1
|
Ramagoma RB, Makgoo L, Mbita Z. KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential. Life Sci 2024; 357:123041. [PMID: 39233199 DOI: 10.1016/j.lfs.2024.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Rolivhuwa Bishop Ramagoma
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Lilian Makgoo
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Zukile Mbita
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa.
| |
Collapse
|
2
|
Xu J, Liu S, Hong J, Lin R, Xia X, Yu J, Zhou Y. SlBTB19 interacts with SlWRKY2 to suppress cold tolerance in tomato via the CBF pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1112-1124. [PMID: 39323012 DOI: 10.1111/tpj.17040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Cold stress restricts the metabolic and physiological activities of plants, thereby affecting their growth and development. Although broad-complex, tramtrack, and bric-à-brac (BTB) proteins are essential for diverse biological processes and stress responses, the mechanisms underlying BTB-mediated cold responses remain not fully understood. Here, we characterize the function of the cold-induced SlBTB19 protein in tomato (Solanum lycopersicum). Overexpression of SlBTB19 resulted in increased plant sensitivity to cold stress, whereas SlBTB19 knockout mutants exhibited a cold-tolerance phenotype. Further analyses, including protein-protein interaction studies and cell-free degradation assays, revealed that SlBTB19 interacts with and destabilizes the transcription factor SlWRKY2. Using virus-induced gene silencing (VIGS) to silence SlWRKY2 in both wild-type and slbtb19 mutants, we provided genetic evidence that SlWRKY2 acts downstream of SlBTB19 in regulating cold tolerance. Importantly, we demonstrated that SlWRKY2 positively regulates cold tolerance in a CRT/DRE binding factor (CBF)-dependent manner. Under cold stress, SlWRKY2 binds to the W-box in the CBF1 and CBF3 promoters, directly activating their expression. In summary, our findings identify a SlBTB19-SlWRKY2 module that negatively regulates the CBF-dependent cold tolerance pathway in tomato.
Collapse
Affiliation(s)
- Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Sidi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jiachen Hong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
- Hainan Institute, Zhejiang University, Sanya, 572025, People's Republic of China
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
3
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
4
|
Zenge C, Ordureau A. Ubiquitin system mutations in neurological diseases. Trends Biochem Sci 2024; 49:875-887. [PMID: 38972780 PMCID: PMC11455613 DOI: 10.1016/j.tibs.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Neuronal ubiquitin balance impacts the fate of countless cellular proteins, and its disruption is associated with various neurological disorders. The ubiquitin system is critical for proper neuronal cell state transitions and the clearance of misfolded or aggregated proteins that threaten cellular integrity. This article reviews the state of and recent advancements in our understanding of the disruptions to components of the ubiquitin system, in particular E3 ligases and deubiquitylases, in neurodevelopmental and neurodegenerative diseases. Specific focus is on enzymes with recent progress in their characterization, including identifying enzyme-substrate pairs, the use of stem cell and animal models, and the development of therapeutics for ubiquitin-related diseases.
Collapse
Affiliation(s)
- Colin Zenge
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Phillips CL, Faridounnia M, Battaglia RA, Evangelista BA, Cohen TJ, Opal P, Bouldin TW, Armao D, Snider NT. Gigaxonin, mutated in Giant Axonal Neuropathy, interacts with TDP-43 and other RNA binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611033. [PMID: 39282431 PMCID: PMC11398400 DOI: 10.1101/2024.09.03.611033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Giant Axonal Neuropathy (GAN) is a neurodegenerative disease caused by loss-of-function mutations in the KLHL16 gene, encoding the cytoskeleton regulator gigaxonin. In the absence of functional gigaxonin, intermediate filament (IF) proteins accumulate in neurons and other cell types due to impaired turnover and transport. GAN neurons exhibit distended, swollen axons and distal axonal degeneration, but the mechanisms behind this selective neuronal vulnerability are unknown. Our objective was to identify novel gigaxonin interactors pertinent to GAN neurons. Unbiased proteomics revealed a statistically significant predominance of RNA-binding proteins (RBPs) within the soluble gigaxonin interactome and among differentially-expressed proteins in iPSC-neuron progenitors from a patient with classic GAN. Among the identified RBPs was TAR DNA-binding protein 43 (TDP-43), which associated with the gigaxonin protein and its mRNA transcript. TDP-43 co-localized within large axonal neurofilament IFs aggregates in iPSC-motor neurons derived from a GAN patient with the 'axonal CMT-plus' disease phenotype. Our results implicate RBP dysfunction as a potential underappreciated contributor to GAN-related neurodegeneration.
Collapse
Affiliation(s)
- Cassandra L Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | | | - Todd J Cohen
- Department of Neurology, University of North Carolina at Chapel Hill
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Thomas W Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
6
|
Flotte TR. Intrathecal gene therapy for neurologic disease in humans. Mol Ther 2024; 32:1185-1186. [PMID: 38663405 PMCID: PMC11081911 DOI: 10.1016/j.ymthe.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Khalil M, Teunissen CE, Lehmann S, Otto M, Piehl F, Ziemssen T, Bittner S, Sormani MP, Gattringer T, Abu-Rumeileh S, Thebault S, Abdelhak A, Green A, Benkert P, Kappos L, Comabella M, Tumani H, Freedman MS, Petzold A, Blennow K, Zetterberg H, Leppert D, Kuhle J. Neurofilaments as biomarkers in neurological disorders - towards clinical application. Nat Rev Neurol 2024; 20:269-287. [PMID: 38609644 DOI: 10.1038/s41582-024-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.
Collapse
Affiliation(s)
- Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria.
| | - Charlotte E Teunissen
- Neurochemistry Laboratory Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, INM INSERM, IRMB CHU de Montpellier, Montpellier, France
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Maria Pia Sormani
- Department of Health Sciences, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Thebault
- Multiple Sclerosis Division, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmed Abdelhak
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Ari Green
- Weill Institute for Neurosciences, Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Pascal Benkert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Manuel Comabella
- Neurology Department, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hayrettin Tumani
- Department of Neurology, CSF Laboratory, Ulm University Hospital, Ulm, Germany
| | - Mark S Freedman
- Department of Medicine, University of Ottawa, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Axel Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Centre and Neuro-ophthalmology Expertise Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the Queen Square Institute of Neurology, UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P. R. China
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland.
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Zambon AA, Falzone YM, Bolino A, Previtali SC. Molecular mechanisms and therapeutic strategies for neuromuscular diseases. Cell Mol Life Sci 2024; 81:198. [PMID: 38678519 PMCID: PMC11056344 DOI: 10.1007/s00018-024-05229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Neuromuscular diseases encompass a heterogeneous array of disorders characterized by varying onset ages, clinical presentations, severity, and progression. While these conditions can stem from acquired or inherited causes, this review specifically focuses on disorders arising from genetic abnormalities, excluding metabolic conditions. The pathogenic defect may primarily affect the anterior horn cells, the axonal or myelin component of peripheral nerves, the neuromuscular junction, or skeletal and/or cardiac muscles. While inherited neuromuscular disorders have been historically deemed not treatable, the advent of gene-based and molecular therapies is reshaping the treatment landscape for this group of condition. With the caveat that many products still fail to translate the positive results obtained in pre-clinical models to humans, both the technological development (e.g., implementation of tissue-specific vectors) as well as advances on the knowledge of pathogenetic mechanisms form a collective foundation for potentially curative approaches to these debilitating conditions. This review delineates the current panorama of therapies targeting the most prevalent forms of inherited neuromuscular diseases, emphasizing approved treatments and those already undergoing human testing, offering insights into the state-of-the-art interventions.
Collapse
Affiliation(s)
- Alberto Andrea Zambon
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Yuri Matteo Falzone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Carlo Previtali
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Institute for Experimental Neurology, Inspe, Milan, Italy.
- Neurology Department, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
9
|
Zhou Y, Zhang Q, Zhao Z, Hu X, You Q, Jiang Z. Targeting kelch-like (KLHL) proteins: achievements, challenges and perspectives. Eur J Med Chem 2024; 269:116270. [PMID: 38490062 DOI: 10.1016/j.ejmech.2024.116270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Kelch-like proteins (KLHLs) are a large family of BTB-containing proteins. KLHLs function as the substrate adaptor of Cullin 3-RING ligases (CRL3) to recognize substrates. KLHLs play pivotal roles in regulating various physiological and pathological processes by modulating the ubiquitination of their respective substrates. Mounting evidence indicates that mutations or abnormal expression of KLHLs are associated with various human diseases. Targeting KLHLs is a viable strategy for deciphering the KLHLs-related pathways and devising therapies for associated diseases. Here, we comprehensively review the known KLHLs inhibitors to date and the brilliant ideas underlying their development.
Collapse
Affiliation(s)
- Yangguo Zhou
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qiong Zhang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ziquan Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuqi Hu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
van Asperen JV, Kotaich F, Caillol D, Bomont P. Neurofilaments: Novel findings and future challenges. Curr Opin Cell Biol 2024; 87:102326. [PMID: 38401181 DOI: 10.1016/j.ceb.2024.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/07/2024] [Indexed: 02/26/2024]
Abstract
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
Collapse
Affiliation(s)
- Jessy V van Asperen
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Farah Kotaich
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Damien Caillol
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute, INMG-PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Bharucha-Goebel DX, Todd JJ, Saade D, Norato G, Jain M, Lehky T, Bailey RM, Chichester JA, Calcedo R, Armao D, Foley AR, Mohassel P, Tesfaye E, Carlin BP, Seremula B, Waite M, Zein WM, Huryn LA, Crawford TO, Sumner CJ, Hoke A, Heiss JD, Charnas L, Hooper JE, Bouldin TW, Kang EM, Rybin D, Gray SJ, Bönnemann CG. Intrathecal Gene Therapy for Giant Axonal Neuropathy. N Engl J Med 2024; 390:1092-1104. [PMID: 38507752 DOI: 10.1056/nejmoa2307952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).
Collapse
Affiliation(s)
- Diana X Bharucha-Goebel
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Joshua J Todd
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Dimah Saade
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Gina Norato
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Minal Jain
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Tanya Lehky
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Rachel M Bailey
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Jessica A Chichester
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Roberto Calcedo
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Diane Armao
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - A Reghan Foley
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Payam Mohassel
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Eshetu Tesfaye
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Bradley P Carlin
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Beth Seremula
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Melissa Waite
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Wadih M Zein
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Laryssa A Huryn
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Thomas O Crawford
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Charlotte J Sumner
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Ahmet Hoke
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - John D Heiss
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Lawrence Charnas
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Jody E Hooper
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Thomas W Bouldin
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Elizabeth M Kang
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Denis Rybin
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Steven J Gray
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| | - Carsten G Bönnemann
- From the Neuromuscular and Neurogenetic Disorders of Childhood Section (D.X.B.-G., J.J.T., D.S., A.R.F., P.M., C.G.B), National Institute of Neurological Disorders and Stroke (G.N., T.L., J.D.H.), the Rehabilitation Medicine Department, Clinical Center (M.J., M.W.), National Eye Institute (W.M.Z., L.A.H.), and the National Institute of Allergy and Infectious Diseases, Division of Intramural Research (E.M.K.), National Institutes of Health, Bethesda, and the Departments of Neurology (C.J.S., A.H., T.O.C.), Neuroscience (C.J.S., A.H.), and Pediatrics (T.O.C.), Johns Hopkins University School of Medicine, Baltimore - all in Maryland; Children's National Hospital, Washington, DC (D.X.B.-G.); the University of Iowa, Iowa City (D.S.); the Department of Pediatrics and Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center (R.M.B, S.J.G.), and Taysha Gene Therapies (E.T.) - both in Dallas; the Gene Therapy Program, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C.), Cencora PharmaLex, Conshohocken (B.P.C.), and Atorus Research, Newtown Square (B.S.) - all in Pennsylvania; Affinia Therapeutics, Waltham (R.C.), and the Rare Disease Research Unit, Pfizer, Cambridge (L.C., D.R.) - both in Massachusetts; the Departments of Pathology and Laboratory Medicine (D.A., T.W.B.) and Radiology (D.A.), University of North Carolina at Chapel Hill School of Medicine, Chapel Hill; and the Department of Pathology, Stanford University School of Medicine, Stanford, CA (J.E.H.)
| |
Collapse
|
12
|
Veena MS, Gahng JJ, Alani M, Ko AY, Basak SK, Liu IY, Hwang KJ, Chatoff JR, Venkatesan N, Morselli M, Yan W, Ali I, Kaczor-Urbanowicz KE, Gowda BS, Frost P, Pellegrini M, Moatamed NA, Wilczynski SP, Bomont P, Wang MB, Shin DS, Srivatsan ES. Gigaxonin Suppresses Epithelial-to-Mesenchymal Transition of Human Cancer Through Downregulation of Snail. CANCER RESEARCH COMMUNICATIONS 2024; 4:706-722. [PMID: 38421310 PMCID: PMC10921914 DOI: 10.1158/2767-9764.crc-23-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Gigaxonin is an E3 ubiquitin ligase that plays a role in cytoskeletal stability. Its role in cancer is not yet clearly understood. Our previous studies of head and neck cancer had identified gigaxonin interacting with p16 for NFκB ubiquitination. To explore its role in cancer cell growth suppression, we analyzed normal and tumor DNA from cervical and head and neck cancers. There was a higher frequency of exon 8 SNP (c.1293 C>T, rs2608555) in the tumor (46% vs. 25% normal, P = 0.011) pointing to a relationship to cancer. Comparison of primary tumor with recurrence and metastasis did not reveal a statistical significance. Two cervical cancer cell lines, ME180 and HT3 harboring exon 8 SNP and showing T allele expression correlated with higher gigaxonin expression, reduced in vitro cell growth and enhanced cisplatin sensitivity in comparison with C allele expressing cancer cell lines. Loss of gigaxonin expression in ME180 cells through CRISPR-Cas9 or siRNA led to aggressive cancer cell growth including increased migration and Matrigel invasion. The in vitro cell growth phenotypes were reversed with re-expression of gigaxonin. Suppression of cell growth correlated with reduced Snail and increased e-cadherin expression. Mouse tail vein injection studies showed increased lung metastasis of cells with low gigaxonin expression and reduced metastasis with reexpression of gigaxonin. We have found an association between C allele expression and RNA instability and absence of multimeric protein formation. From our results, we conclude that gigaxonin expression is associated with suppression of epithelial-mesenchymal transition through inhibition of Snail. SIGNIFICANCE Our results suggest that GAN gene exon 8 SNP T allele expression correlates with higher gigaxonin expression and suppression of aggressive cancer cell growth. There is downregulation of Snail and upregulation of e-cadherin through NFκB ubiquitination. We hypothesize that exon 8 T allele and gigaxonin expression could serve as diagnostic markers of suppression of aggressive growth of head and neck cancer.
Collapse
Affiliation(s)
- Mysore S. Veena
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jungmo J. Gahng
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Mustafa Alani
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Albert Y. Ko
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Saroj K. Basak
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Isabelle Y. Liu
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kimberly J. Hwang
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jenna R. Chatoff
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Natarajan Venkatesan
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Marco Morselli
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California
| | - Weihong Yan
- Department of Chemistry and Biochemistry and the Institute for Quantitative and Computational Biology, UCLA, Los Angeles, California
| | - Ibraheem Ali
- Department of Louise M. Darling Biomedical Library and The Institute for Quantitative and Computational Biology, UCLA, Los Angeles, California
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Department of Oral Biology and Medicine, Center for Oral and Head/Neck Oncology Research, School of Dentistry, UCLA, Los Angeles, California
- The Institute for Quantitative and Computational Biosciences, UCLA, Los Angeles, California
| | - Bhavani Shankara Gowda
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Patrick Frost
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California
| | - Neda A. Moatamed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Sharon P. Wilczynski
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Pascale Bomont
- ERC team, INMG, UCBL Lyon1 – CNRS UMR5261 – INSERM U1315, Université Lyon 1, Université de Lyon, Lyon, France
| | - Marilene B. Wang
- Department of Surgery, VAGLAHS and Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Daniel Sanghoon Shin
- Department of Medicine, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Eri S. Srivatsan
- Department of Surgery, VAGLAHS/David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
14
|
Kotaich F, Caillol D, Bomont P. Neurofilaments in health and Charcot-Marie-Tooth disease. Front Cell Dev Biol 2023; 11:1275155. [PMID: 38164457 PMCID: PMC10758125 DOI: 10.3389/fcell.2023.1275155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024] Open
Abstract
Neurofilaments (NFs) are the most abundant component of mature neurons, that interconnect with actin and microtubules to form the cytoskeleton. Specifically expressed in the nervous system, NFs present the particularity within the Intermediate Filament family of being formed by four subunits, the neurofilament light (NF-L), medium (NF-M), heavy (NF-H) proteins and α-internexin or peripherin. Here, we review the current knowledge on NF proteins and neurofilaments, from their domain structures and their model of assembly to the dynamics of their transport and degradation along the axon. The formation of the filament and its behaviour are regulated by various determinants, including post-transcriptional (miRNA and RBP proteins) and post-translational (phosphorylation and ubiquitination) modifiers. Altogether, the complex set of modifications enable the neuron to establish a stable but elastic NF array constituting the structural scaffold of the axon, while permitting the local expression of NF proteins and providing the dynamics necessary to fulfil local demands and respond to stimuli and injury. Thus, in addition to their roles in mechano-resistance, radial axonal outgrowth and nerve conduction, NFs control microtubule dynamics, organelle distribution and neurotransmission at the synapse. We discuss how the studies of neurodegenerative diseases with NF aggregation shed light on the biology of NFs. In particular, the NEFL and NEFH genes are mutated in Charcot-Marie-Tooth (CMT) disease, the most common inherited neurological disorder of the peripheral nervous system. The clinical features of the CMT forms (axonal CMT2E, CMT2CC; demyelinating CMT1F; intermediate I-CMT) with symptoms affecting the central nervous system (CNS) will allow us to further investigate the physiological roles of NFs in the brain. Thus, NF-CMT mouse models exhibit various degrees of sensory-motor deficits associated with CNS symptoms. Cellular systems brought findings regarding the dominant effect of NF-L mutants on NF aggregation and transport, although these have been recently challenged. Neurofilament detection without NF-L in recessive CMT is puzzling, calling for a re-examination of the current model in which NF-L is indispensable for NF assembly. Overall, we discuss how the fundamental and translational fields are feeding each-other to increase but also challenge our knowledge of NF biology, and to develop therapeutic avenues for CMT and neurodegenerative diseases with NF aggregation.
Collapse
Affiliation(s)
| | | | - Pascale Bomont
- ERC team, NeuroMyoGene Institute-Pathophysiology and Genetics of Neuron and Muscle, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
15
|
Zhu P, Fan Y, Xu P, Fan G. Bioinformatic Analysis of the BTB Gene Family in Paulownia fortunei and Functional Characterization in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:4144. [PMID: 38140471 PMCID: PMC10747981 DOI: 10.3390/plants12244144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
To learn about the gene structure, phylogenetic evolution, and function under biotic and abiotic stresses of BTB (Bric-a-Brac/Tramtrack/Broad Complex) genes in Paulownia fortunei, a whole-genome sequence evaluation was carried out, and a total of 62 PfBTB genes were identified. The phylogenetic analysis showed that PfBTB proteins are divided into eight groups, and these proteins are highly conserved. PfBTB genes were unevenly distributed on 17 chromosomes. The colinearity analysis found that fragment replication and tandem replication are the main modes of gene amplification in the PfBTB family. The analysis of cis-acting elements suggests that PfBTB genes may be involved in a variety of biological processes. The transcriptomic analysis results showed that PfBTB3/12/14/16/19/36/44 responded to Paulownia witches' broom (PaWB), while PfBTB1/4/17/43 responded to drought stress, and the RT-qPCR results further support the reliability of transcriptome data. In addition, the association analysis between miRNA and transcriptome revealed a 91-pair targeting relationship between miRNAs and PfBTBs. In conclusion, the BTB genes in Paulownia are systematically identified in this research. This work provides useful knowledge to more fully appreciate the potential functions of these genes and their possible roles in the occurrence of PaWB and in response to stress.
Collapse
Affiliation(s)
- Peipei Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Pingluo Xu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
16
|
Park HM, Le L, Nguyen TT, Nam KH, Ordureau A, Lee JE, Nguyen TV. The CRL3 gigaxonin ubiquitin ligase-USP15 pathway governs the destruction of neurofilament proteins. Proc Natl Acad Sci U S A 2023; 120:e2306395120. [PMID: 37903270 PMCID: PMC10636361 DOI: 10.1073/pnas.2306395120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Giant axonal neuropathy (GAN) is caused by mutations in the GAN gene encoding for gigaxonin (GIG), which functions as an adaptor of the CUL3-RBX1-GIG (CRL3GIG) E3 ubiquitin ligase complex. The pathological hallmark of GAN is characterized by the accumulation of densely packed neurofilaments (NFs) in the axons. However, there are fundamental knowledge gaps in our understanding of the molecular mechanisms by which the ubiquitin-proteasome system controls the homeostasis of NF proteins. Recently, the deubiquitylating enzyme USP15 was reported to play a crucial role in regulating ubiquitylation and proteasomal degradation of CRL4CRBN substrate proteins. Here, we report that the CRL3GIG-USP15 pathway governs the destruction of NF proteins NEFL and INA. We identified a specific degron called NEFLL12 degron for CRL3GIG. Notably, mutations in the C-terminal Kelch domain of GIG, represented by L309R, R545C, and C570Y, disrupted the binding of GIG to NEFL and INA, leading to the accumulation of these NF proteins. This accounts for the loss-of-function mutations in GAN patients. In addition to regulating NFs, CRL3GIG also controls actin filaments by directly targeting actin-filament-binding regulatory proteins TPM1, TPM2, TAGLN, and CNN2 for proteasomal degradation. Thus, our findings broadly impact the field by providing fundamental mechanistic insights into regulating extremely long-lived NF proteins NEFL and INA by the CRL3GIG-USP15 pathway and offering previously unexplored therapeutic opportunities to treat GAN patients and other neurodegenerative diseases by explicitly targeting downstream substrates of CRL3GIG.
Collapse
Affiliation(s)
- Hyoung-Min Park
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon34113, Korea
| | - Ly Le
- Division of Quantum Simulation and Optimization, SandboxAQ, New York, NY10591
| | - Thao T. Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO65211
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - J. Eugene Lee
- Biometrology Group, Korea Research Institute of Standards and Science, Daejeon34113, Korea
| | - Thang Van Nguyen
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO65212
| |
Collapse
|
17
|
Timms RT, Mena EL, Leng Y, Li MZ, Tchasovnikarova IA, Koren I, Elledge SJ. Defining E3 ligase-substrate relationships through multiplex CRISPR screening. Nat Cell Biol 2023; 25:1535-1545. [PMID: 37735597 PMCID: PMC10567573 DOI: 10.1038/s41556-023-01229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
Specificity within the ubiquitin-proteasome system is primarily achieved through E3 ubiquitin ligases, but for many E3s their substrates-and in particular the molecular features (degrons) that they recognize-remain largely unknown. Current approaches for assigning E3s to their cognate substrates are tedious and low throughput. Here we developed a multiplex CRISPR screening platform to assign E3 ligases to their cognate substrates at scale. A proof-of-principle multiplex screen successfully performed ~100 CRISPR screens in a single experiment, refining known C-degron pathways and identifying an additional pathway through which Cul2FEM1B targets C-terminal proline. Further, by identifying substrates for Cul1FBXO38, Cul2APPBP2, Cul3GAN, Cul3KLHL8, Cul3KLHL9/13 and Cul3KLHL15, we demonstrate that the approach is compatible with pools of full-length protein substrates of varying stabilities and, when combined with site-saturation mutagenesis, can assign E3 ligases to their cognate degron motifs. Thus, multiplex CRISPR screening will accelerate our understanding of how specificity is achieved within the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Richard T Timms
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elijah L Mena
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA
| | - Iva A Tchasovnikarova
- Wellcome/CRUK Gurdon Institute, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Itay Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Division of Genetics, Brigham asnd Women's Hospital, Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
18
|
Imoto M, Nakamura K, Inoue K, Ando M, Higuchi Y, Takashima H, Okuda S. [Involvement of autonomic nervous system since middle age in elderly patient with giant axonal neuropathy caused by novel genetic mutation]. Rinsho Shinkeigaku 2023; 63:566-571. [PMID: 37648479 DOI: 10.5692/clinicalneurol.cn-001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A 69-year-old man began to experience difficulty with walking at the age of 5 years and started use of a cane at around 13 years, then finally started using a wheelchair at 17 years old. A diagnosis of Charcot-Marie-Tooth disease was previously determined at another hospital, though neither peripheral nerve biopsy nor gene analysis was conducted. He visited our institution at the age of 54 years and irregular outpatient examinations were started, which indicated slowly progressive muscle weakness and sensory disturbance of the limbs, leading to a decline in activities of daily living. Gene analysis at 60 years old identified a novel homozygous missense mutation in the gigaxonin gene, c.1478A>C, p.E493A. Intellectual capacity was preserved and kinky hair was not present, though complications such as vocal cord paralysis, paralytic ileus, and dysarthria were noted starting at age 61. Based on these findings, the patient was diagnosed with a mild form of giant axonal neuropathy.
Collapse
Affiliation(s)
- Makiko Imoto
- Department of Neurology, Hyogo Prefectural Rehabilitation Central Hospital
| | - Kota Nakamura
- Department of Neurology, Hyogo Prefectural Rehabilitation Central Hospital
- Present address: Department of Neurology, Kansai Electric Power Hospital
| | - Kimiko Inoue
- Department of Neurology, Hyogo Prefectural Rehabilitation Central Hospital
- Present address: Department of Rehabilitation, National Hospital Organization Osaka Toneyama Medical Center
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Shiho Okuda
- Department of Neurology, Hyogo Prefectural Rehabilitation Central Hospital
- Present address: Department of Neurology, Hyogo Prefectural Kakogawa Medical Center
| |
Collapse
|
19
|
Battaglia RA, Faridounnia M, Beltran A, Robinson J, Kinghorn K, Ezzell JA, Bharucha-Goebel D, Bönnemann CG, Hooper JE, Opal P, Bouldin TW, Armao D, Snider NT. Intermediate filament dysregulation in astrocytes in the human disease model of KLHL16 mutation in giant axonal neuropathy (GAN). Mol Biol Cell 2023; 34:mbcE23030094. [PMID: 37672338 PMCID: PMC10846626 DOI: 10.1091/mbc.e23-03-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, which regulates intermediate filament (IF) turnover. Previous neuropathological studies and examination of postmortem brain tissue in the current study revealed involvement of astrocytes in GAN. To develop a clinically-relevant model, we reprogrammed skin fibroblasts from seven GAN patients to pluripotent stem cells (iPSCs), which were used to generate neural progenitor cells (NPCs), astrocytes, and brain organoids. Multiple isogenic control clones were derived via CRISPR/Cas9 gene editing of one patient line carrying the G332R gigaxonin mutation. All GAN iPSCs were deficient for gigaxonin and displayed patient-specific increased vimentin expression. GAN NPCs had lower nestin expression and fewer nestin-positive cells compared to isogenic controls, but nestin morphology was unaffected. GAN brain organoids were marked by the presence of neurofilament and GFAP aggregates. GAN iPSC-astrocytes displayed striking dense perinuclear vimentin and GFAP accumulations and abnormal nuclear morphology. In over-expression systems, GFAP oligomerization and perinuclear aggregation were augmented in the presence of vimentin. GAN patient cells with large perinuclear vimentin aggregates accumulated significantly more nuclear KLHL16 mRNA compared to cells without vimentin aggregates. As an early effector of KLHL16 mutations, vimentin may be a potential target in GAN.
Collapse
Affiliation(s)
- Rachel A. Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Adriana Beltran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jasmine Robinson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Karina Kinghorn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J. Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | - Jody E. Hooper
- Department of Pathology, Stanford University, Palo Alto, CA 94305
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL 60611
| | - Thomas W. Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
20
|
Nath B, Phaneuf D, Julien JP. Axonal Transport Defect in Gigaxonin Deficiency Rescued by Tubastatin A. Neurotherapeutics 2023; 20:1215-1228. [PMID: 37268847 PMCID: PMC10457258 DOI: 10.1007/s13311-023-01393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Giant axonal neuropathy (GAN) is a disease caused by a deficiency of gigaxonin, a mediator of the degradation of intermediate filament (IF) proteins. A lack of gigaxonin alters the turnover of IF proteins, provoking accumulation and disorganization of neurofilaments (NFs) in neurons, a hallmark of the disease. However, the effects of IF disorganization on neuronal function remain unknown. Here, we report that cultured embryonic dorsal root ganglia (DRG) neurons derived from Gan-/- mice exhibit accumulations of IF proteins and defects in fast axonal transport of organelles. Kymographs generated by time-lapse microscopy revealed substantial reduction of anterograde movements of mitochondria and lysosomes in axons of Gan-/- DRG neurons. Treatment of Gan-/- DRG neurons with Tubastatin A (TubA) increased the levels of acetylated tubulin and it restored the normal axonal transport of these organelles. Furthermore, we tested the effects of TubA in a new mouse model of GAN consisting of Gan-/- mice with overexpression of peripherin (Prph) transgene. Treatment of 12-month-old Gan-/-;TgPer mice with TubA led to a slight amelioration of motor function, especially a significant improvement of gait performance as measured by footprint analyses. Moreover, TubA treatment reduced the abnormal accumulations of Prph and NF proteins in spinal neurons and it boosted the levels of Prph transported into peripheral nerve axons. These results suggest that drug inhibitors of histone deacetylase aiming to enhance axonal transport should be considered as a potential treatment for GAN disease.
Collapse
Affiliation(s)
- Banshi Nath
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada
| | - Daniel Phaneuf
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, 2601, de La Canardière, Québec City, Québec, G1J2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
21
|
Lescouzères L, Hassen-Khodja C, Baudot A, Bordignon B, Bomont P. A multilevel screening pipeline in zebrafish identifies therapeutic drugs for GAN. EMBO Mol Med 2023:e16267. [PMID: 37144692 DOI: 10.15252/emmm.202216267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Giant axonal neuropathy (GAN) is a fatal neurodegenerative disorder for which there is currently no treatment. Affecting the nervous system, GAN starts in infancy with motor deficits that rapidly evolve toward total loss of ambulation. Using the gan zebrafish model that reproduces the loss of motility as seen in patients, we conducted the first pharmacological screening for the GAN pathology. Here, we established a multilevel pipeline to identify small molecules restoring both the physiological and the cellular deficits in GAN. We combined behavioral, in silico, and high-content imaging analyses to refine our Hits to five drugs restoring locomotion, axonal outgrowth, and stabilizing neuromuscular junctions in the gan zebrafish. The postsynaptic nature of the drug's cellular targets provides direct evidence for the pivotal role the neuromuscular junction holds in the restoration of motility. Our results identify the first drug candidates that can now be integrated in a repositioning approach to fasten therapy for the GAN disease. Moreover, we anticipate both our methodological development and the identified hits to be of benefit to other neuromuscular diseases.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, NeuroMyoGene Insitute - Now PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| | - Cédric Hassen-Khodja
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, MMG, Marseille Medical Genetics, CNRS, Marseille, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Pascale Bomont
- ERC Team, NeuroMyoGene Insitute - Now PGNM, Inserm U1315, CNRS UMR5261, University of Lyon 1, Lyon, France
| |
Collapse
|
22
|
Renganathan B, Zewe JP, Cheng Y, Paumier J, Kittisopikul M, Ridge KM, Opal P, Gelfand VI. Gigaxonin is required for intermediate filament transport. FASEB J 2023; 37:e22886. [PMID: 37043392 PMCID: PMC10237250 DOI: 10.1096/fj.202202119r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 04/13/2023]
Abstract
Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - James P. Zewe
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jean‐Michel Paumier
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Mark Kittisopikul
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Puneet Opal
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
23
|
Battaglia R, Faridounnia M, Beltran A, Robinson J, Kinghorn K, Ezzell JA, Bharucha-Goebel D, Bonnemann C, Hooper JE, Opal P, Bouldin TW, Armao D, Snider N. Intermediate filament dysregulation and astrocytopathy in the human disease model of KLHL16 mutation in giant axonal neuropathy (GAN). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532440. [PMID: 36993491 PMCID: PMC10054982 DOI: 10.1101/2023.03.13.532440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by KLHL16 mutations. KLHL16 encodes gigaxonin, a regulator of intermediate filament (IF) protein turnover. Previous neuropathological studies and our own examination of postmortem GAN brain tissue in the current study revealed astrocyte involvement in GAN. To study the underlying mechanisms, we reprogrammed skin fibroblasts from seven GAN patients carrying different KLHL16 mutations to iPSCs. Isogenic controls with restored IF phenotypes were derived via CRISPR/Cas9 editing of one patient carrying a homozygous missense mutation (G332R). Neural progenitor cells (NPCs), astrocytes, and brain organoids were generated through directed differentiation. All GAN iPSC lines were deficient for gigaxonin, which was restored in the isogenic control. GAN iPSCs displayed patient-specific increased vimentin expression, while GAN NPCs had decreased nestin expression compared to isogenic control. The most striking phenotypes were observed in GAN iPSC-astrocytes and brain organoids, which exhibited dense perinuclear IF accumulations and abnormal nuclear morphology. GAN patient cells with large perinuclear vimentin aggregates accumulated nuclear KLHL16 mRNA. In over-expression studies, GFAP oligomerization and perinuclear aggregation were potentiated in the presence of vimentin. As an early effector of KLHL16 mutations, vimentin may serve as a potential therapeutic target in GAN.
Collapse
Affiliation(s)
- Rachel Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Maryam Faridounnia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Adriana Beltran
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Jasmine Robinson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Karina Kinghorn
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - J. Ashley Ezzell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | | | - Carsten Bonnemann
- National Institute of Neurological Diseases and Stroke, Bethesda, MD
| | - Jody E. Hooper
- Department of Pathology, Stanford University, Palo Alto, CA
| | - Puneet Opal
- Departments of Neurology and Cell and Developmental Biology, Northwestern University, Chicago, IL
| | - Thomas W. Bouldin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill
- Department of Radiology, University of North Carolina at Chapel Hill
| | - Natasha Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| |
Collapse
|
24
|
Ashrafi MR, Dehnavi AZ, Tavasoli AR, Heidari M, Ghahvechi Akbari M, Ronagh AR, Ghafouri M, Mahdieh N, Mohammadi P, Rezaei Z. Expanding the genetic spectrum of giant axonal neuropathy: Two novel variants in Iranian families. Mol Genet Genomic Med 2023. [PMID: 36866531 DOI: 10.1002/mgg3.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Giant axonal neuropathy (GAN) is a progressive childhood hereditary polyneuropathy that affects both the peripheral and central nervous systems. Disease-causing variants in the gigaxonin gene (GAN) cause autosomal recessive giant axonal neuropathy. Facial weakness, nystagmus, scoliosis, kinky or curly hair, pyramidal and cerebellar signs, and sensory and motor axonal neuropathy are the main symptoms of this disorder. Here, we report two novel variants in the GAN gene from two unrelated Iranian families. METHODS Clinical and imaging data of patients were recorded and evaluated, retrospectively. Whole-exome sequencing (WES) was undertaken in order to detect disease-causing variants in participants. Confirmation of a causative variant in all three patients and their parents was carried out using Sanger sequencing and segregation analysis. In addition, for comparing to our cases, we reviewed all relevant clinical data of previously published cases of GAN between the years 2013-2020. RESULTS Three patients from two unrelated families were included. Using WES, we identified a novel nonsense variant [NM_022041.3:c.1162del (p.Leu388Ter)], in a 7-year-old boy of family 1, and a likely pathogenic missense variant [NM_022041.3:c.370T>A (p.Phe124Ile)], in two affected siblings of the family 2. Clinical examination revealed typical features of GAN-1 in all three patients, including walking difficulties, ataxic gait, kinky hair, sensory-motor polyneuropathy, and nonspecific neuroimaging abnormalities. Review of 63 previously reported cases of GAN indicated unique kinky hair, gait problem, hyporeflexia/areflexia, and sensory impairment were the most commonly reported clinical features. CONCLUSIONS One homozygous nonsense variant and one homozygous missense variant in the GAN gene were discovered for the first time in two unrelated Iranian families that expand the mutation spectrum of GAN. Imaging findings are nonspecific, but the electrophysiological study in addition to history is helpful to achieve the diagnosis. The molecular test confirms the diagnosis.
Collapse
Affiliation(s)
- Mahmoud Reza Ashrafi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Department of Paediatrics, Division of Paediatric Neurology, Growth and Development Research Center, Children's Medical Centre, Paediatrics Centre of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zare Dehnavi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Morteza Heidari
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ghahvechi Akbari
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Physical Medicine and Rehabilitation department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Ronagh
- Pediatric Neurology Department, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ghafouri
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejat Mahdieh
- Genetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pouria Mohammadi
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Rezaei
- Ataxia Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
26
|
Zhou F, Zhang K, Zheng X, Wang G, Cao H, Xing J, Dong J. BTB and TAZ domain protein BT4 positively regulates the resistance to Botrytis cinerea in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2104003. [PMID: 35876605 PMCID: PMC9318297 DOI: 10.1080/15592324.2022.2104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BT4 gene was identified to play an important role in Arabidopsis resistance to pst DC3000 in preliminary studies. However, the specific function and molecular mechanism of BT4 gene in regulation of Arabidopsis resistance to Botrytis cinerea had not been described to date. In this study, we found that the expression of BT4 was induced by wounding and B. cinerea inoculation in Arabidopsis. After inoculated with B. cinerea, T-DNA insertion mutants of the BT4 gene, bt4, showed significant susceptibility symptoms, whereas no significant symptoms were found in wild-type (WT), the complemented transgenic plants (CE), and the overexpression transgenic plants (OE). After inoculated with B. cinerea, the expression levels of JAR1 and PDF1.2 genes in bt4 mutant were induced; however, the expression levels of these genes in bt4 mutant were significantly lower than those in the WT, CE, and OE. These results indicated that the BT4 positively regulate the expression of genes in JA/ET signaling pathways. Therefore, the BT4 may be involved in the regulation of JA/ET signaling pathways to affect Arabidopsis resistance to B. cinerea.
Collapse
Affiliation(s)
- Fan Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Xu Zheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Guanyu Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hongzhe Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
27
|
Shirakaki S, Roshmi RR, Yokota T. Genetic Approaches for the Treatment of Giant Axonal Neuropathy. J Pers Med 2022; 13:jpm13010091. [PMID: 36675752 PMCID: PMC9865904 DOI: 10.3390/jpm13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Giant axonal neuropathy (GAN) is a pediatric, hereditary, neurodegenerative disorder that affects both the central and peripheral nervous systems. It is caused by mutations in the GAN gene, which codes for the gigaxonin protein. Gigaxonin plays a role in intermediate filament (IF) turnover hence loss of function of this protein leads to IF aggregates in various types of cells. These aggregates can lead to abnormal cellular function that manifests as a diverse set of symptoms in persons with GAN including nerve degeneration, cognitive issues, skin diseases, vision loss, and muscle weakness. GAN has no cure at this time. Currently, an adeno-associated virus (AAV) 9-mediated gene replacement therapy is being tested in a phase I clinical trial for the treatment of GAN. This review paper aims to provide an overview of giant axonal neuropathy and the current efforts at developing a treatment for this devastating disease.
Collapse
|
28
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
29
|
Phillips CL, Fu D, Herring LE, Armao D, Snider NT. Calpain-mediated proteolysis of vimentin filaments is augmented in giant axonal neuropathy fibroblasts exposed to hypotonic stress. Front Cell Dev Biol 2022; 10:1008542. [PMID: 36393840 PMCID: PMC9664965 DOI: 10.3389/fcell.2022.1008542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by loss-of-function mutations in the E3 ubiquitin ligase adaptor gigaxonin, which is encoded by the KLHL16 gene. Gigaxonin regulates the degradation of multiple intermediate filament (IF) proteins, including neurofilaments, GFAP, and vimentin, which aggregate in GAN patient cells. Understanding how IFs and their aggregates are processed under stress can reveal new GAN disease mechanisms and potential targets for therapy. Here we tested the hypothesis that hypotonic stress-induced vimentin proteolysis is impaired in GAN. In both GAN and control fibroblasts exposed to hypotonic stress, we observed time-dependent vimentin cleavage that resulted in two prominent ∼40-45 kDa fragments. However, vimentin proteolysis occurred more rapidly and extensively in GAN cells compared to unaffected controls as both fragments were generated earlier and at 4-6-fold higher levels. To test enzymatic involvement, we determined the expression levels and localization of the calcium-sensitive calpain proteases-1 and -2 and their endogenous inhibitor calpastatin. While the latter was not affected, the expression of both calpains was 2-fold higher in GAN cells compared to control cells. Moreover, pharmacologic inhibition of calpains with MDL-28170 or MG-132 attenuated vimentin cleavage. Imaging analysis revealed striking colocalization between large perinuclear vimentin aggregates and calpain-2 in GAN fibroblasts. This colocalization was dramatically altered by hypotonic stress, where selective breakdown of filaments over aggregates occurred rapidly in GAN cells and coincided with calpain-2 cytoplasmic redistribution. Finally, mass spectrometry-based proteomics revealed that phosphorylation at Ser-412, located at the junction between the central "rod" domain and C-terminal "tail" domain on vimentin, is involved in this stress response. Over-expression studies using phospho-deficient and phospho-mimic mutants revealed that Ser-412 is important for filament organization, solubility dynamics, and vimentin cleavage upon hypotonic stress exposure. Collectively, our work reveals that osmotic stress induces calpain- and proteasome-mediated vimentin degradation and IF network breakdown. These effects are significantly augmented in the presence of disease-causing KLHL16 mutations that alter intermediate filament organization. While the specific roles of calpain-generated vimentin IF fragments in GAN cells remain to be defined, this proteolytic pathway is translationally-relevant to GAN because maintaining osmotic homeostasis is critical for nervous system function.
Collapse
Affiliation(s)
- Cassandra L. Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Natasha T. Snider,
| |
Collapse
|
30
|
Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022; 15:956582. [PMID: 36204134 PMCID: PMC9530744 DOI: 10.3389/fnmol.2022.956582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
31
|
Herrera MI, Udovin LD, Kobiec T, Toro-Urrego N, Kusnier CF, Kölliker-Frers RA, Luaces JP, Otero-Losada M, Capani F. Palmitoylethanolamide attenuates neurodevelopmental delay and early hippocampal damage following perinatal asphyxia in rats. Front Behav Neurosci 2022; 16:953157. [PMID: 36090655 PMCID: PMC9452789 DOI: 10.3389/fnbeh.2022.953157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023] Open
Abstract
Impaired gas exchange close to labor causes perinatal asphyxia (PA), a neurodevelopmental impairment factor. Palmitoylethanolamide (PEA) proved neuroprotective in experimental brain injury and neurodegeneration models. This study aimed to evaluate PEA effects on the immature-brain, i.e., early neuroprotection by PEA in an experimental PA paradigm. Newborn rats were placed in a 37°C water bath for 19 min to induce PA. PEA 10 mg/kg, s.c., was administered within the first hour of life. Neurobehavioral responses were assessed from postnatal day 1 (P1) to postnatal day 21 (P21), recording the day of appearance of several reflexes and neurological signs. Hippocampal CA1 area ultrastructure was examined using electron microscopy. Microtubule-associated protein 2 (MAP-2), phosphorylated high and medium molecular weight neurofilaments (pNF H/M), and glial fibrillary acidic protein (GFAP) were assessed using immunohistochemistry and Western blot at P21. Over the first 3 weeks of life, PA rats showed late gait, negative geotaxis and eye-opening onset, and delayed appearance of air-righting, auditory startle, sensory eyelid, forelimb placing, and grasp reflexes. On P21, the hippocampal CA1 area showed signs of neuronal degeneration and MAP-2 deficit. PEA treatment reduced PA-induced hippocampal damage and normalized the time of appearance of gait, air-righting, placing, and grasp reflexes. The outcome of this study might prove useful in designing intervention strategies to reduce early neurodevelopmental delay following PA.
Collapse
Affiliation(s)
- Maria I. Herrera
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas D. Udovin
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Tamara Kobiec
- Centro de Investigaciones en Psicología y Psicopedagogía, Facultad de Psicología, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolas Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Carlos F. Kusnier
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo A. Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan P. Luaces
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile,*Correspondence: Francisco Capani,
| |
Collapse
|
32
|
Zhang M, Lu N, Jiang L, Liu B, Fei Y, Ma W, Shi C, Wang J. Multiple dynamic models reveal the genetic architecture for growth in height of Catalpa bungei in the field. TREE PHYSIOLOGY 2022; 42:1239-1255. [PMID: 34940852 DOI: 10.1093/treephys/tpab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Growth in height (GH) is a critical determinant for tree survival and development in forests and can be depicted using logistic growth curves. Our understanding of the genetic mechanism underlying dynamic GH, however, is limited, particularly under field conditions. We applied two mapping models (Funmap and FVTmap) to find quantitative trait loci responsible for dynamic GH and two epistatic models (2HiGWAS and 1HiGWAS) to detect epistasis in Catalpa bungei grown in the field. We identified 13 co-located quantitative trait loci influencing the growth curve by Funmap and three heterochronic parameters (the timing of the inflection point, maximum acceleration and maximum deceleration) by FVTmap. The combined use of FVTmap and Funmap reduced the number of candidate genes by >70%. We detected 76 significant epistatic interactions, amongst which a key gene, COMT14, co-located by three models (but not 1HiGWAS) interacted with three other genes, implying that a novel network of protein interaction centered on COMT14 may control the dynamic GH of C. bungei. These findings provide new insights into the genetic mechanisms underlying the dynamic growth in tree height in natural environments and emphasize the necessity of incorporating multiple dynamic models for screening more reliable candidate genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
33
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|
34
|
Sainio MT, Rasila T, Molchanova SM, Järvilehto J, Torregrosa-Muñumer R, Harjuhaahto S, Pennonen J, Huber N, Herukka SK, Haapasalo A, Zetterberg H, Taira T, Palmio J, Ylikallio E, Tyynismaa H. Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons. Front Cell Dev Biol 2022; 9:820105. [PMID: 35237613 PMCID: PMC8883324 DOI: 10.3389/fcell.2021.820105] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022] Open
Abstract
Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot-Marie-Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Markus T. Sainio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiina Rasila
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Svetlana M. Molchanova
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Julius Järvilehto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rubén Torregrosa-Muñumer
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandra Harjuhaahto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jana Pennonen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- UK Dementia Research Institute at UCL, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Tomi Taira
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, Department of Veterinary Biosciences for Electrophysiology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Emil Ylikallio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
36
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
37
|
Lin F, Lin W, Zhu C, Lin J, Zhu J, Li XY, Wang Z, Wang C, Huang H. Sequencing of neurofilament genes identified NEFH Ser787Arg as a novel risk variant of sporadic amyotrophic lateral sclerosis in Chinese subjects. BMC Med Genomics 2021; 14:222. [PMID: 34511133 PMCID: PMC8436554 DOI: 10.1186/s12920-021-01073-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/01/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with neuronal cell inclusions composed of neurofilaments and other abnormal aggregative proteins as pathological hallmarks. Approximately 90% of patients have sporadic cases (sALS), and at least 4 genes, i.e. C9orf72, SOD1, FUS and TARDBP, have been identified as the main causative genes, while many others have been proposed as potential risk genes. However, these mutations could explain only ~ 10% of sALS cases. The neurofilament polypeptides encoded by NEFH, NEFM, and NEFL are promising protein biomarkers for ALS and other degenerative diseases. However, whether the genetic variants of these genes were associated with ALS remain ambiguous. METHODS Here, we used PCR-Sanger to sequence the exons of these three genes in a cohort of 371 sALS patients and 711 healthy controls (Phase I) and validated the risk variant in another 300 sALS patients and 1076 controls (Phase II). RESULTS A total of 92 variants were identified, including 36 rare heterozygous variants in NEFH, 27 in NEFM, and 16 in NEFL, and only rs568759161 (p.Ser787Arg) in NEFH reached nominal statistical power (P = 0.02 at Phase I, P = 0.009 at Phase II) in the case-control comparison. Together, the Phase I and II studies showed the significantly higher frequency of the variant in cases (9/1342, 0.67%) than in controls (2/3574, 0.07%) (OR 12.06; 95% CI 2.60-55.88; P = 0.0003). No variants passed multiple testing in the discovery cohort, but rs568759161 was associated with ALS in a replication cohort. CONCLUSIONS Our results confirmed that NEFH Ser787Arg is a novel sALS risk variant in Chinese subjects, but NEFM and NEFL were not associated with sALS. These data may have implications for genetic counselling and for understanding the pathogenesis of sALS.
Collapse
Affiliation(s)
- Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, 350001, China
| | - Wanhui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, 350001, China
| | - Chaofeng Zhu
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, 350001, China
| | - Jilan Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, 350001, China
| | - Junge Zhu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xu-Ying Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zhanjun Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Huapin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian, 350001, China.
| |
Collapse
|
38
|
Cavallaro T, Tagliapietra M, Fabrizi GM, Bai Y, Shy ME, Vallat JM. Hereditary neuropathies: A pathological perspective. J Peripher Nerv Syst 2021; 26 Suppl 2:S42-S60. [PMID: 34499384 DOI: 10.1111/jns.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
Hereditary neuropathies may result from mutations in genes expressed by Schwann cells or neurons that affect selectively the peripheral nervous system (PNS) or may represent a minor or major component of complex inherited diseases that involve also the central nervous system and/or other organs and tissues. The chapter is constantly expanding and reworking, thanks to advances of molecular genetics; next-generation sequencing is identifying a plethora of new genes and is revolutionizing the diagnostic approach. In the past, diagnostic sural nerve biopsies paved the way to the discovery and elucidation of major genes and molecular pathways associated to most frequent hereditary motor-sensory neuropathies. Nowadays, a sural nerve biopsy may prove useful in selected cases for the differential diagnosis of an acquired neuropathy when clinical examination, nerve conduction studies, and molecular tests are not sufficiently informative. Skin biopsy has emerged as a minimally invasive window on the PNS, which may provide biomarkers of progression and clues to the physiopathology and molecular pathology of inherited neuropathies. The aim of our review is to illustrate the pathological features of more frequent and paradigmatic hereditary neuropathies and to highlight their correlations with the roles of the involved genes and functional consequences of related molecular defects.
Collapse
Affiliation(s)
- Tiziana Cavallaro
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Matteo Tagliapietra
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, VR, Italy
| | - Yunhong Bai
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jean-Michel Vallat
- Department of Neurology, National Reference Center for "Rare Peripheral Neuropathies", CHU Dupuytren, Limoges, France
| |
Collapse
|
39
|
Bharucha-Goebel DX, Norato G, Saade D, Paredes E, Biancavilla V, Donkervoort S, Kaur R, Lehky T, Fink M, Armao D, Gray SJ, Waite M, Debs S, Averion G, Hu Y, Zein WM, Foley AR, Jain M, Bönnemann CG. Giant axonal neuropathy: cross sectional analysis of a large natural history cohort. Brain 2021; 144:3239-3250. [PMID: 34114613 DOI: 10.1093/brain/awab179] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/14/2022] Open
Abstract
Giant axonal neuropathy (GAN) is an ultra-rare autosomal recessive, progressive neurodegenerative disease with early childhood onset that presents as a prominent sensorimotor neuropathy and commonly progresses to affect both the peripheral nervous system and central nervous system. The disease is caused by biallelic mutations in the GAN gene located on 16q23.2, leading to loss of functional gigaxonin, a substrate specific ubiquitin ligase adapter protein necessary for the regulation of intermediate filament turnover. Here, we report on cross-sectional data from the first study visit of a prospectively collected natural history study of 45 individuals, age range 3-21 years with genetically confirmed giant axonal neuropathy to describe and cross-correlate baseline clinical and functional cohort characteristics. We review causative variants distributed throughout the GAN gene in this cohort and identify a recurrent founder mutation in individuals with giant axonal neuropathy of Mexican descent as well as cases of recurrent uniparental isodisomy. Through cross correlation analysis of measures of strength, motor function, and electrophysiologic markers of disease severity, we identified the Motor Function Measure 32 (MFM-32) to have the strongest correlation across measures and age in individuals with giant axonal neuropathy. We analysed the Motor Function Measure 32 scores as they correspond to age and ambulatory status. Importantly, we identified and characterized a sub cohort of individuals with a milder form of giant axonal neuropathy and with a presentation similar to Charcot-Marie-Tooth disease. Such a clinical presentation is distinct from the classic presentation of giant axonal neuropathy, and we demonstrate how the two groups diverge in performance on the Motor Function Measure 32 and other functional motor scales. We further present data on the first systematic clinical analysis of autonomic impairment in giant axonal neuropathy as performed on a subset of the natural history cohort. Our cohort of individuals with genetically confirmed giant axonal neuropathy is the largest reported to date and highlights the clinical heterogeneity and the unique phenotypic and functional characteristics of giant axonal neuropathy in relation to disease state. The present work is designed to serve as a foundation for a prospective natural history study and functions in concert with the ongoing gene therapy trial for children with giant axonal neuropathy.
Collapse
Affiliation(s)
- Diana X Bharucha-Goebel
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA.,Children's National Hospital, Division of Neurology, Washington DC, USA
| | - Gina Norato
- National Institutes of Health, National Institute of Neurological Disorders and Stroke, Clinical Trials Unit, Bethesda, MD 20892, USA
| | - Dimah Saade
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Eduardo Paredes
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Victoria Biancavilla
- National Institutes of Health, Rehabilitation Medicine Department, Bethesda, MD, USA
| | - Sandra Donkervoort
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Rupleen Kaur
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Tanya Lehky
- National Institutes of Health, EMG Section, Bethesda, MD 20892, USA
| | - Margaret Fink
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Diane Armao
- Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Steven J Gray
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melissa Waite
- National Institutes of Health, Rehabilitation Medicine Department, Bethesda, MD, USA
| | - Sarah Debs
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Gilberto Averion
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Ying Hu
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Wadih M Zein
- National Institutes of Health, National Eye Institute, Bethesda, MD 20892, USA
| | - A Reghan Foley
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| | - Minal Jain
- National Institutes of Health, Rehabilitation Medicine Department, Bethesda, MD, USA
| | - Carsten G Bönnemann
- National Institutes of Health, Neuromuscular and Neurogenetic Disorders of Childhood Section, Bethesda, MD 20892, USA
| |
Collapse
|
40
|
Jung J, Kim E, Rhee M. Kapd Is Essential for Specification of the Dopaminergic Neurogenesis in Zebrafish Embryos. Mol Cells 2021; 44:233-244. [PMID: 33820883 PMCID: PMC8112167 DOI: 10.14348/molcells.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
To define novel networks of Parkinson's disease (PD) pathogenesis, the substantia nigra pars compacta of A53T mice, where a death-promoting protein, FAS-associated factor 1 was ectopically expressed for 2 weeks in the 2-, 4-, 6-, and 8-month-old mice, and was subjected to transcriptomic analysis. Compendia of expression profiles and a hierarchical clustering heat map of differentially expressed genes associated with PD were bioinformatically generated. Transcripts level of a particular gene was fluctuated by 20, 60, and 0.75 fold in the 4-, 6-, and 8-month-old mice compared to the 2 months old. Because the gene contained Kelch domain, it was named as Kapd (Kelch-containing protein associated with PD). Biological functions of Kapd were systematically investigated in the zebrafish embryos. First, transcripts of a zebrafish homologue of Kapd, kapd were found in the floor plate of the neural tube at 10 h post fertilization (hpf), and restricted to the tegmentum, hypothalamus, and cerebellum at 24 hpf. Second, knockdown of kapd caused developmental defects of DA progenitors in the midbrain neural keel and midbrain? hindbrain boundary at 10 hpf. Third, overexpression of kapd increased transcripts level of the dopaminergic immature neuron marker, shha in the prethalamus at 16.5 hpf. Finally, developmental consequences of kapd knockdown reduced transcripts level of the markers for the immature and mature DA neurons, nkx2.2, olig2, otx2b, and th in the ventral diencephalon of the midbrain at 18 hpf. It is thus most probable that Kapd play a key role in the specification of the DA neuronal precursors in zebrafish embryos.
Collapse
Affiliation(s)
- Jangham Jung
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134, Korea
| | - Eunhee Kim
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Myungchull Rhee
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
41
|
Mir YR, Zeng X, Taneja AK, Hassan A, Sheth J, Kuchay RAH. Giant axonal neuropathy with novel GAN pathogenic variant in a patient of consanguineous origin from Poonch Jammu and Kashmir-India. Mol Biol Rep 2021; 48:1607-1614. [PMID: 33528728 DOI: 10.1007/s11033-021-06166-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Giant axonal neuropathy (GAN) is a severe and rare autosomal recessive neurodegenerative disorder of childhood affecting both the peripheral and central nervous systems (CNS). It is caused by mutations in the GAN (gigaxonin) gene linked to chromosome 16q24. Here, we present a 15-year-old male patient with GAN from a consanguineous family of Poonch, Jammu and Kashmir (J&K)-India. Whole-exome sequencing (WES) was employed to unravel the genetic cause of GAN in the proband. Pathogenic variant identified with WES was confirmed in other affected sibling using Sanger sequencing. Magnetic resonance imaging (MRI) and detailed clinical investigation was also carried out on proband. WES revealed a novel homozygous stopgain GAN mutation (NM_022041, c.C1028G, p.S343X) in the patient. MRI of brain displayed bilateral symmetrical confluent areas of deep white matter signal changes affecting periventricular regions (with sparing of subcortical U-fibers), posterior limbs of internal capsules, thalami, external capsules, and semioval centers. The patient was initially suspected to be a case of metachromatic leukodystrophy. However, WES analysis revealed a pathogenic variant in GAN gene as causative. No other pathogenic variant relevant to any other type of dystrophy was reported in WES. Our findings extend the geographical distribution of GAN to even a very remote region in India, extend the mutational and imaging spectrum of GAN and substantiate the need for introducing genetic testing and counselling in primary referral centers/district hospitals in India.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, 185234, India
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Atul K Taneja
- Imaging Department, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.,Department of Radiology, Hospital do Coração (HCor) and Teleimagem, São Paulo, SP, Brazil
| | - Asima Hassan
- Department of Health and Medical Education, Srinagar, J&K, India
| | - Jayesh Sheth
- Foundation for Research in Genetics and Endocrinology, Institute of Human Genetics, Ahmedabad, Gujarat, India
| | - Raja A H Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, 185234, India.
| |
Collapse
|
42
|
Bomont P. The dazzling rise of neurofilaments: Physiological functions and roles as biomarkers. Curr Opin Cell Biol 2021; 68:181-191. [PMID: 33454158 DOI: 10.1016/j.ceb.2020.10.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
In the last two years, neurofilaments (NFs) have become one of the most blazing topics in clinical neuroscience. NFs are major cytoskeletal constituents of neurons, can be detected in body fluids, and have recently emerged as universal biomarkers of neuronal injury and neurological diseases. This review will examine the evolving landscape of NFs, from their specific cellular functions within neurons to their broad clinical value as biomarkers. Particular attention will be given to the dynamic nature of the NF network and its novel roles in microtubule regulation, neurotransmission, and nanomedicine. Building from the initial evidence of causative mutations in NF genes in Charcot-Marie-Tooth diseases, the latest advances at the frontiers of basic and clinical sciences have expanded the scope and relevance of NFs for human health remarkably and have poised to fuel innovation in cell biology and neuroscience.
Collapse
Affiliation(s)
- Pascale Bomont
- ERC team, INMG, INSERM U1217, CNRS UMR5310, University of Lyon 1, University of Lyon, Lyon, France.
| |
Collapse
|
43
|
Wang RQ, Long XR, Zhou NN, Chen DN, Zhang MY, Wen ZS, Zhang LJ, He FZ, Zhou ZL, Mai SJ, Wang HY. Lnc-GAN1 expression is associated with good survival and suppresses tumor progression by sponging mir-26a-5p to activate PTEN signaling in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:9. [PMID: 33407724 PMCID: PMC7786923 DOI: 10.1186/s13046-020-01819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of non-small-cell lung cancer (NSCLC); however, the role of most lncRNAs in NSCLC remains unknown. This study explored the clinical significance, biological function and underlying mechanism of lnc-GAN1 in NSCLC. METHODS With a custom lncRNA microarray we found that lnc-GAN1 is markedly downregulated in NSCLC tissues. Then lnc-GAN1 expression level was measured using qRT-PCR in NSCLC tissues and cell lines. Survival was assessed using the Kaplan-Meier method. The biological functions of lnc-GAN1 in lung cancer cells were evaluated in vitro and in vivo. RNA fluorescence in situ hybridization and subcellular localization assays revealed the subcellular distribution of lnc-GAN1 in cells. Bioinformatic analysis was adopted to predict miRNAs and signaling pathways regulated by lnc-GAN1. RNA immunoprecipitation and Dual-luciferase reporter assays were used to assess the interaction between lnc-GAN1 and miR-26a-5p in lung cancer cells. RESULTS lnc-GAN1 is downregulated in HCC tissues and associated with larger tumor size and poor overall survival and disease-free survival; its ectopic expression suppresses cell proliferation, colony formation, and cell cycle progression and induces apoptosis in NSCLC cells; it also inhibits tumor growth in the NSCLC xenograft model. We further proved that lnc-GAN1 is localized in cytoplasm and transcribed independently from its parental gene GAN. Mechanistically, lnc-GAN1 acts as a sponge for miR-26a-5p by two seed sequences, and the two non-coding RNAs have a negative relationship in NSCLC tissues; we further prove that PTEN is a direct target of miR-26a-5p and lnc-GAN1 inhibits cell cycle signaling pathway by activating PTEN, whose expression level correlated negatively with miR-26a-5p level but positively with lnc-GAN1 level in NSCLC samples. CONCLUSIONS Lnc-GAN1 is downregulated and associated with poor survival of NSCLC patients, and mechanistically acts as a tumor suppressor via sponging and inhibiting miR-26a-5p to upregulate PTEN. This study provides a potential prognostic biomarker and treatment target for NSCLC.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xiao-Ran Long
- Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Ni Chen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhe-Sheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lan-Jun Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fa-Zhong He
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhi-Lin Zhou
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
44
|
Gafson AR, Barthélemy NR, Bomont P, Carare RO, Durham HD, Julien JP, Kuhle J, Leppert D, Nixon RA, Weller RO, Zetterberg H, Matthews PM. Neurofilaments: neurobiological foundations for biomarker applications. Brain 2020; 143:1975-1998. [PMID: 32408345 DOI: 10.1093/brain/awaa098] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/20/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in neurofilaments has risen sharply in recent years with recognition of their potential as biomarkers of brain injury or neurodegeneration in CSF and blood. This is in the context of a growing appreciation for the complexity of the neurobiology of neurofilaments, new recognition of specialized roles for neurofilaments in synapses and a developing understanding of mechanisms responsible for their turnover. Here we will review the neurobiology of neurofilament proteins, describing current understanding of their structure and function, including recently discovered evidence for their roles in synapses. We will explore emerging understanding of the mechanisms of neurofilament degradation and clearance and review new methods for future elucidation of the kinetics of their turnover in humans. Primary roles of neurofilaments in the pathogenesis of human diseases will be described. With this background, we then will review critically evidence supporting use of neurofilament concentration measures as biomarkers of neuronal injury or degeneration. Finally, we will reflect on major challenges for studies of the neurobiology of intermediate filaments with specific attention to identifying what needs to be learned for more precise use and confident interpretation of neurofilament measures as biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Arie R Gafson
- Department of Brain Sciences, Imperial College, London, UK
| | - Nicolas R Barthélemy
- Department of Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, Montpellier University, Montpellier, France
| | - Roxana O Carare
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Heather D Durham
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada.,CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.,Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA.,Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
| | - Roy O Weller
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Henrik Zetterberg
- University College London Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at University College London, London, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College, London, UK.,UK Dementia Research Institute at Imperial College, London
| |
Collapse
|
45
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
46
|
Blood Neurofilament Light Chain: The Neurologist's Troponin? Biomedicines 2020; 8:biomedicines8110523. [PMID: 33233404 PMCID: PMC7700209 DOI: 10.3390/biomedicines8110523] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Blood neurofilament light chain (NfL) is a marker of neuro-axonal injury showing promising associations with outcomes of interest in several neurological conditions. Although initially discovered and investigated in the cerebrospinal fluid (CSF), the recent development of ultrasensitive digital immunoassay technologies has enabled reliable detection in serum/plasma, obviating the need for invasive lumbar punctures for longitudinal assessment. The most evidence for utility relates to multiple sclerosis (MS) where it serves as an objective measure of both the inflammatory and degenerative pathologies that characterise this disease. In this review, we summarise the physiology and pathophysiology of neurofilaments before focusing on the technological advancements that have enabled reliable quantification of NfL in blood. As the test case for clinical translation, we then highlight important recent developments linking blood NfL levels to outcomes in MS and the next steps to be overcome before this test is adopted on a routine clinical basis.
Collapse
|
47
|
Asmar AJ, Beck DB, Werner A. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res 2020; 396:112300. [PMID: 32986984 PMCID: PMC10627151 DOI: 10.1016/j.yexcr.2020.112300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Metazoan development relies on intricate cell differentiation, communication, and migration pathways, which ensure proper formation of specialized cell types, tissues, and organs. These pathways are crucially controlled by ubiquitylation, a reversible post-translational modification that regulates the stability, activity, localization, or interaction landscape of substrate proteins. Specificity of ubiquitylation is ensured by E3 ligases, which bind substrates and co-operate with E1 and E2 enzymes to mediate ubiquitin transfer. Cullin3-RING ligases (CRL3s) are a large class of multi-subunit E3s that have emerged as important regulators of cell differentiation and development. In particular, recent evidence from human disease genetics, animal models, and mechanistic studies have established their involvement in the control of craniofacial and brain development. Here, we summarize regulatory principles of CRL3 assembly, substrate recruitment, and ubiquitylation that allow this class of E3s to fulfill their manifold functions in development. We further review our current mechanistic understanding of how specific CRL3 complexes orchestrate neuroectodermal differentiation and highlight diseases associated with their dysregulation. Based on evidence from human disease genetics, we propose that other unknown CRL3 complexes must help coordinate craniofacial and brain development and discuss how combining emerging strategies from the field of disease gene discovery with biochemical and human pluripotent stem cell approaches will likely facilitate their identification.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA; Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
48
|
Lescouzères L, Bomont P. E3 Ubiquitin Ligases in Neurological Diseases: Focus on Gigaxonin and Autophagy. Front Physiol 2020; 11:1022. [PMID: 33192535 PMCID: PMC7642974 DOI: 10.3389/fphys.2020.01022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
Collapse
Affiliation(s)
- Léa Lescouzères
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
49
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
50
|
Arribat Y, Mysiak KS, Lescouzères L, Boizot A, Ruiz M, Rossel M, Bomont P. Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy. J Clin Invest 2020; 129:5312-5326. [PMID: 31503551 DOI: 10.1172/jci129788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.
Collapse
Affiliation(s)
- Yoan Arribat
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Karolina S Mysiak
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Léa Lescouzères
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Alexia Boizot
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Maxime Ruiz
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Mireille Rossel
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|