1
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
2
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. Proc Natl Acad Sci U S A 2024; 121:e2307904121. [PMID: 38207075 PMCID: PMC10801874 DOI: 10.1073/pnas.2307904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS-based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III, and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP, and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA94158
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA94143
- Graduate Program in Neuroscience, University of California San Francisco, San Francisco, CA94158
- Department of Neurology, University of California, San Francisco, CA94158
| |
Collapse
|
3
|
Bennett NK, Lee M, Orr AL, Nakamura K. Systems-level analyses dissociate genetic regulators of reactive oxygen species and energy production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.14.562276. [PMID: 37904938 PMCID: PMC10614765 DOI: 10.1101/2023.10.14.562276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Respiratory chain dysfunction can decrease ATP and increase reactive oxygen species (ROS) levels. Despite the importance of these metabolic parameters to a wide range of cellular functions and disease, we lack an integrated understanding of how they are differentially regulated. To address this question, we adapted a CRISPRi- and FACS- based platform to compare the effects of respiratory gene knockdown on ROS to their effects on ATP. Focusing on genes whose knockdown is known to decrease mitochondria-derived ATP, we showed that knockdown of genes in specific respiratory chain complexes (I, III and CoQ10 biosynthesis) increased ROS, whereas knockdown of other low ATP hits either had no impact (mitochondrial ribosomal proteins) or actually decreased ROS (complex IV). Moreover, although shifting metabolic conditions profoundly altered mitochondria-derived ATP levels, it had little impact on mitochondrial or cytosolic ROS. In addition, knockdown of a subset of complex I subunits-including NDUFA8, NDUFB4, and NDUFS8-decreased complex I activity, mitochondria-derived ATP and supercomplex level, but knockdown of these genes had differential effects on ROS. Conversely, we found an essential role for ether lipids in the dynamic regulation of mitochondrial ROS levels independent of ATP. Thus, our results identify specific metabolic regulators of cellular ATP and ROS balance that may help dissect the roles of these processes in disease and identify therapeutic strategies to independently target energy failure and oxidative stress.
Collapse
Affiliation(s)
- Neal K. Bennett
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Megan Lee
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - Adam L. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, 94158, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Graduate Programs in Neuroscience and Biomedical Sciences, University of California San Francisco, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA
| |
Collapse
|
4
|
Ren C, Sun Z, Chen Y, Chen J, Wang S, Liu Q, Wang P, Cheng X, Zhang Z, Wang Q. Identification of Biomarkers Affecting Cryopreservation Recovery Ratio in Ram Spermatozoa Using Tandem Mass Tags (TMT)-Based Quantitative Proteomics Approach. Animals (Basel) 2023; 13:2368. [PMID: 37508145 PMCID: PMC10376853 DOI: 10.3390/ani13142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sperm proteins play vital roles in improving sperm freezing resilience in domestic animals. However, it remains poorly defined which proteins regulate the freezing resilience of spermatozoa in rams (Ovis aries). Here, we compared the proteome of ram sperm with a high cryopreservation recovery ratio (HCR) with that of ram sperm with a low cryopreservation recovery ratio (LCR) using a tandem mass tag-based quantitative proteomics approach. Bioinformatic analysis was performed to evaluate differentially expressed proteins (DEPs). A total of 2464 proteins were identified, and 184 DEPs were screened. Seventy-two proteins were higher in the LCR group. One hundred and twelve proteins were more abundant in the HCR group, and they were mainly involved in the regulation of oxidative phosphorylation and thermogenesis pathways. Proteins in high abundance in the HCR group included the S100A family, such as S100A8, S100A9, S100A14, and S100A16, effectively controlling for CA2+ and maintaining flagella structure; HYOU1 and PRDX1, which participate in antioxidant protection and anti-apoptosis to prevent cell death; and HSP90B1, which maintains cell activity and immune response. Our results could help illuminate the molecular mechanisms underlying cryopreservation of ram semen and expand the potential direction of cryopreservation of high-quality semen.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
5
|
Chen D, Sun X, Cheke RA. Inferring a Causal Relationship between Environmental Factors and Respiratory Infections Using Convergent Cross-Mapping. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050807. [PMID: 37238562 DOI: 10.3390/e25050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
The incidence of respiratory infections in the population is related to many factors, among which environmental factors such as air quality, temperature, and humidity have attracted much attention. In particular, air pollution has caused widespread discomfort and concern in developing countries. Although the correlation between respiratory infections and air pollution is well known, establishing causality between them remains elusive. In this study, by conducting theoretical analysis, we updated the procedure of performing the extended convergent cross-mapping (CCM, a method of causal inference) to infer the causality between periodic variables. Consistently, we validated this new procedure on the synthetic data generated by a mathematical model. For real data in Shaanxi province of China in the period of 1 January 2010 to 15 November 2016, we first confirmed that the refined method is applicable by investigating the periodicity of influenza-like illness cases, an air quality index, temperature, and humidity through wavelet analysis. We next illustrated that air quality (quantified by AQI), temperature, and humidity affect the daily influenza-like illness cases, and, in particular, the respiratory infection cases increased progressively with increased AQI with a time delay of 11 days.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
- Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| | - Xiaodan Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham ME4 4TB, Kent, UK
| |
Collapse
|
6
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
7
|
Prescription Drugs and Mitochondrial Metabolism. Biosci Rep 2022; 42:231068. [PMID: 35315490 PMCID: PMC9016406 DOI: 10.1042/bsr20211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many common prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetic models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.
Collapse
|
8
|
Trecarichi A, Duggett NA, Granat L, Lo S, Malik AN, Zuliani-Álvarez L, Flatters SJL. Preclinical evidence for mitochondrial DNA as a potential blood biomarker for chemotherapy-induced peripheral neuropathy. PLoS One 2022; 17:e0262544. [PMID: 35015774 PMCID: PMC8752024 DOI: 10.1371/journal.pone.0262544] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/28/2021] [Indexed: 01/14/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting side effect of several first-line chemotherapeutic agents including paclitaxel, oxaliplatin and bortezomib, for which no predictive marker is currently available. We have previously shown that mitochondrial dysfunction is associated with the development and maintenance of CIPN. The aim of this study was to evaluate the potential use of mitochondrial DNA (mtDNA) levels and complex I enzyme activity as blood biomarkers for CIPN. Real-time qPCR was used to measure mtDNA levels in whole blood collected from chemotherapy- and vehicle-treated rats at three key time-points of pain-like behaviour: prior to pain development, at the peak of mechanical hypersensitivity and at resolution of pain-like behaviour. Systemic oxaliplatin significantly increased mtDNA levels in whole blood prior to pain development. Furthermore, paclitaxel- and bortezomib-treated animals displayed significantly higher levels of mtDNA at the peak of mechanical hypersensitivity. Mitochondrial complex I activity in whole blood was assessed with an ELISA-based Complex I Enzyme Activity Dipstick Assay. Complex I activity was not altered by any of the three chemotherapeutic agents, either prior to or during pain-like behaviour. These data demonstrate that blood levels of mtDNA are altered after systemic administration of chemotherapy. Oxaliplatin, in particular, is associated with higher mtDNA levels before animals show any pain-like behaviour, thus suggesting a potential role for circulating mtDNA levels as non-invasive predictive biomarker for CIPN.
Collapse
Affiliation(s)
- Annalisa Trecarichi
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Natalie A. Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Lucy Granat
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Samantha Lo
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Afshan N. Malik
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lorena Zuliani-Álvarez
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Sarah J. L. Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
9
|
Vinci P, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Mearelli F, Biasinutto C, Fiotti N, Di Girolamo FG, Biolo G. Statin-Associated Myopathy: Emphasis on Mechanisms and Targeted Therapy. Int J Mol Sci 2021; 22:11687. [PMID: 34769118 PMCID: PMC8583847 DOI: 10.3390/ijms222111687] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a "gold standard", the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Filippo Mearelli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy;
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical ad Health Science, University of Trieste, 34149 Trieste, Italy; (E.P.); (L.M.T.); (C.C.); (F.P.); (F.M.); (N.F.); (F.G.D.G.); (G.B.)
| |
Collapse
|
10
|
Tang R, Song Y, Shi M, Jiang Z, Zhang L, Xiao Y, Tian Y, Zhou S. Rational Design of a Dual-Targeting Natural Toxin-Like Bicyclic Peptide for Selective Bioenergetic Blockage in Cancer Cells. Bioconjug Chem 2021; 32:2173-2183. [PMID: 34606715 DOI: 10.1021/acs.bioconjchem.1c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stapled α-helical peptides emerge as one of the attractive peptidomimetics which can efficiently penetrate the cell membrane to access intracellular targets. However, the incorporation of a highly lipophilic cross-link may lead to nonspecific membrane toxicity in certain cases. Here, we report a new class of thioether-tethered bicyclic α-helical peptide to mimic the highly constrained loop-helix structure of natural toxins with the dual-targeting ability for both cell-surface receptors and intracellular targets. The thioether cross-links are introduced to replace the redox-sensitive disulfide bonds in natural toxins via a photoinduced thiol-yne reaction followed by macrolactamization. As a proof of concept, αVβ3 integrin targeting ligand was grafted into one of the macrocycles in the bicyclic scaffold, while a mitochondria-targeting proapoptotic motif was introduced into the other macrocycle stabilized by an i, i + 7 alkyl thioether cross-link to recapitulate its α-helical conformation. The obtained dual-targeting bicyclic α-helical BIRK peptides showed highly stable α-helical conformation in the presence of denaturants or under high temperature. Notably, BIRK peptides could induce selective cell death in αVβ3 integrin-positive B16F10 cells by interfering with the bioenergetic functions of mitochondria. This work provides a new avenue to design and stabilize α-helical peptides in a highly constrained bicyclic loop-helix scaffold with dual functionality.
Collapse
Affiliation(s)
- Rui Tang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yue Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Mengzhen Shi
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Zherui Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Ling Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yao Xiao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
11
|
Protective Effect of Mitochondrial ND2 C5178A Gene Mutation on Cell and Mitochondrial Functions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4728714. [PMID: 34336093 PMCID: PMC8315857 DOI: 10.1155/2021/4728714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Background Mitochondrial NADH dehydrogenase subunit 2 (MT-ND2) m. 5178C>A gene mutation has protective effects against various diseases, but the molecular mechanism is still unclear. In previous study, we found a heteroplasmy level of MT-ND2 m. 5178C>A mutation in normotensive controls. Peripheral blood samples were obtained from essential hypertension individuals carrying the mutation and healthy controls without gene mutation to establish immortalized lymphocyte lines. To investigate the effect of the MT-ND2 m. 5178C>A gene mutation, comparative analyses of the two group cell lines were performed, including measurements of cell proliferation, viability, ATP synthesis, mitochondrial oxidative stress, and oxidative phosphorylation. Results The cell proliferation rate and viability of the MT-ND2 m. 5178C>A mutant lymphocyte line were higher than those of the control group. Mitochondrial functions of the MT-ND2 m. 5178C>A mutant lymphocyte were increased, including increased ATP synthesis, decreased ROS production, increased mitochondrial membrane potential and Bcl-2 gene transcription and protein translation, decreased Caspase 3/7 activity, and decreased early apoptosis and late apoptosis. The oxygen consumption rate (OCR) of the mutant lymphocyte line was higher than that of the control group, including basal OCR, ATP-linked OCR, maximal OCR, proton leak OCR, and reserve OCR, and there was no significant difference in nonmitochondrial OCR. The activity of Mitochondrial Complex I of the mutant group was increased than that of the control group. Conclusions The MT-ND2 m. 5178C>A mutation is a protective mutation that may be related to improvement of mitochondrial functions and decrease in apoptosis.
Collapse
|
12
|
Li S, Liu S, Dai Z, Zhang Q, Xu Y, Chen Y, Jiang Z, Huang W, Sun H. The UL16 protein of HSV-1 promotes the metabolism of cell mitochondria by binding to ANT2 protein. Sci Rep 2021; 11:14001. [PMID: 34234233 PMCID: PMC8263751 DOI: 10.1038/s41598-021-93430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/15/2021] [Indexed: 11/09/2022] Open
Abstract
Long-term studies have shown that virus infection affects the energy metabolism of host cells, which mainly affects the function of mitochondria and leads to the hydrolysis of ATP in host cells, but it is not clear how virus infection participates in mitochondrial energy metabolism in host cells. In our study, HUVEC cells were infected with HSV-1, and the differentially expressed genes were obtained by microarray analysis and data analysis. The viral gene encoding protein UL16 was identified to interact with host protein ANT2 by immunoprecipitation and mass spectrometry. We also reported that UL16 transfection promoted oxidative phosphorylation of glucose and significantly increased intracellular ATP content. Furthermore, UL16 was transfected into the HUVEC cell model with mitochondrial dysfunction induced by d-Gal, and it was found that UL16 could restore the mitochondrial function of cells. It was first discovered that viral protein UL16 could enhance mitochondrial function in mammalian cells by promoting mitochondrial metabolism. This study provides a theoretical basis for the prevention and treatment of mitochondrial dysfunction or the pathological process related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shiyu Li
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.,Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenning Dai
- Department of Stomatology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yichao Xu
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Youyu Chen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyou Jiang
- Department of Microbiology and Immunology, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou, 510632, China.
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
13
|
Naia L, Pinho CM, Dentoni G, Liu J, Leal NS, Ferreira DMS, Schreiner B, Filadi R, Fão L, Connolly NMC, Forsell P, Nordvall G, Shimozawa M, Greotti E, Basso E, Theurey P, Gioran A, Joselin A, Arsenian-Henriksson M, Nilsson P, Rego AC, Ruas JL, Park D, Bano D, Pizzo P, Prehn JHM, Ankarcrona M. Neuronal cell-based high-throughput screen for enhancers of mitochondrial function reveals luteolin as a modulator of mitochondria-endoplasmic reticulum coupling. BMC Biol 2021; 19:57. [PMID: 33761951 PMCID: PMC7989211 DOI: 10.1186/s12915-021-00979-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a common feature of aging, neurodegeneration, and metabolic diseases. Hence, mitotherapeutics may be valuable disease modifiers for a large number of conditions. In this study, we have set up a large-scale screening platform for mitochondrial-based modulators with promising therapeutic potential. RESULTS Using differentiated human neuroblastoma cells, we screened 1200 FDA-approved compounds and identified 61 molecules that significantly increased cellular ATP without any cytotoxic effect. Following dose response curve-dependent selection, we identified the flavonoid luteolin as a primary hit. Further validation in neuronal models indicated that luteolin increased mitochondrial respiration in primary neurons, despite not affecting mitochondrial mass, structure, or mitochondria-derived reactive oxygen species. However, we found that luteolin increased contacts between mitochondria and endoplasmic reticulum (ER), contributing to increased mitochondrial calcium (Ca2+) and Ca2+-dependent pyruvate dehydrogenase activity. This signaling pathway likely contributed to the observed effect of luteolin on enhanced mitochondrial complexes I and II activities. Importantly, we observed that increased mitochondrial functions were dependent on the activity of ER Ca2+-releasing channels inositol 1,4,5-trisphosphate receptors (IP3Rs) both in neurons and in isolated synaptosomes. Additionally, luteolin treatment improved mitochondrial and locomotory activities in primary neurons and Caenorhabditis elegans expressing an expanded polyglutamine tract of the huntingtin protein. CONCLUSION We provide a new screening platform for drug discovery validated in vitro and ex vivo. In addition, we describe a novel mechanism through which luteolin modulates mitochondrial activity in neuronal models with potential therapeutic validity for treatment of a variety of human diseases.
Collapse
Affiliation(s)
- Luana Naia
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina M Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Giacomo Dentoni
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Department of Medicine-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Duarte M S Ferreira
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Lígia Fão
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Niamh M C Connolly
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | | | | | - Makoto Shimozawa
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Pierre Theurey
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Gioran
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - Per Nilsson
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Institute of Biochemistry, University of Coimbra, Coimbra, Portugal
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - David Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute, National Research Council (CNR), 35131, Padua, Italy
| | - Jochen H M Prehn
- Royal College of Surgeons in Ireland, Department of Physiology & Medical Physics Department, Dublin, Ireland
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Zhang Y, Guo R, Kim SH, Shah H, Zhang S, Liang JH, Fang Y, Gentili M, Leary CNO, Elledge SJ, Hung DT, Mootha VK, Gewurz BE. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat Commun 2021; 12:1676. [PMID: 33723254 PMCID: PMC7960988 DOI: 10.1038/s41467-021-21903-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/19/2021] [Indexed: 12/30/2022] Open
Abstract
The recently identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. How this novel beta-coronavirus virus, and coronaviruses more generally, alter cellular metabolism to support massive production of ~30 kB viral genomes and subgenomic viral RNAs remains largely unknown. To gain insights, transcriptional and metabolomic analyses are performed 8 hours after SARS-CoV-2 infection, an early timepoint where the viral lifecycle is completed but prior to overt effects on host cell growth or survival. Here, we show that SARS-CoV-2 remodels host folate and one-carbon metabolism at the post-transcriptional level to support de novo purine synthesis, bypassing viral shutoff of host translation. Intracellular glucose and folate are depleted in SARS-CoV-2-infected cells, and viral replication is exquisitely sensitive to inhibitors of folate and one-carbon metabolism, notably methotrexate. Host metabolism targeted therapy could add to the armamentarium against future coronavirus outbreaks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Rui Guo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Sharon H Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shuting Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jin Hua Liang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Colin N O' Leary
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Steven J Elledge
- Division of Genetics, Brigham and Women's Hospital, Department of Genetics, Howard Hughes Medical Institute, Program in Virology, Harvard Medical School, Boston, MA, USA
| | | | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Benjamin E Gewurz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Zhou Y, Li S, Zhao Y, Guo M, Liu Y, Li M, Wen Z. Quantitative Structure-Activity Relationship (QSAR) Model for the Severity Prediction of Drug-Induced Rhabdomyolysis by Using Random Forest. Chem Res Toxicol 2021; 34:514-521. [PMID: 33393765 DOI: 10.1021/acs.chemrestox.0c00347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Drug-induced rhabdomyolysis (DIR) is a rare and potentially life-threatening muscle injury that is characterized by low incidence and high risk. To our best knowledge, the performance of the current predictive models for the early detection of DIR is suboptimal because of the scarcity and dispersion of DIR cases. Therefore, on the basis of the curated drug information from the Drug-Induced Rhabdomyolysis Atlas (DIRA) database, we proposed a random forest (RF) model to predict the DIR severity of the marketed drugs. Compared with the state-of-art methods, our proposed model outperformed extreme gradient boosting, support vector machine, and logistic regression in distinguishing the Most-DIR concern drugs from the No-DIR concern drugs (Matthews correlation coefficient (MCC) and recall rate of our model were 0.46 and 0.81, respectively). Our model was subsequently applied to predicting the potentially serious DIR for 1402 drugs, which were reported to cause DIR by the postmarketing DIR surveillance data in the FDA Spontaneous Adverse Events Reporting System (FAERS). As a result, 62.7% (94) of drugs ranked in the top 150 drugs with the Most-DIR concerns in FAERS can be identified by our model. The top four drugs (odds ratio >30) including acepromazine, rapacuronium, oxyphenbutazone, and naringenin were correctly predicted by our model. In conclusion, the RF model can well predict the Most-DIR concern drug only based on the chemical structure information and can be a facilitated tool for early DIR detection.
Collapse
Affiliation(s)
- Yifan Zhou
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shihai Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yiru Zhao
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingkun Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuan Liu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.,Medical Big Data Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
16
|
Avram VF, Chamkha I, Åsander-Frostner E, Ehinger JK, Timar RZ, Hansson MJ, Muntean DM, Elmér E. Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Statin Toxicity. Int J Mol Sci 2021; 22:E424. [PMID: 33401621 PMCID: PMC7796258 DOI: 10.3390/ijms22010424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.
Collapse
Affiliation(s)
- Vlad F. Avram
- Department of Internal Medicine-Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (V.F.A.); (R.Z.T.)
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Spl. Tudor Vladimirescu No. 14, 300173 Timișoara, Romania
| | - Imen Chamkha
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden; (I.C.); (E.Å.-F.); (J.K.E.); (M.J.H.)
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Eleonor Åsander-Frostner
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden; (I.C.); (E.Å.-F.); (J.K.E.); (M.J.H.)
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Johannes K. Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden; (I.C.); (E.Å.-F.); (J.K.E.); (M.J.H.)
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Romulus Z. Timar
- Department of Internal Medicine-Diabetes, Nutrition and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (V.F.A.); (R.Z.T.)
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Spl. Tudor Vladimirescu No. 14, 300173 Timișoara, Romania
| | - Magnus J. Hansson
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden; (I.C.); (E.Å.-F.); (J.K.E.); (M.J.H.)
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| | - Danina M. Muntean
- Center for Translational Research and Systems Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Spl. Tudor Vladimirescu No. 14, 300173 Timișoara, Romania
- Department of Functional Sciences-Pathophysiology, 2Center for Translational Research and Systems Medi-cine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Romania, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, BMC A13, 221 84 Lund, Sweden; (I.C.); (E.Å.-F.); (J.K.E.); (M.J.H.)
- Abliva AB, Medicon Village, 223 81 Lund, Sweden
| |
Collapse
|
17
|
Zhou X, Wang Z, Qin M, Zhong S. [Mitochondrial G12630A variation is associated with statin-induced myalgia in Chinese patients with coronary artery disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1747-1752. [PMID: 33380401 DOI: 10.12122/j.issn.1673-4254.2020.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify mitochondrial gene variants associated with statin-induced myalgia in Chinese patients with coronary artery disease (CHD). METHODS This study was conducted in a cohort of 403 patients with CHD receiving rosuvastatin therapy, among whom 341 patients had complete follow-up data concerning myalgia and 389 patients had documented measurements of plasma creatine kinase (CK) level. All these patients underwent genetic analysis using GSA chip for detecting mitochondria gene variants associated with myalgia. A logistic regression model was used to assess the association between 69 mitochondrial single-nucleotide polymorphisms (SNPs) and myopathy in 341 patients. The impact of these mutation sites on CK levels in 389 patients was evaluated by linear regression analysis. RESULTS G12630A variant was identified to correlate with an increased risk of myalgia in CHD patients (OR: 8.689, 95% CI: 1.586-47.6; P=0.01273), but CK levels did not differ significantly between patients with different genotypes of G12630A (P > 0.05). SNPs at T12285C and A13105G were found to significantly correlate with CK levels in these patients (P < 0.05). CONCLUSIONS Mitochondrial G12630A variation is associated with statin-induced myalgia in patients with CHD, indicating the necessity of different treatment strategies for patients who carry this risk allele.
Collapse
Affiliation(s)
- Xiaohong Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zixian Wang
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Qin
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shilong Zhong
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
18
|
Fei ZY, Wang WS, Li SF, Zi JJ, Yang L, Liu T, Ao S, Liu QQ, Cui QH, Yu M, Xiong W. High expression of the TEFM gene predicts poor prognosis in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1291-1304. [PMID: 33457002 PMCID: PMC7807266 DOI: 10.21037/jgo-20-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitochondrial transcription elongation factor (TEFM) is an essential molecule that regulates the replication-transcription switch of mitochondrial DNA. TEFM modulates both transcription elongation and RNA processing in mitochondria. The purpose of the present study was to determine the association of TEFM with tumor progression and prognosis in hepatocellular carcinoma (HCC) patients. METHODS The different protein expression level of TEFM among HCC cell lines was detected by Western blotting. The gene expression profiling interactive analysis (GEPIA) was used to dynamically analyze the mRNA expression of TEFM gene in different stages of HCC. The protein and mRNA expression levels of TEFM were detected by immunohistochemistry, Western blotting and qRT-PCR. The mRNA-SeqV2 expression of TEFM and clinical information of HCC patients were downloaded from the TCGA database by using R3.6.3 software. Next, the relationships between the expression level of TEFM and clinicopathological characteristics and the prognostic value of TEFM were analyzed. A Cox regression model was used for multivariate analysis of the factors that affected the prognosis of HCC. Finally, the association between the expression levels of TEFM and other mitochondrial regulatory genes and HCC biomarker genes was analyzed by GEPIA. RESULTS TEFM is upregulated in HCC cell lines compared to noncancerous liver cell line. TEFM protein and mRNA expression levels in HCC tissues were significantly upregulated compared with those in noncancerous liver tissues. In addition, the mRNA expression level of TEFM was significantly correlated with sex, serum AFP level, and vascular invasion (P<0.05). Further analysis showed that high expression level of TEFM was unfavorable in terms of the prognosis of patients with HCC. Cox multivariate regression analysis showed that patient age, vascular invasion, and TEFM expression were independent factors affecting the prognosis of HCC patients (P<0.05). The expression level of the TEFM gene was significantly positively correlated with the expression of multiple mitochondrial regulatory genes and biomarker genes of HCC (P<0.01, R>0). CONCLUSIONS Our findings reveal that TEFM may play an important role in the progression of HCC. More importantly, the elevated expression of TEFM may potentially predict poor overall survival (OS) and disease-free survival (DFS) in patients with HCC.
Collapse
Affiliation(s)
- Zai-Yi Fei
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei-Si Wang
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Su-Fen Li
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Jia-Ji Zi
- College of Basic Medical Sciences, Dali University, Dali, China
| | - Li Yang
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Ting Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Song Ao
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qian-Qian Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qing-Hua Cui
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Min Yu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| |
Collapse
|
19
|
Varkuti BH, Liu Z, Kepiro M, Pacifico R, Gai Y, Kamenecka T, Davis RL. High-Throughput Small Molecule Screen Identifies Modulators of Mitochondrial Function in Neurons. iScience 2020; 23:100931. [PMID: 32146326 PMCID: PMC7063260 DOI: 10.1016/j.isci.2020.100931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/16/2020] [Accepted: 02/17/2020] [Indexed: 12/20/2022] Open
Abstract
We developed a high-throughput assay for modulators of mitochondrial function in neurons measuring inner mitochondrial membrane potential (ΔΨm) and ATP production. The assay was used to screen a library of small molecules, which led to the identification of structural/functional classes of mitochondrial modulators such as local anesthetics, isoflavones, COXII inhibitors, adrenergic receptor blockers, and neurotransmitter system effectors. Our results show that some of the isolated compounds promote mitochondrial health, enhance oxygen consumption rate, and protect neurons against toxic insults found in the cellular environment of Alzheimer disease. These studies offer a set of compounds that may provide efficacy in protecting the mitochondrial system in neurodegenerative disorders.
Collapse
Affiliation(s)
- Boglarka H Varkuti
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ze Liu
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Miklos Kepiro
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Rodrigo Pacifico
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Yunchao Gai
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ted Kamenecka
- Department of Molecular Medicine, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
20
|
Eser Faki H, Tras B, Uney K. Alpha lipoic acid and vitamin E improve atorvastatin-induced mitochondrial dysfunctions in rats. Mitochondrion 2020; 52:83-88. [PMID: 32119925 DOI: 10.1016/j.mito.2020.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023]
Abstract
To determine the effects of alpha lipoic acid (ALA) and vitamin E (Vit E) on mitochondrial dysfunction caused by statins. A total of 38 Wistar Albino rats were used in this study. The control group received dimethyl sulfoxide. The atorvastatin (A) group received atorvastatin (10 mg/kg). The A + ALA group received atorvastatin (10 mg/kg) and ALA (100 mg/kg). The A + Vit E group was administered atorvastatin (10 mg/kg) and Vit E (100 mg/kg). The A + ALA + Vit E group was administered atorvastatin (10 mg/kg), ALA (100 mg/kg) and Vit E (100 mg/kg). All applications were administered simultaneously by gavage for 20 days. ATP level and complex I activity were measured from liver, muscle, heart, kidney and brain. Atorvastatin significantly decreased the ATP levels in heart and kidney, while a slight decrease was seen in liver, muscle and brain. Atorvastatin caused an insignificant decrease in the complex I activity in all tissues examined. ALA administration significantly improved the ATP levels in the liver, heart and kidney, while Vit E improved the ATP levels in all tissues except the muscle compared to Atorvastatin group. Single administration of both ALA and vit E ameliorated complex I activity in the muscle, heart, kidney and brain. The combination of ALA and Vit E significantly improved the ATP levels in the liver, heart, kidney and brain and also provided significant improvements the complex I activity in all tissues. The undesirable effects of Atorvastatin on mitochondrial functions in this study ameliorated by using ALA and/or Vit E alone and in combination.
Collapse
Affiliation(s)
- Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey.
| | - Bunyamin Tras
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, 42031 Konya, Turkey
| |
Collapse
|
21
|
Ibhazehiebo K, Rho JM, Kurrasch DM. Metabolism-based drug discovery in zebrafish: An emerging strategy to uncover new anti-seizure therapies. Neuropharmacology 2020; 167:107988. [PMID: 32070912 DOI: 10.1016/j.neuropharm.2020.107988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
As one of the most common neurological disorders, epilepsy can occur throughout the lifespan and from a multiplicity of causes, including genetic mutations, inflammation, neurotrauma, or brain malformations. Although pharmacological agents are the mainstay of treatment for seizure control, an unyielding 30-40% of patients remain refractory to these medications and continue to experience spontaneous recurrent seizures with attendant life-long cognitive, behavioural, and mental health issues, as well as an increased risk for sudden unexpected death. Despite over eight decades of antiseizure drug (ASD) discovery and the approval of dozens of new medications, the percentage of this refractory population remains virtually unchanged, suggesting that drugs with new and unexpected mechanisms of action are needed. In this brief review, we discuss the need for new animal models of epilepsy, with a particular focus on the advantages and disadvantages of zebrafish. We also outline the evidence that epilepsy is characterized by derangements in mitochondrial function and introduce the rationale and promise of bioenergetics as a functional readout assay to uncover novel ASDs. We also consider limitations of a zebrafish metabolism-based drug screening approach. Our goal is to discuss the opportunities and challenges of further development of mitochondrial screening strategies for the development of novel ASDs. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Kingsley Ibhazehiebo
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada
| | - Jong M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, Canada; Department of Pediatrics, Cumming School of Medicine, University of Calgary, Canada; Department of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital San Diego, California, USA
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Canada.
| |
Collapse
|
22
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
23
|
Tutone M, Almerico AM. The In Silico Fischer Lock-and-Key Model: The Combined Use of Molecular Descriptors and Docking Poses for the Repurposing of Old Drugs. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2089:29-39. [PMID: 31773645 DOI: 10.1007/978-1-0716-0163-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Not always lead compound and/or derivatives are suitable for the specific biological target for which they are designed but, in some cases, discarded compounds proved to be good binders for other biological targets; therefore, drug repurposing constitute a valid alternative to avoid waste of human and financial resources. Our virtual lock-and-key methods, VLKA and Conf-VLKA, furnish a strong support to predict the efficacy of a designed drug a priori its biological evaluation, or the correct biological target for a set of the selected compounds, allowing thus the repurposing of known and unknown, active and inactive compounds.
Collapse
Affiliation(s)
- Marco Tutone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University di Palermo, Palermo, Italy.
| | - Anna Maria Almerico
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University di Palermo, Palermo, Italy
| |
Collapse
|
24
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
25
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
26
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
27
|
Thi Tran U, Kitami T. Niclosamide activates the NLRP3 inflammasome by intracellular acidification and mitochondrial inhibition. Commun Biol 2019; 2:2. [PMID: 30740538 PMCID: PMC6318214 DOI: 10.1038/s42003-018-0244-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/02/2018] [Indexed: 12/16/2022] Open
Abstract
The NLRP3 inflammasome is unique among pattern recognition receptors in using changes in cellular physiology as a mechanism for sensing host danger. To dissect the physiological network controlling inflammasome activation, we screened for small-molecule activators and suppressors of IL-1β release in macrophages. Here we identified niclosamide, a mitochondrial uncoupler, as an activator of NLRP3 inflammasome. We find that niclosamide inhibits mitochondria and induces intracellular acidification, both of which are necessary for inflammasome activation. Intracellular acidification, by inhibiting glycolysis, works together with mitochondrial inhibition to induce intracellular ATP loss, which compromises intracellular potassium maintenance, a key event to NLRP3 inflammasome activation. A modest decline in intracellular ATP or pH within an optimal range induces maximum IL-1β release while their excessive decline suppresses IL-1β release. Our work illustrates how energy metabolism converges upon intracellular potassium to activate NLRP3 inflammasome and highlights a biphasic relationship between cellular physiology and IL-1β release.
Collapse
Affiliation(s)
- Uyen Thi Tran
- YCI Laboratory for Cellular Bioenergetic Network, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Toshimori Kitami
- YCI Laboratory for Cellular Bioenergetic Network, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
28
|
Reproductive period and epigenetic modifications of the oxidative phosphorylation pathway in the human prefrontal cortex. PLoS One 2018; 13:e0199073. [PMID: 30052629 PMCID: PMC6063396 DOI: 10.1371/journal.pone.0199073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Human females have a unique duration of post-reproductive longevity, during which sex-specific mechanisms ma influence later-life mechanisms of neuronal resilience and vulnerability. The maintenance of energy metabolism, through the oxidative phosphorylation (OXPHOS) apparatus, is essential for brain health. Given the known association between reproductive period (years from menarche to menopause) and cognitive aging, we examined the hypothesis that cumulative estrogen exposure across the lifetime may be associated with differential methylation of genes in the OXPHOS pathway. METHODS Using DNA methylation patterns in the post-mortem dorsolateral prefrontal cortex (DLPFC) of 426 women prospectively followed until death in the Religious Orders Study and Rush Memory and Aging Project, we examined the relationship between reproductive period (subtracting age at menarche from age at menopause) and DNA methylation of a published set of autosomal OXPHOS genes previously implicated in stroke susceptibility. We then performed an unsupervised analysis of methylation levels across the Hallmark pathways from the Molecular Signatures Database. RESULTS We observed a strong association between reproductive period and DNA methylation status across OXPHOS CpGs. We replicated this association between reproductive period and DNA methylation in a much larger set of OXPHOS genes in our unsupervised analysis. Here, reproductive period also showed associations with methylation in genes related to E2F, MYC and MTORC1 signaling, fatty acid metabolism and DNA repair. CONCLUSION This study provides evidence from both a supervised and unsupervised analyses, that lifetime cumulative endogenous steroid exposures may play a role in maintenance of post-menopausal cellular balance, including in brain tissue.
Collapse
|
29
|
Das U, Pattanayak P, Santra MK, Chattopadhyay S. Synthesis of New Oxido-Vanadium Complexes: Catalytic Properties and Cytotoxicity. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15168821806597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reaction of 2,3-dihydroxy benzaldehyde with 2-({2-amino phenyl}diazenyl)phenol afforded the ligand 3-(2-(2-hydroxyphenyl)diazenyl)-4-alkylphenyliminomethyl)benzene-1,2-diol. Reaction of H2L with VOSO4. 5H2O gave the oxido-vanadium(IV) complexes [(L)VO], which exhibited a quasi-reversible oxidative cyclic voltammetric response in a V(IV)/V(V) oxidative process. The complexes act as catalysts in the oxidation of organic thioethers and bromination of phenol. Their cytotoxic properties were examined for three cancer cell lines.
Collapse
Affiliation(s)
- Uttam Das
- Department of Chemistry, University of Kalyani, Kalyani 741235, India
- Department of Chemistry, Kalyani Government Engineering College, Kalyani 741235, India
| | | | - Manas Kumar Santra
- Cancer Biology and Epigenetics Lab, National Center for Cell Science, Ganeshkhind, Pune 411007, India
| | | |
Collapse
|
30
|
Yue X, Acun A, Zorlutuna P. Transcriptome profiling of 3D co-cultured cardiomyocytes and endothelial cells under oxidative stress using a photocrosslinkable hydrogel system. Acta Biomater 2017. [PMID: 28648749 DOI: 10.1016/j.actbio.2017.06.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myocardial infarction (MI) is one of the most common among cardiovascular diseases. Endothelial cells (ECs) are considered to have protective effects on cardiomyocytes (CMs) under stress conditions such as MI; however, the paracrine CM-EC crosstalk and the resulting endogenous cellular responses that could contribute to this protective effect are not thoroughly investigated. Here we created biomimetic synthetic tissues containing CMs and human induced pluripotent stem cell (hiPSC)-derived ECs (iECs), which showed improved cell survival compared to single cultures under conditions mimicking the aftermath of MI, and performed high-throughput RNA-sequencing to identify target pathways that could govern CM-iEC crosstalk and the resulting improvement in cell viability. Our results showed that single cultured CMs had different gene expression profiles compared to CMs co-cultured with iECs. More importantly, this gene expression profile was preserved in response to oxidative stress in co-cultured CMs while single cultured CMs showed a significantly different gene expression pattern under stress, suggesting a stabilizing effect of iECs on CMs under oxidative stress conditions. Furthermore, we have validated the in vivo relevance of our engineered model tissues by comparing the changes in the expression levels of several key genes of the encapsulated CMs and iECs with in vivo rat MI model data and clinical data, respectively. We conclude that iECs have protective effects on CMs under oxidative stress through stabilizing mitochondrial complexes, suppressing oxidative phosphorylation pathway and activating pathways such as the drug metabolism-cytochrome P450 pathway, Rap1 signaling pathway, and adrenergic signaling in cardiomyocytes pathway. STATEMENT OF SIGNIFICANCE Heart diseases are the leading cause of death worldwide. Oxidative stress is a common unwanted outcome that especially occurs due to the reperfusion following heart attack or heart surgery. Standard methods of in vivo analysis do not allow dissecting various intermingled parameters, while regular 2D cell culture approaches often fail to provide a biomimetic environment for the physiologically relevant cellular phenotypes. In this research, a systematic genome-wide transcriptome profiling was performed on myocardial cells in a biomimetic 3D hydrogel-based synthetic model tissue, for identifying possible target genes and pathways as protecting regulators against oxidative stress. Identification of such pathways would be very valuable for new strategies during heart disease treatment by reducing the cellular damage due to reperfusion injury.
Collapse
Affiliation(s)
- Xiaoshan Yue
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States
| | - Aylin Acun
- University of Notre Dame, Bioengineering Graduate Program, United States
| | - Pinar Zorlutuna
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, United States; University of Notre Dame, Bioengineering Graduate Program, United States.
| |
Collapse
|
31
|
Elkamhawy A, Park JE, Hassan AH, Pae AN, Lee J, Park BG, Paik S, Do J, Park JH, Park KD, Moon B, Park WK, Cho H, Jeong DY, Roh EJ. Design, synthesis, biological evaluation and molecular modelling of 2-(2-aryloxyphenyl)-1,4-dihydroisoquinolin-3(2 H )-ones: A novel class of TSPO ligands modulating amyloid-β-induced mPTP opening. Eur J Pharm Sci 2017; 104:366-381. [DOI: 10.1016/j.ejps.2017.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/22/2022]
|
32
|
Das B, Rajagopalan S, Joshi GS, Xu L, Luo D, Andersen JK, Todi SV, Dutta AK. A novel iron (II) preferring dopamine agonist chelator D-607 significantly suppresses α-syn- and MPTP-induced toxicities in vivo. Neuropharmacology 2017; 123:88-99. [PMID: 28533164 DOI: 10.1016/j.neuropharm.2017.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of a novel hybrid D2/D3 agonist and iron (II) specific chelator, D-607, as a multi-target-directed ligand against Parkinson's disease (PD). In our previously published report, we showed that D-607 is a potent agonist of dopamine (DA) D2/D3 receptors, exhibits efficacy in a reserpinized PD animal model and preferentially chelates to iron (II). As further evidence of its potential as a neuroprotective agent in PD, the present study reveals D-607 to be protective in neuronal PC12 cells against 6-OHDA toxicity. In an in vivo Drosophila melanogaster model expressing a disease-causing variant of α-synuclein (α-Syn) protein in fly eyes, the compound was found to significantly suppress toxicity compared to controls, concomitant with reduced levels of aggregated α-Syn. Furthermore, D-607 was able to rescue DAergic neurons from MPTP toxicity in mice, a well-known PD neurotoxicity model, following both sub-chronic and chronic MPTP administration. Mechanistic studies indicated that possible protection of mitochondria, up-regulation of hypoxia-inducible factor, reduction in formation of α-Syn aggregates and antioxidant activity may underlie the observed neuroprotection effects. These observations strongly suggest that D-607 has potential as a promising multifunctional lead molecule for viable symptomatic and disease-modifying therapy for PD.
Collapse
Affiliation(s)
- Banibrata Das
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | - Gnanada S Joshi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Liping Xu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Dan Luo
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Sokol V Todi
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Aloke K Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
33
|
Lunnon K, Keohane A, Pidsley R, Newhouse S, Riddoch-Contreras J, Thubron EB, Devall M, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Schalkwyk L, Dobson R, Malik AN, Powell J, Lovestone S, Hodges A. Mitochondrial genes are altered in blood early in Alzheimer's disease. Neurobiol Aging 2017; 53:36-47. [PMID: 28208064 DOI: 10.1016/j.neurobiolaging.2016.12.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/22/2016] [Accepted: 12/29/2016] [Indexed: 01/09/2023]
Abstract
Although mitochondrial dysfunction is a consistent feature of Alzheimer's disease in the brain and blood, the molecular mechanisms behind these phenomena are unknown. Here we have replicated our previous findings demonstrating reduced expression of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and subunits required for the translation of mitochondrial-encoded OXPHOS genes in blood from people with Alzheimer's disease and mild cognitive impairment. Interestingly this was accompanied by increased expression of some mitochondrial-encoded OXPHOS genes, namely those residing closest to the transcription start site of the polycistronic heavy chain mitochondrial transcript (MT-ND1, MT-ND2, MT-ATP6, MT-CO1, MT-CO2, MT-C03) and MT-ND6 transcribed from the light chain. Further we show that mitochondrial DNA copy number was unchanged suggesting no change in steady-state numbers of mitochondria. We suggest that an imbalance in nuclear and mitochondrial genome-encoded OXPHOS transcripts may drive a negative feedback loop reducing mitochondrial translation and compromising OXPHOS efficiency, which is likely to generate damaging reactive oxygen species.
Collapse
Affiliation(s)
- Katie Lunnon
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; University of Exeter Medical School, University of Exeter, Devon, UK
| | - Aoife Keohane
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ruth Pidsley
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stephen Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Elisabeth B Thubron
- Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Matthew Devall
- University of Exeter Medical School, University of Exeter, Devon, UK
| | - Hikka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Leonard Schalkwyk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Dobson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Afshan N Malik
- Diabetes Research Group, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - John Powell
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon Lovestone
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
34
|
miR-24-mediated knockdown of H2AX damages mitochondria and the insulin signaling pathway. Exp Mol Med 2017; 49:e313. [PMID: 28386126 PMCID: PMC5420797 DOI: 10.1038/emm.2016.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/02/2016] [Accepted: 11/06/2016] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial deficits or altered expressions of microRNAs are associated with the pathogenesis of various diseases, and microRNA-operated control of mitochondrial activity has been reported. Using a retrovirus-mediated short-hairpin RNA (shRNA) system, we observed that miR-24-mediated H2AX knockdown (H2AX-KD) impaired both mitochondria and the insulin signaling pathway. The overexpression of miR-24 decreased mitochondrial H2AX and disrupted mitochondrial function, as indicated by the ATP content, membrane potential and oxygen consumption. Similar mitochondrial damage was observed in shH2AX-mediated specific H2AX-KD cells. The H2AX-KD reduced the expression levels of mitochondrial transcription factor A (TFAM) and mitochondrial DNA-dependent transcripts. H2AX-KD mitochondria were swollen, and their cristae were destroyed. H2AX-KD also blocked the import of precursor proteins into mitochondria and the insulin-stimulated phosphorylation of IRS-1 (Y632) and Akt (S473 and T308). The rescue of H2AX, but not the nuclear form of ΔC24-H2AX, restored all features of miR-24- or shH2AX-mediated impairment of mitochondria. Hepatic miR-24 levels were significantly increased in db/db and ob/ob mice. A strong feedback loop may be present among miR-24, H2AX, mitochondria and the insulin signaling pathway. Our findings suggest that H2AX-targeting miR-24 may be a novel negative regulator of mitochondrial function and is implicated in the pathogenesis of insulin resistance.
Collapse
|
35
|
O'Hagan S, Kell DB. Analysis of drug-endogenous human metabolite similarities in terms of their maximum common substructures. J Cheminform 2017; 9:18. [PMID: 28316656 PMCID: PMC5344883 DOI: 10.1186/s13321-017-0198-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
In previous work, we have assessed the structural similarities between marketed drugs (‘drugs’) and endogenous natural human metabolites (‘metabolites’ or ‘endogenites’), using ‘fingerprint’ methods in common use, and the Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the apparent similarities observed. By contrast, the maximal common substructure (MCS), when the means of determining it is fixed, is a means of determining similarities that is largely independent of the fingerprints, and also has a clear chemical meaning. We here explored the utility of the MCS and metrics derived therefrom. In many cases, a shared scaffold helps cluster drugs and endogenites, and gives insight into enzymes (in particular transporters) that they both share. Tanimoto and Tversky similarities based on the MCS tend to be smaller than those based on the MACCS fingerprint-type encoding, though the converse is also true for a significant fraction of the comparisons. While no single molecular descriptor can account for these differences, a machine learning-based analysis of the nature of the differences (MACCS_Tanimoto vs MCS_Tversky) shows that they are indeed deterministic, although the features that are used in the model to account for this vary greatly with each individual drug. The extent of its utility and interpretability vary with the drug of interest, implying that while MCS is neither ‘better’ nor ‘worse’ for every drug–endogenite comparison, it is sufficiently different to be of value. The overall conclusion is thus that the use of the MCS provides an additional and valuable strategy for understanding the structural basis for similarities between synthetic, marketed drugs and natural intermediary metabolites.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| |
Collapse
|
36
|
Elkamhawy A, Park JE, Hassan AH, Ra H, Pae AN, Lee J, Park BG, Moon B, Park HM, Roh EJ. Discovery of 1-(3-(benzyloxy)pyridin-2-yl)-3-(2-(piperazin-1-yl)ethyl)urea: A new modulator for amyloid beta-induced mitochondrial dysfunction. Eur J Med Chem 2017; 128:56-69. [DOI: 10.1016/j.ejmech.2016.12.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
37
|
Reznik E, Wang Q, La K, Schultz N, Sander C. Mitochondrial respiratory gene expression is suppressed in many cancers. eLife 2017; 6:e21592. [PMID: 28099114 PMCID: PMC5243113 DOI: 10.7554/elife.21592] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
The fundamental metabolic decision of a cell, the balance between respiration and fermentation, rests in part on expression of the mitochondrial genome (mtDNA) and coordination with expression of the nuclear genome (nuDNA). Previously we described mtDNA copy number depletion across many solid tumor types (Reznik et al., 2016). Here, we use orthogonal RNA-sequencing data to quantify mtDNA expression (mtRNA), and report analogously lower expression of mtRNA in tumors (relative to normal tissue) across a majority of cancer types. Several cancers exhibit a trio of mutually consistent evidence suggesting a drop in respiratory activity: depletion of mtDNA copy number, decreases in mtRNA levels, and decreases in expression of nuDNA-encoded respiratory proteins. Intriguingly, a minority of cancer types exhibit a drop in mtDNA expression but an increase in nuDNA expression of respiratory proteins, with unknown implications for respiratory activity. Our results indicate suppression of respiratory gene expression across many cancer types.
Collapse
Affiliation(s)
- Ed Reznik
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Qingguo Wang
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Konnor La
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chris Sander
- Department of Cell Biology, Harvard Medical School, Boston, United States
- cBio Center, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
38
|
El-Ganainy SO, El-Mallah A, Abdallah D, Khattab MM, Mohy El-Din MM, El-Khatib AS. Rosuvastatin safety: An experimental study of myotoxic effects and mitochondrial alterations in rats. Toxicol Lett 2016; 265:23-29. [PMID: 27815113 DOI: 10.1016/j.toxlet.2016.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/14/2023]
Abstract
Myopathy is the most commonly reported adverse effect of statins. All statins are associated with myopathy, though with different rates. Rosuvastatin is a potent statin reported to induce myopathy comparable to earlier statins. However, in clinical practice most patients could tolerate rosuvastatin over other statins. This study aimed to evaluate the myopathic pattern of rosuvastatin in rats using biochemical, functional and histopathological examinations. The possible deleterious effects of rosuvastatin on muscle mitochondria were also examined. The obtained results were compared to myopathy induced by atorvastatin in equimolar dose. Results showed that rosuvastatin induced a rise in CK, a slight increase in myoglobin level together with mild muscle necrosis. Motor activity, assessed by rotarod, showed that rosuvastatin decreased rats' performance. All these manifestations were obviously mild compared to the prominent effects of atorvastatin. Parallel results were obtained in mitochondrial dysfunction parameters. Rosuvastatin only induced a slight increase in LDH and a minor decrease in ATP (∼14%) and pAkt (∼12%). On the other hand, atorvastatin induced an increase in LDH, lactate/pyruvate ratio and a pronounced decline in ATP (∼80%) and pAkt (∼65%). These findings showed that rosuvastatin was associated with mild myotoxic effects in rats, especially when compared to atorvastatin.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt.
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University, Alexandria, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
39
|
D'Antona G, Tedesco L, Ruocco C, Corsetti G, Ragni M, Fossati A, Saba E, Fenaroli F, Montinaro M, Carruba MO, Valerio A, Nisoli E. A Peculiar Formula of Essential Amino Acids Prevents Rosuvastatin Myopathy in Mice. Antioxid Redox Signal 2016; 25:595-608. [PMID: 27245589 PMCID: PMC5065032 DOI: 10.1089/ars.2015.6582] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Myopathy, characterized by mitochondrial oxidative stress, occurs in ∼10% of statin-treated patients, and a major risk exists with potent statins such as rosuvastatin (Rvs). We sought to determine whether a peculiar branched-chain amino acid-enriched mixture (BCAAem), found to improve mitochondrial function and reduce oxidative stress in muscle of middle-aged mice, was able to prevent Rvs myopathy. RESULTS Dietary supplementation of BCAAem was able to prevent the structural and functional alterations of muscle induced by Rvs in young mice. Rvs-increased plasma 3-methylhistidine (a marker of muscular protein degradation) was prevented by BCAAem. This was obtained without changes of Rvs ability to reduce cholesterol and triglyceride levels in blood. Rather, BCAAem promotes de novo protein synthesis and reduces proteolysis in cultured myotubes. Morphological alterations of C2C12 cells induced by statin were counteracted by amino acids, as were the Rvs-increased atrogin-1 mRNA and protein levels. Moreover, BCAAem maintained mitochondrial mass and density and citrate synthase activity in skeletal muscle of Rvs-treated mice beside oxygen consumption and ATP levels in C2C12 cells exposed to statin. Notably, BCAAem assisted Rvs to reduce oxidative stress and to increase the anti-reactive oxygen species (ROS) defense system in skeletal muscle. Innovation and Conclusions: The complex interplay between proteostasis and antioxidant properties may underlie the mechanism by which a specific amino acid formula preserves mitochondrial efficiency and muscle health in Rvs-treated mice. Strategies aimed at promoting protein balance and controlling mitochondrial ROS level may be used as therapeutics for the treatment of muscular diseases involving mitochondrial dysfunction, such as statin myopathy. Antioxid. Redox Signal. 25, 595-608.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- 1 Department of Public Health, Experimental and Forensic Medicine, Pavia University , Pavia, Italy
| | - Laura Tedesco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Chiara Ruocco
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Giovanni Corsetti
- 3 Department of Clinical and Experimental Sciences, Brescia University , Brescia, Italy
| | - Maurizio Ragni
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Andrea Fossati
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Elisa Saba
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Francesca Fenaroli
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Mery Montinaro
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Michele O Carruba
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| | - Alessandra Valerio
- 4 Department of Molecular and Translational Medicine, Brescia University , Brescia, Italy
| | - Enzo Nisoli
- 2 Department of Medical Biotechnology and Translational Medicine, Center for Study and Research on Obesity, Milan University , Milan, Italy
| |
Collapse
|
40
|
Kim YJ, Kim HR, Jeon HJ, Ju HJ, Chung S, Choi DE, Lee KW, Na KR. Rhabdomyolysis in a patient taking nebivolol. Kidney Res Clin Pract 2016; 35:182-6. [PMID: 27668163 PMCID: PMC5025462 DOI: 10.1016/j.krcp.2015.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023] Open
Abstract
β Blockers such as propranolol and labetalol are known to induce toxic myopathy because of their partial β2 adrenoceptor agonistic effect. Nebivolol has the highest β1 receptor affinity among β blockers, and it has never been reported to induce rhabdomyolysis until now. We report a patient who developed rhabdomyolysis after changing medication to nebivolol. A 75-year-old woman was admitted to our hospital because of generalized weakness originating 2 weeks before visiting. Approximately 1 month before her admission, her medication was changed from carvedilol 12.5 mg to nebivolol 5 mg. Over this time span, she had no other lifestyle changes causing rhabdomyolysis. Her blood chemistry and whole body bone scan indicated rhabdomyolysis. We considered newly prescribed nebivolol as a causal agent. She was prescribed carvedilol 12.5 mg, which she was previously taking, instead of nebivolol. She was treated by hydration and urine alkalization. She had fully recovered and was discharged.
Collapse
Affiliation(s)
- Ye Jin Kim
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hae Ri Kim
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hong Jae Jeon
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hyun Jun Ju
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Sarah Chung
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Dae Eun Choi
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Kang Wook Lee
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Ki Ryang Na
- Renal Division, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
41
|
Muntean DM, Thompson PD, Catapano AL, Stasiolek M, Fabis J, Muntner P, Serban MC, Banach M. Statin-associated myopathy and the quest for biomarkers: can we effectively predict statin-associated muscle symptoms? Drug Discov Today 2016; 22:85-96. [PMID: 27634340 DOI: 10.1016/j.drudis.2016.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/28/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Over the past three decades, statins have become the cornerstone of prevention and treatment of atherosclerotic cardiovascular and metabolic diseases. Albeit generally well tolerated, these drugs can elicit a variety of muscle-associated symptoms that represent the most important reason for treatment discontinuation. Statin-associated myopathy has been systematically underestimated by randomized controlled trials as compared with the incidence observed in clinical practice and obtained from patient registries. There are several reasons for this discrepancy, among which the lack of reliable diagnostic tests and a validated questionnaire to assess muscle symptoms are recognized as unmet needs. Here, we review the cellular and molecular mechanisms underlying statin-associated myopathy and discuss the experimental and clinical data on various biomarkers to diagnose and predict muscle-related complaints.
Collapse
Affiliation(s)
- Danina M Muntean
- Department of Pathophysiology Functional Sciences, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania; Center for Translational Research and Systems Medicine, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, Hartford, CT, USA
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, IRCCS Multimedica, Milan, Italy
| | - Mariusz Stasiolek
- Department of Neurology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Jaroslaw Fabis
- Department of Arthroscopy, Minimally Invasive Surgery and Sports Traumatology, Medical University of Lodz, Poland
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maria-Corina Serban
- Department of Pathophysiology Functional Sciences, Victor Babeş University of Medicine and Pharmacy of Timisoara, Timisoara, Romania; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Healthy Aging Research Centre (HARC), Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
42
|
Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surf B Biointerfaces 2016; 145:217-225. [DOI: 10.1016/j.colsurfb.2016.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 12/23/2022]
|
43
|
Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJR. Drug-Induced Mitochondrial Toxicity. Drug Saf 2016; 39:661-74. [DOI: 10.1007/s40264-016-0417-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
44
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Traylor M, Anderson CD, Hurford R, Bevan S, Markus HS. Oxidative phosphorylation and lacunar stroke: Genome-wide enrichment analysis of common variants. Neurology 2015; 86:141-5. [PMID: 26674331 PMCID: PMC4731691 DOI: 10.1212/wnl.0000000000002260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/08/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated whether oxidative phosphorylation (OXPHOS) abnormalities were associated with lacunar stroke, hypothesizing that these would be more strongly associated in patients with multiple lacunar infarcts and leukoaraiosis (LA). METHODS In 1,012 MRI-confirmed lacunar stroke cases and 964 age-matched controls recruited from general practice surgeries, we investigated associations between common genetic variants within the OXPHOS pathway and lacunar stroke using a permutation-based enrichment approach. Cases were phenotyped using MRI into those with multiple infarcts or LA (MLI/LA) and those with isolated lacunar infarcts (ILI) based on the number of subcortical infarcts and degree of LA, using the Fazekas grading. Using gene-level association statistics, we tested for enrichment of genes in the OXPHOS pathway with all lacunar stroke and the 2 subtypes. RESULTS There was a specific association with strong evidence of enrichment in the top 1% of genes in the MLI/LA (subtype p = 0.0017) but not in the ILI subtype (p = 1). Genes in the top percentile for the all lacunar stroke analysis were not significantly enriched (p = 0.07). CONCLUSIONS Our results implicate the OXPHOS pathway in the pathogenesis of lacunar stroke, and show the association is specific to patients with the MLI/LA subtype. They show that MRI-based subtyping of lacunar stroke can provide insights into disease pathophysiology, and imply that different radiologic subtypes of lacunar stroke subtypes have distinct underlying pathophysiologic processes.
Collapse
Affiliation(s)
- Matthew Traylor
- From Clinical Neurosciences (M.T., R.H., H.S.M.), University of Cambridge, UK; School of Life Science (S.B.), University of Lincoln, UK; and the Center for Human Genetic Research (C.D.A.), Department of Neurology, Massachusetts General Hospital, Boston.
| | - Christopher D Anderson
- From Clinical Neurosciences (M.T., R.H., H.S.M.), University of Cambridge, UK; School of Life Science (S.B.), University of Lincoln, UK; and the Center for Human Genetic Research (C.D.A.), Department of Neurology, Massachusetts General Hospital, Boston
| | - Robert Hurford
- From Clinical Neurosciences (M.T., R.H., H.S.M.), University of Cambridge, UK; School of Life Science (S.B.), University of Lincoln, UK; and the Center for Human Genetic Research (C.D.A.), Department of Neurology, Massachusetts General Hospital, Boston
| | - Steve Bevan
- From Clinical Neurosciences (M.T., R.H., H.S.M.), University of Cambridge, UK; School of Life Science (S.B.), University of Lincoln, UK; and the Center for Human Genetic Research (C.D.A.), Department of Neurology, Massachusetts General Hospital, Boston
| | - Hugh S Markus
- From Clinical Neurosciences (M.T., R.H., H.S.M.), University of Cambridge, UK; School of Life Science (S.B.), University of Lincoln, UK; and the Center for Human Genetic Research (C.D.A.), Department of Neurology, Massachusetts General Hospital, Boston
| |
Collapse
|
46
|
Rengo JL, Callahan DM, Savage PD, Ades PA, Toth MJ. Skeletal muscle ultrastructure and function in statin-tolerant individuals. Muscle Nerve 2015; 53:242-51. [PMID: 26059690 DOI: 10.1002/mus.24722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetes Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase. METHODS We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects. RESULTS Myosin isoform expression, fiber type distributions, single fiber maximal Ca(2+) -activated tension, and whole muscle contractile force were similar between groups. No differences were observed in myosin-actin cross-bridge kinetics in myosin heavy chain I or IIA fibers. CONCLUSIONS We found no evidence for statin-induced changes in muscle morphology at the molecular, cellular, or whole tissue levels. Collectively, our data show that chronic statin therapy in healthy asymptomatic individuals does not promote deleterious myofilament structural or functional adaptations.
Collapse
Affiliation(s)
- Jason L Rengo
- Department of Cardiology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Damien M Callahan
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA.,Department of Molecular Physiology and Biophysics, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Patrick D Savage
- Department of Cardiology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Philip A Ades
- Department of Cardiology, University of Vermont Medical Center, Burlington, Vermont, USA.,Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA
| | - Michael J Toth
- Department of Medicine, University of Vermont, College of Medicine, Burlington, Vermont, USA.,Department of Molecular Physiology and Biophysics, University of Vermont, College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
47
|
Henriksbo BD, Schertzer JD. Is immunity a mechanism contributing to statin-induced diabetes? Adipocyte 2015; 4:232-8. [PMID: 26451278 PMCID: PMC4573193 DOI: 10.1080/21623945.2015.1024394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/21/2022] Open
Abstract
Statins lower cholesterol and are commonly prescribed for prevention and treatment of cardiovascular disease risk. Statins have pleotropic actions beyond cholesterol lowering, including decreased protein prenylation, which can alter immune function. The general anti-inflammatory effect of statins may be a key pleiotropic effect that improves cardiovascular disease risk. However, a series of findings have shown that statins increase the pro-inflammatory cytokine, IL-1β, via decreased protein prenylation in immune cells. IL-1β can be regulated by the NLRP3 inflammasome containing caspase-1. Statins have been associated with an increased risk of new onset diabetes. Inflammation can promote ineffective insulin action (insulin resistance), which often precedes diabetes. This review highlights the links between statins, insulin resistance and immunity via the NLRP3 inflammasome. We propose that statin-induced changes in immunity should be investigated as a mechanism underlying increased risk of diabetes. It is possible that statin-related insulin resistance occurs through a separate pathway from various mechanisms that confer cardiovascular benefits. Therefore, understanding the potential mechanisms that segregate statin-induced cardiovascular effects from those that cause dysglycemia may lead to improvements in this drugs class.
Collapse
Affiliation(s)
- Brandyn D Henriksbo
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON, Canada
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON, Canada
| |
Collapse
|
48
|
Elkamhawy A, Viswanath ANI, Pae AN, Kim HY, Heo JC, Park WK, Lee CO, Yang H, Kim KH, Nam DH, Seol HJ, Cho H, Roh EJ. Discovery of potent and selective cytotoxic activity of new quinazoline-ureas against TMZ-resistant glioblastoma multiforme (GBM). Eur J Med Chem 2015; 103:210-22. [DOI: 10.1016/j.ejmech.2015.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 07/18/2015] [Accepted: 08/01/2015] [Indexed: 01/24/2023]
|
49
|
Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:143145. [PMID: 26074984 PMCID: PMC4449907 DOI: 10.1155/2015/143145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/14/2014] [Indexed: 01/24/2023]
Abstract
Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM) has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fei Lin
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li-li Guo
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing-jiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xun Fan
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
50
|
Chu UB, Duellman T, Weaver SJ, Tao Y, Yang J. Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298. Biochim Biophys Acta Gen Subj 2015; 1850:1415-25. [PMID: 25829196 DOI: 10.1016/j.bbagen.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Statins are potent inhibitors of cholesterol biosynthesis and are clinically beneficial in preventing cardiovascular diseases, however, the therapeutic utility of these drugs is limited by myotoxicity. Here, we explored the mechanism of statin-mediated activation of ERK5 in the human endothelium with the goal of identifying compounds that confer endothelial protection but are nontoxic to muscle. METHODS An ERK5-one hybrid luciferase reporter transfected into COS-7 cells with pharmacological and molecular manipulations dissected the signaling pathway leading to statin activation of ERK5. qRT-PCR of HUVEC cells documented the transcriptional activation of endothelial-protective genes. Lastly, morphological and cellular ATP analysis, and induction of atrogin-1 in C2C12 myotubes were used to assess statin-induced myopathy. RESULTS Statin activation of ERK5 is dependent on the cellular reduction of GGPPs. Furthermore, we found that the combination of FTI-277 (inhibitor of farnesyl transferase) and GGTI-298 (inhibitor of geranylgeranyl transferase I) mimicked the statin-mediated activation of ERK5. FTI-277 and GGTI-298 together recapitulated the beneficial effects of statins by transcriptionally upregulating anti-inflammatory mediators such as eNOS, THBD, and KLF2. Finally, C2C12 skeletal myotubes treated with both FTI-277 and GGTI-298 evoked less morphological and cellular changes recognized as biomarkers of statin-associated myopathy. CONCLUSIONS Statin-induced endothelial protection and myopathy are mediated by distinct metabolic intermediates and co-inhibition of farnesyl transferase and geranylgeranyl transferase I confer endothelial protection without myopathy. GENERAL SIGNIFICANCE The combinatorial FTI-277 and GGTI-298 drug regimen provides a promising alternative avenue for endothelial protection without myopathy.
Collapse
Affiliation(s)
- Uyen B Chu
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Sara J Weaver
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Yunting Tao
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA.
| |
Collapse
|