1
|
Edwards AN, Blue AJ, Conforti JM, Cordes MS, Trakselis MA, Gallagher ES. Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity. Anal Bioanal Chem 2023; 415:6201-6212. [PMID: 37542535 DOI: 10.1007/s00216-023-04891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Anthony J Blue
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Jessica M Conforti
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
2
|
Sheets MB, Tague N, Dunlop MJ. An optogenetic toolkit for light-inducible antibiotic resistance. Nat Commun 2023; 14:1034. [PMID: 36823420 PMCID: PMC9950086 DOI: 10.1038/s41467-023-36670-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
Collapse
Affiliation(s)
- Michael B Sheets
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Nathan Tague
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
3
|
Kohata R, Lim H, Kanamoto Y, Murakami A, Fujita Y, Tanaka A, Swingley W, Ito H, Tanaka R. Heterologous complementation systems verify the mosaic distribution of three distinct protoporphyrinogen IX oxidase in the cyanobacterial phylum. JOURNAL OF PLANT RESEARCH 2023; 136:107-115. [PMID: 36357749 DOI: 10.1007/s10265-022-01423-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The pathways for synthesizing tetrapyrroles, including heme and chlorophyll, are well-conserved among organisms, despite the divergence of several enzymes in these pathways. Protoporphyrinogen IX oxidase (PPOX), which catalyzes the last common step of the heme and chlorophyll biosynthesis pathways, is encoded by three phylogenetically-unrelated genes, hemY, hemG and hemJ. All three types of homologues are present in the cyanobacterial phylum, showing a mosaic phylogenetic distribution. Moreover, a few cyanobacteria appear to contain two types of PPOX homologues. Among the three types of cyanobacterial PPOX homologues, only a hemJ homologue has been experimentally verified for its functionality. An objective of this study is to provide experimental evidence for the functionality of the cyanobacterial PPOX homologues by using two heterologous complementation systems. First, we introduced hemY and hemJ homologues from Gloeobacter violaceus PCC7421, hemY homologue from Trichodesmium erythraeum, and hemG homologue from Prochlorococcus marinus MIT9515 into a ΔhemG strain of E. coli. hemY homologues from G. violaceus and T. erythraeum, and the hemG homologue of P. marinus complimented the E. coli strain. Subsequently, we attempted to replace the endogenous hemJ gene of the cyanobacterium Synechocystis sp. PCC6803 with the four PPOX homologues mentioned above. Except for hemG from P. marinus, the other PPOX homologues substituted the function of hemJ in Synechocystis. These results show that all four homologues encode functional PPOX. The transformation of Synechocystis with G. violaceus hemY homologue rendered the cells sensitive to an inhibitor of the HemY-type PPOX, acifluorfen, indicating that the hemY homologue is sensitive to this inhibitor, while the wild-type G. violaceus was tolerant to it, most likely due to the presence of HemJ protein. These results provide an additional level of evidence that G. violaceus contains two types of functional PPOX.
Collapse
Affiliation(s)
- Ryoya Kohata
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - HyunSeok Lim
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Yuki Kanamoto
- Research Center of Inland Seas, Kobe University, Awaji, 656-2401, Japan
| | - Akio Murakami
- Research Center of Inland Seas, Kobe University, Awaji, 656-2401, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Wesley Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19W8, Kita-Ku, Sapporo, 060-0819, Japan.
| |
Collapse
|
4
|
Irfan M, Almotiri A, AlZeyadi ZA. Antimicrobial Resistance and Its Drivers-A Review. Antibiotics (Basel) 2022; 11:1362. [PMID: 36290020 PMCID: PMC9598832 DOI: 10.3390/antibiotics11101362] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a critical issue in health care in terms of mortality, quality of services, and financial damage. In the battle against AMR, it is crucial to recognize the impacts of all four domains, namely, mankind, livestock, agriculture, and the ecosystem. Many sociocultural and financial practices that are widespread in the world have made resistance management extremely complicated. Several pathways, including hospital effluent, agricultural waste, and wastewater treatment facilities, have been identified as potential routes for the spread of resistant bacteria and their resistance genes in soil and surrounding ecosystems. The overuse of uncontrolled antibiotics and improper treatment and recycled wastewater are among the contributors to AMR. Health-care organizations have begun to address AMR, although they are currently in the early stages. In this review, we provide a brief overview of AMR development processes, the worldwide burden and drivers of AMR, current knowledge gaps, monitoring methodologies, and global mitigation measures in the development and spread of AMR in the environment.
Collapse
Affiliation(s)
- Mohammad Irfan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Ad Dawadmi 17464, Saudi Arabia
| | | | | |
Collapse
|
5
|
Maestre-Carballa L, Navarro-López V, Martinez-Garcia M. A Resistome Roadmap: From the Human Body to Pristine Environments. Front Microbiol 2022; 13:858831. [PMID: 35633673 PMCID: PMC9134733 DOI: 10.3389/fmicb.2022.858831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
A comprehensive characterization of the human body resistome [sets of antibiotic resistance genes (ARGs)] is yet to be done and paramount for addressing the antibiotic microbial resistance threat. Here, we study the resistome of 771 samples from five major body parts (skin, nares, vagina, gut, and oral cavity) of healthy subjects from the Human Microbiome Project (HMP) and addressed the potential dispersion of ARGs in pristine environments. A total of 28,714 ARGs belonging to 235 different ARG types were found in the HMP proteome dataset (n = 9.1 × 107 proteins analyzed). Our study reveals a distinct resistome profile (ARG type and abundance) between body sites and high interindividual variability. Nares had the highest ARG load (≈5.4 genes/genome) followed by the oral cavity, whereas the gut showed one of the highest ARG richness (shared with nares) but the lowest abundance (≈1.3 genes/genome). The fluroquinolone resistance genes were the most abundant in the human body, followed by macrolide–lincosamide–streptogramin (MLS) or tetracycline. Most ARGs belonged to common bacterial commensals and multidrug resistance trait were predominant in the nares and vagina. Many ARGs detected here were considered as low risk for human health, whereas only a few of them, such as BlaZ, dfrA14, dfrA17, or tetM, were classified as high-risk ARG. Our data also provide hope, since the spread of common ARG from the human body to pristine environments (n = 271 samples; 77 Gb of sequencing data and 2.1 × 108 proteins analyzed) thus far remains very unlikely (only one case found in an autochthonous bacterium from a pristine environment). These findings broaden our understanding of ARG in the context of the human microbiome and the One-Health Initiative of WHO uniting human host–microbes and environments as a whole.
Collapse
Affiliation(s)
- Lucia Maestre-Carballa
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Vicente Navarro-López
- Clinical Microbiology and Infectious Disease Unit, Hospital Universitario Vinalopó, Elche, Spain
| | - Manuel Martinez-Garcia
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
6
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
7
|
Fels U, Gevaert K, Van Damme P. Bacterial Genetic Engineering by Means of Recombineering for Reverse Genetics. Front Microbiol 2020; 11:548410. [PMID: 33013782 PMCID: PMC7516269 DOI: 10.3389/fmicb.2020.548410] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Serving a robust platform for reverse genetics enabling the in vivo study of gene functions primarily in enterobacteriaceae, recombineering -or recombination-mediated genetic engineering-represents a powerful and relative straightforward genetic engineering tool. Catalyzed by components of bacteriophage-encoded homologous recombination systems and only requiring short ∼40–50 base homologies, the targeted and precise introduction of modifications (e.g., deletions, knockouts, insertions and point mutations) into the chromosome and other episomal replicons is empowered. Furthermore, by its ability to make use of both double- and single-stranded linear DNA editing substrates (e.g., PCR products or oligonucleotides, respectively), lengthy subcloning of specific DNA sequences is circumvented. Further, the more recent implementation of CRISPR-associated endonucleases has allowed for more efficient screening of successful recombinants by the selective purging of non-edited cells, as well as the creation of markerless and scarless mutants. In this review we discuss various recombineering strategies to promote different types of gene modifications, how they are best applied, and their possible pitfalls.
Collapse
Affiliation(s)
- Ursula Fels
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Bernardes JS, Eberle RJ, Vieira FRJ, Coronado MA. A comparative pan-genomic analysis of 53 C. pseudotuberculosis strains based on functional domains. J Biomol Struct Dyn 2020; 39:6974-6986. [PMID: 32779519 DOI: 10.1080/07391102.2020.1805017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Corynebacterium pseudotuberculosis is a pathogenic bacterium with great veterinary and economic importance. It is classified into two biovars: ovis, nitrate-negative, that causes lymphadenitis in small ruminants and equi, nitrate-positive, causing ulcerative lymphangitis in equines. With the explosive growth of available genomes of several strains, pan-genome analysis has opened new opportunities for understanding the dynamics and evolution of C. pseudotuberculosis. However, few pan-genomic studies have compared biovars equi and ovis. Such studies have considered a reduced number of strains and compared entire genomes. Here we conducted an original pan-genome analysis based on protein sequences and their functional domains. We considered 53 C. pseudotuberculosis strains from both biovars isolated from different hosts and countries. We have analysed conserved domains, common domains more frequently found in each biovar and biovar-specific (unique) domains. Our results demonstrated that biovar equi is more variable; there is a significant difference in the number of proteins per strains, probably indicating the occurrence of more gene loss/gain events. Moreover, strains of biovar equi presented a higher number of biovar-specific domains, 77 against only eight in biovar ovis, most of them are associated with virulence mechanisms. With this domain analysis, we have identified functional differences among strains of biovars ovis and equi that could be related to niche-adaptation and probably help to better understanding mechanisms of virulence and pathogenesis. The distribution patterns of functional domains identified in this work might have impacts on bacterial physiology and lifestyle, encouraging the development of new diagnoses, vaccines, and treatments for C. pseudotuberculosis diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juliana S Bernardes
- Laboratoire de Biologie Computationelle et Quantitative, UMR 7238, CNRS, Sorbonne Université, Paris, France
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil
| | - Fabio R J Vieira
- Institut de Biologie de l'École Normale Supérieure (IBENS), Paris, France
| | - Mônika A Coronado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Instituto de Biociências, Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto, Brazil.,Institute of Biological Information Processing (IBI-7: Strucutral Biochemistry), Forschungszentrum Juelich, Juelich, Germany
| |
Collapse
|
9
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Wencewicz TA. Crossroads of Antibiotic Resistance and Biosynthesis. J Mol Biol 2019; 431:3370-3399. [PMID: 31288031 DOI: 10.1016/j.jmb.2019.06.033] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
The biosynthesis of antibiotics and self-protection mechanisms employed by antibiotic producers are an integral part of the growing antibiotic resistance threat. The origins of clinically relevant antibiotic resistance genes found in human pathogens have been traced to ancient microbial producers of antibiotics in natural environments. Widespread and frequent antibiotic use amplifies environmental pools of antibiotic resistance genes and increases the likelihood for the selection of a resistance event in human pathogens. This perspective will provide an overview of the origins of antibiotic resistance to highlight the crossroads of antibiotic biosynthesis and producer self-protection that result in clinically relevant resistance mechanisms. Some case studies of synergistic antibiotic combinations, adjuvants, and hybrid antibiotics will also be presented to show how native antibiotic producers manage the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
11
|
Insights into the Function of the N-Acetyltransferase SatA That Detoxifies Streptothricin in Bacillus subtilis and Bacillus anthracis. Appl Environ Microbiol 2019; 85:AEM.03029-18. [PMID: 30658980 DOI: 10.1128/aem.03029-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 11/20/2022] Open
Abstract
Acylation of epsilon amino groups of lysyl side chains is a widespread modification of proteins and small molecules in cells of all three domains of life. Recently, we showed that Bacillus subtilis and Bacillus anthracis encode the GCN5-related N-acetyltransferase (GNAT) SatA that can acetylate and inactivate streptothricin, which is a broad-spectrum antibiotic produced by actinomycetes in the soil. To determine functionally relevant residues of B. subtilis SatA (BsSatA), a mutational screen was performed, highlighting the importance of a conserved area near the C terminus. Upon inspection of the crystal structure of the B. anthracis Ames SatA (BaSatA; PDB entry 3PP9), this area appears to form a pocket with multiple conserved aromatic residues; we hypothesized this region contains the streptothricin-binding site. Chemical and site-directed mutagenesis was used to introduce missense mutations into satA, and the functionality of the variants was assessed using a heterologous host (Salmonella enterica). Results of isothermal titration calorimetry experiments showed that residue Y164 of BaSatA was important for binding streptothricin. Results of size exclusion chromatography analyses showed that residue D160 was important for dimerization. Together, these data advance our understanding of how SatA interacts with streptothricin.IMPORTANCE This work provides insights into how an abundant antibiotic found in soil is bound to the enzyme that inactivates it. This work identifies residues for the binding of the antibiotic and probes the contributions of substituting side chains for those in the native protein, providing information regarding hydrophobicity, size, and flexibility of the antibiotic binding site.
Collapse
|
12
|
Costa AR, Monteiro R, Azeredo J. Genomic analysis of Acinetobacter baumannii prophages reveals remarkable diversity and suggests profound impact on bacterial virulence and fitness. Sci Rep 2018; 8:15346. [PMID: 30337588 PMCID: PMC6193963 DOI: 10.1038/s41598-018-33800-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
The recent nomination by the World Health Organization of Acinetobacter baumannii as the number one priority pathogen for the development of new antibiotics is a direct consequence of its fast evolution of pathogenicity, and in particular of multidrug resistance. While the development of new antibiotics is critical, understanding the mechanisms behind the crescent bacterial antibiotic resistance is equally relevant. Often, resistance and other bacterial virulence elements are contained on highly mobile pieces of DNA that can easily spread to other bacteria. Prophages are one of the mediators of this form of gene transfer, and have been frequently found in bacterial genomes, often offering advantageous features to the host. Here we assess the contribution of prophages for the evolution of A. baumannii pathogenicity. We found prophages to be notably diverse and widely disseminated in A. baumannii genomes. Also remarkably, A. baumannii prophages encode for multiple putative virulence factors that may be implicated in the bacterium’s capacity to colonize host niches, evade the host immune system, subsist in unfavorable environments, and tolerate antibiotics. Overall our results point towards a significant contribution of prophages for the dissemination and evolution of pathogenicity in A. baumannii, and highlight their clinical relevance.
Collapse
Affiliation(s)
- Ana Rita Costa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Rodrigo Monteiro
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Dangi B, Kim KH, Kang SH, Oh TJ. Tracking Down a New Steroid-Hydroxylating Promiscuous Cytochrome P450: CYP154C8 fromStreptomycessp. W2233-SM. Chembiochem 2018. [DOI: 10.1002/cbic.201800018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bikash Dangi
- Department of Life Science and Biochemical Engineering; SunMoon University; 70 Sunmoon-ro 221 Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering; SunMoon University; 70 Sunmoon-ro 221 Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Sang-Ho Kang
- Genomics Division; National Institute of Agricultural Sciences, RDA; Jeonju 54874 Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering; SunMoon University; 70 Sunmoon-ro 221 Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology; SunMoon University; 70 Sunmoon-ro 221 Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
- Genome-based BioIT Convergence Institute; 70 Sunmoon-ro 221 Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| |
Collapse
|
14
|
Slattery SS, Diamond A, Wang H, Therrien JA, Lant JT, Jazey T, Lee K, Klassen Z, Desgagné-Penix I, Karas BJ, Edgell DR. An Expanded Plasmid-Based Genetic Toolbox Enables Cas9 Genome Editing and Stable Maintenance of Synthetic Pathways in Phaeodactylum tricornutum. ACS Synth Biol 2018; 7:328-338. [PMID: 29298053 DOI: 10.1021/acssynbio.7b00191] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the completion of the genome sequence, and development of an efficient conjugation-based transformation system allowing the introduction of stable episomes, Phaeodactylum tricornutum has become an ideal platform for the study of diatom biology and synthetic biology applications. The development of plasmid-based genetic tools is the next step to improve manipulation of this species. Here, we report the identification of endogenous P. tricornutum promoters and terminators allowing selective expression of antibiotic resistance markers from stably replicating plasmids in P. tricornutum. Significantly, we developed a protocol for sequential conjugation of plasmids from Escherichia coli to P. tricornutum and demonstrated simultaneous replication of two plasmids in P. tricornutum. We developed a simple and robust conjugative system for Cas9 editing that yielded up to 60% editing efficiency of the urease gene. Finally, we constructed a plasmid encoding eight genes involved in vanillin biosynthesis that was propagated in P. tricornutum over four months with no evidence of rearrangements, with whole-plasmid sequencing indicating that the majority of mutations occurred after plasmid assembly and initial conjugation rather than during long-term propagation. The plasmid-based tools described here will facilitate investigation of the basic biology of P. tricornutum and enable synthetic biology applications.
Collapse
Affiliation(s)
- Samuel S. Slattery
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Andrew Diamond
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Helen Wang
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Jasmine A. Therrien
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Designer Microbes Inc., 700 Collip
Circle, London ON N6G 4X8, Canada
| | - Jeremy T. Lant
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Teah Jazey
- Designer Microbes Inc., 700 Collip
Circle, London ON N6G 4X8, Canada
| | - Kyle Lee
- Designer Microbes Inc., 700 Collip
Circle, London ON N6G 4X8, Canada
| | - Zachary Klassen
- Designer Microbes Inc., 700 Collip
Circle, London ON N6G 4X8, Canada
| | - Isabel Desgagné-Penix
- Department
of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
- Plant
Biology Research Group, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada
| | - Bogumil J. Karas
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
- Designer Microbes Inc., 700 Collip
Circle, London ON N6G 4X8, Canada
| | - David R. Edgell
- Department
of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
15
|
Bhattacharya P, Singha M, Senapati K, Saha S, Mandal S, Mandal SM, Ghosh AK, Basak A. Chloramphenicol-borate/boronate complex for controlling infections by chloramphenicol-resistant bacteria. RSC Adv 2018; 8:18016-18022. [PMID: 35542065 PMCID: PMC9080503 DOI: 10.1039/c8ra02227e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 11/21/2022] Open
Abstract
Increasing bacterial resistance to antibiotics is a pressing problem worldwide, with many health organisations prioritizing this issue. Whilst there is a desperate need for new effective antimicrobials, it is also important to understand the mechanisms and epidemiology of the resistant pathogens currently present in the community. Chloramphenicol is one such well known antibiotic which had lost its efficacy due to bacterial resistance. In this paper, we report the design, synthesis, and bio-studies of novel chloramphenicol-borate/boronate derivatives which showed the ability to control the infections caused by chloramphenicol-resistant bacteria. Activity profiling against P. aeruginosa strain EXR1 with catB gene indicated the inability of acetyl transferase to acetylate the chloramphenicol-borate/boronate complex, unlike chloramphenicol. Results obtained from the antimicrobial assays were further rationalized by molecular docking studies. The latter revealed that the probable reason for the enhanced antibacterial activity may be attributed to the change in the binding site of chloramphenicol-borate/boronate with chloramphenicol acetyl transferase (CAT) with respect to chloramphenicol itself. Hemolytic and genotoxic studies established the reduced toxicity of these synthetic derivatives with respect to chloramphenicol. We report the design, synthesis, and bio-studies of novel chloramphenicol-borate/boronate derivatives which could control the infections caused by chloramphenicol-resistant bacteria.![]()
Collapse
Affiliation(s)
- Prabuddha Bhattacharya
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Monisha Singha
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | | | - Suman Saha
- Priyamvada Birla Aravind Eye Hospital
- Kolkata
- India
| | | | - Santi M. Mandal
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Ananta K. Ghosh
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| | - Amit Basak
- Department of Chemistry
- Central Research Facility
- Department of Biotechnology
- Indian Institute of Technology
- Kharagpur 721302
| |
Collapse
|
16
|
Safety Assessment of Lactobacillus helveticus KLDS1.8701 Based on Whole Genome Sequencing and Oral Toxicity Studies. Toxins (Basel) 2017; 9:toxins9100301. [PMID: 28946645 PMCID: PMC5666348 DOI: 10.3390/toxins9100301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
Lactobacillus helveticus KLDS1.8701 isolated from Chinese traditional fermented dairy product has been shown earlier to possess probiotic potentials but it is important to evaluate its safety in view of its possible use as a probiotic. The aim of the present study is to critically assess the safety of L. helveticus KLDS1.8701 through multiple perspectives. The complete genome of L. helveticus KLDS1.8701 was sequenced to mine for safety-associated genes. The minimum inhibitory concentrations of 15 antimicrobials and the adverse metabolites were determined. Standard acute oral and subacute toxicity studies were conducted in rats. The results in silico disclosed that the genome of L. helveticus KLDS1.8701 carries no transferable antibiotic resistance genes, no virulence factors and only 3 genes related to adverse metabolites. In vitro results showed that L. helveticus KLDS1.8701 was resistant against 6 antimicrobials and did not raise safety concerns about biogenic amine, D-lactic acid and nitroreductase. The results in vivo revealed that no adverse effects on experimental rats were observed in the oral toxicity tests. Overall, findings from this study suggest that L. helveticus KLDS1.8701 is safe and can be used as a potential probiotic for human consumption.
Collapse
|
17
|
Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol 2017; 15:422-434. [PMID: 28392565 DOI: 10.1038/nrmicro.2017.28] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibiotic resistance is a natural feature of diverse microbial ecosystems. Although recent studies of the antibiotic resistome have highlighted barriers to the horizontal transfer of antibiotic resistance genes between habitats, the rapid global spread of genes that confer resistance to carbapenem, colistin and quinolone antibiotics illustrates the dire clinical and societal consequences of such events. Over time, the study of antibiotic resistance has grown from focusing on single pathogenic organisms in axenic culture to studying antibiotic resistance in pathogenic, commensal and environmental bacteria at the level of microbial communities. As the study of antibiotic resistance advances, it is important to incorporate this comprehensive approach to better inform global antibiotic resistance surveillance and antibiotic development. It is increasingly becoming apparent that although not all resistance genes are likely to geographically and phylogenetically disseminate, the threat presented by those that are is serious and warrants an interdisciplinary research focus. In this Review, we highlight seminal work in the resistome field, discuss recent advances in the studies of resistomes, and propose a resistome paradigm that can pave the way for the improved proactive identification and mitigation of emerging antibiotic resistance threats.
Collapse
Affiliation(s)
- Terence S Crofts
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Andrew J Gasparrini
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA
| | - Gautam Dantas
- Center for Genome Sciences &Systems Biology, Washington University School of Medicine, 4515 McKinley Avenue, Campus Box 8510, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine.,Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
18
|
Zhang Q, Zhang Y, Li D. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community. BIORESOURCE TECHNOLOGY 2017; 229:104-110. [PMID: 28110226 DOI: 10.1016/j.biortech.2017.01.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610064, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Adu-Oppong B, Gasparrini AJ, Dantas G. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes. Ann N Y Acad Sci 2016; 1388:42-58. [PMID: 27768825 DOI: 10.1111/nyas.13257] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023]
Abstract
Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications.
Collapse
Affiliation(s)
- Boahemaa Adu-Oppong
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew J Gasparrini
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri
| | - Gautam Dantas
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri.,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Khazaei Z, Najafi A, Piranfar V, Mirnejad R. Microarray-based long oligonucleotides probe designed for Brucella Spp. detection and identification of antibiotic susceptibility pattern. Electron Physician 2016; 8:2297-303. [PMID: 27280008 PMCID: PMC4886574 DOI: 10.19082/2296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/30/2016] [Indexed: 12/05/2022] Open
Abstract
Brucella spp. is a common zoonotic infection referred to as Brucellosis, and it is a serious public health problem around the world. There are currently six classical species (pathogenic species in both animals and humans) within the genus Brucella. The ability and practicality facilitated by a microarray experiment help us to recognize Brucella spp. and its antibiotic resistant gene. Rapid phenotypic determination of antibiotic resistance is not possible by disk diffusion methods. Thus, evaluating antibiotics pattern and Brucella detection appear necessary technique by molecular methods in brucellosis. So, the aim of this study was to design a microarray long oligonucleotides probe and primer for the complete diagnosis of Brucella spp. and obtaining genetic profiles for antibiotic resistance in bacteria at the same time. In this study, we designed 16 antibiotic-resistant gene solid-phase primers with similar melting temperatures of 60 °C and 16 long oligonucleotide probes. These primers and probes can identify tetracycline-, chloramphenicol-, and aminoglycoside-resistant genes, respectively. The design of microarray probes is a versatile process that be done in a wide range of selections. Since the long oligo microarray probes are the best choices for specific diagnosis and definite treatment, this group of probes was designed in the present survey.
Collapse
Affiliation(s)
- Zahra Khazaei
- M.Sc. of Biotechnology, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Ph.D. of Bioinformatic, Assistance Professor, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahhab Piranfar
- M.Sc. of Microbiology, Department of Biology, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Reza Mirnejad
- Ph.D. of Medical Bacteriology, Associate Professor, Molecular Biology Research Centre, Baqiyatallah University of Medical Sciences Tehran. Iran
| |
Collapse
|
21
|
Faustoferri RC, Hubbard CJ, Santiago B, Buckley AA, Seifert TB, Quivey RG. Regulation of fatty acid biosynthesis by the global regulator CcpA and the local regulator FabT in Streptococcus mutans. Mol Oral Microbiol 2014; 30:128-46. [PMID: 25131436 DOI: 10.1111/omi.12076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 11/30/2022]
Abstract
SMU.1745c, encoding a putative transcriptional regulator of the MarR family, maps to a location proximal to the fab gene cluster in Streptococcus mutans. Deletion of the SMU.1745c (fabTS m ) coding region resulted in a membrane fatty acid composition comprised of longer-chained, unsaturated fatty acids (UFA), compared with the parent strain. Previous reports have indicated a role for FabT in regulation of genes in the fab gene cluster in other organisms, through binding to a palindromic DNA sequence. Consensus FabT motif sequences were identified in S. mutans in the intergenic regions preceding fabM, fabTSm and fabK in the fab gene cluster. Chloramphenicol acetyltransferase (cat) reporter fusions, using the fabM promoter, revealed elevated transcription in a ∆fabTS m background. Transcription of fabTS m was dramatically elevated in cells grown at pH values of 5 and 7 in the ∆ fabTS m background. Transcription of fabTS m was also elevated in a strain carrying a deletion for the carbon catabolite repressor CcpA. Purified FabTS m and CcpA bound to the promoter regions of fabTS m and fabM. Hence, the data indicate that FabTS m acts as a repressor of fabM and fabTS m itself and the global regulator CcpA acts as a repressor for fabTS m .
Collapse
Affiliation(s)
- R C Faustoferri
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
22
|
Pereira LM, Yatsuda AP. The chloramphenicol acetyltransferase vector as a tool for stable tagging of Neospora caninum. Mol Biochem Parasitol 2014; 196:75-81. [PMID: 25127750 DOI: 10.1016/j.molbiopara.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/03/2014] [Accepted: 08/04/2014] [Indexed: 11/16/2022]
Abstract
Neospora caninum is an obligate intracellular Apicomplexa, a phylum where one of the current methods for functional studies relies on molecular genetic tools. For Toxoplasma gondii, the first method described, in 1993, was based on resistance against chloramphenicol. As in T. gondii, we developed a vector constituted of the chloramphenicol acetyltransferase gene (CAT) flanked by the N. caninum dihydrofolate reductase-thymidylate synthase (DHFR-TS) 5' coding sequence flanking region. Five weeks after transfection and under the selection of chloramphenicol the expression of CAT increased compared to the wild type and the resistance was retained for more than one year. Between the stop codon of CAT and the 3' UTR of DHFR, a Lac-Z gene controlled by the N. caninum tubulin 5' coding sequence flanking region was ligated, resulting in a vector with a reporter gene (Ncdhfr-CAT/NcTub-tetO/Lac-Z). The stability was maintained through an episomal pattern for 14 months when the tachyzoites succumbed, which was an unexpected phenomenon compared to T. gondii. Stable parasites expressing the Lac-Z gene allowed the detection of tachyzoites after invasion by enzymatic reaction (CPRG) and were visualised macro- and microscopically by X-Gal precipitation and fluorescence. This work developed the first vector for stable expression of proteins based on chloramphenicol resistance and controlled exclusively by N. caninum promoters.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Yuan JB, Zhang XJ, Liu CZ, Wei JK, Li FH, Xiang JH. Horizontally transferred genes in the genome of Pacific white shrimp, Litopenaeus vannamei. BMC Evol Biol 2013; 13:165. [PMID: 23914989 PMCID: PMC3750580 DOI: 10.1186/1471-2148-13-165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). RESULTS In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. CONCLUSIONS HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional.
Collapse
Affiliation(s)
- Jian-Bo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7, Nanhai Road, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
24
|
Van Dorst B, Mehta J, Rouah-Martin E, Backeljau J, De Coen W, Eeckhout D, De Jaeger G, Blust R, Robbens J. Selection of scFv phages specific for chloramphenicol acetyl transferase (CAT), as alternatives for antibodies in CAT detection assays. J Appl Toxicol 2011; 32:783-9. [PMID: 21500234 DOI: 10.1002/jat.1685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/13/2011] [Accepted: 03/13/2011] [Indexed: 12/22/2022]
Abstract
Reporter gene assays are commonly used in applied toxicology to measure the transcription of genes involved in toxic responses. In these reporter gene assays, transgenic cells are used, which contain a promoter-operator region of a gene of interest fused to a reporter gene. The transcription of the gene of interest can be measured by the detection of the reporter protein. Chloramphenicol acetyl transferase (CAT) is frequently used as a reporter protein in mammalian reporter gene assays. Although CAT can be measured by different detection systems, like enzymatic and immune assays, most of these tests are expensive, time-consuming and labor-intensive. The excellent characteristics of phages, like their high affinity and specificity, their fast, cheap and animal-friendly manufacturing process with low batch-to-batch variations and their stability, make them appropriate as alternatives for antibodies in detection assays. Therefore, in this study single-chain variable fragment (scFv) phages were selected with affinity for CAT. Several scFv phages were selected that showed affinity towards CAT in a screening ELISA. Surface plasmon resonance analyses showed that the tested scFv phages have an affinity for CAT with a dissociation constant (K(d)) around 1 µM. The selected scFv phages in this study could be used as capture elements in a highly sensitive sandwich ELISA to detect CAT concentration as low as 0.1 ng ml⁻¹ or 4 pM. This low detection limit demonstrates the potential of the scFv phages as an alternative for capturing antibodies in a highly sensitive detection test to measure CAT concentrations in reporter gene assays.
Collapse
Affiliation(s)
- Bieke Van Dorst
- University Antwerp, Department of Biology, Laboratory for Ecophysiology, Biochemistry and Toxicology, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
A transcriptional regulator and ABC transporters link stress tolerance, (p)ppGpp, and genetic competence in Streptococcus mutans. J Bacteriol 2010; 193:862-74. [PMID: 21148727 DOI: 10.1128/jb.01257-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a primary agent of dental caries, has three (p)ppGpp synthases: RelA, which is required for a mupirocin-induced stringent response; RelP, which produces (p)ppGpp during exponential growth and is regulated by the RelRS two-component system; and RelQ. Transcription of relPRS and a gene cluster (SMu0835 to SMu0837) located immediately upstream was activated in cells grown with aeration and during a stringent response, respectively. Bioinformatic analysis predicted that SMu0836 and SMu0837 encode ABC exporters, which we designated rcrPQ (rel competence-related) genes, respectively. SMu0835 (rcrR) encodes a MarR family transcriptional regulator. Reverse transcriptase PCR (RT-PCR) and quantitative RT-PCR analysis showed that RcrR functions as an autogenous negative regulator of the expression of the rcrRPQ operon. A mutant in which a polar insertion replaced the SMu836 gene (Δ836polar) grew more slowly and had final yields that were lower than those of the wild-type strain. Likewise, the Δ836polar strain had an impaired capacity to form biofilms, grew poorly at pH 5.5, and was more sensitive to oxidative stressors. Optimal expression of rcrPQ required RelP and vice versa. Replacement of rcrR with a nonpolar antibiotic resistance marker (Δ835np), which leads to overexpression of rcrPQ, yielded a strain that was not transformable with exogenous DNA. Transcriptional analysis revealed that the expression of comYA and comX was dramatically altered in the Δ835np and Δ836polar mutants. Collectively, the data support the suggestion that the rcrRPQ gene products play a critical role in physiologic homeostasis and stress tolerance by linking (p)ppGpp metabolism, acid and oxidative stress tolerance, and genetic competence.
Collapse
|
26
|
Schmidt KH, Reimers JM, Wright BE. The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol 2007; 60:1251-61. [PMID: 16689800 DOI: 10.1111/j.1365-2958.2006.05166.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four mutations resulting in opal stop codons were individually engineered into a plasmid-borne chloramphenicol-resistance (cat) gene driven by the lac promoter. These four mutations were located at different sites in secondary structures. The mutations were analysed with the computer program mfg, which predicted their relative reversion frequencies. Reversion frequencies determined experimentally correlated with the mutability of the bases as predicted by mfg. To examine the effect of increased transcription on reversion frequencies, the lac promoter was replaced with the stronger tac promoter, which resulted in 12- to 30-fold increases in reversion rates. The effect of increased and decreased supercoiling was also investigated. The cat mutants had higher reversion rates in a topA mutant strain with increased negative supercoiling compared with wild-type levels, and the cat reversion rates were lower in a topA gyrB mutant strain with decreased negative supercoiling, as predicted.
Collapse
Affiliation(s)
- Karen H Schmidt
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
27
|
Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 2006; 188:3748-56. [PMID: 16707667 PMCID: PMC1482907 DOI: 10.1128/jb.00169-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/21/2006] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major carbohydrate transport system in oral streptococci. The mannose-PTS of Streptococcus mutans, which transports mannose and glucose, is involved in carbon catabolite repression (CCR) and regulates the expression of known virulence genes. In this study, we investigated the role of EII(Glc) and EIIAB(Man) in sugar metabolism, gene regulation, biofilm formation, and competence. The results demonstrate that the inactivation of ptsG, encoding a putative EII(Glc), did not lead to major changes in sugar metabolism or affect the phenotypes of interest. However, the loss of EII(Glc) was shown to have a significant impact on the proteome and to affect the expression of a known virulence factor, fructan hydrolase (fruA). JAM1, a mutant strain lacking EIIAB(Man), had an impaired capacity to form biofilms in the presence of glucose and displayed a decreased ability to be transformed with exogenous DNA. Also, the lactose- and cellobiose-PTSs were positively and negatively regulated by EIIAB(Man), respectively. Microarrays were used to investigate the profound phenotypic changes displayed by JAM1, revealing that EIIAB(Man) of S. mutans has a key regulatory role in energy metabolism, possibly by sensing the energy levels of the cells or the carbohydrate availability and, in response, regulating the activity of transcription factors and carbohydrate transporters.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
28
|
Abranches J, Chen YYM, Burne RA. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol 2003; 69:4760-9. [PMID: 12902269 PMCID: PMC169087 DOI: 10.1128/aem.69.8.4760-4769.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major sugar uptake system in oral streptococci. The role of EIIAB(Man) (encoded by manL) in gene regulation and sugar transport was investigated in Streptococcus mutans UA159. The manL knockout strain, JAM1, grew more slowly than the wild-type strain in glucose but grew faster in mannose and did not display diauxic growth, indicating that EIIAB(Man) is involved in sugar uptake and in carbohydrate catabolite repression. PTS assays of JAM1, and of strains lacking the inducible (fruI) and constitutive (fruCD) EII fructose, revealed that S. mutans EIIAB(Man) transported mannose and glucose and provided evidence that there was also a mannose-inducible or glucose-repressible mannose PTS. Additionally, there appears to be a fructose PTS that is different than FruI and FruCD. To determine whether EIIAB(Man) controlled expression of the known virulence genes, glucosyltransferases (gtfBC) and fructosyltransferase (ftf) promoter fusions of these genes were established in the wild-type and EIIAB(Man)-deficient strains. In the manL mutant, the level of chloramphenicol acetyltransferase activity expressed from the gtfBC promoter was up to threefold lower than that seen with the wild-type strain at pH 6 and 7, indicating that EIIAB(Man) is required for optimal expression of gtfBC. No significant differences were observed between the mutant and the wild-type background in ftf regulation, with the exception that under glucose-limiting conditions at pH 7, the mutant exhibited a 2.1-fold increase in ftf expression. Two-dimensional gel analysis of batch-grown cells of the EIIAB(Man)-deficient strain indicated that the expression of at least 38 proteins was altered compared to that seen with the wild-type strain, revealing that EIIAB(Man) has a pleiotropic effect on gene expression.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
29
|
Potrykus J, Barańska S, Wegrzyn G. Inactivation of the acrA gene is partially responsible for chloramphenicol sensitivity of Escherichia coli CM2555 strain expressing the chloramphenicol acetyltransferase gene. Microb Drug Resist 2003; 8:179-85. [PMID: 12363006 DOI: 10.1089/107662902760326887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An Escherichia coli CM2555 strain, sensitive to chloramphenicol when expressing the cat gene and producing active chloramphenicol acetyltransferase (CAT), was described recently. It was proposed that this sensitivity is due to decreased levels of acetyl coenzyme A (Acetyl CoA) in cat-expressing CM2555 cells in the presence of chloramphenicol. CAT catalyzes transfer of the acetyl moiety from Acetyl CoA to a chloramphenicol molecule. Thus, a very efficient acetylation of chloramphenicol may cause deprivation of Acetyl CoA and cell death. A specific mutation causing the chloramphenicol sensitivity phenotype of CM2555 was not reported to date. Therefore, we aimed to identify a genetic defect causing this phenotype. Here, we found that overexpression of the acrEF genes, encoding a transmembrane pump, or the acrE gene alone, results in restoration of chloramphenicol-resistance of cat-expressing CM2555 strain. Although no mutation exists in the CM2555 acrE locus, a nonsense mutation in the 67th codon of the acrA gene, which encodes a component of another transmembrane pump, has been found. Although introduction of the deltaacrAB allele into CM732, a parental strain of CM2555, and into some other commonly used E. coli strains led to their chloramphenicol sensitivity in the presence of CAT, the same genetic manipulation did not result in such a phenotype in other genetic backgrounds, including "wild-type" E. coli MG1655. These results suggest that the acrA dysfunction is one of more mutations responsible for chloramphenicol sensitivity of cat-expressing CM2555 strain.
Collapse
Affiliation(s)
- Joanna Potrykus
- Department of Molecular Biology, University of Gdańsk, Poland
| | | | | |
Collapse
|
30
|
Potrykus J, Wegrzyn G. Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene. Antimicrob Agents Chemother 2001; 45:3610-2. [PMID: 11709351 PMCID: PMC90880 DOI: 10.1128/aac.45.12.3610-3612.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli strain (strain CM2555) bearing the chloramphenicol acetyltransferase (cat) gene was found to be sensitive to chloramphenicol. We demonstrate that the cat gene is efficiently expressed in strain CM2555. Our results suggest that decreased levels of acetyl coenzyme A in cat-expressing CM2555 cells in the presence of chloramphenicol may cause the bacterium to be sensitive to this antibiotic.
Collapse
Affiliation(s)
- J Potrykus
- Department of Molecular Biology, University of Gdañsk, 80-822 Gdañsk, Poland
| | | |
Collapse
|
31
|
Kong S, Bohl D, Li C, Tuan D. Transcription of the HS2 enhancer toward a cis-linked gene is independent of the orientation, position, and distance of the enhancer relative to the gene. Mol Cell Biol 1997; 17:3955-65. [PMID: 9199330 PMCID: PMC232248 DOI: 10.1128/mcb.17.7.3955] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The locus control region (LCR) regulates transcription of the downstream beta-like globin genes 10 to 50 kb away. Among hypersensitive sites HS4, -3, -2, and -1, which define the LCR in erythroid cells, HS2 possesses prominent enhancer function. The mechanism by which the HS2 enhancer and other functional components of the LCR act over the distance is not clear. We have used reverse transcription-PCR and RNase protection assays to analyze the transcriptional statuses of both the endogenous and the transfected HS2 enhancer in erythroid K562 cells. A novel pattern of HS2 enhancer transcription was observed. The endogenous HS2 enhancer was transcribed predominantly in the direction toward the downstream globin genes. The HS2 enhancer in transfected recombinant chloramphenicol acetyltransferase (CAT) plasmids was also transcribed predominantly toward the CAT gene, regardless of whether the enhancer was placed (i) in the genomic or reverse genomic orientation, (ii) in a position 5' or 3' to the gene, or (iii) at various distances up to 6 kb from the gene. The orientation, position, and distance independence in gene-tropic transcription of the HS2 enhancer correlates with the observed orientation, position, and distance independence of HS2 enhancer function and suggests that enhancer transcription may play a role in enhancer function.
Collapse
Affiliation(s)
- S Kong
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
32
|
Morris HR, Paxton T, Panico M, McDowell R, Dell A. A novel geometry mass spectrometer, the Q-TOF, for low-femtomole/attomole-range biopolymer sequencing. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:469-79. [PMID: 9246631 DOI: 10.1023/a:1026309410737] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ultra-high-sensitivity, biopolymer sequencing is a goal in many fields of molecular biology, and collisionally activated decomposition electrospray mass spectrometry (CAD ES MS/MS) using a triple quadrupole mass spectrometer has become a method of choice for work in the high- to mid-femtomole range. However, when the detection of ions becomes statistical, as it may in that range, the mass assignment of fragment ions is inaccurate and either sequencing becomes impossible or ambiguities result due, for example, to the closeness in amino acid residue masses (I/L, N or K/Q, E). Some ambiguities may be resolved by synthesizing possible sequences, but this is unsatisfactory. In considering the limitations of triple quadrupole MS/MS with respect to scanning ion detection, resolution, transmission, and mass accuracy, we reasoned that a novel geometry quadrupole orthogonal acceleration time-of-flight (Q-TOF) instrument would have special merit for ultra-high-sensitivity MS/MS sequencing, and suggested its construction for this purpose some three years ago. A prototype Q-TOF has now been built by Micromass [Morris et al. (1996), Rapid Commun. Mass Spectrom. 10, 889-896], and in the first research on the instrument, including MHC antigen and filarial nematode glycoprotein studies, we demonstrate low-femtomole- and attomole-range sequencing with mass accuracy of better than 0.1 Da throughout the daughter-ion spectrum, thus removing sequencing ambiguities in some of the most challenging work demanding the highest sensitivity.
Collapse
Affiliation(s)
- H R Morris
- Department of Biochemistry, Imperial College, London, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Ghenbot G, Weiner H. Purification of liver aldehyde dehydrogenase by p-hydroxyacetophenone-sepharose affinity matrix and the coelution of chloramphenicol acetyl transferase from the same matrix with recombinantly expressed aldehyde dehydrogenase. Protein Expr Purif 1992; 3:470-8. [PMID: 1486275 DOI: 10.1016/1046-5928(92)90064-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.
Collapse
Affiliation(s)
- G Ghenbot
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153
| | | |
Collapse
|
34
|
Huggins AS, Bannam TL, Rood JI. Comparative sequence analysis of the catB gene from Clostridium butyricum. Antimicrob Agents Chemother 1992; 36:2548-51. [PMID: 1489203 PMCID: PMC284373 DOI: 10.1128/aac.36.11.2548] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sequence analysis of the Clostridium butyricum chloramphenicol acetyltransferase (CAT) gene, catB, showed that it encoded a CAT monomer of 219 amino acids with a molecular weight of 26,114. Comparison of the deduced amino acid sequence of the CATB monomer to those of sixteen other CATs showed that it was most closely related to the CATQ monomer from Clostridium perfringens.
Collapse
Affiliation(s)
- A S Huggins
- Department of Microbiology, Monash University, Clayton, Australia
| | | | | |
Collapse
|
35
|
Valle RP, Drugeon G, Devignes-Morch MD, Legocki AB, Haenni AL. Codon context effect in virus translational readthrough. A study in vitro of the determinants of TMV and Mo-MuLV amber suppression. FEBS Lett 1992; 306:133-9. [PMID: 1321731 DOI: 10.1016/0014-5793(92)80984-o] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To assess the role of codon context on the efficiency of eukaryotic suppression of termination codons, we have compared, in a rabbit cell-free translation system, the readthrough efficiency related to two synthetic transcripts differing by the codon context around an amber codon. The codon contexts are derived from tobacco mosaic virus (TMV) and Moloney murine leukemia virus (Mo-MuLV) RNAs. The Mo-MuLV-like codon context does not promote suppression. Substituting TMV-derived triplets in the Mo-MuLV-like codon context shows that the two codons downstream from the TMV UAG signal are important determinants of suppression, as recently demonstrated in vivo.
Collapse
Affiliation(s)
- R P Valle
- Institut Jacques Monod Paris, France
| | | | | | | | | |
Collapse
|
36
|
Ahn C, Collins-Thompson D, Duncan C, Stiles ME. Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum caTC2R. Plasmid 1992; 27:169-76. [PMID: 1513874 DOI: 10.1016/0147-619x(92)90018-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mobilization of a nonconjugative plasmid (pCaT) that mediates chloramphenicol resistance in Lactobacillus plantarum caTC2R was achieved by comobilization with the conjugative plasmid pAM beta 1. The conjugation studies confirmed that the 8.5-kb pCaT in L. plantarum caTC2R contains the gene responsible for chloramphenicol resistance and that the plasmid has several unique restriction sites which make it useful for genetic studies in Carnobacterium spp. Cloning studies showed that the gene responsible for chloramphenicol resistance is located in the 2.6-kb EcoRV-SalI region of pCaT. This was confirmed by probing the 3.0-kb BglII fragment of pCaT with a biotin-labeled 1.6-kb BstEII-HpaII fragment from the streptococcal-derived plasmid pVA797(Cmr). Expression of chloramphenicol resistance in Carnobacterium as well as in other Lactobacillus species was achieved by electrotransformation using donor DNA from pCaT.
Collapse
Affiliation(s)
- C Ahn
- Department of Food Science, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
37
|
Schwarz S, Cardoso M. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrob Agents Chemother 1991; 35:1551-6. [PMID: 1929326 PMCID: PMC245217 DOI: 10.1128/aac.35.8.1551] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nucleotide sequence of the chloramphenicol acetyltransferase gene (cat) and its regulatory region, encoded by the plasmid pSCS7 from Staphylococcus aureus, was determined. The structural cat gene encoded a protein of 209 amino acids, which represented one monomer of the enzyme chloramphenicol acetyltransferase (CAT). Comparisons between the amino acid sequences of the pSCS7-encoded CAT from S. aureus and the previously sequenced CAT variants from S. aureus, Staphylococcus intermedius, Staphylococcus haemolyticus, Bacillus pumilis, Clostridium difficile, Clostridium perfringens, Escherichia coli, Shigella flexneri, and Proteus mirabilis were performed. An alignment of CAT amino acid sequences demonstrated the presence of 34 conserved amino acids among all CAT variants. These conserved residues were considered for their possible roles in the structure and function of CAT. On the basis of the alignment, a phylogenetic tree was constructed. It demonstrated relatively large evolutionary distances between the CAT variants of enteric bacteria, Clostridium, Bacillus, and Staphylococcus species.
Collapse
Affiliation(s)
- S Schwarz
- Institut für Bakteriologie und Immunologie, Justus Liebig Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
38
|
Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99012-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Bannam TL, Rood JI. Relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria. Antimicrob Agents Chemother 1991; 35:471-6. [PMID: 2039197 PMCID: PMC245034 DOI: 10.1128/aac.35.3.471] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The nucleotide sequence of the Clostridium perfringens chloramphenicol acetyltransferase (CAT)-encoding resistance determinant, catQ, was determined. An open reading frame encoding a protein of 219 amino acids with a molecular weight of 26,014 was identified. Although catQ was expressed constitutively, sequences similar in structure to those found upstream of inducible cat genes were observed. The catQ gene was distinct from the C. perfringens catP determinant. The deduced CATQ monomer had considerable amino acid sequence conservation compared with CATP (53% similarity) and other known CAT proteins (39 to 53%). Phylogenetic analysis revealed that the CATQ monomer was as closely related to CAT proteins from Staphylococcus aureus and Campylobacter coli as it was to CAT monomers from the clostridia.
Collapse
Affiliation(s)
- T L Bannam
- Department of Microbiology, Monash University, Clayton, Australia
| | | |
Collapse
|
40
|
Murray IA, Martinez-Suarez JV, Close TJ, Shaw WV. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Biochem J 1990; 272:505-10. [PMID: 2268278 PMCID: PMC1149729 DOI: 10.1042/bj2720505] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sensitivity of enzymes to inhibition by thiol-reactive reagents is often presented as evidence for the possible involvement of cysteine residues in substrate binding and catalysis or to highlight possible important differences in structure and mechanism between closely related enzymes. The primary phenotypic distinction between the enterobacterial type II chloramphenicol acetyltransferase (CATII; typified by the enzyme encoded by the incW transmissible plasmid pSa) and the CATI and CATIII variants is the greatly enhanced susceptibility of CATII to inactivation by thiol-specific modifying reagents. Determination of the nucleotide sequence of the gene, catII, present on pSa and that of a related determinant, catIIH, isolated from Haemophilus influenzae indicates that sensitivity to such reagents cannot be due to the presence of additional reactive cysteine residues in CATII. Comparative analysis of the inactivation of CATII and CATIII by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), 4,4'-dithiodipyridine (DTDP) and methyl methanethiosulphonate (MMTS) suggests that (i) inactivation occurs as a result of chemical modification of the same residue (Cys-31) in each enzyme, (ii) reagents that inactivate via a pseudo-first-order process (DTNB and DTDP) appear to bind with a greater affinity to CATII, and (iii) the intrinsic reactivity of Cys-31 in CATII greatly exceeds that of the corresponding residue in CATIII. The results lead to the conclusion that a striking difference in chemical reactivity of a unique and conserved thiol group between closely related enzyme variants may not be easily explained even when a high-resolution tertiary structure is available for one of them. Plausible explanations include more favourable access of reagents to Cys-31 in CATII or an enhanced reactivity of its thiol group imposed by the side chains of residues that are not in immediate contact with it.
Collapse
Affiliation(s)
- I A Murray
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | |
Collapse
|
41
|
Moerschell RP, Hosokawa Y, Tsunasawa S, Sherman F. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45419-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
42
|
Farinha MA, Kropinski AM. Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 1990; 172:3496-9. [PMID: 2111810 PMCID: PMC209165 DOI: 10.1128/jb.172.6.3496-3499.1990] [Citation(s) in RCA: 231] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have constructed a series of broad-host-range plasmids which use "visual screens" to detect promoter activity. These plasmids contain the pMB1 and pRO1600 origins of replication and are capable of replicating in a wide range of gram-negative bacteria. The genes encoding beta-galactosidase and alkaline phosphatase from Escherichia coli and bacterial luciferase from Vibrio harveyi supply the promoterless indicator genes. The constructs were tested in E. coli and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- M A Farinha
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
43
|
Leslie AG. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. J Mol Biol 1990; 213:167-86. [PMID: 2187098 DOI: 10.1016/s0022-2836(05)80129-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High level bacterial resistance to chloramphenicol is generally due to O-acetylation of the antibiotic in a reaction catalysed by chloramphenicol acetyltransferase (CAT, EC 2.3.1.28) in which acetyl-coenzyme A is the acyl donor. The crystal structure of the type III enzyme from Escherichia coli with chloramphenicol bound has been determined and refined at 1.75 A resolution, using a restrained parameter reciprocal space least squares procedure. The refined model, which includes chloramphenicol, 204 solvent molecules and two cobalt ions has a crystallographic R-factor of 18.3% for 27,300 reflections between 6 and 1.75 A resolution. The root-mean-square deviation in bond lengths from ideal values is 0.02 A. The cobalt ions play a crucial role in stabilizing the packing of the molecule in the crystal lattice. CAT is a trimer of identical subunits (monomer Mr 25,000) and the trimeric structure is stabilized by a number of hydrogen bonds, some of which result in the extension of a beta-sheet across the subunit interface. Chloramphenicol binds in a deep pocket located at the boundary between adjacent subunits of the trimer, such that the majority of residues forming the binding pocket belong to one subunit while the catalytically essential histidine belongs to the adjacent subunit. His195 is appropriately positioned to act as a general base catalyst in the reaction, and the required tautomeric stabilization is provided by an unusual interaction with a main-chain carbonyl oxygen.
Collapse
Affiliation(s)
- A G Leslie
- Blackett Laboratory, Imperial College, London, U.K
| |
Collapse
|
44
|
Ishii K, Oda Y, Ichikawa T, Deguchi T. Complementary DNAs for choline acetyltransferase from spinal cords of rat and mouse: nucleotide sequences, expression in mammalian cells, and in situ hybridization. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1990; 7:151-9. [PMID: 2160042 DOI: 10.1016/0169-328x(90)90092-r] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Complementary DNA clones containing the entire coding region of choline acetyltransferase (ChAT) were isolated from the spinal cords of rat and mouse. The cDNAs of rat and mouse coded for 640 and 641 amino acids, respectively, and showed 95% mutual homology and 80% homology with the cDNA of porcine ChAT. Northern blot analysis revealed a single band of 4.4 kb in the spinal cord and brain in each species. Introduction of the cDNAs into Chinese hamster ovary cells and neuron-derived cell lines, N1E115 and NG108-15, expressed a high ChAT activity, which was inhibited by a specific ChAT inhibitor. In situ hybridization using the rat cRNA probe revealed specific labeling of the motoneurons in the spinal cord and neurons in various forebrain nuclei of the rat where the existence of cholinergic neurons has been demonstrated immunohistochemically.
Collapse
Affiliation(s)
- K Ishii
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neurosciences, Japan
| | | | | | | |
Collapse
|
45
|
Levengood SK, Webster RE. Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli. J Bacteriol 1989; 171:6600-9. [PMID: 2687247 PMCID: PMC210553 DOI: 10.1128/jb.171.12.6600-6609.1989] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Various mutations in the tolQRAB gene cluster of Escherichia coli render the bacteria tolerant to high concentrations of the E, A, or K colicins as well as tolerant to infection by the single-stranded filamentous bacteriophage. The nucleotide sequence of a 2.8-kilobase fragment containing the tolA and tolB genes was determined. This sequence predicts TolA to be a 421-amino-acid protein of molecular mass 44,190 daltons. Studies using minicells show it to be associated with the inner membrane, presumably via a 21-amino-acid hydrophobic sequence between residues 13 and 35. The remaining 387 residues on the carboxyl side of this region are located in the periplasm. Within this region of TolA is a 230-residue portion that is predicted to form a very long helical segment. This region is rich in alanine, lysine, and glutamic and aspartic acids. The TolB protein is predicted to contain 431 amino acids. Localization studies using minicells show two proteins encoded by this open reading frame. The larger protein of 47.5 kilodaltons appears to be associated with the membrane fractions. The smaller protein is 43 kilodaltons in size and is found with the periplasmic components of the cell.
Collapse
Affiliation(s)
- S K Levengood
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
46
|
Ohtomi M, Sasaki M, Deguchi T. Two arylamine N-acetyltransferases from chicken pineal gland as identified by cDNA cloning. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:253-61. [PMID: 2583181 DOI: 10.1111/j.1432-1033.1989.tb15110.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A cDNA library prepared from the poly(A)-rich RNA of the chicken pineal gland obtained at night was screened with the 32P-labeled cDNA of arylamine N-acetyltransferase from the chicken liver recently isolated in this laboratory. Two positive clones (p-NAT-3 and p-NAT-10) that cross-hybridized with the liver cDNA were isolated. The cDNAs did not cross-hybridize each other under a high stringency, indicating that they corresponded to different mRNAs. When the cDNAs were inserted into an expression vector pcDL1 under the control of the early promoter of simian virus 40 and introduced into Chinese hamster ovary cells, both cDNAs expressed arylamine N-acetyltransferase activity in the transfected cells. The nucleotide sequences of the cDNAs were determined, from which amino acid sequences were deduced. Both cDNAs coded for 290 amino acids. Similarities in amino acid sequences were about 60% between p-NAT-3, p-NAT-10 and liver N-acetyltransferases. Poly(A)-rich RNA blot hybridization analysis indicated that p-NAT-3 cDNA detected a 2.2-kb band with the poly(A)-rich RNAs from the brain, gut and, less intensively, spleen, liver and kidney, while p-NAT-10 cDNA hybridized only with the poly(A)-rich RNA from the kidney. Neither cDNA detected any hybridization band with the poly(A)-rich RNA from the pineal gland, suggesting that the contents were low. Genomic Southern blot hybridization analysis showed that p-NAT-3, p-NAT-10 and liver N-acetyltransferases were encoded in a separate single gene. The properties of the enzymes expressed in the transfected cells were compared with N-acetyltransferases from the pineal gland, brain and kidney. On a DEAE-cellulose column, the kidney and p-NAT-10 enzymes appeared in the effluent fraction, whereas the brain and p-NAT-3 enzymes were eluted from the column with a gradient elution at 0.08 M NaCl. The supernatant of the pineal gland obtained in the daytime showed two peaks appearing in the effluent fraction and the eluate fraction at 0.08 M NaCl. The substrate specificity of these enzymes were examined with p-phenetidine, 2-aminofluorene, tryptamine and phenylethylamine as substrates. All the enzymes preferred arylamines to arylalkylamines, indicating that both p-NAT-3 and p-NAT-10 cDNAs encoded arylamine N-acetyltransferases.
Collapse
Affiliation(s)
- M Ohtomi
- Department of Molecular Neurobiology, Tokyo Metropolitan Institute for Neurosciences, Japan
| | | | | |
Collapse
|
47
|
Snavely MD, Florer JB, Miller CG, Maguire ME. Magnesium transport in Salmonella typhimurium: expression of cloned genes for three distinct Mg2+ transport systems. J Bacteriol 1989; 171:4752-60. [PMID: 2548999 PMCID: PMC210276 DOI: 10.1128/jb.171.9.4752-4760.1989] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In Salmonella typhimurium, the corA, mgtA, and mgtB loci are involved in active transport of Mg2+ (S. P. Hmiel, M. D. Snavely, C. G. Miller, and M. E. Maguire, J. Bacteriol. 168:1444-1450, 1988; S. P. Hmiel, M. D. Snavely, J. B. Florer, M. E. Maguire, and C. G. Miller, J. Bacteriol. 171:4742-4751, 1989). In this study, the gene products coded for by the corA, mgtA, and mgtB genes were identified by using plasmid expression in Escherichia coli maxicells. Complementation was assessed by introducing plasmids into a Mg2+-dependent corA mgtA mgtB strain and determining the ability of the plasmid to restore growth on medium without a Mg2+ supplement. Complementing plasmids containing corA expressed a 42-kilodalton (kDa) protein. This protein was not expressed by plasmids containing insertions or deletions that eliminated complementation. A plasmid containing mgtA expressed 37- and 91-kDa gene products. Data obtained with subclones and insertions in this plasmid indicated that plasmids expressing only the 91-kDa polypeptide complemented; plasmids that did not express this protein did not complement regardless of whether they expressed the 37-kDa protein. Plasmids carrying mgtB expressed a single protein of 102 kDa whose presence or absence correlated with the ability of the plasmid to complement the Mg2+-dependent triple mutant. Fractionation of labeled maxicells demonstrated that the 42-kDa corA, the 91-kDa mgtA, and the 102-kDa mgtB gene products are all tightly associated with the membrane, a location consistent with involvement in a transport process. These data provide further support the for existence of three distinct systems for Mg2+ transport in S. typhimurium.
Collapse
Affiliation(s)
- M D Snavely
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
48
|
Lee FJS, Lin LW, Smith JA. Molecular Cloning and Sequencing of a cDNA Encoding Nα-Acetyltransferase from Saccharomyces cerevisiae. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63863-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Nielsen DA, Chang TC, Shapiro DJ. A highly sensitive, mixed-phase assay for chloramphenicol acetyltransferase activity in transfected cells. Anal Biochem 1989; 179:19-23. [PMID: 2757194 DOI: 10.1016/0003-2697(89)90193-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We describe a simple, rapid yet extremely sensitive assay for chloramphenicol acetyltransferase (CAT) activity in extracts from transfected eukaryotic cells. Using our modified reaction conditions and the mixed-phase assay, less than 0.000010 unit of CAT activity in transfected cells can be reliably detected. The mixed-phase assay is based on the inability of the polar [3H]-acetyl-Coenzyme A (CoA) substrate to partition out of a urea containing aqueous phase into the nonpolar scintillation fluor, while the [3H]chloramphenicol reaction products partition into the toluene scintillation fluor and are quantitated by scintillation counting. The increased sensitivity of this assay is due to the optimization of the acetyl-CoA concentration, to a urea-containing aqueous phase which lowers the assay background, and to the use of extract blanks. The mixed-phase assay is simpler, is quantitative, uses less costly substrates, and is far more sensitive than the most widely used CAT assays, which require solvent extraction followed by thin-layer chromatography to separate the unreacted substrate from product.
Collapse
Affiliation(s)
- D A Nielsen
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | | | |
Collapse
|
50
|
Allan BJ, Davies P, Carstens EB, Kropinski AM. Characterization of the genome of Pseudomonas aeruginosa bacteriophage phi PLS27 with particular reference to the ends of the DNA. J Virol 1989; 63:1587-94. [PMID: 2494359 PMCID: PMC248397 DOI: 10.1128/jvi.63.4.1587-1594.1989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The DNA of Pseudomonas aeruginosa rough-specific bacteriophage phi PLS27 was studied. The genome size as determined by summing the sizes of restriction fragments was 42.7 kilobase pairs. Of particular interest was the fact that the DNA was insensitive to certain common restriction endonucleases including EcoRI, BamHI, and HindIII. The ends of the phage DNA were cloned and sequenced, revealing direct repeats of 318 nucleotides. The left end of the genome when cloned into the promoter selection vector pKK232-8 exhibited promoter activity in Escherichia coli. Two promoters bearing greater than 70% sequence homology to the plasmid pNM74 TOL operon and PAK pilin promoters were identified.
Collapse
Affiliation(s)
- B J Allan
- Department of Microbiology and Immunology, Faculty of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|