapse
Key Words
- 11β-HSD, 11β-hydroxysteroid dehydrogenase
- 3D, three-dimensional
- ADMET, absorption, distribution, metabolism, excretion and toxicity
- AM2, adrenomedullin-2 receptor
- BIOS, biology-oriented synthesis
- CCK, cholecystokinin receptor
- CGRP, calcitonin gene-related peptide
- Drug design
- Drug discovery
- GlyT1, glycine transport 1
- HBV, hepatitis B virus
- HDAC, histone deacetylase
- HLM, human liver microsome
- JAKs, Janus tyrosine kinases
- LE, ligand efficiency
- Lead optimization
- LeuRS, leucyl-tRNA synthetase
- MCRs, multicomponent reactions
- MDR-TB, multidrug-resistant tuberculosis
- MW, molecular weight
- NP, natural product
- NPM, nucleophosmin
- PD, pharmacodynamic
- PK, pharmacokinetic
- PKC, protein kinase C
- Pharmacophore-based simplification
- Reducing chiral centers
- Reducing rings number
- SAHA, vorinostat
- SAR, structure‒activity relationship
- SCONP, structural classification of natural product
- Structural simplification
- Structure-based simplification
- TSA, trichostatin A
- TbLeuRS, T. brucei LeuRS
- ThrRS, threonyl-tRNA synthetase
- VANGL1, van-Gogh-like receptor protein 1
- aa-AMP, aminoacyl-AMP
- aa-AMS, aminoacylsulfa-moyladenosine
- aaRSs, aminoacyl-tRNA synthetases
- hA3 AR, human A3 adenosine receptor
- mTORC1, mammalian target of rapamycin complex 1
Collapse
Affiliation(s)
- Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guoqiang Dong
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
21
|
Maiti S, Kim J, Park JH, Nam D, Lee JB, Kim YJ, Kee JM, Seo JK, Myung K, Rohde JU, Choe W, Kwon OH, Hong SY. Chemoselective Trifluoroethylation Reactions of Quinazolinones and Identification of Photostability. J Org Chem 2019; 84:6737-6751. [DOI: 10.1021/acs.joc.9b00470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Maiti
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jaeshin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jae-Heon Park
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | - Jae Bin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ye-Jin Kim
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Kyungjae Myung
- Center for Genomic Integrity (CGI), Institute for Basic Science (IBS), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | | | | | - Oh-Hoon Kwon
- Center for Soft and Living Matter, IBS, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sung You Hong
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Methot JL, Zhou H, Kattar SD, McGowan MA, Wilson K, Garcia Y, Deng Y, Altman M, Fradera X, Lesburg C, Fischmann T, Li C, Alves S, Shah S, Fernandez R, Goldenblatt P, Hill A, Shaffer L, Chen D, Tong V, McLeod RL, Yu H, Bass A, Kemper R, Gatto NT, LaFranco-Scheuch L, Trotter BW, Guzi T, Katz JD. Structure Overhaul Affords a Potent Purine PI3Kδ Inhibitor with Improved Tolerability. J Med Chem 2019; 62:4370-4382. [DOI: 10.1021/acs.jmedchem.8b01818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Abstract
Migraine is a common neurological disorder that afflicts up to 15% of the adult population in most countries, with predominance in females. It is characterized by episodic, often disabling headache, photophobia and phonophobia, autonomic symptoms (nausea and vomiting), and in a subgroup an aura in the beginning of the attack. Although still debated, many researchers consider migraine to be a disorder in which CNS dysfunction plays a pivotal role while various parts of the trigeminal system are necessary for the expression of associated symptoms.Treatment of migraine has in recent years seen the development of drugs that target the trigeminal sensory neuropeptide calcitonin gene-related peptide (CGRP) or its receptor. Several of these drugs are now approved for use in frequent episodic and in chronic migraine. CGRP-related therapies offer considerable improvements over existing drugs, as they are the first to be designed specifically to act on the trigeminal pain system: they are more specific and have little or no adverse effects. Small molecule CGRP receptor antagonists, gepants, are effective for acute relief of migraine headache, whereas monoclonal antibodies against CGRP (Eptinezumab, Fremanezumab, and Galcanezumab) or the CGRP receptor (Erenumab) effectively prevent migraine attacks. The neurobiology of CGRP signaling is briefly summarized together with key clinical evidence for the role of CGRP in migraine headache, including the efficacy of CGRP-targeted treatments.
Collapse
Affiliation(s)
- Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden.
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark.
| |
Collapse
|
24
|
Taylor FR. CGRP, Amylin, Immunology, and Headache Medicine. Headache 2018; 59:131-150. [DOI: 10.1111/head.13432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
|
25
|
Abstract
Migraine is a highly prevalent neurological pain syndrome, and its management is limited due to side effects posed by current preventive therapies. Calcitonin gene-related peptide (CGRP) plays a crucial role in the pathogenesis of migraine. In recent years, research has been dedicated to the development of monoclonal antibodies against CGRP and CGRP receptors for the treatment of migraine. This review will focus on the first US FDA-approved CGRP-receptor monoclonal antibody developed for the prevention of migraine: erenumab. Two Phase II trials (one for episodic migraine and one for chronic migraine) and two Phase III trials for episodic migraine have been published demonstrating the efficacy and safety of erenumab in the prevention of migraine.
Collapse
Affiliation(s)
- Sameer Jain
- Department of Pain Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Hsiangkuo Yuan
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Nicole Spare
- Jefferson Headache Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Stephen D Silberstein
- Jefferson Headache Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
26
|
Taylor FR. Antigens and Antibodies in Disease With Specifics About CGRP Immunology. Headache 2018; 58 Suppl 3:230-237. [PMID: 30187471 DOI: 10.1111/head.13409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Growth in knowledge about calcitonin gene-related peptide (CGRP) in the pathophysiology of migraine brought CGRP antagonism to headache medicine. Failures in development of small molecule CGRP receptor antagonists and increasing knowledge and use of monoclonal antibodies (mAbs) in medicine led to the breakthrough development of large molecule anti-CGRP mAbs: eptinezumab, erenumab, fremanezumab, and galcanezumab. This specifics about CGRP immunology aims to outline: (1) knowledge needed for CGRP antagonism and (2) developmental issues of specific CGRP antagonists for provider use. This clinically oriented review documents IgG structure and function; state of the art of monoclonal IgG production and ligand-antigen-antibodies in migraine therapeutics contributing to immunogenic risks and off-target toxicities. Specifics to CGRP ligand, receptor, antagonism, and molecules, small and large, complete this review. Completion will facilitate assessment of the similarities, differences, and application of the forthcoming anti-CGRP receptor and ligand antagonists for patients.
Collapse
Affiliation(s)
- Frederick R Taylor
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
27
|
CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat Rev Neurol 2018; 14:338-350. [DOI: 10.1038/s41582-018-0003-1] [Citation(s) in RCA: 434] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Trofimov BA, Shemyakina OA, Stepanov AV, Volostnykh OG, Mal’kina AG. Cycloadducts of methyl hydroxyalkynoates and DBU: Transformation into tethered furan-2(5H)-one and caprolactam structures. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428017120211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Luo G, Chen L, Conway CM, Kostich W, Johnson BM, Ng A, Macor JE, Dubowchik GM. Asymmetric Synthesis of the Major Metabolite of a Calcitonin Gene-Related Peptide Receptor Antagonist and Mechanism of Epoxide Hydrogenolysis. J Org Chem 2017; 82:3710-3720. [PMID: 28306261 DOI: 10.1021/acs.joc.7b00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An asymmetric synthesis of the major metabolite of the calcitonin gene-related peptide recepotor antagonist BMS-846372 is presented. The variously substituted cyclohepta[b]pyridine ring system represents an underexplored ring system and showed some unexpected chemistry. Reactivities of epoxide and ketone functional groups on the cycloheptane ring were extensively controlled by a remote bulky TIPS group. The rate difference of the hydrogenolysis between two diastereomeric epoxide intermediates shed some light on the mechanism of epoxide hydrogenolysis, and further, deuterium labeling studies revealed more mechanistic details on this well-known chemical transformation for the first time.
Collapse
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Ling Chen
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Charles M Conway
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Walter Kostich
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Benjamin M Johnson
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Alicia Ng
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - John E Macor
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| | - Gene M Dubowchik
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company , 5 Research Parkway, Wallingford, Connecticut 06443, United States
| |
Collapse
|
30
|
Stereoselective reactions of nitro compounds in the synthesis of natural compound analogs and active pharmaceutical ingredients. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Luo G, Chen L, Conway CM, Kostich W, Macor JE, Dubowchik GM. Asymmetric Synthesis of Heterocyclic Analogues of a CGRP Receptor Antagonist for Treating Migraine. Org Lett 2015; 17:5982-5. [PMID: 26650258 DOI: 10.1021/acs.orglett.5b02921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Charles M. Conway
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Walter Kostich
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| | - Gene M. Dubowchik
- Bristol-Myers Squibb
Research & Development, 5 Research
Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
32
|
Crowley BM, Stump CA, Nguyen DN, Potteiger CM, McWherter MA, Paone DV, Quigley AG, Bruno JG, Cui D, Culberson JC, Danziger A, Fandozzi C, Gauvreau D, Kemmerer AL, Menzel K, Moore EL, Mosser SD, Reddy V, White RB, Salvatore CA, Kane SA, Bell IM, Selnick HG, Fraley ME, Burgey CS. Novel oxazolidinone calcitonin gene-related peptide (CGRP) receptor antagonists for the acute treatment of migraine. Bioorg Med Chem Lett 2015; 25:4777-4781. [PMID: 26231160 DOI: 10.1016/j.bmcl.2015.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 μM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described. Key to this development was identification of a 3-substituted spirotetrahydropyran ring that afforded a substantial gain in potency (10 to 35-fold).
Collapse
Affiliation(s)
- Brendan M Crowley
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Craig A Stump
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Diem N Nguyen
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Craig M Potteiger
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Melody A McWherter
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Daniel V Paone
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Amy G Quigley
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Joseph G Bruno
- Department of In Vitro Pharmacology, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Dan Cui
- Department of Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - J Christopher Culberson
- Department of Chemistry Modeling and Informatics, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Andrew Danziger
- Department of In Vivo Pharmacology, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Christine Fandozzi
- Department of Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Danny Gauvreau
- Merck Frosst Centre for Therapeutic Research, 16711 Trans Canada Highway, Kirkland, Quebec H9H 3L1, Canada
| | - Amanda L Kemmerer
- Department of In Vitro Pharmacology, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Karsten Menzel
- Department of Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Eric L Moore
- Department of Pain & Migraine, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Scott D Mosser
- Department of In Vitro Pharmacology, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Vijay Reddy
- Department of Genetic Tox & Molecular Carcinogenesis, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Rebecca B White
- Department of Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | | | - Stefanie A Kane
- Department of Pain & Migraine, Merck & Co., Inc., PO Box 4, West Point, PA 19486, USA
| | - Ian M Bell
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Harold G Selnick
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Mark E Fraley
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Christopher S Burgey
- Department of Medicinal Chemistry, Merck & Co., Inc., PO Box 4, WP14-2, 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
33
|
Schurgers B, Van Lommen G, Verniest G. Synthesis and SelectiveN,O-Functionalization of Pyrazolone-Fused 3-Aminoazepinones. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Tajti J, Csáti A, Vécsei L. Novel strategies for the treatment of migraine attacks via the CGRP, serotonin, dopamine, PAC1, and NMDA receptors. Expert Opin Drug Metab Toxicol 2014; 10:1509-20. [PMID: 25253587 DOI: 10.1517/17425255.2014.963554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Migraine is a common, paroxysmal, and disabling primary headache with a high personal and socioeconomic impact. It involves ∼ 16% of the general population. During the years, a number of hypotheses have been put forward concerning the exact pathomechanism, but the final solution is still undiscovered. AREAS COVERED Although the origin is enigmatic, parallel therapeutic efforts have been developed. Current attack therapy does not meet the expectations of the patients or the doctors. This article, based on a PubMed search, reviews the novel pharmacological possibilities that influence the peripheral and central sensitization involved in the disease. EXPERT OPINION In order to overcome the therapeutic insufficiency, a calcitonin gene-related peptide receptor antagonist without the side-effect of liver transaminase elevation is required. Another therapeutic option is to develop a neurally acting antimigraine agent, such as a serotonin-1F receptor agonist, with low adverse central nervous system events. Development of a potent dopamine receptor antagonist is necessary to diminish the premonitory symptoms of migraine. A further option is to decrease the headache intensity with a pituitary adenylate cyclase-activating polypeptide type 1 receptor blocker which can cross the blood-brain barrier. Finally, synthetic kynurenine analogues are required to block the pain transmission in the activated trigeminal system.
Collapse
Affiliation(s)
- János Tajti
- University of Szeged, Department of Neurology , Semmelweis u. 6, H-6725, Szeged , Hungary
| | | | | |
Collapse
|
35
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 778] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
36
|
Iftikhar H, Ahmad I, Gan SH, Shaik MM, Iftikhar N, Nawaz MS, Greig NH, Kamal MA. Quinoline derivatives: candidate drugs for a class B G-protein coupled receptor, the calcitonin gene-related peptide receptor, a cause of migraines. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2014; 13:1130-9. [PMID: 25230231 DOI: 10.2174/1871527313666140917111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/16/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022]
Abstract
Class B G-protein coupled receptors are involved in a wide variety of diseases and are a major focus in drug design. Migraines are a common problem, and one of their major causative agents is the class B G-protein coupled receptor, Calcitonin gene-related peptide (CGRP) receptor, a target for competitive drug discovery. The calcitonin receptor-like receptor generates complexes with a receptor activity-modifying protein, which determines the type of receptor protein formed. The CGRP receptor comprises a complex formed from the calcitonin receptor-like receptor and receptor activity-modifying protein 1. In this study, an in silico docking approach was used to target the calcitonin receptor-like receptor in the bound form with receptor activity-modifying protein 1 (CGRP receptor), as well as in the unbound form. In both cases, the resulting inhibitors bound to the same cavity of the calcitonin receptor-like receptor. The twelve evaluated compounds were competitive inhibitors and showed efficient inhibitory activity against the CGRP receptor and Calcitonin receptor-like receptor. The two studied quinoline derivatives demonstrated potentially ideal inhibitory activity in terms of binding interactions and low range nano-molar inhibition constants. These compounds could prove helpful in designing drugs for the effective treatment of migraines. We propose that quinoline derivatives possess inhibitory activity by disturbing CGRP binding in the trigeminovascular system and may be considered for further preclinical appraisal for the treatment of migraines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammad A Kamal
- Metabolomics & Enzymology Unit, Fundamental and Applied Biology Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
37
|
Vécsei L, Szok D, Csáti A, Tajti J. CGRP antagonists and antibodies for the treatment of migraine. Expert Opin Investig Drugs 2014; 24:31-41. [DOI: 10.1517/13543784.2015.960921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Schurgers B, Brigou B, Urbanczyk-Lipkowska Z, Tourwé D, Ballet S, De Proft F, Van Lommen G, Verniest G. Synthesis of Fused 3-Aminoazepinones via Trapping of a New Class of Cyclic Seven-Membered Allenamides with Furan. Org Lett 2014; 16:3712-5. [DOI: 10.1021/ol501529z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
| | | | - Zofia Urbanczyk-Lipkowska
- Institute of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka Str
44/52, 01-224 Warsaw, Poland
| | | | | | | | - Guy Van Lommen
- Department
of Medicinal Chemistry, Galapagos NV, Generaal De Wittelaan L11-A3 B-2800 Mechelen, Belgium
| | | |
Collapse
|
39
|
Bell IM. Calcitonin Gene-Related Peptide Receptor Antagonists: New Therapeutic Agents for Migraine. J Med Chem 2014; 57:7838-58. [DOI: 10.1021/jm500364u] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ian M. Bell
- Department of Discovery Chemistry,
Merck Research Laboratories, West
Point, Pennsylvania 19486, United States
| |
Collapse
|
40
|
Dasgupta B, Kozlowski E, Schroeder DR, Torrente JR, Xu C, Pin S, Conway CM, Dubowchik GM, Macor JE, Vrudhula VM. Serendipitous oxidation product of BIBN4096BS: A potent CGRP receptor antagonist. Bioorg Med Chem Lett 2014; 24:2744-8. [DOI: 10.1016/j.bmcl.2014.04.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
41
|
Ricci A. Asymmetric organocatalysis at the service of medicinal chemistry. ISRN ORGANIC CHEMISTRY 2014; 2014:531695. [PMID: 24971178 PMCID: PMC4041019 DOI: 10.1155/2014/531695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 11/17/2022]
Abstract
The application of the most representative and up-to-date examples of homogeneous asymmetric organocatalysis to the synthesis of molecules of interest in medicinal chemistry is reported. The use of different types of organocatalysts operative via noncovalent and covalent interactions is critically reviewed and the possibility of running some of these reactions on large or industrial scale is described. A comparison between the organo- and metal-catalysed methodologies is offered in several cases, thus highlighting the merits and drawbacks of these two complementary approaches to the obtainment of very popular on market drugs or of related key scaffolds.
Collapse
Affiliation(s)
- Alfredo Ricci
- Department of Industrial Chemistry “Toso Montanari”, School of Science, University of Bologna, V. Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
42
|
|
43
|
Hansen JM, Ashina M. Calcitonin gene-related peptide and migraine with aura: A systematic review. Cephalalgia 2014; 34:695-707. [DOI: 10.1177/0333102413520084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calcitonin gene-related peptide (CGRP) is a key molecule in migraine pathophysiology. Most studies have focused on CGRP in relation to migraine without aura (MO). About one-third of migraine patients have attacks with aura (MA), and this is a systematic review of the current literature on CGRP and MA. Methods We performed a systematic literature search on MEDLINE for reports of CGRP and MA, covering basic science, animal and human studies as well as randomized clinical trials. Results The literature search identified 594 citations, of which 38 contained relevant, original data. Plasma levels of CGRP in MA patients are comparable to MO, but CGRP levels varied among studies. A number of animal studies, including knock-ins of familial hemiplegic migraine (FHM) genes, have examined the relationship between CGRP and cortical spreading depression. In patients, CGRP does not trigger migraine in FHM, but is a robust trigger of migraine-like headache both in MA and MO patients. The treatment effect of CGRP antagonists are well proven in the treatment of migraine, but no studies have studied the effect specifically in MA patients. Conclusion This systematic review indicates that the role of CGRP in MA is less studied than in MO. Further studies of the importance of CGRP for auras and migraine are needed.
Collapse
Affiliation(s)
- Jakob M Hansen
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- The Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
44
|
Farinelli I, Missori S, Martelletti P. Proinflammatory mediators and migraine pathogenesis: moving towards CGRP as a target for a novel therapeutic class. Expert Rev Neurother 2014; 8:1347-54. [DOI: 10.1586/14737175.8.9.1347] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Bell IM, Gallicchio SN, Stump CA, Bruno JG, Fan H, Gantert LT, Hostetler ED, Kemmerer AL, McWherter M, Moore EL, Mosser SD, Purcell ML, Riffel K, Salvatore CA, Sanabria-Bohórquez S, Staas DD, White RB, Williams M, Zartman CB, Cook JJ, Hargreaves RJ, Kane SA, Graham SL, Selnick HG. [(11)C]MK-4232: The First Positron Emission Tomography Tracer for the Calcitonin Gene-Related Peptide Receptor. ACS Med Chem Lett 2013; 4:863-8. [PMID: 24900761 DOI: 10.1021/ml400199p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022] Open
Abstract
Rational modification of the potent calcitonin gene-related peptide (CGRP) receptor antagonist MK-3207 led to a series of analogues with enhanced CNS penetrance and a convenient chemical handle for introduction of a radiolabel. A number of (11)C-tracers were synthesized and evaluated in vivo, leading to the identification of [(11)C]8 ([(11)C]MK-4232), the first positron emission tomography tracer for the CGRP receptor.
Collapse
Affiliation(s)
- Ian M. Bell
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Steven N. Gallicchio
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Craig A. Stump
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Joseph G. Bruno
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Hong Fan
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Liza T. Gantert
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Eric D. Hostetler
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Amanda L. Kemmerer
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Melody McWherter
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Eric L. Moore
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Scott D. Mosser
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Mona L. Purcell
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Kerry Riffel
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Christopher A. Salvatore
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Sandra Sanabria-Bohórquez
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Donnette D. Staas
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Rebecca B. White
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Mangay Williams
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - C. Blair Zartman
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Jacquelynn J. Cook
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Richard J. Hargreaves
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Stefanie A. Kane
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Samuel L. Graham
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| | - Harold G. Selnick
- Departments of †Medicinal Chemistry, ‡Pain & Migraine, §Imaging, ∥In Vitro Pharmacology, ⊥Neuroscience &
Ophthalmology, and #Pharmacokinetics Pharmacodynamics & Drug Metabolism, Merck Research Laboratories, West Point,
Pennsylvania 19486, United States
| |
Collapse
|
46
|
Hostetler ED, Joshi AD, Sanabria-Bohórquez S, Fan H, Zeng Z, Purcell M, Gantert L, Riffel K, Williams M, O’Malley S, Miller P, Selnick HG, Gallicchio SN, Bell IM, Salvatore CA, Kane SA, Li CC, Hargreaves RJ, de Groot T, Bormans G, Van Hecken A, Derdelinckx I, de Hoon J, Reynders T, Declercq R, De Lepeleire I, Kennedy WP, Blanchard R, Marcantonio EE, Sur C, Cook JJ, Van Laere K, Evelhoch JL. In Vivo Quantification of Calcitonin Gene-Related Peptide Receptor Occupancy by Telcagepant in Rhesus Monkey and Human Brain Using the Positron Emission Tomography Tracer [11C]MK-4232. J Pharmacol Exp Ther 2013; 347:478-86. [DOI: 10.1124/jpet.113.206458] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
47
|
Abstract
Identifying the peptidases that inactivate bioactive peptides (e.g., peptide hormones and neuropeptides) in mammals is an important unmet challenge. This protocol describes a recent approach that uses liquid chromatography-mass spectrometry (LC-MS) peptidomics to identify endogenous cleavage sites of a bioactive peptide; it also addresses the subsequent biochemical purification of a candidate peptidase on the basis of these cleavage sites and the validation of the candidate peptidase's role in the physiological regulation of the bioactive peptide by examining a peptidase-knockout mouse. We highlight the successful application of this protocol in the discovery that insulin-degrading enzyme (IDE) regulates physiological calcitonin gene-related peptide (CGRP) levels, and we detail the key stages and steps in this approach. This protocol requires 7 d of work; however, the total time for this protocol is highly variable because of its dependence on the availability of biological reagents such as purified enzymes and knockout mice. The protocol is valuable because it expedites the characterization of mammalian peptidases, such as IDE, which in certain instances can be used to develop novel therapeutics.
Collapse
|
48
|
Depré M, Macleod C, Palcza J, Behm M, de Lepeleire I, Han T, Panebianco D, Smith W, Blanchard R, Chodakewitz J, Murphy M, de Hoon J. Lack of hemodynamic interaction between CGRP-receptor antagonist telcagepant (MK-0974) and sumatriptan: results from a randomized study in patients with migraine. Cephalalgia 2013; 33:1292-301. [PMID: 23798725 DOI: 10.1177/0333102413494272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The objective of this article is to assess the effects of sumatriptan monotherapy, telcagepant monotherapy, and their combination on blood pressure (BP) in migraine patients during a headache-free period. METHODS A double-blind, placebo-controlled, four-period, single-dose, randomized crossover study in 24 migraine patients was conducted. In each period, patients received a single oral dose of sumatriptan 100 mg alone, telcagepant 600 mg alone, sumatriptan 100 mg coadministered with telcagepant 600 mg, or placebo. Semi-recumbent BP was measured pre-dose and at seven post-dose time points over a period of six hours. Individual time-weighted averages in mean arterial pressure (MAP) were evaluated using a linear mixed-effects model. The pharmacokinetics of sumatriptan alone and in the presence of telcagepant were also evaluated using limited sampling times. RESULTS The mean difference in time-weighted (0-2.5 h) MAP (90% confidence interval) was 1.2 mmHg (-0.2, 2.7) between telcagepant and placebo, 4.0 mmHg (2.5, 5.5) between sumatriptan and placebo, and 1.5 mmHg (0.0, 3.0) between telcagepant with sumatriptan vs sumatriptan alone. When coadministered with telcagepant, the AUC0-6h and C(max) of sumatriptan were increased by 23% and 24%, respectively. The small MAP increases observed after coadministration could possibly be associated with the slight elevations in sumatriptan levels. CONCLUSION Telcagepant does not elevate mean MAP, and coadministration of telcagepant with sumatriptan results in elevations in MAP similar to those observed following administration of sumatriptan alone in migraineurs during the interictal period. When coadministered, telcagepant slightly increases the plasma levels of sumatriptan, but without an apparent clinically meaningful effect.
Collapse
Affiliation(s)
- M Depré
- Center for Clinical Pharmacology, University Hospitals Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McNeish AJ, Roux BT, Aylett SB, Van Den Brink AM, Cottrell GS. Endosomal proteolysis regulates calcitonin gene-related peptide responses in mesenteric arteries. Br J Pharmacol 2013; 167:1679-90. [PMID: 22881710 DOI: 10.1111/j.1476-5381.2012.02129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/17/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Calcitonin gene-related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR●RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin-converting enzyme-1 (ECE-1). However, it is not known if ECE-1 regulates the resensitization of CGRP-induced responses in functional arterial tissue. EXPERIMENTAL APPROACH CLR, ECE-1a-d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA-SMCs) and mesenteric arteries was analysed by RT-PCR and by immunofluorescence and confocal microscopy. CGRP-induced signalling in cells was examined by measuring cAMP production and ERK activation. CGRP-induced relaxation of arteries was measured by isometric wire myography. ECE-1 was inhibited using the specific inhibitor, SM-19712. KEY RESULTS RMA-SMCs and arteries contained mRNA for CLR, ECE-1a-d and RAMP1. ECE-1 was present in early endosomes of RMA-SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium-independent relaxation of arteries. ECE-1 inhibition had no effect on initial CGRP-induced responses but reduced cAMP generation in RMA-SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. CONCLUSIONS AND IMPLICATIONS ECE-1 regulated the resensitization of responses to CGRP in RMA-SMCs and mesenteric arteries. CGRP-induced relaxation did not involve endothelium-derived pathways. This is the first report of ECE-1 regulating CGRP responses in SMCs and arteries. ECE-1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.
Collapse
Affiliation(s)
- A J McNeish
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
50
|
Lanteri-Minet M. What's new in the migraine attack treatment. Rev Neurol (Paris) 2013; 169:436-41. [PMID: 23602496 DOI: 10.1016/j.neurol.2013.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 11/23/2022]
Abstract
This short review aims to give a focus on news in the migraine attack treatment and discusses the CGRP receptor antagonists (gepants), the 5-HT1F receptors agonists (ditans), the transcranial magnetic stimulation for the treatment of migraine attack with aura, innovative delivery systems for sumatriptan and the oral inhalation of dihydroergotamine.
Collapse
Affiliation(s)
- M Lanteri-Minet
- Département évaluation et traitement de la douleur, pôle neurosciences cliniques, hôpital de Cimiez, CHU de Nice, 4, avenue Reine-Victoria, 06001 Nice, France.
| |
Collapse
|