1
|
Bai T, Mai RY, Tang ZH, Wang XB, Chen J, Ye JZ, Wei M, Zhang B, Li K, Gu ZM, Wu FX, Li LQ. Ubiquitination of P53 Regulated by Ubiquitin-Specific Protease 14 Delays the Invasion of Hepatitis B Virus and the Development of Hepatitis. Viral Immunol 2024; 37:432-439. [PMID: 39601371 DOI: 10.1089/vim.2024.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This study aims to explore the mechanism underlying the role of ubiquitin-specific protease 14 (USP14) in regulating P53 expression and influencing the development of hepatitis B. The animal and cell models of hepatitis B were constructed. The mRNA and protein expression of USP14, mouse double minute 2 (MDM2), and P53 were detected by western blot and qPCR. The USP14 overexpression vector was constructed. The pathological changes of liver tissue were detected by HE and Masson staining. Protein immunoprecipitation was used to detect the interaction between MDM2 and P53, as well as between MDM2 and USP14. The ubiquitination levels of P53 after USP14 overexpression were detected. qPCR and western blot were used to detect the expression of MDM2, Bcl-2, P53, Bax, and Caspase-1 in vivo and in vitro. Compared with the control group, the model group showed increased cell proliferation, increased expression of MDM2 and Bcl-2 in cells and liver tissue, and decreased expression of P53, Bax, and Caspase-1. Compared with the model group, overexpression of USP14 resulted in a decrease in MDM2 expression and an increase in P53 expression. After transfection with the USP14 overexpression plasmid, cell proliferation was inhibited, and the expression of MDM2 and Bcl-2 was decreased in cells and liver tissue, while the expression of P53, Bax, and Caspase-1 was increased. In the model of hepatitis B, USP14 upregulation downregulated MDM2 and promoted P53 deubiquitination to delay the invasion of hepatitis B virus and the development of hepatitis.
Collapse
Affiliation(s)
- Tao Bai
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong-Yun Mai
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhi-Hong Tang
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao-Bo Wang
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia-Zhou Ye
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meng Wei
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bin Zhang
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kai Li
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhao-Min Gu
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fei-Xiang Wu
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Le-Qun Li
- Hepatobiliary Pancreatic Splenic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2
|
Graves D, Akkerman N, Fulham L, Helwer R, Pelka P. Molecular insights into type I interferon suppression and enhanced pathogenicity by species B human adenoviruses B7 and B14. mBio 2024; 15:e0103824. [PMID: 38940561 PMCID: PMC11323573 DOI: 10.1128/mbio.01038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Human adenoviruses (HAdVs) are small DNA viruses that generally cause mild disease. Certain strains, particularly those belonging to species B HAdVs, can cause severe pneumonia and have a relatively high mortality rate. Little is known about the molecular aspects of how these highly pathogenic species affect the infected cell and how they suppress innate immunity. The present study provides molecular insights into how species B adenoviruses suppress the interferon signaling pathway. Our study shows that these viruses, unlike HAdV-C2, are resistant to type I interferon. This resistance likely arises due to the highly efficient suppression of interferon-stimulated gene expression. Unlike in HAdV-C2, HAdV-B7 and B14 sequester STAT2 and RNA polymerase II from interferon-stimulated gene promoters in infected cells. This results in suppressed interferon- stimulated gene activation. In addition, we show that RuvBL1 and RuvBL2, cofactors important for RNA polymerase II recruitment to promoters and interferon-stimulated gene activation, are redirected to the cytoplasm forming high molecular weight complexes that, likely, are unable to associate with chromatin. Proteomic analysis also identified key differences in the way these viruses affect the host cell, providing insights into species B-associated high pathogenicity. Curiously, we observed that at the level of protein expression changes to the infected cell, HAdV-C2 and B7 were more similar than those of the same species, B7 and B14. Collectively, our study represents the first such study of innate immune suppression by the highly pathogenic HAdV-B7 and B14, laying an important foundation for future investigations.IMPORTANCEHuman adenoviruses form a large family of double-stranded DNA viruses known for a variety of usually mild diseases. Certain strains of human adenovirus cause severe pneumonia leading to much higher mortality and morbidity than most other strains. The reasons for this enhanced pathogenicity are unknown. Our study provides a molecular investigation of how these highly pathogenic strains might inactivate the interferon signaling pathway, highlighting the lack of sensitivity of these viruses to type I interferon in general while providing a global picture of how viral changes in cellular proteins drive worse disease outcomes.
Collapse
Affiliation(s)
- Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikolas Akkerman
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lauren Fulham
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rafe Helwer
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Bertzbach LD, Ip WH, von Stromberg K, Dobner T, Grand RJ. A comparative review of adenovirus A12 and C5 oncogenes. Curr Opin Virol 2024; 67:101413. [PMID: 38865835 DOI: 10.1016/j.coviro.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.
Collapse
Affiliation(s)
- Luca D Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Konstantin von Stromberg
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße 52, 20251 Hamburg, Germany.
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
King CR, Dodge MJ, MacNeil KM, Tessier TM, Mymryk JS, Mehle A. Expanding the adenovirus toolbox: reporter viruses for studying the dynamics of human adenovirus replication. J Virol 2024; 98:e0020724. [PMID: 38639487 PMCID: PMC11092356 DOI: 10.1128/jvi.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.
Collapse
Affiliation(s)
- Cason R. King
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Tanner M. Tessier
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Oncology, University of Western Ontario, London, Ontario, Canada
- Department of Otolaryngology, University of Western Ontario, London, Ontario, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, Ontario, Canada
| | - Andrew Mehle
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Green DR, Thomas PG. (E1)levating COVID-19 vaccine efficiency with adenoviral E1 proteins. SCIENCE ADVANCES 2022; 8:eade3956. [PMID: 36001673 PMCID: PMC11325920 DOI: 10.1126/sciadv.ade3956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improved adenovirus-based COVID-19 vaccines provide an important tool to combat the ever-evolving virus.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
7
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
8
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
9
|
Dodge MJ, MacNeil KM, Tessier TM, Weinberg JB, Mymryk JS. Emerging antiviral therapeutics for human adenovirus infection: Recent developments and novel strategies. Antiviral Res 2021; 188:105034. [PMID: 33577808 DOI: 10.1016/j.antiviral.2021.105034] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022]
Abstract
Human adenoviruses (HAdV) are ubiquitous human pathogens that cause a significant burden of respiratory, ocular, and gastrointestinal illnesses. Although HAdV infections are generally self-limiting, pediatric and immunocompromised individuals are at particular risk for developing severe disease. Currently, no approved antiviral therapies specific to HAdV exist. Recent outbreaks underscore the need for effective antiviral agents to treat life-threatening infections. In this review we will focus on recent developments in search of potential therapeutic agents for controlling HAdV infections, with a focus on those targeting post-entry stages of the virus replicative cycle.
Collapse
Affiliation(s)
- Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
10
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
11
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
12
|
Kleinberger T. En Guard! The Interactions between Adenoviruses and the DNA Damage Response. Viruses 2020; 12:v12090996. [PMID: 32906746 PMCID: PMC7552057 DOI: 10.3390/v12090996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Virus–host cell interactions include several skirmishes between the virus and its host, and the DNA damage response (DDR) network is one of their important battlegrounds. Although some aspects of the DDR are exploited by adenovirus (Ad) to improve virus replication, especially at the early phase of infection, a large body of evidence demonstrates that Ad devotes many of its proteins, including E1B-55K, E4orf3, E4orf4, E4orf6, and core protein VII, and utilizes varied mechanisms to inhibit the DDR. These findings indicate that the DDR would strongly restrict Ad replication if allowed to function efficiently. Various Ad serotypes inactivate DNA damage sensors, including the Mre11-Rad50-Nbs1 (MRN) complex, DNA-dependent protein kinase (DNA-PK), and Poly (ADP-ribose) polymerase 1 (PARP-1). As a result, these viruses inhibit signaling via DDR transducers, such as the ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) kinases, to downstream effectors. The different Ad serotypes utilize both shared and distinct mechanisms to inhibit various branches of the DDR. The aim of this review is to understand the interactions between Ad proteins and the DDR and to appreciate how these interactions contribute to viral replication.
Collapse
Affiliation(s)
- Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion-Israel Institute of Technology, 1 Efron St., Bat Galim, Haifa 31096, Israel
| |
Collapse
|
13
|
Saha B, Parks RJ. Identification of human adenovirus replication inhibitors from a library of small molecules targeting cellular epigenetic regulators. Virology 2020; 555:102-110. [PMID: 33032802 PMCID: PMC7382930 DOI: 10.1016/j.virol.2020.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Human adenovirus (HAdV) can cause severe disease in certain at-risk populations such as newborns, young children, the elderly and individuals with a compromised immune system. Unfortunately, no FDA-approved antiviraldrug is currently available for the treatment of HAdV infections. Within the nucleus of infected cells, the HAdV genome associates with histones and forms a chromatin-like structure during early infection, and viral gene expression appears to be regulated by cellular epigenetic processes. Thus, one potential therapeutic strategy to combat HAdV disease may be to target the cellular proteins involved in modifying the viral nucleoprotein structure and facilitating HAdV gene expression and replication. We have screened a panel of small molecules that modulate the activity of epigenetic regulatory proteins for compounds affecting HAdV gene expression. Several of the compounds, specifically chaetocin, gemcitabine and lestaurtinib, reduced HAdV recovery by 100- to 1000-fold, while showing limited effects on cell health, suggesting that these compounds may indeed be promising as anti-HAdV therapeutics.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
14
|
Calhoun PJ, Phan AV, Taylor JD, James CC, Padget RL, Zeitz MJ, Smyth JW. Adenovirus targets transcriptional and posttranslational mechanisms to limit gap junction function. FASEB J 2020; 34:9694-9712. [PMID: 32485054 DOI: 10.1096/fj.202000667r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/19/2023]
Abstract
Adenoviruses are responsible for a spectrum of pathogenesis including viral myocarditis. The gap junction protein connexin43 (Cx43, gene name GJA1) facilitates rapid propagation of action potentials necessary for each heartbeat. Gap junctions also propagate innate and adaptive antiviral immune responses, but how viruses may target these structures is not understood. Given this immunological role of Cx43, we hypothesized that gap junctions would be targeted during adenovirus type 5 (Ad5) infection. We find reduced Cx43 protein levels due to decreased GJA1 mRNA transcripts dependent upon β-catenin transcriptional activity during Ad5 infection, with early viral protein E4orf1 sufficient to induce β-catenin phosphorylation. Loss of gap junction function occurs prior to reduced Cx43 protein levels with Ad5 infection rapidly inducing Cx43 phosphorylation events consistent with altered gap junction conductance. Direct Cx43 interaction with ZO-1 plays a critical role in gap junction regulation. We find loss of Cx43/ZO-1 complexing during Ad5 infection by co-immunoprecipitation and complementary studies in human induced pluripotent stem cell derived-cardiomyocytes reveal Cx43 gap junction remodeling by reduced ZO-1 complexing. These findings reveal specific targeting of gap junction function by Ad5 leading to loss of intercellular communication which would contribute to dangerous pathological states including arrhythmias in infected hearts.
Collapse
Affiliation(s)
- Patrick J Calhoun
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Allen V Phan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | | | - Carissa C James
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Rachel L Padget
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA
| | - Michael J Zeitz
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
15
|
Hofmann S, Mai J, Masser S, Groitl P, Herrmann A, Sternsdorf T, Brack‐Werner R, Schreiner S. ATO (Arsenic Trioxide) Effects on Promyelocytic Leukemia Nuclear Bodies Reveals Antiviral Intervention Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902130. [PMID: 32328411 PMCID: PMC7175289 DOI: 10.1002/advs.201902130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Indexed: 05/04/2023]
Abstract
Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication. ATO reduces levels of viral SUMO-E2A protein, while increasing SUMO-PML, suggesting that ATO interferes with SUMOylation of proteins crucial for HAdV replication. It is concluded that ATO targets cellular processes key to HAdV replication and is relevant for the development of antiviral intervention strategies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Julia Mai
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Sawinee Masser
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Peter Groitl
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | | | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg20251HamburgGermany
| | | | - Sabrina Schreiner
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
- Institute of Virology Helmholtz Zentrum München85764MunichGermany
| |
Collapse
|
16
|
Valdés A, Zhao H, Pettersson U, Lind SB. Phosphorylation Time-Course Study of the Response during Adenovirus Type 2 Infection. Proteomics 2020; 20:e1900327. [PMID: 32032466 DOI: 10.1002/pmic.201900327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/22/2020] [Indexed: 12/31/2022]
Abstract
PTMs such as phosphorylations are usually involved in signal transduction pathways. To investigate the temporal dynamics of phosphoproteome changes upon viral infection, a model system of IMR-90 cells infected with human adenovirus type 2 (Ad2) is used in a time-course quantitative analysis combining titanium dioxide (TiO2 ) particle enrichment and SILAC-MS. Quantitative data from 1552 phosphorylated sites clustered the highly altered phosphorylated sites to the signaling by rho family GTPases, the actin cytoskeleton signaling, and the cAMP-dependent protein kinase A signaling pathways. Their activation is especially pronounced at early time post-infection. Changes of several phosphorylated sites involved in the glycolysis pathway, related to the activation of the Warburg effect, point at virus-induced energy production. For Ad2 proteins, 32 novel phosphorylation sites are identified and as many as 52 phosphorylated sites on 17 different Ad2 proteins are quantified, most of them at late time post-infection. Kinase predictions highlighted activation of PKA, CDK1/2, MAPK, and CKII. Overlaps of kinase motif sequences for viral and human proteins are observed, stressing the importance of phosphorylation during Ad2 infection.
Collapse
Affiliation(s)
- Alberto Valdés
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden.,Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871, Alcalá de Henares, Madrid, Spain
| | - Hongxing Zhao
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Ulf Pettersson
- The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, 75185, Uppsala, Sweden
| | - Sara Bergström Lind
- Section of Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, 751 24, Sweden
| |
Collapse
|
17
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
18
|
Lynch KL, Gooding LR, Garnett-Benson C, Ornelles DA, Avgousti DC. Epigenetics and the dynamics of chromatin during adenovirus infections. FEBS Lett 2019; 593:3551-3570. [PMID: 31769503 DOI: 10.1002/1873-3468.13697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
The DNA genome of eukaryotic cells is compacted by histone proteins within the nucleus to form chromatin. Nuclear-replicating viruses such as adenovirus have evolved mechanisms of chromatin manipulation to promote infection and subvert host defenses. Epigenetic factors may also regulate persistent adenovirus infection and reactivation in lymphoid tissues. In this review, we discuss the viral proteins E1A and protein VII that interact with and alter host chromatin, as well as E4orf3, which separates host chromatin from sites of viral replication. We also highlight recent advances in chromatin technologies that offer new insights into virus-directed chromatin manipulation. Beyond the role of chromatin in the viral replication cycle, we discuss the nature of persistent viral genomes in lymphoid tissue and cell lines, and the potential contribution of epigenetic signals in maintaining adenovirus in a quiescent state. By understanding the mechanisms through which adenovirus manipulates host chromatin, we will understand new aspects of this ubiquitous virus and shed light on previously unknown aspects of chromatin biology.
Collapse
Affiliation(s)
- Kelsey L Lynch
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linda R Gooding
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
19
|
Sohn SY, Hearing P. Adenoviral strategies to overcome innate cellular responses to infection. FEBS Lett 2019; 593:3484-3495. [PMID: 31721176 PMCID: PMC6928427 DOI: 10.1002/1873-3468.13680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Viruses alter host cell processes to optimize their replication cycle. Human adenoviruses (Ad) encode proteins that promote viral macromolecular synthesis and counteract innate and adaptive responses to infection. The focus of this review is on how Ad evades innate cellular responses to infection, including an interferon (IFN) response and a DNA damage response (DDR). Ad blocks the IFN response by inhibiting cytoplasmic signaling pathways and the activation of IFN-stimulated genes (ISGs), as well as the functions of ISG products, such as PML. Ad also inhibits DDR sensors, for instance, the Mre11-Rad50-Nbs1 complex, and DDR effectors like DNA ligase IV. These innate cellular responses impact many different viruses, and studies on Ad have provided broad insight into these areas.
Collapse
Affiliation(s)
- Sook-Young Sohn
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, NY, USA
| | - Patrick Hearing
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, NY, USA
| |
Collapse
|
20
|
Insights into the binding mechanisms of inhibitors of MDM2 based on molecular dynamics simulations and binding free energy calculations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Adenovirus 5 E1A Interacts with E4orf3 To Regulate Viral Chromatin Organization. J Virol 2019; 93:JVI.00157-19. [PMID: 30842325 DOI: 10.1128/jvi.00157-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 01/05/2023] Open
Abstract
Human adenovirus expresses several early proteins that control various aspects of the viral replication program, including an orchestrated expression of viral genes. Two of the earliest viral transcriptional units activated after viral genome entry into the host cell nucleus are the E1 and E4 units, which each express a variety of proteins. Chief among these are the E1A proteins that function to reprogram the host cell and activate transcription of all other viral genes. The E4 gene encodes multiple proteins, including E4orf3, which functions to disrupt cellular antiviral defenses, including the DNA damage response pathway and activation of antiviral genes. Here we report that E1A directly interacts with E4orf3 via the conserved N terminus of E1A to regulate the expression of viral genes. We show that E4orf3 indiscriminately drives high nucleosomal density of viral genomes, which is restrictive to viral gene expression and which E1A overcomes via a direct interaction with E4orf3. We also show that during infection E1A colocalizes with E4orf3 to nuclear tracks that are associated with heterochromatin formation. The inability of E1A to interact with E4orf3 has a significant negative impact on overall viral replication, the ability of the virus to reprogram the host cell, and the levels of viral gene expression. Together these results show that E1A and E4orf3 work together to fine-tune the viral replication program during the course of infection and highlight a novel mechanism that regulates viral gene expression.IMPORTANCE To successfully replicate, human adenovirus needs to carry out a rapid yet ordered transcriptional program that executes and drives viral replication. Early in infection, the viral E1A proteins are the key activators and regulators of viral transcription. Here we report, for the first time, that E1A works together with E4orf3 to perfect the viral transcriptional program and identify a novel mechanism by which the virus can adjust viral gene expression by modifying its genome's nucleosomal organization via cooperation between E1A and E4orf3.
Collapse
|
22
|
p53 Isoforms and Their Implications in Cancer. Cancers (Basel) 2018; 10:cancers10090288. [PMID: 30149602 PMCID: PMC6162399 DOI: 10.3390/cancers10090288] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023] Open
Abstract
In this review we focus on the major isoforms of the tumor-suppressor protein p53, dysfunction of which often leads to cancer. Mutations of the TP53 gene, particularly in the DNA binding domain, have been regarded as the main cause for p53 inactivation. However, recent reports demonstrating abundance of p53 isoforms, especially the N-terminally truncated ones, in the cancerous tissues suggest their involvement in carcinogenesis. These isoforms are ∆40p53, ∆133p53, and ∆160p53 (the names indicate their respective N-terminal truncation). Due to the lack of structural and functional characterizations the modes of action of the p53 isoforms are still unclear. Owing to the deletions in the functional domains, these isoforms can either be defective in DNA binding or more susceptive to altered ‘responsive elements’ than p53. Furthermore, they may exert a ‘dominant negative effect’ or induce more aggressive cancer by the ‘gain of function’. One possible mechanism of p53 inactivation can be through tetramerization with the ∆133p53 and ∆160p53 isoforms—both lacking part of the DNA binding domain. A recent report and unpublished data from our laboratory also suggest that these isoforms may inactivate p53 by fast aggregation—possibly due to ectopic overexpression. We further discuss the evolutionary significance of the p53 isoforms.
Collapse
|
23
|
Adenovirus 5 E1A-Mediated Suppression of p53 via FUBP1. J Virol 2018; 92:JVI.00439-18. [PMID: 29743362 DOI: 10.1128/jvi.00439-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Far-upstream element (FUSE) binding protein 1 (FUBP1) was originally identified as a regulator of the oncogene c-Myc via binding to the FUSE within the c-Myc promoter and activating the expression of the gene. Recent studies have identified FUBP1 as a regulator of transcription, translation, and splicing via its DNA and RNA binding activities. Here we report the identification of FUBP1 as a novel binding partner of E1A. FUBP1 binds directly to E1A via the N terminus (residues 1 to 82) and conserved region 3 (residues 139 to 204) of adenovirus 5 E1A. The depletion of FUBP1 via short interfering RNAs (siRNA) reduces virus growth and drives the upregulation of the cellular stress response by activating the expression of p53-regulated genes. During infection, FUBP1 is relocalized within the nucleus, and it is recruited to viral promoters together with E1A while at the same time being lost from the FUSE upstream of the c-Myc promoter. The depletion of FUBP1 affects viral and cellular gene expression. Importantly, in FUBP1-depleted cells, p53-responsive genes are upregulated, p53 occupancy on target promoters is enhanced, and histone H3 lysine 9 is hyperacetylated. This is likely due to the loss of the FUBP1-mediated suppression of p53 DNA binding. We also observed that E1A stabilizes the FUBP1-p53 complex, preventing p53 promoter binding. Together, our results identify, for the first time, FUBP1 as a novel E1A binding protein that participates in aspects of viral replication and is involved in the E1A-mediated suppression of p53 function.IMPORTANCE Viral infection triggers innate cellular defense mechanisms that have evolved to block virus replication. To overcome this, viruses have counterevolved mechanisms that ensure that cellular defenses are either disarmed or not activated to guarantee successful replication. One of the key regulators of cellular stress is the tumor suppressor p53 that responds to a variety of cellular stress stimuli and safeguards the integrity of the genome. During infection, many viruses target the p53 pathway in order to deactivate it. Here we report that human adenovirus 5 coopts the cellular protein FUBP1 to prevent the activation of the p53 stress response pathway that would block viral replication. This finding adds to our understanding of p53 deactivation by adenovirus and highlights its importance in infection and innate immunity.
Collapse
|
24
|
Miciak JJ, Hirshberg J, Bunz F. Seamless assembly of recombinant adenoviral genomes from high-copy plasmids. PLoS One 2018; 13:e0199563. [PMID: 29949649 PMCID: PMC6021080 DOI: 10.1371/journal.pone.0199563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022] Open
Abstract
The adenoviruses are essential tools for basic research and therapeutic development. Robust methods for the generation of mutant and recombinant viruses are crucial for these diverse applications. Here we describe a simple plasmid-based method that permits highly efficient modification of the adenoviral genome and rapid production of high-titer virus stocks. The 36-kilobase genome of adenovirus serotype 5 was divided into seven tractable blocks that could be individually modified in a single step and reassembled in vitro. Because the system is composed of compact modules, modifications at different loci can be readily recombined. Viral assemblies were delivered to packaging cells by electroporation, a strategy that consistently resulted in the de novo production of 108 infectious units in 3-5 days. In principle, a similar strategy could be applied to any other adenovirus serotype or to other double-strand DNA viruses.
Collapse
Affiliation(s)
- Jessica J. Miciak
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jason Hirshberg
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L, Buonaguro FM. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers (Basel) 2018; 10:cancers10070213. [PMID: 29932446 PMCID: PMC6071257 DOI: 10.3390/cancers10070213] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
Viral oncogenesis is a multistep process largely depending on the complex interplay between viruses and host factors. The oncoviruses are capable of subverting the cell signaling machinery and metabolic pathways and exploit them for infection, replication, and persistence. Several viral oncoproteins are able to functionally inactivate the tumor suppressor p53, causing deregulated expression of many genes orchestrated by p53, such as those involved in apoptosis, DNA stability, and cell proliferation. The Epstein–Barr virus (EBV) BZLF1, the high-risk human papillomavirus (HPV) E6, and the hepatitis C virus (HCV) NS5 proteins have shown to directly bind to and degrade p53. The hepatitis B virus (HBV) HBx and the human T cell lymphotropic virus-1 (HTLV-1) Tax proteins inhibit p53 activity through the modulation of p300/CBP nuclear factors, while the Kaposi’s sarcoma herpesvirus (HHV8) LANA, vIRF-1 and vIRF-3 proteins have been shown to destabilize the oncosuppressor, causing a decrease in its levels in the infected cells. The large T antigen of the Merkel cell polyomavirus (MCPyV) does not bind to p53 but significantly reduces p53-dependent transcription. This review describes the main molecular mechanisms involved in the interaction between viral oncoproteins and p53-related pathways as well as in the development of therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Clorinda Annunziata
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Luigi Buonaguro
- Cancer Immunomodulation Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", via Mariano Semmola, 80131 Napoli, Italy.
| |
Collapse
|
26
|
Heterochromatin protects retinal pigment epithelium cells from oxidative damage by silencing p53 target genes. Proc Natl Acad Sci U S A 2018; 115:E3987-E3995. [PMID: 29622681 PMCID: PMC5924883 DOI: 10.1073/pnas.1715237115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress (OS)-induced retinal pigment epithelium (RPE) cell apoptosis is critically implicated in the pathogenesis of age-related macular degeneration (AMD), a leading cause of blindness in the elderly. Heterochromatin, a compact and transcriptional inert chromatin structure, has been recently shown to be dynamically regulated in response to stress stimuli. The functional mechanism of heterochromatin on OS exposure is unclear, however. Here we show that OS increases heterochromatin formation both in vivo and in vitro, which is essential for protecting RPE cells from oxidative damage. Mechanistically, OS-induced heterochromatin selectively accumulates at p53-regulated proapoptotic target promoters and inhibits their transcription. Furthermore, OS-induced desumoylation of p53 promotes p53-heterochromatin interaction and regulates p53 promoter selection, resulting in the locus-specific recruitment of heterochromatin and transcription repression. Together, our findings demonstrate a protective function of OS-induced heterochromatin formation in which p53 desumoylation-guided promoter selection and subsequent heterochromatin recruitment play a critical role. We propose that targeting heterochromatin provides a plausible therapeutic strategy for the treatment of AMD.
Collapse
|
27
|
Kumar A, Tripathy MK, Pasquereau S, Al Moussawi F, Abbas W, Coquard L, Khan KA, Russo L, Algros MP, Valmary-Degano S, Adotevi O, Morot-Bizot S, Herbein G. The Human Cytomegalovirus Strain DB Activates Oncogenic Pathways in Mammary Epithelial Cells. EBioMedicine 2018; 30:167-183. [PMID: 29628341 PMCID: PMC5952350 DOI: 10.1016/j.ebiom.2018.03.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) establishes a persistent life-long infection and increasing evidence indicates HCMV infection can modulate signaling pathways associated with oncogenesis. Breast milk is an important route of HCMV transmission in humans and we hypothesized that mammary epithelial cells could be one of the main cellular targets of HCMV infection. Methods The infectivity of primary human mammary epithelial cells (HMECs) was assessed following infection with the HCMV-DB strain, a clinical isolate with a marked macrophage-tropism. The impact of HCMV-DB infection on expression of p53 and retinoblastoma proteins, telomerase activity and oncogenic pathways (c-Myc, Akt, Ras, STAT3) was studied. Finally the transformation of HCMV-DB infected HMECs was evaluated using soft agar assay. CTH cells (CMV Transformed HMECs) were detected in prolonged cultures of infected HMECs. Tumor formation was observed in NOD/SCID Gamma (NSG) mice injected with CTH cells. Detection of long non coding RNA4.9 (lncRNA4.9) gene was assessed in CTH cells, tumors isolated from xenografted NSG mice and biopsies of patients with breast cancer using qualitative and quantitative PCR. Results We found that HCMV, especially a clinical strain named HCMV-DB, infects HMECs in vitro. The clinical strain HCMV-DB replicates productively in HMECs as evidenced by detection of early and late viral transcripts and proteins. Following infection of HMECs with HCMV-DB, we observed the inactivation of retinoblastoma and p53 proteins, the activation of telomerase activity, the activation of the proto-oncogenes c-Myc and Ras, the activation of Akt and STAT3, and the upregulation of cyclin D1 and Ki67 antigen. Colony formation was observed in soft agar seeded with HCMV-DB-infected HMECs. Prolonged culture of infected HMECs resulted in the development of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma (NSG) mice resulted in the development of tumors. We detected in CTH cells the presence of a HCMV signature corresponding to a sequence of the long noncoding RNA4.9 (lncRNA4.9) gene. We also found the presence of the HCMV lncRNA4.9 sequence in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer using qualitative and quantitative PCR. Conclusions Our data indicate that key molecular pathways involved in oncogenesis are activated in HCMV-DB-infected HMECs that ultimately results in the transformation of HMECs in vitro with the appearance of CMV-transformed HMECs (CTH cells) in culture. CTH cells display a HCMV signature corresponding to a lncRNA4.9 genomic sequence and give rise to fast growing triple-negative tumors in NSG mice. A similar lncRNA4.9 genomic sequence was detected in tumor biopsies of patients with breast cancer. The infection of primary human mammary epithelial cells (HMECs) with the HCMV-DB strain results in a pro-oncogenic cellular environment. HCMV-DB transforms primary HMECs in vitro as measured by a soft agar assay. Prolonged culture of HMECs infected with HCMV-DB results in the appearance of clusters of spheroid cells that we called CTH cells (CMV Transformed HMECs). CTH cells when injected in NOD/SCID Gamma mice resulted in the development of breast tumor. The HCMV lncRNA4.9 sequence was detected in CTH cells, in tumors isolated from xenografted NSG mice injected with CTH cells and in biopsies of patients with breast cancer.
Research in Context: Worldwide breast cancer is the most common cancer diagnosed among women. Etiological factors involved in breast cancer include genetic and environmental risk factors and among these latter viruses could be involved with close to one-fifth of all cancers in the world caused by infectious agents. We found that the cytomegalovirus strain DB, a member of the herpesvirus family, activates oncogenic pathways in infected mammary epithelial cells, transforms these cells in culture and favors the appearance of tumors in xenografted mice. Our findings might lead to a better understanding of the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Amit Kumar
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Manoj Kumar Tripathy
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France.
| | - Fatima Al Moussawi
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Lebanese University, Beyrouth, Lebanon
| | | | - Laurie Coquard
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Kashif Aziz Khan
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France
| | - Laetitia Russo
- Department of Pathology, CHRU Besançon, F-25030 Besançon, France
| | | | | | - Olivier Adotevi
- INSERM UMR1098, University of Bourgogne Franche-Comté, Besançon, France; Department of Medical Oncology, CHRU Besancon, F-25030 Besancon, France.
| | | | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté (UFC), University of Bourgogne France-Comté (UBFC), F-25030 Besançon, France; Department of Virology, CHRU Besancon, F-25030 Besancon, France.
| |
Collapse
|
28
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Suppression of Type I Interferon Signaling by E1A via RuvBL1/Pontin. J Virol 2017; 91:JVI.02484-16. [PMID: 28122980 DOI: 10.1128/jvi.02484-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
Abstract
Suppression of interferon signaling is of paramount importance to a virus. Interferon signaling significantly reduces or halts the ability of a virus to replicate; therefore, viruses have evolved sophisticated mechanisms that suppress activation of the interferon pathway or responsiveness of the infected cell to interferon. Adenovirus has multiple modes of inhibiting the cellular response to interferon. Here, we report that E1A, previously shown to regulate interferon signaling in multiple ways, inhibits interferon-stimulated gene expression by modulating RuvBL1 function. RuvBL1 was previously shown to affect type I interferon signaling. E1A binds to RuvBL1 and is recruited to RuvBL1-regulated promoters in an interferon-dependent manner, preventing their activation. Depletion of RuvBL1 impairs adenovirus growth but does not appear to significantly affect viral protein expression. Although RuvBL1 has been shown to play a role in cell growth, its depletion had no effect on the ability of the virus to replicate its genome or to drive cells into S phase. E1A was found to bind to RuvBL1 via the C terminus of E1A, and this interaction was important for suppression of interferon-stimulated gene transcriptional activation and recruitment of E1A to interferon-regulated promoters. Here, we report the identification of RuvBL1 as a new target for adenovirus in its quest to suppress the interferon response.IMPORTANCE For most viruses, suppression of the interferon signaling pathway is crucial to ensure a successful replicative cycle. Human adenovirus has evolved several different mechanisms that prevent activation of interferon or the ability of the cell to respond to interferon. The viral immediate-early gene E1A was previously shown to affect interferon signaling in several different ways. Here, we report a novel mechanism reliant on RuvBL1 that E1A uses to prevent activation of interferon-stimulated gene expression following infection or interferon treatment. This adds to the growing knowledge of how viruses are able to inhibit interferon and identifies a novel target used by adenovirus for modulation of the cellular interferon pathway.
Collapse
|
30
|
Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A, Sekiguchi KJ, O'Shea CC, Lemke G, Nimmerjahn A. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron 2017; 93:574-586.e8. [PMID: 28111081 DOI: 10.1016/j.neuron.2016.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Microglia are the intrinsic immune sentinels of the central nervous system. Their activation restricts tissue injury and pathogen spread, but in some settings, including viral infection, this response can contribute to cell death and disease. Identifying mechanisms that control microglial responses is therefore an important objective. Using replication-incompetent adenovirus 5 (Ad5)-based vectors as a model, we investigated the mechanisms through which microglia recognize and respond to viral uptake. Transgenic, immunohistochemical, molecular-genetic, and fluorescence imaging approaches revealed that phosphatidylserine (PtdSer) exposure on the outer leaflet of transduced cells triggers their engulfment by microglia through TAM receptor-dependent mechanisms. We show that inhibition of phospholipid scramblase 1 (PLSCR1) activity reduces intracellular calcium dysregulation, prevents PtdSer externalization, and enables months-long protection of vector-transduced, transgene-expressing cells from microglial phagocytosis. Our study identifies PLSCR1 as a potent target through which the innate immune response to viral vectors, and potentially other stimuli, may be controlled.
Collapse
Affiliation(s)
- Yusuf Tufail
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Daniela Cook
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lawrence Fourgeaud
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Colin J Powers
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Katharina Merten
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charles L Clark
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Hoffman
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alexander Ngo
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kohei J Sekiguchi
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Immunobiology and Microbial Pathogenesis Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
31
|
Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation. PLoS Biol 2016; 14:e1002536. [PMID: 27584613 PMCID: PMC5008734 DOI: 10.1371/journal.pbio.1002536] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/27/2016] [Indexed: 01/05/2023] Open
Abstract
Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR) that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1) and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog) activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue. After widespread radiation damage in the developing fruit fly, organs are formed by regeneration from an apoptosis-resistant subpopulation of cells marked by high levels of Wingless and STAT. Like other insects, Drosophila larvae have epithelial structures called imaginal discs that will give rise to most of the external adult structures, such as wings, limbs, or antennae; these organ precursors are formed by a single layer of epithelial cells that folds into a sac. Imaginal discs manage to regenerate efficiently if they are damaged. Previous studies have shown that dying cells produce signals that activate cell proliferation of some of their neighbors, allowing them to regenerate the disc and thereby enabling the flies to develop into normal adults. But a dedicated stem cell population that contributes to regeneration, if any, remained to be identified. Here, we report the identification of a subpopulation of cells in wing imaginal discs that is more resistant to the cytotoxic effects of radiation and drugs. We show that the protection of these cells depends on two signaling pathways—Wingless and STAT—that are conserved in humans. Following tissue damage by radiation, we observe that protected cells change their location and their identity, allowing them to fill in for dead cells in other parts of the same organ precursor. In sum, this work identified ways in which a subset of cells in Drosophila imaginal wing discs is preserved through radiation exposure so that they could participate in regeneration of the organ after radiation damage. We also discuss how this situation may resemble human cancers.
Collapse
|
32
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
33
|
King CR, Cohen MJ, Fonseca GJ, Dirk BS, Dikeakos JD, Mymryk JS. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein. PLoS Pathog 2016; 12:e1005621. [PMID: 27137912 PMCID: PMC4854477 DOI: 10.1371/journal.ppat.1005621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A's role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs.
Collapse
Affiliation(s)
- Cason R King
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Michael J Cohen
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Gregory J Fonseca
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Brennan S Dirk
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
| | - Joe S Mymryk
- Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada.,Department of Oncology, University of Western Ontario, London, Ontario, Canada.,London Regional Cancer Program and Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
34
|
Ornelles DA, Gooding LR, Dickherber ML, Policard M, Garnett-Benson C. Limited but durable changes to cellular gene expression in a model of latent adenovirus infection are reflected in childhood leukemic cell lines. Virology 2016; 494:67-77. [PMID: 27085068 PMCID: PMC4946252 DOI: 10.1016/j.virol.2016.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Mucosal lymphocytes support latent infections of species C adenoviruses. Because infected lymphocytes resist re-infection with adenovirus, we sought to identify changes in cellular gene expression that could inhibit the infectious process. The expression of over 30,000 genes was evaluated by microarray in persistently infected B-and T-lymphocytic cells. BBS9, BNIP3, BTG3, CXADR, SLFN11 and SPARCL1 were the only genes differentially expressed between mock and infected B cells. Most of these genes are associated with oncogenesis or cancer progression. Histone deacetylase and DNA methyltransferase inhibitors released the repression of some of these genes. Cellular and viral gene expression was compared among leukemic cell lines following adenovirus infection. Childhood leukemic B-cell lines resist adenovirus infection and also show reduced expression of CXADR and SPARCL. Thus adenovirus induces limited changes to infected B-cell lines that are similar to changes observed in childhood leukemic cell lines.
Collapse
Affiliation(s)
- D A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - L R Gooding
- Emory University School of Medicine, Department of Microbiology and Immunology, Atlanta, GA 30322, United States
| | - M L Dickherber
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - M Policard
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - C Garnett-Benson
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
35
|
Miciak J, Bunz F. Long story short: p53 mediates innate immunity. Biochim Biophys Acta Rev Cancer 2016; 1865:220-7. [PMID: 26951863 DOI: 10.1016/j.bbcan.2016.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 12/22/2022]
Abstract
The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance.
Collapse
Affiliation(s)
- Jessica Miciak
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| | - Fred Bunz
- Graduate Program in Cellular and Molecular Medicine, Department of Radiation Oncology and Molecular Radiation Sciences, The Kimmel Cancer Center at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|
36
|
The Adenovirus E4-ORF3 Protein Stimulates SUMOylation of General Transcription Factor TFII-I to Direct Proteasomal Degradation. mBio 2016; 7:e02184-15. [PMID: 26814176 PMCID: PMC4742714 DOI: 10.1128/mbio.02184-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
UNLABELLED Modulation of host cell transcription, translation, and posttranslational modification processes is critical for the ability of many viruses to replicate efficiently within host cells. The human adenovirus (Ad) early region 4 open reading frame 3 (E4-ORF3) protein forms unique inclusions throughout the nuclei of infected cells and inhibits the antiviral Mre11-Rad50-Nbs1 DNA repair complex through relocalization. E4-ORF3 also induces SUMOylation of Mre11 and Nbs1. We recently identified additional cellular targets of E4-ORF3 and found that E4-ORF3 stimulates ubiquitin-like modification of 41 cellular proteins involved in a wide variety of processes. Among the proteins most abundantly modified in an E4-ORF3-dependent manner was the general transcription factor II-I (TFII-I). Analysis of Ad-infected cells revealed that E4-ORF3 induces TFII-I relocalization and SUMOylation early during infection. In the present study, we explored the relationship between E4-ORF3 and TFII-I. We found that Ad infection or ectopic E4-ORF3 expression leads to SUMOylation of TFII-I that precedes a rapid decline in TFII-I protein levels. We also show that E4-ORF3 is required for ubiquitination of TFII-I and subsequent proteasomal degradation. This is the first evidence that E4-ORF3 regulates ubiquitination. Interestingly, we found that E4-ORF3 modulation of TFII-I occurs in diverse cell types but only E4-ORF3 of Ad species C regulates TFII-I, providing critical insight into the mechanism by which E4-ORF3 targets TFII-I. Finally, we show that E4-ORF3 stimulates the activity of a TFII-I-repressed viral promoter during infection. Our results characterize a novel mechanism of TFII-I regulation by Ad and highlight how a viral protein can modulate a critical cellular transcription factor during infection. IMPORTANCE Adenovirus has evolved a number of mechanisms to target host signaling pathways in order to optimize the cellular environment during infection. E4-ORF3 is a small viral protein made early during infection, and it is critical for inactivating host antiviral responses. In addition to its ability to capture and reorganize cellular proteins, E4-ORF3 also regulates posttranslational modifications of target proteins, but little is known about the functional consequences of these modifications. We recently identified TFII-I as a novel target of E4-ORF3 that is relocalized into dynamic E4-ORF3 nuclear structures and subjected to E4-ORF3-mediated SUMO modification. Here, we show that TFII-I is targeted by E4-ORF3 for ubiquitination and proteasomal degradation and that E4-ORF3 stimulates gene expression from a TFII-I-repressed viral promoter. Our findings suggest that the specific targeting of TFII-I by E4-ORF3 is a mechanism to inactivate its antiviral properties. These studies provide further insight into how E4-ORF3 functions to counteract host antiviral responses.
Collapse
|
37
|
Dobbins GC, Ugai H, Curiel DT, Gillespie GY. A Multi Targeting Conditionally Replicating Adenovirus Displays Enhanced Oncolysis while Maintaining Expression of Immunotherapeutic Agents. PLoS One 2015; 10:e0145272. [PMID: 26689910 PMCID: PMC4687127 DOI: 10.1371/journal.pone.0145272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
Studies have demonstrated that oncolytic adenoviruses based on a 24 base pair deletion in the viral E1A gene (D24) may be promising therapeutics for treating a number of cancer types. In order to increase the therapeutic potential of these oncolytic viruses, a novel conditionally replicating adenovirus targeting multiple receptors upregulated on tumors was generated by incorporating an Ad5/3 fiber with a carboxyl terminus RGD ligand. The virus displayed full cytopathic effect in all tumor lines assayed at low titers with improved cytotoxicity over Ad5-RGD D24, Ad5/3 D24 and an HSV oncolytic virus. The virus was then engineered to deliver immunotherapeutic agents such as GM-CSF while maintaining enhanced heterogenic oncolysis.
Collapse
Affiliation(s)
- G. Clement Dobbins
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| | - Hideyo Ugai
- Cancer Biology Division, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, Missouri, United States of America
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| |
Collapse
|
38
|
The Dual Nature of Nek9 in Adenovirus Replication. J Virol 2015; 90:1931-43. [PMID: 26676776 DOI: 10.1128/jvi.02392-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/25/2015] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED To successfully replicate in an infected host cell, a virus must overcome sophisticated host defense mechanisms. Viruses, therefore, have evolved a multitude of devices designed to circumvent cellular defenses that would lead to abortive infection. Previous studies have identified Nek9, a cellular kinase, as a binding partner of adenovirus E1A, but the biology behind this association remains a mystery. Here we show that Nek9 is a transcriptional repressor that functions together with E1A to silence the expression of p53-inducible GADD45A gene in the infected cell. Depletion of Nek9 in infected cells reduces virus growth but unexpectedly enhances viral gene expression from the E2 transcription unit, whereas the opposite occurs when Nek9 is overexpressed. Nek9 localizes with viral replication centers, and its depletion reduces viral genome replication, while overexpression enhances viral genome numbers in infected cells. Additionally, Nek9 was found to colocalize with the viral E4 orf3 protein, a repressor of cellular stress response. Significantly, Nek9 was also shown to associate with viral and cellular promoters and appears to function as a transcriptional repressor, representing the first instance of Nek9 playing a role in gene regulation. Overall, these results highlight the complexity of virus-host interactions and identify a new role for the cellular protein Nek9 during infection, suggesting a role for Nek9 in regulating p53 target gene expression. IMPORTANCE In the arms race that exists between a pathogen and its host, each has continually evolved mechanisms to either promote or prevent infection. In order to successfully replicate and spread, a virus must overcome every mechanism that a cell can assemble to block infection. On the other hand, to counter viral spread, cells must have multiple mechanisms to stifle viral replication. In the present study, we add to our understanding of how the human adenovirus is able to circumvent cellular roadblocks to replication. We show that the virus uses a cellular protein, Nek9, in order to block activation of p53-regulated gene GADD45A, which is an important player in stress response and p53-mediated cell cycle arrest. Importantly, our study also identifies Nek9 as a transcriptional repressor.
Collapse
|
39
|
Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 2015; 6:e2010. [PMID: 26633716 PMCID: PMC4720889 DOI: 10.1038/cddis.2015.354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.
Collapse
Affiliation(s)
- S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - A Peschiaroli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
| |
Collapse
|
40
|
Shah GA, O'Shea CC. Viral and Cellular Genomes Activate Distinct DNA Damage Responses. Cell 2015; 162:987-1002. [PMID: 26317467 DOI: 10.1016/j.cell.2015.07.058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 04/14/2015] [Accepted: 07/08/2015] [Indexed: 12/17/2022]
Abstract
In response to cellular genome breaks, MRE11/RAD50/NBS1 (MRN) activates a global ATM DNA damage response (DDR) that prevents cellular replication. Here, we show that MRN-ATM also has critical functions in defending the cell against DNA viruses. We reveal temporally distinct responses to adenovirus genomes: a critical MRN-ATM DDR that must be inactivated by E1B-55K/E4-ORF3 viral oncoproteins and a global MRN-independent ATM DDR to viral nuclear domains that does not impact viral replication. We show that MRN binds to adenovirus genomes and activates a localized ATM response that specifically prevents viral DNA replication. In contrast to chromosomal breaks, ATM activation is not amplified by H2AX across megabases of chromatin to induce global signaling and replicative arrest. Thus, γH2AX foci discriminate "self" and "non-self" genomes and determine whether a localized anti-viral or global ATM response is appropriate. This provides an elegant mechanism to neutralize viral genomes without jeopardizing cellular viability.
Collapse
Affiliation(s)
- Govind A Shah
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037-1002, USA.
| |
Collapse
|
41
|
Ou HD, Deerinck TJ, Bushong E, Ellisman MH, O'Shea CC. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 2015; 90:39-48. [PMID: 26066760 PMCID: PMC4655137 DOI: 10.1016/j.ymeth.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023] Open
Abstract
Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and preparation of photo-oxidized samples for TEM and serial block-face scanning EM (SBEM) for large-scale volume EM data acquisition are also presented. As an example, we discuss the recent multi-scale analysis of Adenoviral protein E4-ORF3 that reveals a new type of multi-functional polymer that disrupts multiple cellular proteins. This new capability to visualize unambiguously specific viral protein structures at high resolutions in the native cellular environment is revealing new insights into how they usurp host proteins and functions to drive pathological viral replication.
Collapse
Affiliation(s)
- Horng D Ou
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas J Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark H Ellisman
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Radko S, Jung R, Olanubi O, Pelka P. Effects of Adenovirus Type 5 E1A Isoforms on Viral Replication in Arrested Human Cells. PLoS One 2015; 10:e0140124. [PMID: 26448631 PMCID: PMC4598095 DOI: 10.1371/journal.pone.0140124] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/21/2015] [Indexed: 11/22/2022] Open
Abstract
Human adenovirus has evolved to infect and replicate in terminally differentiated human epithelial cells, predominantly those within the airway, the gut, or the eye. To overcome the block to viral DNA replication present in these cells, the virus expresses the Early 1A proteins (E1A). These immediate early proteins drive cells into S-phase and induce expression of all other viral early genes. During infection, several E1A isoforms are expressed with proteins of 289, 243, 217, 171, and 55 residues being present for human adenovirus type 5. Here we examine the contribution that the two largest E1A isoforms make to the viral life cycle in growth-arrested normal human fibroblasts. Viruses that express E1A289R were found to replicate better than those that do not express this isoform. Importantly, induction of several viral genes was delayed in a virus expressing E1A243R, with several viral structural proteins undetectable by western blot. We also highlight the changes in E1A isoforms detected during the course of viral infection. Furthermore, we show that viral DNA replication occurs more efficiently, leading to higher number of viral genomes in cells infected with viruses that express E1A289R. Finally, induction of S-phase specific genes differs between viruses expressing different E1A isoforms, with those having E1A289R leading to, generally, earlier activation of these genes. Overall, we provide an overview of adenovirus replication using modern molecular biology approaches and further insights into the contribution that E1A isoforms make to the life cycle of human adenovirus in arrested human fibroblasts.
Collapse
Affiliation(s)
- Sandi Radko
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Richard Jung
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Oladunni Olanubi
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Buller Building Room 427, Winnipeg, Manitoba, R3T 2N2, Canada
- * E-mail:
| |
Collapse
|
43
|
Higginbotham JM, O'Shea CC. Adenovirus E4-ORF3 Targets PIAS3 and Together with E1B-55K Remodels SUMO Interactions in the Nucleus and at Virus Genome Replication Domains. J Virol 2015; 89:10260-72. [PMID: 26223632 PMCID: PMC4580165 DOI: 10.1128/jvi.01091-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/23/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Adenovirus E4-ORF3 and E1B-55K converge in subverting critical overlapping cellular pathways to facilitate virus replication. Here, we show that E1B-55K and E4-ORF3 induce sumoylation and the assembly of SUMO2/3 viral genome replication domains. Using a conjugation-deficient SUMO2 construct, we demonstrate that SUMO2/3 is recruited to E2A viral genome replication domains through noncovalent interactions. E1B-55K and E4-ORF3 have critical functions in inactivating MRN and ATM to facilitate viral genome replication. We show that ATM kinase inhibitors rescue ΔE1B-55K/ΔE4-ORF3 viral genome replication and that the assembly of E2A domains recruits SUMO2/3 independently of E1B-55K and E4-ORF3. However, the morphology and organization of SUMO2/3-associated E2A domains is strikingly different from that in wild-type Ad5-infected cells. These data reveal that E1B-55K and E4-ORF3 specify the nuclear compartmentalization and structure of SUMO2/3-associated E2A domains, which could have important functions in viral replication. We show that E4-ORF3 specifically targets and sequesters the cellular E3 SUMO ligase PIAS3 but not PIAS1, PIAS2, or PIAS4. The assembly of E4-ORF3 into a multivalent nuclear matrix is required to target PIAS3. In contrast to MRN, PIAS3 is targeted by E4-ORF3 proteins from disparate adenovirus subgroups. Our studies reveal that PIAS3 is a novel and evolutionarily conserved target of E4-ORF3 in human adenovirus infections. Furthermore, we reveal that viral proteins not only disrupt but also usurp SUMO2/3 to transform the nucleus and assemble novel genomic domains that could facilitate pathological viral replication. IMPORTANCE SUMO is a key posttranslational modification that modulates the function, localization, and assembly of protein complexes. In the ever-escalating host-pathogen arms race, viruses have evolved strategies to subvert sumoylation. Adenovirus is a small DNA tumor virus that is a global human pathogen and key biomedical agent in basic research and therapy. We show that adenovirus infection induces global changes in SUMO localization and conjugation. Using virus and SUMO mutants, we demonstrate that E1B-55K and E4-ORF3 disrupt and usurp SUMO2/3 interactions to transform the nucleus and assemble highly structured and compartmentalized viral genome domains. We reveal that the cellular E3 SUMO ligase PIAS3 is a novel and conserved target of E4-ORF3 proteins from disparate adenovirus subgroups. The induction of sumoylation and SUMO2/3 viral replication domains by early viral proteins could play an important role in determining the outcome of viral infection.
Collapse
Affiliation(s)
- Jennifer M Higginbotham
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Clodagh C O'Shea
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
44
|
Cheng W, Liang Z, Wang W, Yi C, Li H, Zhang S, Zhang Q. Insight into binding modes of p53 and inhibitors to MDM2 based on molecular dynamic simulations and principal component analysis. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1087598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Discovery of Novel Isatin-Based p53 Inducers. ACS Med Chem Lett 2015; 6:856-60. [PMID: 26288684 DOI: 10.1021/acsmedchemlett.5b00011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
A series of isatin Schiff base derivatives were identified during in silico screening of the small molecule library for novel activators of p53. The compounds selected based on molecular docking results were further validated by a high-content screening assay using U2OS human osteosarcoma cells with an integrated EGFP-expressing p53-dependent reporter. The hit compounds activated and stabilized p53, as shown by Western blotting, at higher rates than the well-known positive control Nutlin-3. Thus, the p53-activating compounds identified by this approach represent useful molecular probes for various cancer studies.
Collapse
|
46
|
Marazzi I, Garcia-Sastre A. Interference of viral effector proteins with chromatin, transcription, and the epigenome. Curr Opin Microbiol 2015; 26:123-9. [PMID: 26232586 DOI: 10.1016/j.mib.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Pathogens exploit cellular functions to create an environment conducive to their persistence and propagation. Viruses and bacteria express effector-proteins or virulence factors, known to interfere at the molecular level with regulatory 'checkpoints' of numerous physiological events in the cell. A newly prominent area of research is the identification of pathogenic effector proteins that function on the host chromatin, their subversion/interference with chromatin regulatory processes, the short/long/heritable effects on the infected cell and the ultimate consequence of their expression at the organismal level.
Collapse
Affiliation(s)
- Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
47
|
Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression. BMC Cancer 2015; 15:464. [PMID: 26059686 PMCID: PMC4460641 DOI: 10.1186/s12885-015-1482-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 06/02/2015] [Indexed: 12/05/2022] Open
Abstract
Background Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. Methods We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Results Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Conclusions Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Impact of Adenovirus E4-ORF3 Oligomerization and Protein Localization on Cellular Gene Expression. Viruses 2015; 7:2428-49. [PMID: 25984715 PMCID: PMC4452913 DOI: 10.3390/v7052428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
The Adenovirus E4-ORF3 protein facilitates virus replication through the relocalization of cellular proteins into nuclear inclusions termed tracks. This sequestration event disrupts antiviral properties associated with target proteins. Relocalization of Mre11-Rad50-Nbs1 proteins prevents the DNA damage response from inhibiting Ad replication. Relocalization of PML and Daxx impedes the interferon-mediated antiviral response. Several E4-ORF3 targets regulate gene expression, linking E4-ORF3 to transcriptional control. Furthermore, E4-ORF3 was shown to promote the formation of heterochromatin, down-regulating p53-dependent gene expression. Here, we characterize how E4-ORF3 alters cellular gene expression. Using an inducible, E4-ORF3-expressing cell line, we performed microarray experiments to highlight cellular gene expression changes influenced by E4-ORF3 expression, identifying over four hundred target genes. Enrichment analysis of these genes suggests that E4-ORF3 influences factors involved in signal transduction and cellular defense, among others. The expression of mutant E4-ORF3 proteins revealed that nuclear track formation is necessary to induce these expression changes. Through the generation of knockdown cells, we demonstrate that the observed expression changes may be independent of Daxx and TRIM33 suggesting that an additional factor(s) may be responsible. The ability of E4-ORF3 to manipulate cellular gene expression through the sequestration of cellular proteins implicates a novel role for E4-ORF3 in transcriptional regulation.
Collapse
|
49
|
Turner RL, Groitl P, Dobner T, Ornelles DA. Adenovirus replaces mitotic checkpoint controls. J Virol 2015; 89:5083-96. [PMID: 25694601 PMCID: PMC4403466 DOI: 10.1128/jvi.00213-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Infection with adenovirus triggers the cellular DNA damage response, elements of which include cell death and cell cycle arrest. Early adenoviral proteins, including the E1B-55K and E4orf3 proteins, inhibit signaling in response to DNA damage. A fraction of cells infected with an adenovirus mutant unable to express the E1B-55K and E4orf3 genes appeared to arrest in a mitotic-like state. Cells infected early in G1 of the cell cycle were predisposed to arrest in this state at late times of infection. This arrested state, which displays hallmarks of mitotic catastrophe, was prevented by expression of either the E1B-55K or the E4orf3 genes. However, E1B-55K mutant virus-infected cells became trapped in a mitotic-like state in the presence of the microtubule poison colcemid, suggesting that the two viral proteins restrict entry into mitosis or facilitate exit from mitosis in order to prevent infected cells from arresting in mitosis. The E1B-55K protein appeared to prevent inappropriate entry into mitosis through its interaction with the cellular tumor suppressor protein p53. The E4orf3 protein facilitated exit from mitosis by possibly mislocalizing and functionally inactivating cyclin B1. When expressed in noninfected cells, E4orf3 overcame the mitotic arrest caused by the degradation-resistant R42A cyclin B1 variant. IMPORTANCE Cells that are infected with adenovirus type 5 early in G1 of the cell cycle are predisposed to arrest in a mitotic-like state in a p53-dependent manner. The adenoviral E1B-55K protein prevents entry into mitosis. This newly described activity for the E1B-55K protein appears to depend on the interaction between the E1B-55K protein and the tumor suppressor p53. The adenoviral E4orf3 protein facilitates exit from mitosis, possibly by altering the intracellular distribution of cyclin B1. By preventing entry into mitosis and by promoting exit from mitosis, these adenoviral proteins act to prevent the infected cell from arresting in a mitotic-like state.
Collapse
Affiliation(s)
- Roberta L Turner
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
50
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|