1
|
van der Horst HJ, Mutis T. Enhancing Fc-mediated effector functions of monoclonal antibodies: The example of HexaBodies. Immunol Rev 2024. [PMID: 39275983 DOI: 10.1111/imr.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Since the approval of the CD20-targeting monoclonal antibody (mAb) rituximab for the treatment of lymphoma in 1997, mAb therapy has significantly transformed cancer treatment. With over 90 FDA-approved mAbs for the treatment of various hematological and solid cancers, modern cancer treatment relies heavily on these therapies. The overwhelming success of mAbs as cancer therapeutics is attributed to their broad applicability, high safety profile, and precise targeting of cancer-associated surface antigens. Furthermore, mAbs can induce various anti-tumor cytotoxic effector mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), all of which are mediated via their fragment crystallizable (Fc) domain. Over the past decades, these effector mechanisms have been substantially improved through Fc domain engineering. In this review, we will outline the different approaches to enhance Fc effector functions via Fc engineering of mAbs, with a specific emphasis on the so-called "HexaBody" technology, which is designed to enhance the hexamerization of mAbs on the target cell surface, thereby inducing greater complement activation, CDC, and receptor clustering. The review will summarize the development, preclinical, and clinical testing of several HexaBodies designed for the treatment of B-cell malignancies, as well as the potential use of the HexaBody technology beyond Fc-mediated effector functions.
Collapse
Affiliation(s)
- Hilma J van der Horst
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Phuna ZX, Kumar PA, Haroun E, Dutta D, Lim SH. Antibody-drug conjugates: Principles and opportunities. Life Sci 2024; 347:122676. [PMID: 38688384 DOI: 10.1016/j.lfs.2024.122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America
| | - Prashanth Ashok Kumar
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Elio Haroun
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Seah H Lim
- Research and Development, Medicovestor, Inc, New York City, NY, United States of America; Division of Hematology and Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States of America.
| |
Collapse
|
3
|
Shi M, Li L, Wang S, Cheng H, Chen W, Sang W, Qi K, Li Z, Wang G, Li H, Lan J, Huang J, Fei X, Yu M, Li F, Qiao J, Wu Q, Zeng L, Jing G, Zheng J, Gale RP, Xu K, Cao J. Safety and efficacy of a humanized CD19 chimeric antigen receptor T cells for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2022; 97:711-718. [PMID: 35179242 DOI: 10.1002/ajh.26506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
CD19-targeted chimeric antigen receptor T (CAR-T) cells using murine single-chain variable fragment (scFv) has shown substantial clinical efficacy in treating relapsed/refractory acute lymphoblastic leukemia (R/R ALL). However, potential immunogenicity of the murine scFv domain may limit the persistence of CAR-T cells. In this study, we treated 52 consecutive subjects with R/R ALL with humanized CD19-specific CAR-T cells (hCART19s). Forty-six subjects achieved complete remission (CR) (N = 43) or CR with incomplete count recovery (CRi) (N = 3) within 1 month post infusion. During the follow-up with a median time of 20 months, the 1-year cumulative incidence of relapse was 25% (95% confidence interval [CI] 13-46), and 1-year event-free survival was 45% (95% CI 29-60). To the cutoff date, 20 patients presented CD19+ relapse and 2 had CD19- relapse. Among the 22 relapsed patients, 14 had treatment-mediated and treatment-boosted antidrug antibodies (ADA) as detected in a sensitive and specific cell-based assay. ADA positivity was correlated with the disease relapse risk. ADA-positive patients had a significantly lower CAR copy number than ADA-negative patients at the time of recurrence (p < .001). In conclusion, hCART19s therapy is safe and highly active in R/R ALL patients, and the hCART19s treatment could induce the emergence of ADA, which is related to the recurrence of the primary disease.
Collapse
Affiliation(s)
- Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Li Li
- Department of Gastroenterology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Shiyuan Wang
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Hai Cheng
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Wei Chen
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Wei Sang
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Kunming Qi
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Zhenyu Li
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Huizhong Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Jianping Lan
- Department of Hematology Zhejiang Provincial People's Hospital Zhejiang China
| | - Jinqi Huang
- Department of Hematology The Affiliated Hospital of Guangdong Medical University Zhanjiang China
| | - Xiaoming Fei
- Department of Hematology The Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Min Yu
- Center of Hematology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Fei Li
- Center of Hematology The First Affiliated Hospital of Nanchang University Nanchang China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | | | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotheraty, Cancer Institute Xuzhou Medical University Xuzhou China
| | - Robert Peter Gale
- Centre for Hematology Research, Department of Immunology and Inflammation Imperial College London London UK
| | - Kailin Xu
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou Medical University Xuzhou China
| | - Jiang Cao
- Department of Hematology The Affiliated Hospital of Xuzhou Medical University Xuzhou China
| |
Collapse
|
4
|
González-Hernández A, Marichal-Cancino BA, Villalón CM. The impact of CGRPergic monoclonal antibodies on prophylactic antimigraine therapy and potential adverse events. Expert Opin Drug Metab Toxicol 2021; 17:1223-1235. [PMID: 34535065 DOI: 10.1080/17425255.2021.1982892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Migraine is a prevalent medical condition and the second most disabling neurological disorder. Regarding its pathophysiology, calcitonin gene-related peptide (CGRP) plays a key role, and, consequently, specific antimigraine pharmacotherapy has been designed to target this system. Hence, apart from the gepants, the recently developed monoclonal antibodies (mAbs) are a novel approach to treat this disorder. In this review we consider the current knowledge on the mechanisms of action, specificity, safety, and efficacy of the above mAbs as prophylactic antimigraine agents, and examine the possible adverse events that these agents may trigger. Antimigraine mAbs act as direct scavengers of CGRP (galcanezumab, fremanezumab, and eptinezumab) or against the CGRP receptor (erenumab). Due to their long half-lives, these molecules have revolutionized the prophylactic treatment of this neurovascular disorder. Moreover, because of their physicochemical properties, these agents are hepato-friendly and do not cross the blood-brain barrier (highlighting the relevance of peripheral mechanisms in migraine). Nevertheless, apart from potential cardiovascular side effects, the interaction with AMY1 receptors and immunogenicity induced by autoantibodies against mAbs could be a concern for the safety of long-term treatment with these molecules.
Collapse
Affiliation(s)
- Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, México
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav‑Coapa, Ciudad de México, México
| |
Collapse
|
5
|
Tisagenlecleucel Immunogenicity in Relapsed/Refractory Acute Lymphoblastic Leukemia and Diffuse Large B-Cell Lymphoma. Blood Adv 2021; 5:4980-4991. [PMID: 34432863 PMCID: PMC9153050 DOI: 10.1182/bloodadvances.2020003844] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
Pre- and posttreatment anti-mCAR19 antibodies did not alter tisagenlecleucel cellular kinetics, efficacy, or safety in r/r B-ALL or r/r DLBCL. T-cell responses to mCAR19 peptides did not influence patient outcomes or cellular expansion in r/r B-ALL or r/r DLBCL.
Tisagenlecleucel is indicated for pediatric and young adult patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia (B-ALL) and adult patients with r/r diffuse large B-cell lymphoma (DLBCL). The tisagenlecleucel chimeric antigen receptor (CAR) contains a murine single-chain variable fragment domain; we examined the effects of humoral and cellular immune responses to tisagenlecleucel on clinical outcomes using 2 validated assays. Data were pooled from the ELIANA (registered at www.clinicaltrials.gov as #NCT02435849) and ENSIGN (#NCT02228096) trials in r/r B-ALL (N = 143) and the JULIET trial (#NCT02445248) in r/r DLBCL (N = 115). Humoral responses were determined by flow cytometric measurement of anti-murine CAR19 (mCAR19) antibodies in serum. Cellular responses were determined using T-cell production of interferon-γ in response to 2 different pools of mCAR19 peptides. Pretreatment anti-mCAR19 antibodies were detected in 81% of patients with r/r B-ALL and 94% of patients with r/r DLBCL. Posttreatment anti-mCAR19 antibodies were higher than patient-specific baseline in 42% of r/r B-ALL and 9% of r/r DLBCL patients. Pretreatment and posttreatment anti-mCAR19 antibodies did not affect tisagenlecleucel cellular kinetics, including maximum concentration and persistence (r2 < 0.05), clinical response (day-28 response, duration of response, and event-free survival), and safety. T-cell responses were consistent over time, with net responses <1% at baseline and posttreatment time points in a majority of patients and no effect on transgene expansion or persistence or outcomes. Presence of baseline and/or posttreatment anti-mCAR19 antibodies or T-cell responses did not alter the activity of tisagenlecleucel in patients with r/r B-ALL or r/r DLBCL.
Collapse
|
6
|
Fernandes CFC, Pereira SS, Luiz MB, Silva NKRL, Silva MCS, Marinho ACM, Fonseca MHG, Furtado GP, Trevizani R, Nicolete R, Soares AM, Zuliani JP, Stabeli RG. Engineering of single-domain antibodies for next-generation snakebite antivenoms. Int J Biol Macromol 2021; 185:240-250. [PMID: 34118288 DOI: 10.1016/j.ijbiomac.2021.06.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Given the magnitude of the global snakebite crisis, strategies to ensure the quality of antivenom, as well as the availability and sustainability of its supply are under development by several research groups. Recombinant DNA technology has allowed the engineering of monoclonal antibodies and recombinant fragments as alternatives to conventional antivenoms. Besides having higher therapeutic efficacy, with broad neutralization capacity against local and systemic toxicity, novel antivenoms need to be safe and cost-effective. Due to the biological and physical chemical properties of camelid single-domain antibodies, with high volume of distribution to distal tissue, their modular format, and their versatility, their biotechnological application has grown considerably in recent decades. This article presents the most up-to-date developments concerning camelid single-domain-based antibodies against major toxins from snake venoms, the main venomous animals responsible for reported envenoming cases and related human deaths. A brief discussion on the composition, challenges, and perspectives of antivenoms is presented, as well as the road ahead for next-generation antivenoms based on single-domain antibodies.
Collapse
Affiliation(s)
| | - Soraya S Pereira
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Nauanny K R L Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Marcela Cristina S Silva
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | | | | | | | | | | | - Andreimar M Soares
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, and Instituto Nacional de Ciência e Tecnologia em Epidemiologia da Amazônia Ocidental, INCT-EpiAmO, Porto Velho, Rondônia, Brazil; Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | - Rodrigo G Stabeli
- Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
7
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Sivaccumar J, Sandomenico A, Vitagliano L, Ruvo M. Monoclonal Antibodies: A Prospective and Retrospective View. Curr Med Chem 2021; 28:435-471. [PMID: 32072887 DOI: 10.2174/0929867327666200219142231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Monoclonal Antibodies (mAbs) represent one of the most important classes of biotherapeutic agents. They are used to cure many diseases, including cancer, autoimmune diseases, cardiovascular diseases, angiogenesis-related diseases and, more recently also haemophilia. They can be highly varied in terms of format, source, and specificity to improve efficacy and to obtain more targeted applications. This can be achieved by leaving substantially unchanged the basic structural components for paratope clustering. OBJECTIVES The objective was to trace the most relevant findings that have deserved prestigious awards over the years, to report the most important clinical applications and to emphasize their latest emerging therapeutic trends. RESULTS We report the most relevant milestones and new technologies adopted for antibody development. Recent efforts in generating new engineered antibody-based formats are briefly reviewed. The most important antibody-based molecules that are (or are going to be) used for pharmacological practice have been collected in useful tables. CONCLUSION The topics here discussed prove the undisputed role of mAbs as innovative biopharmaceuticals molecules and as vital components of targeted pharmacological therapies.
Collapse
Affiliation(s)
- Jwala Sivaccumar
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Luigi Vitagliano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
9
|
|
10
|
Sirbu CA, Ghinescu MC, Axelerad AD, Sirbu AM, Ionita-Radu F. A new era for monoclonal antibodies with applications in neurology (Review). Exp Ther Med 2020; 21:86. [PMID: 33363597 DOI: 10.3892/etm.2020.9519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Medical research continues to focus on developing specific treatment strategies, including biological products that are effective and have a good safety profile. Due to their novelty, an updated overall view is offered on some neurological diseases which benefit from monoclonal antibodies (mAbs), for better treatment in clinical decisions. An extensive literature review was performed using PubMed with the following search terms: 'monoclonal antibodies' and 'history of monoclonal antibodies' and 'monoclonal antibodies in neurology'. The following information was collected: the era before the discoveries of mAbs, the stage of implementation of biotechnologies for mAbs, and the clinical trials submitted at https://clinicaltrials.gov/ with patients suffering from neurological diseases treated with mAbs. Since 2004, mAbs have been used to treat several neurological diseases, yielding new therapeutic perspectives: natalizumab, alemtuzumab and ocrelizumab for multiple sclerosis, eculizumab for myasthenia gravis, erenumab and frenazumab for migraine, galcanezumab for migraine and cluster headache, eculizumab for neuromyelitis optica spectrum disorder. As in other cases, drug repurposing is applied to monoclonal antibodies, saving time and money. These innovative therapies are more effective and can treat previously untreatable diseases. As better understanding of the pathogenic mechanisms of neurological diseases is gained, additional mAbs are expected to be developed at a lower cost and with better safety profile compared with current treatment options.
Collapse
Affiliation(s)
- Carmen Adella Sirbu
- Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania.,Department of Neurology, Faculty of Medicine, 'Ovidius' University of Constanta, 900470 Constanta, Romania
| | - Minerva Claudia Ghinescu
- Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Any Docu Axelerad
- Department of Neurology, Faculty of Medicine, 'Ovidius' University of Constanta, 900470 Constanta, Romania.,Department of Neurology, 'St. Apostol Andrei' Clinical Emergency Hospital, 900591 Constanta, Romania
| | - Anca Maria Sirbu
- Department of Endocrinology, 'C.I. Parhon' National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Florentina Ionita-Radu
- Department of Medical-Surgical and Prophylactic Disciplines, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania.,Department of Gastroenterology, 'Carol Davila' Central Military Emergency University Hospital, 010242 Bucharest, Romania
| |
Collapse
|
11
|
Monoclonal Antibody-Based Treatments for Neuromyelitis Optica Spectrum Disorders: From Bench to Bedside. Neurosci Bull 2020; 36:1213-1224. [PMID: 32533450 DOI: 10.1007/s12264-020-00525-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Neuromyelitis optica (NMO)/NMO spectrum disorder (NMOSD) is a chronic, recurrent, antibody-mediated, inflammatory demyelinating disease of the central nervous system, characterized by optic neuritis and transverse myelitis. The binding of NMO-IgG with astrocytic aquaporin-4 (AQP4) functions directly in the pathogenesis of >60% of NMOSD patients, and causes astrocyte loss, secondary inflammatory infiltration, demyelination, and neuron death, potentially leading to paralysis and blindness. Current treatment options, including immunosuppressive agents, plasma exchange, and B-cell depletion, are based on small retrospective case series and open-label studies. It is noteworthy that monoclonal antibody (mAb) therapy is a better option for autoimmune diseases due to its high efficacy and tolerability. Although the pathophysiological mechanisms of NMOSD remain unknown, increasingly, therapeutic studies have focused on mAbs, which target B cell depletion, complement and inflammation cascade inactivation, blood-brain-barrier protection, and blockade of NMO-IgG-AQP4 binding. Here, we review the targets, characteristics, mechanisms of action, development, and potential efficacy of mAb trials in NMOSD, including preclinical and experimental investigations.
Collapse
|
12
|
Antibodies: monoclonal and polyclonal. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Potthoff B, McBlane F, Spindeldreher S, Sickert D. A cell-based immunogenicity assay to detect antibodies against chimeric antigen receptor expressed by tisagenlecleucel. J Immunol Methods 2020; 476:112692. [DOI: 10.1016/j.jim.2019.112692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/02/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
|
14
|
Zhu W, Wang Z, Hu S, Gong Y, Liu Y, Song H, Ding X, Fu Y, Yan Y. Human C5-specific single-chain variable fragment ameliorates brain injury in a model of NMOSD. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e561. [PMID: 31044149 PMCID: PMC6467685 DOI: 10.1212/nxi.0000000000000561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/05/2019] [Indexed: 12/01/2022]
Abstract
Objective Using phage display, we sought to screen single-chain variable fragments (scFvs) against complement C5 to treat neuromyelitis optica spectrum disorder (NMOSD). Methods After 5 rounds of phage display, we isolated individual clones and identified phage clones specifically binding to C5 using ELISA. Using aquaporin-4 (AQP4)-transfected cells in vitro, we confirmed whether these scFvs prevented complement-dependent cytotoxicity (CDC) caused by the serum of patients with NMOSD and human complement (hC). We selected an NMOSD mouse model, in which intracerebral NMOSD immunoglobulin G (IgG) and hC injections induce NMOSD-like lesions in vivo. Results We obtained scFvs to test specificity and blocking efficiency. The scFv C5B3 neutralized C5 in the complement activation pathway, which prevented AQP4-IgG-mediated CDC in AQP4-transfected cells. In an NMOSD mouse model, C5B3 prevented AQP4 and astrocyte loss, decreased demyelination, and reduced inflammatory infiltration and membrane attack complex formation in lesions. Conclusions We used phage display to screen C5B3 against C5, which was effective in inhibiting cytotoxicity in vitro and preventing CNS pathology in vivo.
Collapse
Affiliation(s)
- Wenli Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Suying Hu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ye Gong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanchu Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huanhuan Song
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Ding
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Fu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry (W.Z., Z.W., S.H., Y.G., Y.L., H.S., X.D., Y.F., Y.Y.), National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an; Department of Neurology (W.Z.), Tianjin Neurological Institute, Tianjin Medical University General Hospital; and Department of Neurology (Z.W.), Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Phage Display Libraries: From Binders to Targeted Drug Delivery and Human Therapeutics. Mol Biotechnol 2019; 61:286-303. [DOI: 10.1007/s12033-019-00156-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Abstract
In recent years, therapeutic monoclonal antibodies have made impressive progress, providing great benefit by successfully treating malignant and chronic inflammatory diseases. Monoclonal antibodies with broadly neutralizing effects against specific antigens, or that target specific immune regulators, manifest therapeutic effects via their Fab fragment specificities. Subsequently therapeutic efficacy is mediated mostly by interactions of the Fc fragments of the antibodies with their receptors (FcR) displayed on cells of the immune system. These interactions can trigger a series of immunoregulatory responses, involving both innate and adaptive immune systems and including cross-presentation of antigens, activation of CD8+ T cells and CD4+ T cells, phagocytosis, complement-mediated antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). The nature of the triggered effector functions of the antibodies is markedly affected by the glycosylation patterns of the Fc fragments. These can cause differences in the conformation of the heavy chains of antibodies, with resultant changes in antibody binding affinity and activation of the complement system. Studies of the Fc glycosylation profiles together with the associated Fc effector functions and FcR/CR interactions promoted interest and progress in engineering therapeutic antibodies. Furthermore, because antigen–antibody immune complexes (ICs) have shown similar actions, in addition to certain novel immunoregulatory mechanisms that also reshape immune responses, the properties of ICs are being explored in new approaches for prevention and therapy of diseases. In this review, both basic studies and experimental/clinical applications of ICs leading to the development of preventive and therapeutic vaccines are presented.
Collapse
|
17
|
Concepts and Challenges of Biosimilars in Breast Cancer: The Emergence of Trastuzumab Biosimilars. Pharmaceutics 2018; 10:pharmaceutics10040168. [PMID: 30257528 PMCID: PMC6321008 DOI: 10.3390/pharmaceutics10040168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 12/17/2022] Open
Abstract
With the development of anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibodies, trastuzumab-based therapy has become the standard of care among patients with early or advanced HER2-positive breast cancer. However, real-world data have shown that up to a half of patients do not receive trastuzumab or any other HER2-targeted agent, mainly due to high treatments costs. The prospect of a more enlarged access to trastuzumab treatment lies in the use of biosimilars, as the European and the US patent of the reference products has or will soon expire. Biosimilars are biologics highly similar in terms of quality characteristics, biological activity, safety and efficacy to already approved biologics. The biosimilarity of any European Union (EU)-approved biosimilar is guaranteed based on the comprehensive comparability exercise which includes comparative analytical, non-clinical and clinical studies. In the matter of biosimilars’ interchangeability and substitution, the European Medicines Agency (EMA) and US Food and Drug Administration (FDA) have adopted different positions, triggering various discussions on the potential immunogenicity and efficacy in individual patients. As more biosimilars are gaining approval, the present review aims to offer concise information for oncologists and pharmacists about the production, approval, interchangeability, and substitution policies of biosimilars used in breast cancer therapy, with a special focus on trastuzumab.
Collapse
|
18
|
Mukherjee S, Ayanambakkam A, Ibrahimi S, Schmidt S, Charkrabarty JH, Khawandanah M. Ibritumomab tiuxetan (Zevalin) and elevated serum human anti-murine antibody (HAMA). Hematol Oncol Stem Cell Ther 2018; 11:187-188. [DOI: 10.1016/j.hemonc.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
|
19
|
McKnight BN, Viola-Villegas NT. 89 Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm 2018; 61:727-738. [PMID: 29341222 PMCID: PMC6050145 DOI: 10.1002/jlcr.3605] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/27/2022]
Abstract
Therapeutic monoclonal antibodies have been used in cancer treatment for 30 years, with around 24 mAb and mAb:drug conjugates approved by the FDA to date. Despite their specificity, efficacy has remained limited, which, in part, derails nascent initiatives towards precision medicine. An image-guided approach to reinforce treatment decisions using immune positron emission tomography (immunoPET) companion diagnostic is warranted. This review provides a general overview of current translational research using Zr-89 immunoPET and opportunities for utilizing and harnessing this tool to its full potential. Patient case studies are cited to illustrate immunoPET probes as tools for profiling molecular signatures. Discussions on its utility in reinforcing clinical decisions as it relates to histopathological tumor assessment and standard diagnostic methods, and its potential as predictive biomarkers, are presented. We finally conclude with an overview of practical considerations to its utility in the clinic.
Collapse
Affiliation(s)
- Brooke N. McKnight
- Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
20
|
Chaisri U, Chaicumpa W. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9747549. [PMID: 29998138 PMCID: PMC5994580 DOI: 10.1155/2018/9747549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/19/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients) are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.
Collapse
Affiliation(s)
- Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Buenafe AC, Streeter PR. Humanised recombinant antibody fragments bind human pancreatic islet cells. J Immunol Methods 2018; 459:20-28. [PMID: 29758224 DOI: 10.1016/j.jim.2018.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023]
Abstract
We describe here the humanisation of two mouse monoclonal antibodies that bind to surface markers on human pancreatic islet endocrine cells. Monoclonal antibodies produced by the HIC1-2B4 and HIC0-4F9 mouse hybridomas bind distinct surface molecules expressed on endocrine cells and have been validated for a number of experimental methods including immunohistochemistry and live cell sorting by flow cytometry. Variable region framework and first constant region domain sequences were replaced with that from compatible human antibody sequences, and the resulting recombinant antigen-binding fragments were cloned and expressed in mouse myeloma cells. ELISA, fluorescent immunohistochemistry, and flow cytometry were used to assess the specificity of the humanised antibody fragments. Purification and binding analyses indicated that human islet endocrine cell binding was retained in the humanised antibody fragments. These humanised, recombinant antibody fragments have a lower risk of eliciting adverse responses from a patient's immune system and, therefore, have highly improved clinical potential. Thus, they may be used to image, target or carry cargo specifically to islet cells in human patients.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA.
| | - Philip R Streeter
- Department of Pediatrics, Pape' Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
22
|
Camelid Single-Domain Antibodies (VHHs) against Crotoxin: A Basis for Developing Modular Building Blocks for the Enhancement of Treatment or Diagnosis of Crotalic Envenoming. Toxins (Basel) 2018; 10:toxins10040142. [PMID: 29596324 PMCID: PMC5923308 DOI: 10.3390/toxins10040142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022] Open
Abstract
Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.
Collapse
|
23
|
Mendoza M, Ballesteros A, Qiu Q, Pow Sang L, Shashikumar S, Casares S, Brumeanu TD. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD). Hum Vaccin Immunother 2017; 14:345-360. [PMID: 29135340 DOI: 10.1080/21645515.2017.1403703] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope (180WGIHHPPNSKEQ QNLY195) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.
Collapse
Affiliation(s)
- Mirian Mendoza
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Angela Ballesteros
- b National Institute of Neurological Disorders and Stroke, Molecular Physiology and Biophysics Section , Bethesda , MD
| | - Qi Qiu
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Luis Pow Sang
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| | - Soumya Shashikumar
- c Naval Medical Research Center/Walter Reed Army Institute of Research, US Military Malaria Vaccine Development , Silver Spring , MD , U.S.A
| | - Sofia Casares
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A.,c Naval Medical Research Center/Walter Reed Army Institute of Research, US Military Malaria Vaccine Development , Silver Spring , MD , U.S.A
| | - Teodor-D Brumeanu
- a Uniformed Services University of the Health Sciences , Department of Medicine , Division of Immunology , Bethesda , MD , U.S.A
| |
Collapse
|
24
|
Gorczynski R, Hoffmann G. Toward a New Kind of Vaccine: A Logical Extension of the Symmetrical Immune Network Theory. Interact J Med Res 2017; 6:e8. [PMID: 28679488 PMCID: PMC5517819 DOI: 10.2196/ijmr.7612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background The symmetrical immune network theory, developed in 1975, is based on the existence of specific T cell factors and hypothesizes that normal IgG immune responses comprise the production of 2 kinds of antibodies, namely antigen-specific antibodies and anti-idiotypic antibodies. Objective The aim of this study was to confirm the existence of specific T cells factors and to show that immunization of C3H mice with BL/6 skin or using nominal antigen for immunization (Tetanus Toxoid) induced production of antigen-specific (anti-BL/6 or antitetanus) antibodies plus anti-idiotypic antibodies (C3H anti-anti-C3H). Subsequently, we investigated the role of combinations of antigen-specific and anti-idiotype antibodies in a variety of animal models of clinical diseases. Methods Antigen-specific antibodies were produced by conventional immunization of mice (eg, with tetanus toxoid or by skin allografting). Subsequent anti-idiotypic antibodies were derived by exhaustive absorption of antigen-specific antibody, with confirmation of anti-idiotypic specificity by binding to relevant target antigen-specific antibodies in an enzyme-linked immunosorbent assay (ELISA). Antigen-specific plus anti-idiotypic antibodies were then used to modulate skin allograft survival, dextran sulfate sodium (DSS)-induced colitis, ovalbumin (OVA)-induced IgE production, and breast cancer growth in mice. Results Infusions of anti-BL/6 antibodies together with BL/6 anti-anti-BL/6 antibodies specifically suppressed (>85%) an immune response to BL/6 lymphocytes in C3H mice. The two kinds of antibodies with complementary specificity are hypothesized to stimulate 2 populations of T lymphocytes. Coselection of these 2 populations leads to a new stable steady state of the system with diminished reactivity to BL/6 tissue. A combination of anti-C3H and C3H anti‑anti-C3H IgG antibodies down-regulated inflammation in a mouse model of inflammatory bowel disease (>75%) and attenuated anti-IgE production and sensitization to produce IL4 cytokines (>70%) in an OVA-allergy model. Combination of C3H anti‑BL/6 and BL/6 anti-anti-BL/6 antibodies decreased tumor growth and metastases (>705) in an EMT6 transplantable breast cancer model. Conclusions Use of a combination of antigen-specific and anti-idiotypic antibodies has potential as a new class of vaccines.
Collapse
|
25
|
Saeed AFUH, Wang R, Ling S, Wang S. Antibody Engineering for Pursuing a Healthier Future. Front Microbiol 2017; 8:495. [PMID: 28400756 PMCID: PMC5368232 DOI: 10.3389/fmicb.2017.00495] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Since the development of antibody-production techniques, a number of immunoglobulins have been developed on a large scale using conventional methods. Hybridoma technology opened a new horizon in the production of antibodies against target antigens of infectious pathogens, malignant diseases including autoimmune disorders, and numerous potent toxins. However, these clinical humanized or chimeric murine antibodies have several limitations and complexities. Therefore, to overcome these difficulties, recent advances in genetic engineering techniques and phage display technique have allowed the production of highly specific recombinant antibodies. These engineered antibodies have been constructed in the hunt for novel therapeutic drugs equipped with enhanced immunoprotective abilities, such as engaging immune effector functions, effective development of fusion proteins, efficient tumor and tissue penetration, and high-affinity antibodies directed against conserved targets. Advanced antibody engineering techniques have extensive applications in the fields of immunology, biotechnology, diagnostics, and therapeutic medicines. However, there is limited knowledge regarding dynamic antibody development approaches. Therefore, this review extends beyond our understanding of conventional polyclonal and monoclonal antibodies. Furthermore, recent advances in antibody engineering techniques together with antibody fragments, display technologies, immunomodulation, and broad applications of antibodies are discussed to enhance innovative antibody production in pursuit of a healthier future for humans.
Collapse
Affiliation(s)
- Abdullah F U H Saeed
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China
| |
Collapse
|
26
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
27
|
Sadreddini S, Jadidi-Niaragh F, Younesi V, Pourlak T, Afkham A, Shokri F, Yousefi M. Evaluation of EBV transformation of human memory B-cells isolated by FACS and MACS techniques. J Immunotoxicol 2016; 13:490-7. [DOI: 10.3109/1547691x.2015.1132288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Younesi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Tala Pourlak
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afkham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Inhibition of preS1-hepatocyte interaction by an array of recombinant human antibodies from naturally recovered individuals. Sci Rep 2016; 6:21240. [PMID: 26888694 PMCID: PMC4758072 DOI: 10.1038/srep21240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Neutralizing monoclonal antibodies are being found to be increasingly useful in viral infections. In hepatitis B infection, antibodies are proven to be useful for passive prophylaxis. The preS1 region (21–47a.a.) of HBV contains the viral hepatocyte-binding domain crucial for its attachment and infection of hepatocytes. Antibodies against this region are neutralizing and are best suited for immune-based neutralization of HBV, especially in view of their not recognizing decoy particles. Anti-preS1 (21–47a.a.) antibodies are present in serum of spontaneously recovered individuals. We generated a phage-displayed scFv library using circulating lymphocytes from these individuals and selected four preS1-peptide specific scFvs with markedly distinct sequences from this library. All the antibodies recognized the blood-derived and recombinant preS1 containing antigens. Each scFv showed a discrete binding signature, interacting with different amino acids within the preS1-peptide region. Ability to prevent binding of the preS1 protein (N-terminus 60a.a.) to HepG2 cells stably expressing hNTCP (HepG2-hNTCP-C4 cells), the HBV receptor on human hepatocytes was taken as a surrogate marker for neutralizing capacity. These antibodies inhibited preS1-hepatocyte interaction individually and even better in combination. Such a combination of potentially neutralizing recombinant antibodies with defined specificities could be used for preventing/managing HBV infections, including those by possible escape mutants.
Collapse
|
29
|
Xu Z, Wang Z, Jia X, Wang L, Chen Z, Wang S, Wang M, Zhang J, Wu M. MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett 2015; 372:118-27. [PMID: 26739060 DOI: 10.1016/j.canlet.2015.12.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that DLL4 (Delta-like 4)-Notch signaling plays a critical role in cell fate determination and differentiation in tissues. Blocking DLL4-Notch signaling results in inhibition of tumor growth, which is associated with increased nonfunctional vessels and poor perfusion in the tumor. We successfully generated a human DLL4 monoclonal antibody MMGZ01 that binds specifically to DLL4 to disrupt the interaction between DLL4 and Notch1. MMGZ01 showed high affinity to DLL4 to inhibit the DLL4-mediated human umbilical vein endothelial cell (HUVEC) phenotype. Furthermore, MMGZ01 stimulated HUVEC vessel sprouting and tubule formation in vitro. In addition, MMGZ01 had a pronounced effect in promoting immature vessels and reduced breast cancer cell growth in vivo. Finally, MMGZ01 treatment inhibited the proliferation of breast cancer cells, induced tumor cell apoptosis, suppressed mammosphere formation, decreased CD44(+)/CD24(-) cell population, and reduced epithelial mesenchymal transition (EMT). These findings suggest that antagonism of the DLL4-Notch signaling pathway might provide a potential therapeutic approach for breast cancer treatment.
Collapse
Affiliation(s)
- Zhuobin Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zegen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xuelian Jia
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Luxuan Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shijing Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Juan Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Min Wu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
30
|
Mall C, Sckisel GD, Proia DA, Mirsoian A, Grossenbacher SK, Pai CCS, Chen M, Monjazeb AM, Kelly K, Blazar BR, Murphy WJ. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. Oncoimmunology 2015; 5:e1075114. [PMID: 27057446 DOI: 10.1080/2162402x.2015.1075114] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/09/2023] Open
Abstract
Monoclonal antibodies (mAbs) targeting coinhibitory molecules such as PD-1, PD-L1 and CTLA-4 are increasingly used as targets of therapeutic intervention against cancer. While these targets have led to a critical paradigm shift in treatments for cancer, these approaches are also plagued with limitations owing to cancer immune evasion mechanisms and adverse toxicities associated with continuous treatment. It has been difficult to reproduce and develop interventions to these limitations preclinically due to poor reagent efficacy and reagent xenogenecity not seen in human trials. In this study, we investigated adverse effects of repeated administration of PD-1 and PD-L1 mAbs in the murine 4T1 mammary carcinoma model. We observed rapid and fatal hypersensitivity reactions in tumor bearing mice within 30-60 min after 4-5 administrations of PD-L1 or PD-1 mAb but not CTLA-4 antibody treatment. These events occurred only in mice bearing the highly inflammatory 4T1 tumor and did not occur in mice bearing non-inflammatory tumors. We observed that mortality was associated with systemic accumulation of IgG1 antibodies, antibodies specific to the PD-1 mAb, and accumulation of Gr-1high neutrophils in lungs which have been implicated in the IgG mediated pathway of anaphylaxis. Anti-PD-1 associated toxicities were alleviated when PD-1 blockade was combined with the therapeutic HSP90 inhibitor, ganetespib, which impaired immune responses toward the xenogeneic PD-1 mAb. This study highlights a previously uncharacterized fatal hypersensitivity exacerbated by the PD-1/PD-L1 axis in the broadly used 4T1 tumor model as well as an interesting relationship between this particular class of checkpoint blockade and tumor-dependent immunomodulation.
Collapse
Affiliation(s)
- Christine Mall
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | | | - Annie Mirsoian
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Steven K Grossenbacher
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Mingyi Chen
- Department of Pathology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Karen Kelly
- Department of Internal Medicine, School of Medicine, University of California, Davis , Sacramento, CA, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Masonic Cancer Center , Minneapolis, MN, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
31
|
Abstract
Fibrin-specific targeting capabilities have been highly sought for over 50 years due to their implications for bio-molecule delivery, diagnostics, and regenerative medicine. Yet only recently has our full knowledge of fibrin's complex polymerization dynamics and biological interactions begun to be fully exploited in pursuit of this goal. This highlight will discuss the range of rapidly changing strategies for specifically targeting fibrin over the precursor fibrinogen and the advantages and disadvantages of these approaches for various applications.
Collapse
Affiliation(s)
- Victoria L. Stefanelli
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Thomas H. Barker
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
- The Parker H. Petit Institute for Bioengineering and biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
32
|
Hernández AM, Vázquez AM. Racotumomab–alum vaccine for the treatment of non-small-cell lung cancer. Expert Rev Vaccines 2014; 14:9-20. [DOI: 10.1586/14760584.2015.984691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Yim SS, Bang HB, Kim YH, Lee YJ, Jeong GM, Jeong KJ. Rapid isolation of antibody from a synthetic human antibody library by repeated fluorescence-activated cell sorting (FACS). PLoS One 2014; 9:e108225. [PMID: 25303314 PMCID: PMC4193741 DOI: 10.1371/journal.pone.0108225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Hyun Bae Bang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Young Hwan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Yong Jae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Gu Min Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) (BK21 plus program), Daejeon, Republic of Korea
- Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Xie W, Li D, Zhang J, Li Z, Acheampong DO, He Y, Wang Y, Chen Z, Wang M. Generation and characterization of a novel human IgG1 antibody against vascular endothelial growth factor receptor 2. Cancer Immunol Immunother 2014; 63:877-88. [PMID: 24893856 PMCID: PMC11028991 DOI: 10.1007/s00262-014-1560-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/16/2014] [Indexed: 12/17/2022]
Abstract
VEGF and its receptors, especially VEGFR2 (KDR), are known to play a critical role in angiogenesis under both physiological and pathological conditions, including cancer and angiogenic retinopathies. This study was aimed at developing a fully human IgG1 antibody (mAb-04) constructed from a phage-derived scFv, targeting the VEGF/VEGFR2 pathway. Firstly, an innovative transfection system, containing two recombinant expression vectors (pMH3 and pCApuro), were introduced into CHO-s cells and clones with higher yield selected accordingly. After an optimal fermentation condition was determined, fed-batch fermentation was performed in 5-L bioreactor with a final yield up to 60 mg/L. Further, cell proliferation, wound healing, transwell invasion, tube formation and chick embryo chorioallantoic membrane assays showed significant anti-angiogenic activity of mAb-04 in vitro and in vivo. In addition, the results of Western blotting indicated the ability of mAb-04 to inhibit VEGF-induced VEGFR2 signaling pathway. Finally, ADCC assay demonstrated that mAb-04 is capable of mediating tumor cell killing in presence of effector cells. This study has therefore proved that the full-length antibody targeting human VEGFR2 has potential clinical applications in the treatment of cancer and other diseases where pathological angiogenesis is involved.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Daojuan Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Zhike Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Desmond Omane Acheampong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Youfu Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| | - Min Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 154#, Tong Jia Xiang 24, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
35
|
|
36
|
A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation. PLoS One 2013; 8:e80636. [PMID: 24278299 PMCID: PMC3836750 DOI: 10.1371/journal.pone.0080636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/05/2013] [Indexed: 11/19/2022] Open
Abstract
1-17-2 is a rat anti-human DEC-205 monoclonal antibody that induces internalization and delivers antigen to dendritic cells (DCs). The potentially clinical application of this antibody is limited by its murine origin. Traditional humanization method such as complementarity determining regions (CDRs) graft often leads to a decreased or even lost affinity. Here we have developed a novel antibody humanization method based on computer modeling and bioinformatics analysis. First, we used homology modeling technology to build the precise model of Fab. A novel epitope scanning algorithm was designed to identify antigenic residues in the framework regions (FRs) that need to be mutated to human counterpart in the humanization process. Then virtual mutation and molecular dynamics (MD) simulation were used to assess the conformational impact imposed by all the mutations. By comparing the root-mean-square deviations (RMSDs) of CDRs, we found five key residues whose mutations would destroy the original conformation of CDRs. These residues need to be back-mutated to rescue the antibody binding affinity. Finally we constructed the antibodies in vitro and compared their binding affinity by flow cytometry and surface plasmon resonance (SPR) assay. The binding affinity of the refined humanized antibody was similar to that of the original rat antibody. Our results have established a novel method based on epitopes scanning and MD simulation for antibody humanization.
Collapse
|
37
|
Sotelo P, Collazo N, Zuñiga R, Gutiérrez-González M, Catalán D, Ribeiro CH, Aguillón JC, Molina MC. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification. MAbs 2012; 4:542-50. [PMID: 22692130 DOI: 10.4161/mabs.20653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.
Collapse
Affiliation(s)
- Pablo Sotelo
- Centro de InmunoBioTecnología (IBT), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Geyer CR, McCafferty J, Dübel S, Bradbury ARM, Sidhu SS. Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 2012; 901:11-32. [PMID: 22723092 DOI: 10.1007/978-1-61779-931-0_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the accumulation of detailed knowledge of antibody structure and function has enabled antibody phage display to emerge as a powerful in vitro alternative to hybridoma methods for creating antibodies. Many antibodies produced using phage display technology have unique properties that are not obtainable using traditional hybridoma technologies. In phage display, selections are performed under controlled, in vitro conditions that are tailored to suit demands of the antigen and the sequence encoding the antibody is immediately available. These features obviate many of the limitations of hybridoma methodology, and because the entire process relies on scalable molecular biology techniques, phage display is also suitable for high-throughput applications. Thus, antibody phage display technology is well suited for genome-scale biotechnology and therapeutic applications. This review describes the antibody phage display technology and highlights examples of antibodies with unique properties that cannot easily be obtained by other technologies.
Collapse
|
39
|
Munro TP, Mahler SM, Huang EP, Chin DY, Gray PP. Bridging the gap: facilities and technologies for development of early stage therapeutic mAb candidates. MAbs 2011; 3:440-52. [PMID: 21822050 DOI: 10.4161/mabs.3.5.16968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) currently dominate the biologics marketplace. Development of a new therapeutic mAb candidate is a complex, multistep process and early stages of development typically begin in an academic research environment. Recently, a number of facilities and initiatives have been launched to aid researchers along this difficult path and facilitate progression of the next mAb blockbuster. Complementing this, there has been a renewed interest from the pharmaceutical industry to reconnect with academia in order to boost dwindling pipelines and encourage innovation. In this review, we examine the steps required to take a therapeutic mAb from discovery through early stage preclinical development and toward becoming a feasible clinical candidate. Discussion of the technologies used for mAb discovery, production in mammalian cells and innovations in single-use bioprocessing is included. We also examine regulatory requirements for product quality and characterization that should be considered at the earliest stages of mAb development. We provide details on the facilities available to help researchers and small-biotech build value into early stage product development, and include examples from within our own facility of how technologies are utilized and an analysis of our client base.
Collapse
Affiliation(s)
- Trent P Munro
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, Brisbane, QLD Australia.
| | | | | | | | | |
Collapse
|
40
|
Thanongsaksrikul J, Chaicumpa W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel) 2011; 3:469-88. [PMID: 22069720 PMCID: PMC3202833 DOI: 10.3390/toxins3050469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/01/2023] Open
Abstract
Specific treatment is not available for human botulism. Current remedial mainstay is the passive administration of polyclonal antibody to botulinum neurotoxin (BoNT) derived from heterologous species (immunized animal or mouse hybridoma) together with supportive and symptomatic management. The antibody works extracellularly, probably by blocking the binding of receptor binding (R) domain to the neuronal receptors; thus inhibiting cellular entry of the holo-BoNT. The antibody cannot neutralize the intracellular toxin. Moreover, a conventional antibody with relatively large molecular size (150 kDa) is not accessible to the enzymatic groove and, thus, cannot directly inhibit the BoNT zinc metalloprotease activity. Recently, a 15-20 kDa single domain antibody (V(H)H) that binds specifically to light chain of BoNT serotype A was produced from a humanized-camel VH/V(H)H phage display library. The V(H)H has high sequence homology (>80%) to the human VH and could block the enzymatic activity of the BoNT. Molecular docking revealed not only the interface binding between the V(H)H and the toxin but also an insertion of the V(H)H CDR3 into the toxin enzymatic pocket. It is envisaged that, by molecular linking the V(H)H to a cell penetrating peptide (CPP), the CPP-V(H)H fusion protein would be able to traverse the hydrophobic cell membrane into the cytoplasm and inhibit the intracellular BoNT. This presents a novel and safe immunotherapeutic strategy for botulism by using a cell penetrating, humanized-single domain antibody that inhibits the BoNT by means of a direct blockade of the groove of the menace enzyme.
Collapse
Affiliation(s)
- Jeeraphong Thanongsaksrikul
- Laboratory for Research and Technology Development, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok-noi, Bangkok 10700, Thailand.
| | | |
Collapse
|
41
|
Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011; 16:412-26. [PMID: 21221060 PMCID: PMC6259421 DOI: 10.3390/molecules16010412] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 12/15/2022] Open
Abstract
Twenty years after its development, antibody phage display using filamentous bacteriophage represents the most successful in vitro antibody selection technology. Initially, its development was encouraged by the unique possibility of directly generating recombinant human antibodies for therapy. Today, antibody phage display has been developed as a robust technology offering great potential for automation. Generation of monospecific binders provides a valuable tool for proteome research, leading to highly enhanced throughput and reduced costs. This review presents the phage display technology, application areas of antibodies in research, diagnostics and therapy and the use of antibody phage display for these applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry and Biotechnology, Department of Biotechnology, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|
42
|
Characterization of N-glycan structures and biofunction of anti-colorectal cancer monoclonal antibody CO17-1A produced in baculovirus-insect cell expression system. J Biosci Bioeng 2010; 110:135-40. [PMID: 20547339 DOI: 10.1016/j.jbiosc.2010.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/05/2010] [Accepted: 01/10/2010] [Indexed: 01/26/2023]
Abstract
Advantages of the baculovirus insect cell expression system for production of recombinant proteins include high capacity, flexibility, and glycosylation capability. In this study, this expression system was exploited to produce anti-cancer monoclonal antibody (mAb) CO17-1A, which recognizes the antigen GA733. The heavy chain (HC) and light chain (LC) genes of mAb CO17-1A were cloned under the control of P(10) and Polyhedrin promoters in the pFastBac dual vector, respectively. Gene expression cassettes carrying the HC and LC genes were transposed into a bacmid in Escherichia coli (DH10Bac). The transposed bacmid was transfected to Sf9 insect cells to generate baculovirus expressing mAb CO17-1A. Confocal immunofluorescence and Western blot analyses confirmed expression of mAb CO17-1A in baculovirus-infected insect cells. The optimum conditions for mAb expression were evaluated at 24, 48, and 72 h after the virus infection at an optimum virus multiplicity of infection of 1. Expression of mAb CO17-1A in insect cells significantly increased at 72 h after infection. HPLC analysis of glycosylation status revealed that the insect-derived mAb (mAb(I)) CO17-1A had insect specific glycan structures. ELISA showed that the purified mAb(I) from cell culture supernatant specifically bound to SW948 human colorectal cancer cells. Fluorescence-activated cell sorting analysis showed that, although mAb(I) had insect specific glycan structures that differed from their mammalian counterparts, mAb(I) similarly interacted with CD64 (FcgammaRI) and Fc of IgG, compared to the interactions of mammalian-derived mAb. These results suggest that the baculovirus insect cell expression system is able to express, assemble, and secrete biofunctional full size mAb.
Collapse
|
43
|
|
44
|
The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol 2008; 29:91-7. [PMID: 18191616 DOI: 10.1016/j.it.2007.11.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 11/22/2022]
Abstract
A central dogma in immunology is that antibody specificity is solely the result of variable (V)-region interactions with an antigen. However, this view is not tenable in light of numerous reports that constant heavy (C(H)) domains can affect binding affinity and specificity and V-region structure. Kinetic and thermodynamic proof for the occurrence of this phenomenon is now available. C(H)-region effects on affinity and specificity suggest new mechanisms for generating antibody diversity and polyreactivity (multispecificity) that impact current views on idiotype regulation, autoimmunity, and B cell selection and change our understanding of vaccine responses.
Collapse
|
45
|
Boulter JM, Jakobsen BK. Stable, soluble, high-affinity, engineered T cell receptors: novel antibody-like proteins for specific targeting of peptide antigens. Clin Exp Immunol 2005; 142:454-60. [PMID: 16297157 PMCID: PMC1809535 DOI: 10.1111/j.1365-2249.2005.02929.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2005] [Indexed: 11/29/2022] Open
Abstract
The recent development of T cell receptor phage display opens up the possibility of engineering human T cell receptors with antibody-like binding properties for cell-surface peptide antigens. In this review we briefly discuss recent developments in molecular targeting of peptide antigens. We then discuss potential clinical applications of engineered high-affinity T cell receptors in autoimmunity and cancer.
Collapse
Affiliation(s)
- J M Boulter
- Department of Medical Biochemistry and Immunology, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, UK.
| | | |
Collapse
|
46
|
Line BR, Breyer RJ, McElvany KD, Earle DC, Khazaeli MB. Evaluation of human anti-mouse antibody response in normal volunteers following repeated injections of fanolesomab (NeutroSpec), a murine anti-CD15 IgM monoclonal antibody for imaging infection. Nucl Med Commun 2005; 25:807-11. [PMID: 15266175 DOI: 10.1097/01.mnm.0000134745.22032.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fanolesomab (NeutroSpec) is a murine monoclonal Tc labelled anti-CD15 IgM antibody that localizes collections of human polymorphonuclear neutrophils (PMNs) at sites of infection. OBJECTIVES The objectives of this study were to evaluate the safety of repeated injections of fanolesomab and the extent of induction of human anti-mouse antibody (HAMA) response. METHODS Thirty healthy adults (15 men and 15 women) were enrolled in the study. Subjects were injected on two separate occasions, separated by 21 days, with 125 microg of fanolesomab that had been labelled with decayed Tc. HAMA assays were performed on blood samples drawn prior to each injection, and at 7 and 28 days following the second injection. Safety was determined by monitoring for adverse events, and for changes in vital signs, physical examination and clinical laboratory measurements. RESULTS Five subjects exhibited induction of HAMA (16.7%; 95% CI, 6.3-34.2%). Two were considered marginal responses (increase from 5 to 31, and 5 to 20 and 24 ng x ml), and three were considered moderate (7 to 228, 7 to 140 and 270, and 7 to 35 and 450 ng x ml). There were no strong responses (greater than 1000 ng x ml). Seven subjects experienced adverse events, most of which were coincidental to administration of fanolesomab. There were no serious or severe adverse events. CONCLUSIONS Repeated fanolesomab injections at clinically useful doses does not appear to induce a strong HAMA response nor does it present a risk for serious adverse events.
Collapse
Affiliation(s)
- Bruce R Line
- Department of Radiology, Albany Medical Center, Albany, New York, USA.
| | | | | | | | | |
Collapse
|
47
|
Lillo AM, Sun C, Gao C, Ditzel H, Parrish J, Gauss CM, Moss J, Felding-Habermann B, Wirsching P, Boger DL, Janda KD. A human single-chain antibody specific for integrin alpha3beta1 capable of cell internalization and delivery of antitumor agents. ACTA ACUST UNITED AC 2005; 11:897-906. [PMID: 15271348 DOI: 10.1016/j.chembiol.2004.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/26/2004] [Accepted: 04/07/2004] [Indexed: 11/26/2022]
Abstract
Selective antitumor chemotherapy can be achieved by using antibody-drug conjugates that recognize surface proteins upregulated in cancer cells. One such receptor is integrin alpha3beta1, which is overexpressed on malignant melanoma, prostate carcinoma, and glioma cells. We previously identified a human single-chain Fv antibody (scFv), denoted Pan10, specific for integrin alpha3beta1 that is internalized by human pancreatic cancer cells. Herein, we describe the chemical introduction of reactive thiol groups onto Pan10, the specific conjugation of the modified scFv to maleimide-derivatized analogs of the potent cytotoxic agent duocarmycin SA, and the properties of the resultant conjugates. Our findings provide evidence that Pan10-drug conjugates maintain the internalizing capacity of the parent scFv and are cytotoxic at nanomolar concentrations. Our Pan10-drug conjugates may be promising candidates for targeted chemotherapy of malignant diseases associated with overexpression of integrin alpha3beta1.
Collapse
Affiliation(s)
- Antonietta M Lillo
- Department of Chemistry, The Scripps Research Institute and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lusher J, Abildgaard C, Arkin S, Mannucci PM, Zimmermann R, Schwartz L, Hurst D. Human recombinant DNA-derived antihemophilic factor in the treatment of previously untreated patients with hemophilia A: final report on a hallmark clinical investigation. J Thromb Haemost 2004; 2:574-83. [PMID: 15102011 DOI: 10.1111/j.1538-7933.2004.00646.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Development of recombinant factor VIII (rFVIII) replacement therapy represents a milestone in the treatment of hemophilia A. OBJECTIVE The objective of this long-term, multicenter study was to assess the safety, efficacy and rate of inhibitor formation of rFVIII (Kogenate) in the treatment of hemophilia A in a group of previously untreated patients (PUPs). PATIENTS AND METHODS Between January 1989 and October 1997, 102 evaluable patients (mean age 3.9 years) were treated with rFVIII as sole therapy for prophylaxis against bleeding or for hemorrhage. Patients with mild hemophilia were treated for > or =2 years, while those with moderate or severe hemophilia were treated for > or =5 years or 100 exposure days. RESULTS All patients responded well to therapy, so that 82% of bleeding episodes required a single infusion for treatment. Only four mild drug-related adverse events were recorded during the study for an overall rate of 0.03% (4/13 464 infusions). No viral seroconversions were observed. The inhibitor incidence in PUPs with severe hemophilia was 29% (19/65). Overall, inhibitory antibodies developed in 21 patients (20.6%). Inhibitor titers were low (<10 Bethesda Units) in nine of the 21 patients despite continued episodic treatment with rFVIII and transient in eight patients receiving episodic treatment (seven low titer, one high titer). Eight high-titer inhibitor patients were treated with immune-tolerance induction therapy; five had successful outcomes. CONCLUSIONS The observed incidence of inhibitor formation is similar to studies of PUPs receiving plasma-derived FVIII. These results demonstrate the safety and efficacy of rFVIII in long-term treatment of hemophilia A.
Collapse
Affiliation(s)
- J Lusher
- Children's Hospital of Michigan, Detroit 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pavlinkova G, Colcher D, Booth BJ, Goel A, Wittel UA, Batra SK. Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG-72 single-chain Fvs. Int J Cancer 2001; 94:717-26. [PMID: 11745468 DOI: 10.1002/ijc.1523] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
One major constraint in the clinical application of murine monoclonal antibodies (MAbs) is the development of a human antimurine antibody response. The immunogenicity of MAbs can be minimized by replacing nonhuman regions with corresponding human sequences. The studies reported in our article were undertaken to analyze the immunoreactivity and the immunogenicity of the CC49 single-chain antibody fragments (scFvs): (i) an scFv construct comprised of mouse CC49 VL and VH (m/m scFv), (ii) a light chain shuffled scFv with human VL (Hum4 VL) and mouse CC49 VH (h/m scFv), and (iii) a humanized scFv assembled from Hum4 VL and CC49 VH complementary determining regions (CDRs) grafted onto a VH framework of MAb 21/28' CL (h/CDR scFv). The CC49 scFvs competed for an antigen binding site with CC49 IgG in a similar fashion in a competition radioimmunoassay and were able to inhibit the binding of CC49 IgG to the antigen completely. The immunogenicity of CC49 scFvs was tested using sera with antiidiotypic antibodies to MAb CC49 obtained from patients treated by CC49 IgG in clinical trials. All tested sera exhibited the highest reactivity to the m/m scFv. However, the sera demonstrated differential reactivities to h/CDR scFv and h/m scFv. Replacement of the mouse chain in h/m scFv and h/CDR scFv decreased or completely averted serum reactivity. Our studies compared for the first time the antigen binding and immunogenicity of different scFv constructs containing the mouse, CDR grafted or human variable chains. These results indicate that the humanized CC49 scFv is potentially an important agent for imaging and therapeutic applications with TAG-72-positive tumors.
Collapse
Affiliation(s)
- G Pavlinkova
- Department of Pathology and Microbiology, Nebraska Medical Center, Omaha, NE 68198-4525, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rizvi SM, Allen BJ, Tian Z, Goozee G, Sarkar S. In vitro and preclinical studies of targeted alpha therapy (TAT) for colorectal cancer. Colorectal Dis 2001; 3:345-53. [PMID: 12790958 DOI: 10.1046/j.1463-1318.2001.00264.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Effective targeted cancer therapy requires high selectivity and cytotoxicity of the labelled product. We report the preparation and testing of anticolorectal cancer monoclonal antibody c30.6 radioimmunoconjugates (RIC) labelled with alpha-emitting Bismuth-213 and positron emitting Terbium-152 using two chelators, viz. Cyclic dianhydride of diethylenetriaminepentacetic acid (DTPA) and CHX-A" (a DTPA derivative). METHODS Selectivity and stability of the RIC were tested in vitro (flow cytometry) and in vivo (biodistribution, organ/tumour uptake and retention). Cytotoxicity assays were carried out using tritiated thymidine uptake (inhibition of DNA synthesis) and MTS assay. RESULTS High labelling efficiency (ranging between 89 and 91%) and stability over 2-5 half-lives of the isotopes were seen. Kidney retention was not seen in contrast to high uptake and retention of both conjugates in tumours. Flow cytometry studies showed high specificity of the antibody before and after labelling and this unchanged targeting behaviour was reflected in cytotoxicity assays. These assays showed that only alpha-labelled antibody could selectively kill the cancer cells for activities as low as 2-3 microCi. The study also revealed that free isotopes or isotopes bound to nonspecific antibodies did not kill cancer cells. CONCLUSION The stability of the RICs and outstanding cytotoxicity of the alpha emitter, together with no kidney retention and high tumour uptake and retention of the radiolabel, offers a new approach for the potential control of colorectal cancer.
Collapse
Affiliation(s)
- S M Rizvi
- Centre of Experimental Radiation Oncology, St George Hospital, Kogarah, Australia
| | | | | | | | | |
Collapse
|