1
|
Li Y, Ren M, Li H, Zhang Z, Yuan K, Huang Y, Yuan S, Ju W, He Y, Xu K, Zeng L. Silencing endomucin in bone marrow sinusoids improves hematopoietic stem and progenitor cell homing during transplantation. Stem Cells 2024; 42:889-901. [PMID: 38995653 DOI: 10.1093/stmcls/sxae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Efficient homing of infused hematopoietic stem and progenitor cells (HSPCs) into the bone marrow (BM) is the prerequisite for successful hematopoietic stem cell transplantation. However, only a small part of infused HSPCs find their way to the BM niche. A better understanding of the mechanisms that facilitate HSPC homing will help to develop strategies to improve the initial HSPC engraftment and subsequent hematopoietic regeneration. Here, we show that irradiation upregulates the endomucin expression of endothelial cells in vivo and in vitro. Furthermore, depletion of endomucin in irradiated endothelial cells with short-interfering RNA (siRNA) increases the HSPC-endothelial cell adhesion in vitro. To abrogate the endomucin of BM sinusoidal endothelial cells (BM-SECs) in vivo, we develop a siRNA-loaded bovine serum albumin nanoparticle for targeted delivery. Nanoparticle-mediated siRNA delivery successfully silences endomucin expression in BM-SECs and improves HSPC homing during transplantation. These results reveal that endomucin plays a critical role in HSPC homing during transplantation and that gene-based manipulation of BM-SEC endomucin in vivo can be exploited to improve the efficacy of HSPC transplantation.
Collapse
Affiliation(s)
- Yue Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Miao Ren
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Hu Li
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Zuo Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Yujin Huang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Shengnan Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- School of Medical Technology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Yuan He
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou 221006, Jiangsu, People's Republic of China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu, People's Republic of China
| |
Collapse
|
2
|
Zhang F, Lu X, Zhu X, Yu Z, Xia W, Wei X. Real-time monitoring of small extracellular vesicles (sEVs) by in vivo flow cytometry. J Extracell Vesicles 2024; 13:e70003. [PMID: 39441010 PMCID: PMC11497658 DOI: 10.1002/jev2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicular structures comprised of a bilayer lipid membrane, released by living cells. There is a growing body of evidence for their functionality, indicating that small EVs (sEVs) can mediate specific forms of intercellular communication. The future applications of sEVs hold great promise, not only as diagnostic markers but also as therapeutic agents. However, the greatest difficulty in the clinical translation of sEVs is that they are currently poorly understood, especially concerning their in vivo behaviour. In this study, we provide a novel method for monitoring sEVs in blood circulation based on in vivo flow cytometry (IVFC). We have demonstrated that the height of the IVFC signal baseline is proportional to the concentration of sEVs. Moreover, we have found out that the peaks in the IVFC signal are generated by the aggregation or cellular uptake of sEVs. In vivo monitoring of sEVs clearance from the blood indicates that PEGylated sEVs have a longer residence time and exhibit less aggregation in circulation compared to non-PEGylated sEVs. These studies reveal that IVFC enables real-time in vivo monitoring of circulating sEVs, which can provide valuable insights into the pharmacokinetics and cellular targeting capabilities of sEVs.
Collapse
Affiliation(s)
- Fuli Zhang
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xin Lu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Xi Zhu
- Institute of Biomedical EngineeringKunming Medical UniversityKunmingYunnanChina
| | - Ziwen Yu
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
| | - Weiliang Xia
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xunbin Wei
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
- The Department of Biomedical Engineering, Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
- Institute of Medical TechnologyPeking University Health Science CenterBeijingChina
- International Cancer InstitutePeking UniversityBeijingChina
| |
Collapse
|
3
|
Lee K, Dissanayake W, MacLiesh M, Hong CL, Yin Z, Kawano Y, Kaszuba CM, Kawano H, Quarato ER, Marples B, Becker M, Bajaj J, Calvi LM, Yeh SCA. Ultralow-dose irradiation enables engraftment and intravital tracking of disease initiating niches in clonal hematopoiesis. Sci Rep 2024; 14:20486. [PMID: 39227700 PMCID: PMC11372138 DOI: 10.1038/s41598-024-71307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2+/- and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Wimeth Dissanayake
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Melissa MacLiesh
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Cih-Li Hong
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zi Yin
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - Yuko Kawano
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina M Kaszuba
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroki Kawano
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily R Quarato
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Toxicology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael Becker
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jeevisha Bajaj
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Laura M Calvi
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Shu-Chi A Yeh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA.
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
4
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
5
|
Abbasizadeh N, Burns CS, Verrinder R, Ghazali F, Seyedhassantehrani N, Spencer JA. Age and dose dependent changes to the bone and bone marrow microenvironment after cytotoxic conditioning with busulfan. Front Cell Dev Biol 2024; 12:1441381. [PMID: 39139448 PMCID: PMC11319712 DOI: 10.3389/fcell.2024.1441381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Preparative regimens before Hematopoietic Cell Transplantation (HCT) damage the bone marrow (BM) microenvironment, potentially leading to secondary morbidity and even mortality. The precise effects of cytotoxic preconditioning on bone and BM remodeling, regeneration, and subsequent hematopoietic recovery over time remain unclear. Moreover, the influence of recipient age and cytotoxic dose have not been fully described. In this study, we longitudinally investigated bone and BM remodeling after busulfan treatment with low intensity (LI) and high intensity (HI) regimens as a function of animal age. As expected, higher donor chimerism was observed in young mice in both LI and HI regimens compared to adult mice. Noticeably in adult mice, significant engraftment was only observed in the HI group. The integrity of the blood-bone marrow barrier in calvarial BM blood vessels was lost after busulfan treatment in the young mice and remained altered even 6 weeks after HCT. In adult mice, the severity of vascular leakage appeared to be dose-dependent, being more pronounced in HI compared to LI recipients. Interestingly, no noticeable change in blood flow velocity was observed following busulfan treatment. Ex vivo imaging of the long bones revealed a reduction in the frequency and an increase in the diameter and density of the blood vessels shortly after treatment, a phenomenon that largely recovered in young mice but persisted in older mice after 6 weeks. Furthermore, analysis of bone remodeling indicated a significant alteration in bone turnover at 6 weeks compared to earlier timepoints in both young and adult mice. Overall, our results reveal new aspects of bone and BM remodeling, as well as hematopoietic recovery, which is dependent on the cytotoxic dose and recipient age.
Collapse
Affiliation(s)
- Nastaran Abbasizadeh
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Christian S. Burns
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Ruth Verrinder
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Farhad Ghazali
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
| | - Negar Seyedhassantehrani
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
| | - Joel A. Spencer
- Department of Bioengineering, University of California, Merced, Merced, CA, United States
- Center for Cellular and Biomolecular Machines, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
6
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
7
|
Sanz-Ortega L, Andersson A, Carlsten M. Harnessing upregulated E-selectin while enhancing SDF-1α sensing redirects infused NK cells to the AML-perturbed bone marrow. Leukemia 2024; 38:579-589. [PMID: 38182818 PMCID: PMC10912028 DOI: 10.1038/s41375-023-02126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
Increased bone marrow (BM) homing of NK cells is associated with positive outcome in patients with acute myeloid leukemia (AML) treated within adoptive NK cell transfer trials. While most efforts to further improve the efficacy focus on augmenting NK cell persistence and cytotoxicity, few address their ability to home to the tumor. Here, we decipher how AML growth alters the BM niche to impair NK cell infiltration and how insights can be utilized to resolve this issue. We show that AML development gradually impairs the BM homing capacity of infused NK cells, which was tightly linked to loss of SDF-1α in this environment. AML development also triggered up-regulation of E-selectin on BM endothelial cells. Given the poor E-selectin-binding capacity of NK cells, introduction of fucosyltransferase-7 (FUT7) to the NK cells per mRNA transfection resulted in potent E-selectin binding and stronger adhesion to E-selectin+ endothelial cells. Co-introduction of FUT7 and gain-of-function CXCR4 (CXCR4R334X) redirected NK cell homing to the BM of AML-bearing mice nearly to the levels in AML-free mice. This work shows how impaired NK cell homing caused by AML-induced microenvironmental changes can be overcome by genetic engineering. We speculate our insights can help further advance future NK cell immunotherapies.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Andersson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
8
|
Jiang C, Gonzalez-Anton S, Li X, Mi E, Wu L, Zhao H, Zhang G, Lu A, Lo Celso C, Ma D. General anaesthetics reduce acute lymphoblastic leukaemia malignancies in vitro and in vivovia CXCR4 and osteopontin mediated mechanisms. F1000Res 2024; 11:1491. [PMID: 38798305 PMCID: PMC11128051 DOI: 10.12688/f1000research.125877.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 05/29/2024] Open
Abstract
Background Acute lymphoblastic leukaemia (ALL) is a common type of cancer in children. General anaesthetics are often used on patients undergoing painful procedures during ALL treatments but their effects on ALL malignancy remain unknown. Herein, we aim to study the effect of propofol and sevoflurane on the migration, homing and chemoresistance of ALL cells. Methods NALM-6 and Reh cells were treated with propofol (5 and 10 μg/ml) or sevoflurane (3.6%) in vitro for six hours. Then, cells were harvested for adhesion assay and migration assay in vitro. In in vivo experiments, GFP-NALM-6 cells were pre-treated with propofol (10 μg/ml) or sevoflurane (3.6%) for six hours. Then, cells were injected intravenously to C57BL/6 female mice followed by intravital microscopy. For chemoresistance study, cells were treated with rising concentrations of Ara-c (0.05-50 nM) plus 10μg/ml of propofol or Ara-C plus 3.6% of sevoflurane for 4 hours, followed by the assessment of cell viability via CCK-8 assay and detection of autophagy via flow cytometry. Results Both anaesthetics reduced in vivo migration and in vivo homing as exemplified by 1) the reduction in the number of cells entering the bone marrow and 2) the disturbance in homing location in relation to endosteal surface. Our results indicated that general anaesthetics reduced the surface CXCR4 expression and the adhesion of leukaemia cells to thrombin cleaved osteopontin (OPN) was reduced. Those changes might result in the alterations in migration and homing. In addition, both anaesthetics sensitised ALL cells to Ara-c possibly through CXCR4 mediated mechanisms. Propofol but not sevoflurane enhanced chemo-related cell death via inducing cytotoxic autophagy. Conclusion Together, our data suggest that both propofol and sevoflurane could reduce ALL migration, and homing in vivo and in vitro via CXCR4 and OPN mediated mechanisms. Both anaesthetics could sensitise ALL cells to chemotherapy possibly via CXCR4 mediated mechanisms.
Collapse
Affiliation(s)
- Cui Jiang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| | - Sara Gonzalez-Anton
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Xiaomeng Li
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| | - Emma Mi
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| | - Ge Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Cristina Lo Celso
- Lo Celso Laboratory, The Francis Crick Institute, London, UK
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Life Sciences, Imperial College London, South Kensington Campus, Imperial College London, London, SW7 2AZ, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW10 9NH, UK
| |
Collapse
|
9
|
Perrone C, Bozzano F, Dal Bello MG, Del Zotto G, Antonini F, Munari E, Maggi E, Moretta F, Farshchi AH, Pariscenti G, Tagliamento M, Genova C, Moretta L, De Maria A. CD34 +DNAM-1 brightCXCR4 + haemopoietic precursors circulate after chemotherapy, seed lung tissue and generate functional innate-like T cells and NK cells. Front Immunol 2024; 15:1332781. [PMID: 38390333 PMCID: PMC10881815 DOI: 10.3389/fimmu.2024.1332781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Background There is little information on the trajectory and developmental fate of Lin-CD34+DNAM-1bright CXCR4+ progenitors exiting bone marrow during systemic inflammation. Objective To study Lin-CD34+DNAM-1bright CXCR4+ cell circulation in cancer patients, to characterize their entry into involved lung tissue and to characterize their progenies. Methods Flow cytometric analysis of PBMC from 18 patients with lung cancer on samples collected immediately before the first and the second treatment was performed to study Lin-CD34+DNAM-1bright CXCR4+ precursors. Precursors were purified (>99%) and cultured in vitro from all patients. Paired PBMC and tissue samples from patients undergoing tumor resection were analyzed by flow cytometry to assess tissue entry and compare phenotype and developmental potential of Lin-CD34+DNAM-1bright CXCR4+ cells in both compartments. Results Significant circulation of Lin-CD34+DNAM-1bright CXCR4+ precursors was observed 20d after the first treatment. Precursors express CXC3CR1, CXCR3, CXCR1 consistent with travel towards inflamed tissues. Flowcytometric analysis of lung tissue samples showed precursor presence in all patients in tumor and neighboring uninvolved areas. Successful purification and in vitro culture from both blood and lung tissue generates a minor proportion of maturing NK cells (<10%) and a predominant proportion (>85%) of α/β T-progenies with innate-like phenotype expressing NKG2D,NKp30,DNAM-1. Innate-like maturing T-cells in vitro are cytotoxic, can be triggered via NKR/TCR co-stimulation and display broad spectrum Th1,Th2 and Th1/Th17 cytokine production. Conclusion In advanced stage lung cancer CD34+DNAM-1brightCXCR4+ inflammatory precursors increase upon treatment, enter involved tissues, generate functional progenies and may thus represent an additional player contributing to immune balance in the highly SDF-1/CXCR4-biased pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Carola Perrone
- Experimental Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Bozzano
- Laboratorio Diagnostico di Autoimmunologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Genny Del Zotto
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Antonini
- Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enrico Maggi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, Istituto di Ricovero e Cura a Carattere Scientifico Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Gianluca Pariscenti
- Thoracic Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Tagliamento
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Carlo Genova
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea De Maria
- Department of Health Sciences, University of Genova, Genova, Italy
- Infections of Immunocompromised Hosts Unit, Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
10
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
11
|
Mazzitelli JA, Pulous FE, Smyth LCD, Kaya Z, Rustenhoven J, Moskowitz MA, Kipnis J, Nahrendorf M. Skull bone marrow channels as immune gateways to the central nervous system. Nat Neurosci 2023; 26:2052-2062. [PMID: 37996526 PMCID: PMC10894464 DOI: 10.1038/s41593-023-01487-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Decades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called 'skull channels') connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS. We explore the role of this hematopoietic output on CNS health, focusing on the supply of immune cells during health and disease.
Collapse
Affiliation(s)
- Jose A Mazzitelli
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Fadi E Pulous
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leon C D Smyth
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Zeynep Kaya
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Justin Rustenhoven
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Michael A Moskowitz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA.
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA.
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, MO, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Internal Medicine I, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
12
|
Zhuang B, Zhu X, Lin J, Zhang F, Qiao B, Kang J, Xie X, Wei X, Xie X. Radiofrequency ablation induces tumor cell dissemination in a mouse model of hepatocellular carcinoma. Eur Radiol Exp 2023; 7:74. [PMID: 38019353 PMCID: PMC10686970 DOI: 10.1186/s41747-023-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND We tested the hypothesis that radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) promotes tumor cell release and explored a method for reducing these effects. METHODS A green fluorescent protein-transfected orthotopic HCC model was established in 99 nude mice. In vivo flow cytometry was used to monitor circulating tumor cell (CTC) dynamics. Pulmonary fluorescence imaging and pathology were performed to investigate lung metastases. First, the kinetics of CTCs during the periablation period and the survival rate of CTCs released during RFA were investigated. Next, mice were allocated to controls, sham ablation, or RFA with/without hepatic vessel blocking (ligation of the portal triads) for evaluating the postablation CTC level, lung metastases, and survival over time. Moreover, the kinetics of CTCs, lung metastases, and mice survival were evaluated for RFA with/without ethanol injection. Pathological changes in tumors and surrounding parenchyma after ethanol injection were noted. Statistical analysis included t-test, ANOVA, and Kaplan-Meier survival curves. RESULTS CTC counts were 12.3-fold increased during RFA, and 73.7% of RFA-induced CTCs were viable. Pre-RFA hepatic vessel blocking prevented the increase of peripheral CTCs, reduced the number of lung metastases, and prolonged survival (all p ≤ 0.05). Similarly, pre-RFA ethanol injection remarkably decreased CTC release during RFA and further decreased lung metastases with extended survival (all p ≤ 0.05). Histopathology revealed thrombus formation in blood vessels after ethanol injection, which may clog tumor cell dissemination during RFA. CONCLUSION RFA induces viable tumor cell dissemination, and pre-RFA ethanol injection may provide a prophylactic strategy to reduce this underestimated effect. RELEVANCE STATEMENT RFA for HCC promotes viable tumor cell release during ablation, while ethanol injection can prevent RFA induced tumor cell release. KEY POINTS • RFA induced the release of viable tumor cells during the ablation procedure in an animal model. • Hepatic vessel blocking can suppress tumor cells dissemination during RFA. • Ethanol injection can prevent RFA-induced tumor cell release, presumably because of the formation of thrombosis.
Collapse
Affiliation(s)
- Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xi Zhu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Jinhua Lin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Fuli Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Jihui Kang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohua Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Lin Q, Choyke PL, Sato N. Visualizing vasculature and its response to therapy in the tumor microenvironment. Theranostics 2023; 13:5223-5246. [PMID: 37908739 PMCID: PMC10614675 DOI: 10.7150/thno.84947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/30/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor vasculature plays a critical role in the progression and metastasis of tumors, antitumor immunity, drug delivery, and resistance to therapies. The morphological and functional changes of tumor vasculature in response to therapy take place in a spatiotemporal-dependent manner, which can be predictive of treatment outcomes. Dynamic monitoring of intratumor vasculature contributes to an improved understanding of the mechanisms of action of specific therapies or reasons for treatment failure, leading to therapy optimization. There is a rich history of methods used to image the vasculature. This review describes recent advances in imaging technologies to visualize the tumor vasculature, with a focus on enhanced intravital imaging techniques and tumor window models. We summarize new insights on spatial-temporal vascular responses to various therapies, including changes in vascular perfusion and permeability and immune-vascular crosstalk, obtained from intravital imaging. Finally, we briefly discuss the clinical applications of intravital imaging techniques.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Pang K, Dong S, Zhu Y, Zhu X, Zhou Q, Gu B, Jin W, Zhang R, Fu Y, Yu B, Sun D, Duanmu Z, Wei X. Advanced flow cytometry for biomedical applications. JOURNAL OF BIOPHOTONICS 2023; 16:e202300135. [PMID: 37263969 DOI: 10.1002/jbio.202300135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
Collapse
Affiliation(s)
- Kai Pang
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Sihan Dong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuxi Zhu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quanyu Zhou
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jin
- International Cancer Institute, Peking University, Beijing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuting Fu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Bingchen Yu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Da Sun
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science & Technology University, Beijing, China
| | - Xunbin Wei
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
16
|
Lu Q, Liu T, Han Z, Zhao J, Fan X, Wang H, Song J, Ye H, Sun J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J Control Release 2023; 361:604-620. [PMID: 37579974 DOI: 10.1016/j.jconrel.2023.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Intravenous administration of drugs is a widely used cancer therapy approach. However, the efficacy of these drugs is often hindered by various biological barriers, including circulation, accumulation, and penetration, resulting in poor delivery to solid tumors. Recently, cell-based drug delivery platforms have emerged as promising solutions to overcome these limitations. These platforms offer several advantages, including prolonged circulation time, active targeting, controlled release, and excellent biocompatibility. Cell-based delivery systems encompass cell membrane coating, intracellular loading, and extracellular backpacking. These innovative platforms hold the potential to revolutionize cancer diagnosis, monitoring, and treatment, presenting a plethora of opportunities for the advancement and integration of pharmaceuticals, medicine, and materials science. Nevertheless, several technological, ethical, and financial barriers must be addressed to facilitate the translation of these platforms into clinical practice. In this review, we explore the emerging strategies to overcome these challenges, focusing specifically on the functions and advantages of cell-mediated drug delivery in cancer treatment.
Collapse
Affiliation(s)
- Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zeyu Han
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jian Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China; Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, Zurich 8092, Switzerland.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
17
|
Fiévet L, Espagnolle N, Gerovska D, Bernard D, Syrykh C, Laurent C, Layrolle P, De Lima J, Justo A, Reina N, Casteilla L, Araúzo-Bravo MJ, Naji A, Pagès JC, Deschaseaux F. Single-cell RNA sequencing of human non-hematopoietic bone marrow cells reveals a unique set of inter-species conserved biomarkers for native mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:229. [PMID: 37649081 PMCID: PMC10469496 DOI: 10.1186/s13287-023-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Native bone marrow (BM) mesenchymal stem/stromal cells (BM-MSCs) participate in generating and shaping the skeleton and BM throughout the lifespan. Moreover, BM-MSCs regulate hematopoiesis by contributing to the hematopoietic stem cell niche in providing critical cytokines, chemokines and extracellular matrix components. However, BM-MSCs contain a heterogeneous cell population that remains ill-defined. Although studies on the taxonomy of native BM-MSCs in mice have just started to emerge, the taxonomy of native human BM-MSCs remains unelucidated. METHODS By using single-cell RNA sequencing (scRNA-seq), we aimed to define a proper taxonomy for native human BM non-hematopoietic subsets including endothelial cells (ECs) and mural cells (MCs) but with a focal point on MSCs. To this end, transcriptomic scRNA-seq data were generated from 5 distinct BM donors and were analyzed together with other transcriptomic data and with computational biology analyses at different levels to identify, characterize and classify distinct native cell subsets with relevant biomarkers. RESULTS We could ascribe novel specific biomarkers to ECs, MCs and MSCs. Unlike ECs and MCs, MSCs exhibited an adipogenic transcriptomic pattern while co-expressing genes related to hematopoiesis support and multilineage commitment potential. Furthermore, by a comparative analysis of scRNA-seq of BM cells from humans and mice, we identified core genes conserved in both species. Notably, we identified MARCKS, CXCL12, PDGFRA, and LEPR together with adipogenic factors as archetypal biomarkers of native MSCs within BM. In addition, our data suggest some complex gene nodes regulating critical biological functions of native BM-MSCs together with a preferential commitment toward an adipocyte lineage. CONCLUSIONS Overall, our taxonomy for native BM non-hematopoietic compartment provides an explicit depiction of gene expression in human ECs, MCs and MSCs at single-cell resolution. This analysis helps enhance our understanding of the phenotype and the complexity of biological functions of native human BM-MSCs.
Collapse
Affiliation(s)
- Loïc Fiévet
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France
- CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Nicolas Espagnolle
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France
| | - Daniela Gerovska
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Basque Foundation for Science, IKERBASQUE, 48009, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - David Bernard
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France
| | - Charlotte Syrykh
- Department d'Anatomie Pathologique, Institut Universitaire du Cancer, CHU de Toulouse, Toulouse, France
| | - Camille Laurent
- Department d'Anatomie Pathologique, Institut Universitaire du Cancer, CHU de Toulouse, Toulouse, France
| | - Pierre Layrolle
- Tonic Inserm/UPS UMR 1214, CHU Purpan Hospital, Toulouse, France
- UMR 1238 Inserm, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France
| | - Julien De Lima
- UMR 1238 Inserm, Phy-OS, Bone Sarcoma and Remodeling of Calcified Tissues, School of Medicine, University of Nantes, Nantes, France
| | - Arthur Justo
- Department de Chirurgie Orthopédique, Pierre Paul Riquet, Hôpital Purpan, Toulouse, France
| | - Nicolas Reina
- Department de Chirurgie Orthopédique, Pierre Paul Riquet, Hôpital Purpan, Toulouse, France
| | - Louis Casteilla
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France
| | - Marcos J Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Basque Foundation for Science, IKERBASQUE, 48009, Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Abderrahim Naji
- Department of Environmental Medicine, Cooperative Medicine Unit, Research and Education Faculty, Medicine Science Cluster, Nankoku, Kochi Prefecture, Japan
| | - Jean-Christophe Pagès
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France
- CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Frédéric Deschaseaux
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1301, UMR CNRS 5070, France, Université de Toulouse, Toulouse, France.
| |
Collapse
|
18
|
Hoque ME, Biswas MK, Hossain MM, Bhattacharja S, Hasan KME, Sharafuddin SM, Das SK, Haque Y. Nonlinear optical phase shift in blood plasmas for neoplasia diagnosis. OPTICS EXPRESS 2023; 31:23056-23065. [PMID: 37475399 DOI: 10.1364/oe.490188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/22/2023]
Abstract
Detecting cancer at an early stage is crucial for timely treatment and better chances of survival. This research focuses on a scanning method for detecting cancer by examining the nonlinear optical characteristics of blood plasma samples. The study used both cancerous and noncancerous plasma samples and presented the results statistically by utilizing an incident laser power-dependent nonlinear optical phase shift variable called ζ in the Z-scan technique. The results showed a clear difference between the cancerous and non-cancerous samples with an accuracy of 92%. Furthermore, the study suggests the potential for measuring the cancer staging from the cancerous plasma. The study also confirmed a significant difference in ζ for plasma samples undergoing chemotherapy. A red laser with high power (above 18mW) was used to avoid the involvement of fluorophores or other chemical reagents in the plasma samples during the measurement.
Collapse
|
19
|
Zhao X, Ding L, Yan J, Xu J, He H. Constructing an In Vitro and In Vivo Flow Cytometry by Fast Line Scanning of Confocal Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:3305. [PMID: 36992015 PMCID: PMC10059927 DOI: 10.3390/s23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Composed of a fluidic and an optical system, flow cytometry has been widely used for biosensing. The fluidic flow enables its automatic high-throughput sample loading and sorting while the optical system works for molecular detection by fluorescence for micron-level cells and particles. This technology is quite powerful and highly developed; however, it requires a sample in the form of a suspension and thus only works in vitro. In this study, we report a simple scheme to construct a flow cytometry based on a confocal microscope without any modifications. We demonstrate that line scanning of microscopy can effectively excite fluorescence of flowing microbeads or cells in a capillary tube in vitro and in blood vessels of live mice in vivo. This method can resolve microbeads at several microns and the results are comparable to a classic flow cytometer. The absolute diameter of flowing samples can be indicated directly. The sampling limitations and variations of this method is carefully analyzed. This scheme can be easily accomplished by any commercial confocal microscope systems, expands the function of them, and is of promising potential for simultaneous confocal microscopy and in vivo detection of cells in blood vessels of live animals by a single system.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Leqi Ding
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jingsheng Yan
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (L.D.)
| | - Jin Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; (X.Z.)
| |
Collapse
|
20
|
Feng X, Sun R, Lee M, Chen X, Guo S, Geng H, Müschen M, Choi J, Pereira JP. Cell circuits between leukemic cells and mesenchymal stem cells block lymphopoiesis by activating lymphotoxin beta receptor signaling. eLife 2023; 12:e83533. [PMID: 36912771 PMCID: PMC10042536 DOI: 10.7554/elife.83533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Using mouse models of ALL and AML, here we show that leukemic cells turn off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin α1β2 and activate lymphotoxin beta receptor (LTβR) signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin α1β2 expression in leukemic cells. Genetic or pharmacological disruption of LTβR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage.
Collapse
Affiliation(s)
- Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
- Center of Molecular and Cellular Oncology and Department of Immunobiology, Yale UniversityNew HavenUnited States
| | - Moonyoung Lee
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
| | - Xinyue Chen
- Department of Cell Biology and Yale Stem Cell Center, Yale UniversityNew HavenUnited States
| | - Shangqin Guo
- Department of Cell Biology and Yale Stem Cell Center, Yale UniversityNew HavenUnited States
| | - Huimin Geng
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Marcus Müschen
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
- Center of Molecular and Cellular Oncology and Department of Immunobiology, Yale UniversityNew HavenUnited States
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of MedicineSeoulRepublic of Korea
- Department of Genetics, School of Medicine, Yale UniversityNew HavenUnited States
| | - Joao Pedro Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
21
|
Solidum JGN, Jeong Y, Heralde F, Park D. Differential regulation of skeletal stem/progenitor cells in distinct skeletal compartments. Front Physiol 2023; 14:1137063. [PMID: 36926193 PMCID: PMC10013690 DOI: 10.3389/fphys.2023.1137063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Skeletal stem/progenitor cells (SSPCs), characterized by self-renewal and multipotency, are essential for skeletal development, bone remodeling, and bone repair. These cells have traditionally been known to reside within the bone marrow, but recent studies have identified the presence of distinct SSPC populations in other skeletal compartments such as the growth plate, periosteum, and calvarial sutures. Differences in the cellular and matrix environment of distinct SSPC populations are believed to regulate their stemness and to direct their roles at different stages of development, homeostasis, and regeneration; differences in embryonic origin and adjacent tissue structures also affect SSPC regulation. As these SSPC niches are dynamic and highly specialized, changes under stress conditions and with aging can alter the cellular composition and molecular mechanisms in place, contributing to the dysregulation of local SSPCs and their activity in bone regeneration. Therefore, a better understanding of the different regulatory mechanisms for the distinct SSPCs in each skeletal compartment, and in different conditions, could provide answers to the existing knowledge gap and the impetus for realizing their potential in this biological and medical space. Here, we summarize the current scientific advances made in the study of the differential regulation pathways for distinct SSPCs in different bone compartments. We also discuss the physical, biological, and molecular factors that affect each skeletal compartment niche. Lastly, we look into how aging influences the regenerative capacity of SSPCs. Understanding these regulatory differences can open new avenues for the discovery of novel treatment approaches for calvarial or long bone repair.
Collapse
Affiliation(s)
- Jea Giezl Niedo Solidum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Youngjae Jeong
- Department of Molecular and Human Genetics, Houston, TX, United States
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Dongsu Park
- Department of Molecular and Human Genetics, Houston, TX, United States
- Center for Skeletal Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Ruiz-Uribe NE, Bracko O, Swallow M, Omurzakov A, Dash S, Uchida H, Xiang D, Haft-Javaherian M, Falkenhain K, Lamont ME, Ali M, Njiru BN, Chang HY, Tan AY, Xiang JZ, Iadecola C, Park L, Sanchez T, Nishimura N, Schaffer CB. Vascular oxidative stress causes neutrophil arrest in brain capillaries, leading to decreased cerebral blood flow and contributing to memory impairment in a mouse model of Alzheimer’s disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528710. [PMID: 36824768 PMCID: PMC9949082 DOI: 10.1101/2023.02.15.528710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.
Collapse
|
23
|
Abstract
Both the cascade whereby a blood-borne cell enters a tissue and the anchoring of hematopoietic stem/progenitor cells (HSPCs) within bone marrow critically pivots on cell-cell interactions mediated by E-selectin binding to its canonical carbohydrate ligand, the tetrasaccharide termed "sialylated Lewis X" (sLeX). E-selectin, a member of the selectin class of adhesion molecules that is exclusively expressed by vascular endothelium, engages sLeX-bearing glycoconjugates that adorn mature leukocytes and HSPCs, as well as malignant cells, thereby permitting these cells to extravasate into various tissues. E-selectin expression is induced on microvascular endothelial cells within inflammatory loci at all tissues. However, conspicuously, E-selectin is constitutively expressed within microvessels in skin and marrow and, additionally, is inducibly expressed at these sites. Within the marrow, E-selectin receptor/ligand interactions promote lodgment of HSPCs and their malignant counterparts within hematopoietic growth-promoting microenvironments, collectively known as "vascular niches". Indeed, E-selectin receptor/ligand interactions have been reported to regulate both hematopoietic stem, and leukemic, cell proliferative dynamics. As such, signaling induced via engagement of E-selectin ligands is gaining interest as a critical mediator of homeostatic and malignant hematopoiesis, and this review will present current perspectives on the glycoconjugates mediating E-selectin receptor/ligand interactions and their currently defined role(s) in leukemogenesis.
Collapse
Affiliation(s)
- Evan Ales
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Robert Sackstein
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
24
|
Cappelli LV, Fiore D, Phillip JM, Yoffe L, Di Giacomo F, Chiu W, Hu Y, Kayembe C, Ginsberg M, Consolino L, Barcia Duran JG, Zamponi N, Melnick AM, Boccalatte F, Tam W, Elemento O, Chiaretti S, Guarini A, Foà R, Cerchietti L, Rafii S, Inghirami G. Endothelial cell-leukemia interactions remodel drug responses, uncovering T-ALL vulnerabilities. Blood 2023; 141:503-518. [PMID: 35981563 PMCID: PMC10082359 DOI: 10.1182/blood.2022015414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Luca Vincenzo Cappelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Danilo Fiore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Institute for Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Jude M. Phillip
- Departments of Biomedical Engineering, Chemical and Biomolecular Engineering, Oncology, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD
| | - Liron Yoffe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Filomena Di Giacomo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - William Chiu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Yang Hu
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Clarisse Kayembe
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | | | - Lorena Consolino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Jose Gabriel Barcia Duran
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Nahuel Zamponi
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Ari M. Melnick
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | | | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Institute for Computational Biomedicine and Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Sabina Chiaretti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Guarini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Robin Foà
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
25
|
Alghamdi A, Tamra A, Rakhmatulina A, Nozue S, Al-Amoodi AS, Aldehaiman MM, Isaioglou I, Merzaban JS, Habuchi S. Nanoscopic Characterization of Cell Migration under Flow Using Optical and Electron Microscopy. Anal Chem 2023; 95:1958-1966. [PMID: 36627105 PMCID: PMC9878504 DOI: 10.1021/acs.analchem.2c04222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
Hematopoietic stem/progenitor cell (HSPC) and leukemic cell homing is an important biological phenomenon that takes place through essential interactions with adhesion molecules on an endothelial cell layer. The homing process of HSPCs begins with the tethering and rolling of the cells on the endothelial layer, which is achieved by the interaction between selectins on the endothelium to the ligands on HSPC/leukemic cells under shear stress of the blood flow. Although many studies have been based on in vitro conditions of the cells rolling over recombinant proteins, significant challenges remain when imaging HSPC/leukemic cells on the endothelium, a necessity when considering characterizing cell-to-cell interaction and rolling dynamics during cell migration. Here, we report a new methodology that enables imaging of stem-cell-intrinsic spatiotemporal details during its migration on an endothelium-like cell monolayer. We developed optimized protocols that preserve transiently appearing structures on HSPCs/leukemic cells during its rolling under shear stress for fluorescence and scanning electron microscopy characterization. Our new experimental platform is closer to in vivo conditions and will contribute to indepth understanding of stem-cell behavior during its migration and cell-to-cell interaction during the process of homing.
Collapse
Affiliation(s)
| | | | | | - Shuho Nozue
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Asma S. Al-Amoodi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mansour M. Aldehaiman
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ioannis Isaioglou
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jasmeen S. Merzaban
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Satoshi Habuchi
- Biological and Environmental
Science and Engineering Division, King Abdullah
University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
26
|
Abstract
The bone marrow (BM) is home to numerous cell types arising from hematopoietic stem cells (HSCs) and nonhematopoietic mesenchymal stem cells, as well as stromal cell components. Together they form the BM microenvironment or HSC niche. HSCs critically depend on signaling from these niches to function and survive in the long term. Significant advances in imaging technologies over the past decade have permitted the study of the BM microenvironment in mice, particularly with the development of intravital microscopy (IVM), which provides a powerful method to study these cells in vivo and in real time. Still, there is a lot to be learnt about the interactions of individual HSCs with their environment - at steady state and under various stresses - and whether specific niches exist for distinct developing hematopoietic lineages. Here, we describe our protocol and techniques used to visualize transplanted HSCs in the mouse calvarium, using combined confocal and two-photon IVM.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Cristina Lo Celso
- Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
27
|
Haase C, Richter D, Lin CP. Laser Micromachining of Bone as a Tool for Studying Bone Marrow Biology. Methods Mol Biol 2023; 2567:163-180. [PMID: 36255701 DOI: 10.1007/978-1-0716-2679-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The bone marrow (BM) has traditionally been a difficult tissue to access because it is embedded deep within the bone matrix. It is home to the hematopoietic stem cells (HSCs) that give rise to all blood cells in the body. It is also the site of origin for malignant blood cells such as leukemia and multiple myeloma, as well as a frequent site of metastasis for many solid tumors including prostate and breast cancer. The following chapter describes how laser micromachining of bone can be used to improve both optical and physical access to the BM. For example, laser thinning of the overlying bone can improve optical access, enabling deeper imaging into the BM as well as enhancing optical resolution by reducing scattering and aberration. Laser micromachining can also be used to provide physical access into the BM by creating access ports for micropipette insertion and delivery of cells to precise locations in the BM, as well as for the extraction of BM cells and interstitial fluid, all under image guidance. This chapter provides a detailed protocol for installing a laser-micromachining capability for users with an existing multiphoton microscope. Additionally, we briefly outline how such a system improves the optical resolution during imaging as well as its potential use to study injury response.
Collapse
Affiliation(s)
- Christa Haase
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dmitry Richter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
28
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
29
|
Ma B, Dai H, Dai X, Qian S, Sha X, Sun X. Cimigenol depresses acute myeloid leukemia cells protected by breaking bone marrow stromal cells via CXCR4/SDF‑1α. Exp Ther Med 2022; 25:80. [PMID: 36684661 PMCID: PMC9842948 DOI: 10.3892/etm.2022.11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023] Open
Abstract
The purpose of the present study was to evaluate cimigenol (Cim) treatment effects to cell proliferation by breaking bone marrow stromal cells (BMSCs) through C-X-C chemokine receptor type 4 (CXCR4)/stromal cell-derived factor-1α (SDF-1α) pathway. MV-4-11 and U937 cell lines were used. The present study was divided into two parts. First, the cell lines were divided into normal control (NC), BMSC (cells co-cultured with BMSCs), BMSC + DMSO, BMSC + Low (treated with 5 mg/ml Cim), BMSC + Middle (treated with 10 mg/ml Cim), BMSC + High (treated with 20 mg/ml Cim). In the second step, the cell lines were divided into NC, BMSC, BMSC + BL8040 (treated with BL8040 which inhibits CXCR4), BMSC + Cim and BMSC + Cim + BL8040. EdU positive cell numbers were measured by EdU assay and apoptosis rate by flow cytometry and TUNEL assay. Relative gene and protein expression was measured by reverse transcription-quantitative PCR and western blotting assay. BMSCs were able to protect proliferation of cancer cells and decreased cell apoptosis compared with the NC group (P<0.001, respectively). With Cim supplement, the cell proliferation was decreased with cell apoptosis increasing compared with NC group (P<0.001 respectively). However, the anti-tumor effects of Cim were not significantly different from the BL8040 treated groups (P<0.001, respectively). In conclusion Cim decreased acute myeloid leukemia cells protected by BMSCs through the CXCR4/SDF-1α pathway.
Collapse
Affiliation(s)
- Bangyun Ma
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Huibo Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xingbin Dai
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shushu Qian
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaocao Sha
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Xuemei Sun
- Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China,Correspondence to: Dr Xuemei Sun, Department of Hematology, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
30
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
31
|
Haase C, Gustafsson K, Mei S, Yeh SC, Richter D, Milosevic J, Turcotte R, Kharchenko PV, Sykes DB, Scadden DT, Lin CP. Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging. Nat Methods 2022; 19:1622-1633. [PMID: 36424441 PMCID: PMC9718684 DOI: 10.1038/s41592-022-01673-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/03/2022] [Indexed: 11/26/2022]
Abstract
Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.
Collapse
Affiliation(s)
- Christa Haase
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shu-Chi Yeh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Dmitry Richter
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Raphaël Turcotte
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
32
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
33
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
35
|
Aberrant Sialylation in Cancer: Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14174248. [PMID: 36077781 PMCID: PMC9454432 DOI: 10.3390/cancers14174248] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The surface of every eukaryotic cell is coated in a thick layer of glycans that acts as a key interface with the extracellular environment. Cancer cells have a different ‘glycan coat’ to healthy cells and aberrant glycosylation is a universal feature of cancer cells linked to all of the cancer hallmarks. This means glycans hold huge potential for the development of new diagnostic and therapeutic strategies. One key change in tumour glycosylation is increased sialylation, both on N-glycans and O-glycans, which leads to a dense forest of sialylated structures covering the cell surface. This hypersialylation has far-reaching consequences for cancer cells, and sialylated glycans are fundamental in tumour growth, metastasis, immune evasion and drug resistance. The development of strategies to inhibit aberrant sialylation in cancer represents an important opportunity to develop new therapeutics. Here, I summarise recent advances to target aberrant sialylation in cancer, including the development of sialyltransferase inhibitors and strategies to inhibit Siglecs and Selectins, and discuss opportunities for the future.
Collapse
|
36
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
37
|
Zhang J, Qi L, Wang T, An J, Zhou B, Fang Y, Liu Y, Shan M, Hong D, Wu D, Xu Y, Liu T. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML. Front Oncol 2022; 12:890346. [PMID: 35875066 PMCID: PMC9300928 DOI: 10.3389/fonc.2022.890346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.
Collapse
Affiliation(s)
- Jubin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| |
Collapse
|
38
|
Kimura K, Yamamori S, Hazawa M, Kobayashi-Sun J, Kondo M, Wong RW, Kobayashi I. Inhibition of canonical Wnt signaling promotes ex vivo maintenance and proliferation of hematopoietic stem cells in zebrafish. Stem Cells 2022; 40:831-842. [PMID: 35759948 DOI: 10.1093/stmcls/sxac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
Abstract
The maintenance and proliferation of hematopoietic stem cells (HSCs) are tightly regulated by their niches in the bone marrow. The analysis of niche cells or stromal cell lines that can support HSCs has facilitated the finding of novel supporting factors for HSCs. Despite large efforts in the murine bone marrow, however, HSC expansion is still difficult ex vivo, highlighting the need for new approaches to elucidate the molecular elements that regulate HSCs. The zebrafish provides a unique model to study hematopoietic niches as HSCs are maintained in the kidney, allowing for a parallel view of hematopoietic niches over evolution. Here, using a stromal cell line from the zebrafish kidney, zebrafish kidney stromal (ZKS), we uncover that an inhibitor of canonical Wnt signaling, IWR-1-endo, is a potent regulator of HSCs. Co-culture assays revealed that ZKS cells were in part supportive of maintenance, but not expansion, of gata2a:GFP+runx1:mCherry+ (gata2a+runx1+) HSCs. Transcriptome analysis revealed that, compared to candidate niche cells in the kidney, ZKS cells weakly expressed HSC maintenance factor genes, thpo and cxcl12, but highly expressed canonical Wnt ligand genes, wnt1, 7bb, and 9a. Thpo supplementation in ZKS culture slightly increased, but inhibition of canonical Wnt signaling by IWR-1-endo treatment largely increased the number of gata2a+runx1+ cells (> 2-fold). Moreover, we found that gata2a+runx1+ cells can be maintained by supplementing both IWR-1-endo and Thpo without stromal cells. Collectively, our data provide evidence that IWR-1-endo can be used as a novel supporting factor for HSCs.
Collapse
Affiliation(s)
- Koki Kimura
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Shiori Yamamori
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan.,Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu, Ishikawa, Japan
| | - Mao Kondo
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Richard W Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Ishikawa, Japan.,WPI Nano Life Science Institute, Kanazawa University, Ishikawa, Japan.,Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
39
|
Zhan H, Kaushansky K. Megakaryocytes as the Regulator of the Hematopoietic Vascular Niche. Front Oncol 2022; 12:912060. [PMID: 35814384 PMCID: PMC9258777 DOI: 10.3389/fonc.2022.912060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Megakaryocytes (MKs) are important components of the hematopoietic niche. Compared to the non-hematopoietic niche cells, MKs serving as part of the hematopoietic niche provides a mechanism for feedback regulation of hematopoietic stem cells (HSCs), in which HSC progeny (MKs) can modulate HSC adaptation to hematopoietic demands during both steady-state and stress hematopoiesis. MKs are often located adjacent to marrow sinusoids. Considering that most HSCs reside close to a marrow vascular sinusoid, as do MKs, the interactions between MKs and vascular endothelial cells are positioned to play important roles in modulating HSC function, and by extrapolation, might be dysregulated in various disease states. In this review, we discuss the interactions between MKs and the vascular niche in both normal and neoplastic hematopoiesis.
Collapse
Affiliation(s)
- Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
- Medical Service, Northport Veterans Affairs (VA) Medical Center, Northport, NY, United States
- *Correspondence: Huichun Zhan,
| | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
40
|
Wu M, Liang Y, Zhang X. Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer. Front Oncol 2022; 12:860932. [PMID: 35719975 PMCID: PMC9204317 DOI: 10.3389/fonc.2022.860932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has become the most common malignant disease in the world according to the International Agency for Research on Cancer (IARC), and the most critical cause of death is distant metastasis. The lung is the extremely common visceral site for breast cancer metastasis. Lung metastasis of breast cancer is not only dependent on the invasive ability of the tumor itself, but also closely relates to the pulmonary microenvironment. In the progression of breast cancer, the formation of specific microenvironment in lungs can provide suitable conditions for the metastasis of breast cancer. Pulmonary inflammatory response, angiogenesis, extracellular matrix remodeling, some chemotherapeutic agents and so on all play important roles in the formation of the pulmonary microenvironment. This review highlights recent findings regarding the alterations of pulmonary microenvironment in lung metastasis of breast cancer, with a focus on various cells and acellular components.
Collapse
Affiliation(s)
- Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Nakamura M, Nakamura J, Mochizuki C, Kuroda C, Kato S, Haruta T, Kakefuda M, Sato S, Tamanoi F, Sugino N. Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. NANOSCALE ADVANCES 2022; 4:2682-2703. [PMID: 36132282 PMCID: PMC9417756 DOI: 10.1039/d1na00839k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Shigeki Kato
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | | | - Mayu Kakefuda
- EM Application Group, EM Business Unit, JEOL Ltd. Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles CA 90095 USA
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
42
|
Li W, Liu YH, Estrada H, Rebling J, Reiss M, Galli S, Nombela-Arrieta C, Razansky D. Tracking Strain-Specific Morphogenesis and Angiogenesis of Murine Calvaria with Large-Scale Optoacoustic and Ultrasound Microscopy. J Bone Miner Res 2022; 37:1032-1043. [PMID: 35220594 PMCID: PMC9311448 DOI: 10.1002/jbmr.4533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/30/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022]
Abstract
Skull bone development is a dynamic and well-coordinated process playing a key role in maturation and maintenance of the bone marrow (BM), fracture healing, and progression of diseases such as osteoarthritis or osteoporosis. At present, dynamic transformation of the growing bone (osteogenesis) as well as its vascularization (angiogenesis) remain largely unexplored due to the lack of suitable in vivo imaging techniques capable of noninvasive visualization of the whole developing calvaria at capillary-level resolution. We present a longitudinal study on skull bone development using ultrasound-aided large-scale optoacoustic microscopy (U-LSOM). Skull bone morphogenesis and microvascular growth patterns were monitored in three common mouse strains (C57BL/6J, CD-1, and Athymic Nude-Foxn1nu) at the whole-calvaria scale over a 3-month period. Strain-specific differences in skull development were revealed by quantitative analysis of bone and vessel parameters, indicating the coupling between angiogenesis and osteogenesis during skull bone growth in a minimally invasive and label-free manner. The method further enabled identifying BM-specific sinusoidal vessels, and superficial skull vessels penetrating into BM compartments. Our approach furnishes a new high-throughput longitudinal in vivo imaging platform to study morphological and vascular skull alterations in health and disease, shedding light on the critical links between blood vessel formation, skull growth, and regeneration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Weiye Li
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Johannes Rebling
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Michael Reiss
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Serena Galli
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Ma H, Wang Z, Cheng Z, He G, Feng T, Zuo C, Qiu H. Multiscale confocal photoacoustic dermoscopy to evaluate skin health. Quant Imaging Med Surg 2022; 12:2696-2708. [PMID: 35502399 PMCID: PMC9014143 DOI: 10.21037/qims-21-878] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 08/29/2023]
Abstract
Background Photoacoustic dermoscopy (PAD) is a promising branch of photoacoustic microscopy (PAM) that can provide a range of functional and morphologic information for clinical assessment and diagnosis of dermatological conditions. However, most PAM setups are unsuitable for clinical dermatology because their single-scale mode and narrow frequency band result in insufficient imaging depth or poor spatiotemporal resolution when visualizing the internal texture of the skin. Methods We developed a multiscale confocal photoacoustic dermoscopy (MC-PAD) with a multifunction opto-sono objective that could achieve high quality dermatological imaging. Using the objective to coordinate the spatial resolution and penetration depth, the MC-PAD was used to visualize pathophysiological biomarkers and vascular morphology from the epidermis (EP) to the dermis, which enabled us to quantify skin abnormalities without using exogenous contrast agents for human skin. Results The MC-PAD was shown to have the ability to differentiate between different types of cells (such as red blood cells and melanoma cells), image and quantify pigment of the skin, and visualize skin morphology and blood capillary landmarks. The MC-PAD detected a significant difference in the structures of some pigmented and vascular lesions of skin diseases compared with that of healthy skin (P<0.01). The café au lait macule (CALM) skin type was found to have a relatively higher melanin concentration and thicker stratum basale (SB) in the EP than healthy skin. The dermal vascular network of skin that had a port wine stain (PWS) had greater diameters and a denser distribution than healthy skin, as reported in clinical trials. Conclusions The MC-PAD has a broad range of applications for the diagnosis of human skin diseases and evaluation of the curative effect of treatments, and it can offer new perspectives in biomedical sciences.
Collapse
Affiliation(s)
- Haigang Ma
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhongwen Cheng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Guo He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ting Feng
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, China
| | - Haixia Qiu
- Department of Laser medicine, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
44
|
Hughes AM, Kuek V, Kotecha RS, Cheung LC. The Bone Marrow Microenvironment in B-Cell Development and Malignancy. Cancers (Basel) 2022; 14:2089. [PMID: 35565219 PMCID: PMC9102980 DOI: 10.3390/cancers14092089] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
B lymphopoiesis is characterized by progressive loss of multipotent potential in hematopoietic stem cells, followed by commitment to differentiate into B cells, which mediate the humoral response of the adaptive immune system. This process is tightly regulated by spatially distinct bone marrow niches where cells, including mesenchymal stem and progenitor cells, endothelial cells, osteoblasts, osteoclasts, and adipocytes, interact with B-cell progenitors to direct their proliferation and differentiation. Recently, the B-cell niche has been implicated in initiating and facilitating B-cell precursor acute lymphoblastic leukemia. Leukemic cells are also capable of remodeling the B-cell niche to promote their growth and survival and evade treatment. Here, we discuss the major cellular components of bone marrow niches for B lymphopoiesis and the role of the malignant B-cell niche in disease development, treatment resistance and relapse. Further understanding of the crosstalk between leukemic cells and bone marrow niche cells will enable development of additional therapeutic strategies that target the niches in order to hinder leukemia progression.
Collapse
Affiliation(s)
- Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (A.M.H.); (V.K.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
45
|
Kandarakov O, Belyavsky A, Semenova E. Bone Marrow Niches of Hematopoietic Stem and Progenitor Cells. Int J Mol Sci 2022; 23:ijms23084462. [PMID: 35457280 PMCID: PMC9032554 DOI: 10.3390/ijms23084462] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian hematopoietic system is remarkably efficient in meeting an organism’s vital needs, yet is highly sensitive and exquisitely regulated. Much of the organismal control over hematopoiesis comes from the regulation of hematopoietic stem cells (HSCs) by specific microenvironments called niches in bone marrow (BM), where HSCs reside. The experimental studies of the last two decades using the most sophisticated and advanced techniques have provided important data on the identity of the niche cells controlling HSCs functions and some mechanisms underlying niche-HSC interactions. In this review we discuss various aspects of organization and functioning of the HSC cell niche in bone marrow. In particular, we review the anatomy of BM niches, various cell types composing the niche, niches for more differentiated cells, metabolism of HSCs in relation to the niche, niche aging, leukemic transformation of the niche, and the current state of HSC niche modeling in vitro.
Collapse
|
46
|
Chicana B, Abbasizadeh N, Burns C, Taglinao H, Spencer JA, Manilay JO. Deletion of Vhl in Dmp1-Expressing Cells Causes Microenvironmental Impairment of B Cell Lymphopoiesis. Front Immunol 2022; 13:780945. [PMID: 35250971 PMCID: PMC8889104 DOI: 10.3389/fimmu.2022.780945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
The contributions of skeletal cells to the processes of B cell development in the bone marrow (BM) have not been completely described. The von-Hippel Lindau protein (VHL) plays a key role in cellular responses to hypoxia. Previous work showed that Dmp1-Cre;Vhl conditional knockout mice (VhlcKO), which deletes Vhl in subsets of mesenchymal stem cells, late osteoblasts and osteocytes, display dysregulated bone growth and reduction in B cells. Here, we investigated the mechanisms underlying the B cell defects using flow cytometry and high-resolution imaging. In the VhlcKO BM, B cell progenitors were increased in frequency and number, whereas Hardy Fractions B-F were decreased. VhlcKO Fractions B-C cells showed increased apoptosis and quiescence. Reciprocal BM chimeras confirmed a B cell-extrinsic source of the VhlcKO B cell defects. In support of this, VhlcKO BM supernatant contained reduced CXCL12 and elevated EPO levels. Intravital and ex vivo imaging revealed VhlcKO BM blood vessels with increased diameter, volume, and a diminished blood-BM barrier. Staining of VhlcKO B cells with an intracellular hypoxic marker indicated the natural existence of distinct B cell microenvironments that differ in local oxygen tensions and that the B cell developmental defects in VhlcKO BM are not initiated by hypoxia. Our studies identify novel mechanisms linking altered bone homeostasis with drastic BM microenvironmental changes that dysregulate B cell development.
Collapse
Affiliation(s)
- Betsabel Chicana
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Nastaran Abbasizadeh
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Christian Burns
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| | - Hanna Taglinao
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Joel A Spencer
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States.,Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States.,Bioengineering Graduate Program, University of California, Merced, Merced, CA, United States
| | - Jennifer O Manilay
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA, United States.,Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| |
Collapse
|
47
|
Phenotypic plasticity during metastatic colonization. Trends Cell Biol 2022; 32:854-867. [DOI: 10.1016/j.tcb.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
|
48
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
49
|
Lewuillon C, Laguillaumie MO, Quesnel B, Idziorek T, Touil Y, Lemonnier L. Put in a “Ca2+ll” to Acute Myeloid Leukemia. Cells 2022; 11:cells11030543. [PMID: 35159351 PMCID: PMC8834247 DOI: 10.3390/cells11030543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder characterized by genetic aberrations in myeloid primitive cells (blasts) which lead to their defective maturation/function and their proliferation in the bone marrow (BM) and blood of affected individuals. Current intensive chemotherapy protocols result in complete remission in 50% to 80% of AML patients depending on their age and the AML type involved. While alterations in calcium signaling have been extensively studied in solid tumors, little is known about the role of calcium in most hematologic malignancies, including AML. Our purpose with this review is to raise awareness about this issue and to present (i) the role of calcium signaling in AML cell proliferation and differentiation and in the quiescence of hematopoietic stem cells; (ii) the interplay between mitochondria, metabolism, and oxidative stress; (iii) the effect of the BM microenvironment on AML cell fate; and finally (iv) the mechanism by which chemotherapeutic treatments modify calcium homeostasis in AML cells.
Collapse
Affiliation(s)
- Clara Lewuillon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Marie-Océane Laguillaumie
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Bruno Quesnel
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Thierry Idziorek
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Yasmine Touil
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (C.L.); (M.-O.L.); (B.Q.); (T.I.); (Y.T.)
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003—PHYCEL—Physiologie Cellulaire, F-59000 Lille, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, F-59655 Villeneuve d’Ascq, France
- Correspondence:
| |
Collapse
|
50
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|